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Abstract 

Many ways exist to measure and model financial asset volatility. In principle, as the frequency of 
the data increases, the quality of forecasts should improve. Yet, there is no consensus about a 
“true” or "best" measure of volatility. In this paper we propose to jointly consider absolute daily 
returns, daily high-low range and daily realized volatility to develop a forecasting model based 
on their conditional dynamics.  As all are non-negative series, we develop a multiplicative error 
model that is consistent and asymptotically normal under a wide range of specifications for the 
error density function. The estimation results show significant interactions between the 
indicators. We also show that one-month-ahead forecasts match well (both in and out of sample) 
the market-based volatility measure provided by an average of implied volatilities of index 
options as measured by VIX. 
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1. Introduction 

 

Models to describe and predict financial asset volatility abound. In practice, in addition to a 

model’s capability to reproduce stylized facts in observed time series and exhibit desirable 

statistical properties, the ultimate way to evaluate a model is its usefulness as a tool in many 

areas such as derivative products pricing, risk evaluation and hedging, portfolio allocation, and 

the derivation of Value at Risk measures.  

Yet, the concept of volatility itself is somewhat elusive, as many ways exist to measure it and 

hence to model it (cf. the survey by Andersen et al., 2002). In recent times, the availability of 

ultra-high frequency data and the work done on them has shed new light on the concept of 

volatility: as a matter of fact, data sampled at regular intra-daily intervals can be summarized into 

a measure called realized volatility which under some assumptions is a consistent estimator of 

the quadratic variation of the underlying diffusion process. Such a measure was widely adopted 

as a target of forecast accuracy, but the dependence of the measure upon the frequency of 

observation of the data makes it difficult to come to clear conclusions.  In principle, the volatility 

measures derived from ultra-high frequency data should prove to be more accurate, hence 

allowing for forecast efficiency gains. Nevertheless, the measures that make more intensive use 

of such data are prone to all sorts of microstructure problems. Bid-ask bounce (Roll, 1984), 

screen fighting (Zhou, 1996), price discreteness, irregular spacing of quotes and transactions can 

all bias volatility estimates.  

Even if the growing literature on realized volatility has delivered promising results (Andersen et 

al., 2000; Barndorff-Nielsen and Shephard, 2002), what is of interest is the appropriate way to 

provide accurate forecasts in the medium-to-long run, and the problem remains open as to 

whether daily or intra-daily models deliver the most successful answer. In the first category one 

can mention those models favoring the existence of long memory or high persistence in the 

process of volatility, such as  the daily component model by Engle and Lee (1999), or  the 

Fractionally Integrated GARCH (FIGARCH – Baillie et al., 1996; or FIEGARCH, Bollerslev 

and Mikkelsen, 1996) or Long Memory Stochastic Volatility Models (LMSV – Breidt et al., 

1998; Deo and Hurvich, 1999). Intra-daily models are more recent: Ghose and Kroner (1996) 

adopt a signal plus noise model to estimate a persistent component as in Engle and Lee (1999); 

Andersen and Bollerslev (1997) show how accuracy of volatility forecasts can be improved if 
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one moves to analyzing five-minute returns; Engle (2000) derives a measure of volatility from 

transaction data. 

The approach which we will pursue here is one in which several measures of volatility can be 

jointly used to see whether different features of observed time series can deliver an enrichment 

of volatility forecasting for the medium run. As a matter of fact, next to the traditional volatility 

modelling from daily returns measured as the log-difference of closing prices, we can consider 

absolute returns on which considerable modeling effort is present in the literature (Taylor, 1986; 

Ding, Granger and Engle, 1993; Granger and Sin, 2000) and, with the already mentioned 

provisos, realized volatility as the standard deviation of intra-daily returns observed at regular 

intervals. Furthermore, it has long been recognized that the spread between the highest recorded 

daily price and the lowest recorded daily price is a function of the volatility during the day and, 

as such, can lead to an improvement of the volatility estimates. Many authors (Taylor, 1987, 

Gallant et al., 1999, Chou, 2001, Alizadeh et al., 2002, Brandt and Diebold, 2002) have devoted 

considerable attention to the informational content of range data extending the relationship it has 

to the volatility parameter in a geometric Brownian motion context (cf. the early papers by 

Parkinson, 1980, Garman and Klass, 1980, and Beckers, 1983), and comparing its persistence 

characteristics with the ones of daily returns (Brunetti and Lildholdt, 2003).  

It should be stressed that the three variables have different features relative to one another: the 

main difference is that the daily return uses information about the closing price of the previous 

trading day, while the high-low spread and the realized volatility are measured on the basis of 

what is observed during the day, the former taking all trade information into account, the latter 

being built on the basis of quotes sampled at discrete intervals. Thus, a zero return is not 

necessarily informative about what happened during the day, and, by the same token, a high 

return may signal high volatility during the day while it may just be due to an opening price 

much different from the closing price the previous day but very close to the closing price of the 

same trading day, with a small high-low spread. Also, note that the same value of realized 

volatility may correspond to different values of the range since we could both have recorded both 

high and low values fairly far apart during the day with a smooth transition of price movements 

between the two, or some vivacious price swings concentrated in a short period of time. For 

these reasons, they are all potentially useful. 
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In the present paper we exploit the fact that absolute returns, daily range and realized volatility 

are variables evolving as functions of the underlying time-varying volatility and all exhibit the 

usual conditional persistence of financial time series. They can each be considered as indicators 

of volatility and since they are all non-negative-valued they can be modelled with a multivariate 

extension of the  Multiplicative Error Model suggested by Engle (2002).   Each indicator is 

modeled as a GARCH-type process possibly augmented with weakly exogenous variables. This 

estimator is robust to a range of error distribution assumptions. We show that this three-variable 

model possesses interesting properties in that the forecasts for each indicator are augmented by 

the presence of the other indicators lagged and by asymmetric effects from the direction of price 

movements. The model can be solved dynamically for multi-period forecasts and the dynamic 

interdependence accounts for a substantial departure from the standard GARCH profile of 

dynamic forecasts. We can use our three equation model to predict multi-step volatility.   

The model is estimated with daily index data over a relatively long sample period.  A careful 

specification search selects models for each equation.  We calculate 22-step volatility forecasts 

and compare these with one month option-implied volatilities as measured by the VIX.  We 

examine the forecast performance both in and out of sample and estimate a combination of 

forecast equation to see whether the forecasts derived in our framework have a significant impact 

in predicting the VIX.  The approach is quite different from that of Blair et al. (2001) who also 

analyze volatility forecasting and VIX but inserting it as a weakly exogenous variable in the 

conditional variance equation for the S&P100.  

The reader should expect the following: in Section 2 we discuss the Multiplicative Error Model, 

with some general considerations about the estimator and its properties, and about the 

specifications of the three models adopted. Data issues and model selection procedures are 

described in detail in Section 3. Model performance is analyzed in Section 4 focusing on the 

characteristics of the model in multi-step-ahead forecasting. In order to show the usefulness of 

our forecasts when compared to a measure based on implied volatilities representing market 

evaluation of volatility, in Section 5 we build multi-step-ahead volatility forecasts and we use 

them as regressors in a combination of forecast regression where the (log of the) volatility index 

VIX is the forecast target. Concluding remarks follow. 
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2. The Model 
 
We assume that the evolution of a non-negative valued process , can be described by a 

Multiplicative Error Model (MEM, as discussed by Engle, 2002).  That is,  is the product of a 

time varying scale factor (which depends upon the recent past of the series) and a standard 

positive valued random variable. Such a specification was adopted in Engle and Russell (1998) 

for durations, Manganelli (2000) for volume transaction data and Chou (2002) for high-low 

range. The scale factor is identified as the conditional mean if the error distribution is assumed to 

have unit mean. In general, therefore,  

tx

tx

  (1) (1,    | ~ . . . 1,t t t t tx i i dµ ε ε ϕ−= ℑ )D

tz

where can be rather flexibly specified as tµ

  (2). 
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Further terms can signal the dependence of the series on weakly exogenous variables 

(summarized in the vector ) included in the information set available at time t . The 

conditions to ensure stationarity and positive means for all possible realizations have been 

discussed in Engle (2002).  

tz 1−

 

The density of the error term ε  was left unspecified thus far. While in general one should 

specify the true DGP, it may be possible to find robust specifications.  We now consider the 

family of gamma densities that have been used for ACD models.   
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1 Such a condition is not restrictive at all: consider that if ε  were to be such that , it could be 

written as  with  and  would be a multiplicative constant to be absorbed by µ . 
t ( ) 1tE ε αβ= ≠

t
* *

tβ ε *( ) 1tE ε = *β
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The process would have conditional expectation 1( )t tE x µ−ℑ = t  and conditional variance 

2

1( | ) t
t tVar x µ

α−ℑ = .  A comparison between various densities corresponding to different choices 

of α  subject to the constraint is reported in Figure 1: as well known, the choice of 1 2α = , gives 

the pdf of a chi-square with one degree of freedom, while α =  yields the unit exponential. In 

general, values of  α <  amount to attributing more weight to extremely small or large values of 

the random variable while values of α >  generate a hump shaped density which approaches the 

normal distribution for large values of α .  

1

1

1

 

Figure 1. Comparison among different gamma densities subject to the constraint αβ  1=

 
 

Let us suppose for the moment that the only parameters of interest are the ones defining (let 

us call them θ ), and let us look at the corresponding log-likelihood function: the relevant object 

for estimation is given by 

tµ
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where the constant depends only on the ’s and α . It is clear that in maximizing this function 

with respect to θ , the value assumed by α  is irrelevant, as the first order conditions must obey 

tx

 2
1

0
T

t t t

t t

x µ µ
µ θ=

 − ∂
=  ∂ 

∑ . (5) 

Even from a numerical point of view, an iterative procedure is unaffected (in a Newton-type 

method the α  terms present in the inverse Hessian and gradient would cancel each other) 

resulting in exactly the same estimates (apart from rounding off errors when numerical 

derivatives are used). Furthermore, these first order conditions coincide with the ones derived 

from an auxiliary model that specifies the square root of the variable of interest, tx , as the 

product of the square root of the scale factor tµ and a half Gaussian error term ν , namely,   t

 1   | ~ half Gaussian (standard) t t t t tx µ ν ν −= ℑ . (6) 
This model has the clear advantage of being able to exploit any GARCH software which can 

estimate the parameters θ  in  from a model for tµ tx  with no equation for the mean (as done 

for the ACD model by Engle and Russell, 1998; cf. also Engle, 2002). 

   

Clearly, the second order conditions would differ, since the Hessian will be proportional to α  

(e.g. for the exponential case it would be twice the Hessian for the chi-square), and, 

correspondingly, the estimated parameter variance-covariance matrices. Note, however, that 

(exploiting the results of Bollerslev and Wooldridge, 1992 and Lee and Hansen, 1994) the robust 

variance covariance matrix, computed as the product 

  
1 1

( )Var H OPG Hϑ
− −

=
(with H the Hessian matrix and OPG the matrix of the outer products of the gradients) provides 

the obvious benefit of making this discrepancy irrelevant since the α  cancel out:   's

 
1 1 12

1 1 exp1 exp
1 1( )Var H OPG H H OPG Hα ααϑ α
α α

− − −
= === =

1
exp
−

 (7) 

 

The strong lesson we learn from this discussion is that in the absence of justifications on the 

most appropriate distribution to adopt for the error term in an MEM, the avenue of deriving its 

parameter values through the estimation of an auxiliary variance equation for the positive square 
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root of the variable of interest2 with a GARCH specification and normally distributed errors is 

straightforward and provides Quasi Maximum Likelihood estimators, hence consistent and 

asymptotically normal as discussed by Engle (2002), building on results by Lee and Hansen 

(1994). However, if we know that a Gamma distribution assumption for ε  is appropriate, then 

the same procedure delivers consistency and efficiency for the estimators if α  is known. Even if 

 is not known, using robust standard errors shields against the specific shape of the Gamma 

distribution. Introducing α  among the parameters to be estimated would provide information on 

the shape of the distribution of the error term ε  (some empirical results are discussed by Engle, 

2002) which would be useful for simulating future values or scenario analysis but would not 

have any impact on the values of the estimates of θ , nor on their standard errors as 

. 

t

α

Cov

t

( , ) 0θ α =

More specifically for the case at hand here, let us indicate the daily closing price as C , and 

calculate the daily returns as . Let us thus consider squared returns , modeled 

as an MEM 

t

1log( / )t tr C C −= t

)r

t

)h

)v

                                                          

2
tr

  (8) (2
1,    | ~ . . . 1, ;ε ε ϕ−= ℑr

t t t t tr h i i d D

where  is the conditional mean of .  The square, hl , of the high-low range is defined as 

, where  and  are the highest, respectively, the lowest recorded prices 

during the day, and is modeled as:  

r
th

og(t

2
tr

2
t

l / )thl H L= tH tL

  hl ; (9) (2
1,    | ~ . . . 1,η η ϕ−= ℑh

t t t t th i i d D

and the square of the realized volatility, , defined as the standard deviation of observed 

returns over J subperiods within the day, between market opening time and market closing time

tdv
3, 

  (10) (2
1,    | ~ . . . 1,ζ ζ ϕ−= ℑv

t t t t tv h i i d D
 

 
2 As established by Ding, Granger and Engle (1993), absolute returns exhibit high levels of serial correlation and can 
themselves be adopted as the first indicator of volatility. We prefer to think of the square root of   as absolute 
returns even if the choice between writing (6) for absolute returns or for returns (with Gaussian innovations) is 
irrelevant from a numerical point of view, since the first-order conditions would not change.  

2
tr

 
3 The merits of the choice of the appropriate J to balance estimation accuracy and microstructure pitfalls are 
discussed in Andersen et al. (2000): empirically, 5 minutes intervals “work” in a foreign exchange framework 
(Andersen et al., 2001), 15 minutes intervals are adopted by Schwert (1998), but we still lack a theory of what is the 
optimal length to choose. In this context we choose J=78 and we adopted the method discussed by Zhou (1996) on 
raw data to purge bid-ask bounce effects. 
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Put together, we can write this trivariate MEM as a system of equations 

 (

2

2
1

2

~ . . . ι,
ε ε
η η
ζ ζ

−

     
     = ℑ     

            

r
t t t t

h
t t t t t
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t tt t

r h

hl h i i d D

v h
)Φ   (11) 

where  indicates the Hadamard product,  is a unit (3x1) vector, and  is a 3x3 matrix 

representing, respectively, the mean vector and the variance-covariance matrix of the innovation 

terms.  The multivariate estimation problem becomes a series of univariate problems when it is 

assumed that the covariance matrix is diagonal.  There is no loss of consistency if this 

assumption is false but there can be a loss of efficiency.  

ι Φ

  

1
r
th −

2
1td −

1tr −

2

We can now turn to the details of the MEM specification. Let us consider the first MEM and 

write the basic form of the model for the scale factor  as  r
th

2
1

r
t th rω α β−= + +   (12) 

In order to take asymmetric reactions to shocks, this base model can be expanded, either by 

writing a threshold-type model involving the customary dummy variable for negative returns 

,  ( )0t td I r= <

2
1 1 1

r r
t t t th r h rω α β γ− − −= + + +  (13) 

or even adding lagged returns  as a different way of accounting for asymmetry (as in the 

APARCH model, Ding, Granger, and Engle, 1992) given that they maintain their sign, 

1tr −

2 2
1 1 1 1

r r
t t t t th r h r dω α β γ δ− − − −= + + + +  (14) 

The main question we want to address at this stage is whether the inclusion of the lagged 

variables  and , which are part of the information set ℑ , adds significant explanatory 

power to the specification for h . If so, then some of the information contained in these 

indicators relates to a variability in returns which cannot be accounted for by considering just 

squared returns and possible asymmetric effects. By the same token, a way to account for further 

asymmetric effects when returns in the previous day are negative is to include also the product of 

the indicators by the same dummy variable d .  A model which would take all these effects into 

account can be written as 

2
1thl −

2
1−tv 1t−

r
t

1t−

( )2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1,ω α β γ δ ϕ ϑ ψ λ− − − − − − − − − − −= + + + + + + + +r r

t r r t r t r t t r t r t r t t r t r t th r h r d r hl hl d v v d  (15) 
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where a subscript “r” was added to the coefficients indicating that they refer to the specification 

for returns. The augmentation of the GARCH(1,1) model in this case includes the six variables 

, r d , hl , hl , v , v d which are all known at time t-1.   1tr −
2

1 1t t− −
2

1t−
2

1 1t td− −
2

1−t
2

1− −t t 1

t

2
1−d

t

1

2
1−d

A similar approach can be followed for the other two indicators. Considering again 

and picking six relevant variables from , namely, , , , , , 

, one can write a full specification for  as 

2 ,h
t thl h η=

2
1 1− −t tv d

1t−ℑ 1tr −
2

1 1t thl d− −
2

1tr −
2

1 1t tr d− −
2
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h
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( )2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 .ω α β δ γ ϕ ϑ ψ λ− − − − − − − − − −= + + + + + + + +h h

t h h t h t h t h t t h t h t t h t h t th hl h r hl d r r d v v       (16) 

Analogously, for the realized daily volatility indicator we start from  and add the 

corresponding six variables, , , , , , , to the base specification of 

a GARCH(1,1) to get 

2 ζ= v
t tv h

2
1 1− −t tv d 1tr −

2
1tr −

2
1 1t tr d− −

2
1thl −

2
1t thl d− −

( )2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 .ω α β δ γ ϕ ϑ ψ λ− − − − − − − − − −= + + + + + + + +v v

t v v t v t v t v t t d t v t t v t d t th v h r v d r r d hl hl     (17) 
 

The question that we will discuss in the following section is based on the characteristics of the 

data that one analyzes, namely, whether adding the lagged indicators adds substantial 

explanatory power to the basic GARCH specification. In fact, it may happen that the MEM for  

one indicator does not require the information set to be augmented, while there may be 

significant effects for another.  

 

 

3. The Data, Parameter Estimation and Model Selection 
   
For our empirical models, we will use data on the Standard and Poor 500 index from January 4, 

1988 to July 14, 1999 (2730 observations); we leave the last 217 observations for out-of-sample 

forecast comparison purposes. We build series for absolute returns, high-low range and realized 

volatility for this period: since the constructed variables have quite different scales relative to one 

another, we rescale all three variables so that they are all expressed in annual percentage terms 

and they share the in-sample quadratic mean of observed returns. Some descriptive statistics are 

reported in Table 1 and suggest that the absolute returns and the daily range have more 

characteristics in common with one other than each of them does with daily volatility. However, 
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a more complete picture is obtained if one looks also at the scatter-plots in Figure 2 and the 

correlation coefficients between the three series reported in the last lines of Table 1. 
Figure 2. The Standard and Poor 500 Index.  Scatter-plots between  

absolute returns, daily range and realized volatility. Sample Period: Jan.4, 1988 to Dec. 31, 1997. 
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Table 1. S&P500 Absolute returns, daily range and realized volatility. Summary statistics. 

 Absolute Returns Daily Range Realized Volatility 

 Mean 9.35 11.27 7.74 

 Median 6.72 9.67 4.89 

 Maximum 112.92 84.83 241.53 

 Minimum 0.000 0.098 0.004 

 Std. Dev.  9.29 6.83 10.67 

Quadratic Mean 13.18 13.18 13.18 

 Skewness 2.93 2.90 7.60 

 Kurtosis 21.97 21.48 115.80 

Correlations    

with absolute returns  0.81 0.51 

with daily range   0.80 
All variables are expressed in terms of percentage annual terms and they share the same 
quadratic mean. Sample period: Jan. 4, 1988 – Dec.30, 1997. 

 

The absolute returns lie almost invariably below the daily range, signaling that the days in which 

the previous day closing price is lower (higher) than the lowest (highest) intradaily price are 

infrequent. A more dispersed pattern is shown between the absolute returns and the realized 

volatility as reflected also by the correlation coefficient of 0.51. The fact that the correlations are 
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relatively high but not nearly unity signifies that the indicators are different from one another. 

These preliminary stylized facts coupled with the characteristics of persistence exhibited by the 

absolute return, the daily range and the realized volatility series (cf. Figure 3), mean that an 

effort aimed at modeling the interactions between these three variables in a conditional context 

seems promising. 

 

FIGURE 3 (at the end of the paper) about here  

 

For each of these MEMs, we envisage the introduction of any of up to six weakly exogenous 

variables in addition to a GARCH(1,1)-type model which is kept as the base specification in 

order to avoid coefficient identification problems. For each indicator, therefore, we are 

estimating 26=64 models ranging from the most general forms (15), (16) and (17) down to the 

base specification kept as a benchmark.  

The two model selection strategies that we will adopt and compare are:  

1. a general-to-specific strategy whereby we start pruning the coefficients that appear to be 

statistically insignificant (using Bollerslev and Wooldridge robust standard errors) in the 

most general expressions and go on to search down to the level where all coefficients are 

significant and 

2. the smallest value of the Schwartz Information Criteria (BIC) among the 64 models. 

The chosen models from the general-to-specific selection procedure are reported in Table 2. 

 

Table 2. S&P500 - General-to-specific Model Selection.  
Equations for the time-varying component in the equations for the squares of absolute 
returns, high-low range, and daily realized volatility. Sample period Jan 4, 1988 – Dec. 
30, 1997 (Robust t-statistics in small font under the parameter value). 
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The results show that, when evaluated in terms of coefficient significance, the inclusion of other 

variables in the information set appears to add explanatory power in each of the expressions. The 

model for absolute returns includes an asymmetric effect captured by  (the term  seems 

to be less important), and both the squared daily range and the squared daily volatility. The 

model for the high-low range seems to be the most parsimonious with the presence of just an 

asymmetric response of  to lagged values of the returns. Interestingly, the one model which 

attracts the highest number of significant variables is the model for the daily realized volatility in 

which there appear to be asymmetric effects from all variables, as well as lagged squared returns 

and lagged squared daily range. Some diagnostics (reported in the top panel of Table 3) show 

that there are no major specification problems: for reference we give the values of the BIC and 

the estimated log-likelihood, as well as the results of an ARCH(2) test (5% critical value = 5.99)  

and the Ljung-Box test Q(12) for the squared residuals (5% critical value = 21.03). 

1tr −
2

1t tr d− −1

h
th

 

Table 3: S&P500 - Diagnostics on Selected Models.  
Sample period Jan 4, 1988 – Dec. 30, 1997. 

 
 BIC ARCH(2) Q(12) LOGLIK 

General-to-Specific Model Selection 

Absolute returns 7.8693  1.770  4.016  -9868.28  

Daily Range 7.8622 2.25 5.86 -9867.127 

Realized Volatility   7.2581 0.425 15.248 -9092.116 

Smallest BIC Model Selection 

Absolute returns 7.8682  1.272  4.174  -9870.81  

Daily Range 7.8622 2.25 5.86 -9867.127 

Realized Volatility   7.2561 0.470 12.136 -9097.375 

 

The specification search guided by the lowest value of the BIC gives the results we present in 

Table 4. The model selected for the daily range is the same as before. For absolute returns, 

the model selected here does not contain lagged square daily volatility; the values of the 

coefficients do not change much, so the profile of forecasts between the two models will 

differ mainly because of the impact of this variable. The model for the daily volatility here 
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does not include the terms involving the daily range, and the values of the coefficients are 

fairly different. Again (bottom panel of Table 3) no major problems are signaled by the 

residual diagnostics. 

 

Table 4. S&P500 - Smallest BIC Model Selection. 
Equations for the square of the time-varying component in absolute returns, high-low 
range, and daily realized volatility. Sample period Jan 4, 1988 – Dec. 30, 1997. (Robust 

t-statistics in small font under the parameter value) 
 

2 2
1 -1 12.805 1.068 43.432 3.293 2.328

5.026  - 0.030 0.901 - 0.745 0.101− −= + +r r
t t t th r h r 1−thl

2
1 1 14.885 5.407 32.713 3.608

7.622 0.109 0.850 - 0.878− − −= + +h h
t t t th hl h r  

2 2
1 -1 -1 -1 -18.061 2.366 91.479 28.350 6.688 23.911

2.123 0.035 0.736 -1.183 0.122 0.123− −= + + + +v v
t t t t t th v h r v d 1tr  

 
 
4. Model Performance 
 

The three models thus estimated could be used separately for one-step-ahead predictions using 

the estimated coefficients and the actual value of the right-hand side variables: the performance 

of these single-equation models could be individually evaluated in relationship to the 

performance of the corresponding GARCH models. The interest of what is being done here, 

though, lies in the fact that the three equations together can be seen as a system which can be 

used as a tool for multi-step forecasting for medium horizons. Let us consider the left-hand side 

as a three dimensional vector h , and consider that at  time T+1 we have t
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*A   (18) 

where  is a 3 by 9 matrix which includes the coefficients on the variables the value of which 

is known at time T. To forecast the various future second-order moments conditional on 

information at time T for maturities greater than 1, we need to substitute the right-hand side 

variables with their conditional expectation as of time T. For a generic horizon k, we will have 

*A
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and, therefore the expression (18) is substituted by  
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A     (19) 

The dynamic properties of the estimated system can therefore be evaluated by examining the 

characteristic roots of the matrix A. In principle, there could be stable complex conjugate roots 

that would give the system some dampened cyclicality in the forecasting. For the case at hand 

the roots for the two sets of estimates are given as in Table 5. 

 

Table 5. Characteristic Roots of the Matrix A 

Model selection    

General-to-specific 0.958 0.860 0.833 

Smallest BIC 0.958 0.870 0.832 

  

The roots are fairly similar across the two selection procedures: one can therefore expect that the 

two multi-equation models will provide different forecasting profiles for the short horizon, while 

they will tend to be very similar in the medium to long run. For this reason we will report the 

graphs just for the models selected according to the smallest BIC criterion. 

To evaluate the performance of the models let us first consider the profile of the out-of-sample 

forecasts generated by the system starting on Jan. 2, 1998, the first day after the estimation 

sample, and varying the starting date. We take the observed values as starting values for day T 

(corresponding to Dec. 30, 1997 and forecasting from Jan 2, 1998 to July 13, 1998), T+4 

(corresponding to Jan 8, 1998), and so on until the last starting value which corresponds to Mar. 

6, 1998 for a forecasting horizon going from Mar.9, 1998 to Sep. 14, 1998.  In Figure 4 we 
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superimpose various profiles of the forecasts for different starting periods and for a horizon of 

132 periods ahead. The forecasts for the daily range indicator exhibit the typical monotonic 

profile of a GARCH(1,1) model. This is not the case for the curves corresponding to forecasts 

obtained from the other two indicators: it is interesting to note that the forecasts produced by our 

model may have a non-monotonic behavior with over- (or under-) shooting of their long term 

(unconditional) values at intermediate horizons. 

 

FIGURE 4 (at the end of the paper) about here 

 

Let us now consider the term structure of volatility for an asset (or an index) at a given maturity 

T+ k as the square root of the cumulated sum of j-step-ahead forecasts generated by expression 

(18), when j=1, or (19), when j is between 1 and k (cf. Engle and Patton, 2001). This corresponds 

to evaluating the square root of the cumulated sum of the expected values of each volatility 

indicator at any time between 1 and k. As k increases the terms of the sum will tend to repeat 

themselves. We thus have 
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hl    (20) 

For reasons that will be clearer in the next section when we discuss the comparison of these 

forecasts with the VIX volatility index, we choose a horizon k equal to 22, that is, a one-month 

ahead forecasts. In Figure 5 we report the values of the cumulative volatility forecast as the 

(square root of the) average of 1-step, 2-steps, …, 22-steps ahead out-of-sample forecasts 

obtained by the general-to-specific three-equation system (18) and (19) relative to the standard 

GARCH(1,1) specification. As one would expect, for the equation the differences between 

the values obtained with our model and with the standard base specification are quite minimal 

and can be ascribed to the presence of lagged returns in the former specification. For the other 

two indicators the results show that the estimates obtained with our model are generally higher 

and more persistent than the estimates obtained with the base specification when the absolute 

h
th
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return indicator is used whereas the reverse is true for the daily realized volatility equation. A 

remarkable difference is observed for estimates on or about August 31, 1998 for which the base 

specification provides much higher estimates. Whether this signals excessive volatility forecasts 

by the latter set of models is an issue that requires a type of more specific evaluation. What we 

need is an overall comparison of the two sets of forecasts gauged in reference to a market-based 

volatility measure such as the volatility index VIX. We turn to this in the next section. 

 

FIGURE 5 (at the end of the paper) about here 

 

5. A Volatility Index as a Forecast Target 
 
The Chicago Board of Options Exchange (CBOE) is the world’s largest options exchange where 

standardized stock and index options are traded.4 Among these options, CBOE offers an 

(American-style) index option on the S&P 100 index called OEX, the value of which is 

established as 100 times the current value of the index (e.g. on July 25, 2001 the index was 

613.95 and hence the dollar value of the index was $61,395). OEX options are the most actively 

traded on the CBOE and are very liquid. One interesting feature of OEX is that in 1993 the 

CBOE created a volatility index called VIX, which is calculated as a weighted average of the 

implied volatilities from eight at-the-money call and put options on the OEX which have an 

average time to maturity of 30 days. The VIX index therefore measures the implied volatility of 

a hypothetical option that is at-the-money and has 30 days to expiration.5 The behavior of the 

series from Jan. 4, 1988 to Dec. 14, 1998 is shown in Figure 6. Standard Augmented Dickey 

Fuller tests show that the unit root hypothesis is rejected, although the degree of persistence in 

the series is very high. 

For the purposes of this paper, the analysis of VIX in reference to volatility estimates with a 

multiple indicator conditional model is relevant because we can use the value of VIX as a target 

for our volatility estimates. Under several auxiliary assumptions, the optimal forecast of 

volatility from past prices should match the Black-Scholes at-the-money implied volatility. 

However, information such as forthcoming announcements known to traders but not to the 

                                                           
4 For more detailed information cf. the CBOE web site www.cboe.com. 
5 The value of the index is reckoned to measure investors’ fears. A very high value signals bearishness as downward 
risk is perceived to be higher than upward risk. Chartists look at VIX for  possible trend reversals. 
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econometricians may lead to episodes of positive or negative discrepancies. The 22-period-ahead 

horizon for the term structure of volatilities was chosen to ensure compatibility with the horizon 

considered when VIX is constructed.6  

 
Figure 6. The CBOE VIX Index: Jan. 4, 1988 to Dec. 14, 1998. 
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We will therefore examine two main issues:  

• whether the volatility forecasts provided by each set of MEMs (base and system 

specifications) and grouped according to the indicator they refer to contribute to the 

explanation of the behavior of the VIX index both in and out of sample. We will thus test 

whether the coefficients of the forecasts (grouped by indicator) are jointly equal to zero in 

a regression framework; 

• whether the volatility forecasts provided by the MEMs for each indicator with a base 

specification and with a system specification help in explaining the  behavior of the VIX 

index both in and out of sample. We will thus test whether the coefficients of each group 

of forecasts (base and system) are jointly equal to zero in a regression framework. 

In order to answer these questions we ran two sets of regressions each over two separate periods 

(estimation sample and out-of-sample). The slope coefficient and intercept may adjust for the 

differences between the S&P500 and the S&P100 options and for potential, un-modeled 
                                                           
6 We are not overly concerned with the fact that VIX Is calculated on the S&P100 index while we are calculating 
volatility measures on the S&P500. The two indices have a high correlation (in the sample period of interest here 
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volatility risk premia. In this context, we use both the forecasts provided by the models selected 

according to the smallest BIC criterion and to general-to-specific model selection procedure, 

since they provide partially different outcomes. Two models were estimated, both using the log 

of VIX as the dependent variable and the log of the one month volatility forecasts according to 

the base specification, and the system MEMs as independent variables. The difference between 

the two is that the second includes an AR(1) correction. It is not surprising that there would be 

serial correlation in these estimates.  Differences between the optimal econometric forecast of 

volatility and implied volatilities would naturally arise from the reduced information set used by 

the econometrician.  For example, an upcoming election would be incorporated in VIX but not 

GARCH and this would persist for many days. 

The results are shown in Table 7 where we report the results of the in-sample and out-of-sample 

analysis with the top panel referring to the smallest BIC selection criterion and the bottom one to 

the results obtained with the general-to specific approach. The results are show that, with a few 

exceptions, all coefficients are individually statistically significant. One notices that in all 

specifications the constant term is highly significant and positive, signaling that the volatility 

estimates together somewhat underestimate the volatility level. This could just be due to the fact 

that our volatility estimates are referred to a wider-based index taking the average over a larger 

number of stocks or it could be due to the American option premium in the OEX contract or it 

could be due to a volatility risk premium. The specification which seems to have better 

properties is one in which an AR(1) correction is introduced which interestingly, keeps the joint 

explanatory power of the variables we derived. Beside an obvious improvement in the R2 and in 

the value of the likelihood function, the diagnostics show the expected improvement since the 

residual autocorrelation and ARCH effects are reduced. The contribution of various sets of 

forecasts is assessed by means of HAC Wald F-tests and reported in the lower part of each panel. 

We test whether each forecast has an impact by type of indicator (rows labeled absolute returns, 

daily range or realized volatility) or by type of method (base specification or system 

specification) by means of Wald-type tests. There is no clear indication of a better in-sample 

model performance as a consequence of the selection criterion adopted. In both sets of results 

one notices that some negative coefficients appear: concentrating on the high-low range, for 

                                                                                                                                                                                           
about 98% for the returns and 99% for the returns squared, with high cross-correlations). One should keep in mind 
that the S&P500 is an average over a larger number of stocks and hence has a potentially lower volatility. 
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example, other things being equal, an increase in the forecast of the volatility value for this type 

of indicator would imply a reduction in the value of VIX.  However, it is unlikely that other 

things are equal. 

The same kind of analysis may be carried over to an out-of-sample combination of forecasts 

exercised over the period January 2, 1998 to November 10, 1998, in which the same variable 

(log(VIX)) is regressed on a constant and on the (logs of) 22-day-ahead volatility forecasts 

obtained from the same models, keeping the coefficients fixed at their estimated in-sample 

values. The results, again broken down between lowest BIC models and general-to-specific 

models, are presented in the last columns under the heading Out of Sample. Once again, the 

AR(1) correction achieves a substantial reduction in the values of the residual diagnostics tests 

and, again,  the significance of each set of forecasts is maintained judging from the F-tests. The 

lowest BIC provides a slightly better performance: all parameters are significant. Some features 

of this combination of forecasts can also be assessed graphically (Figure 7) since it seems that 

the highest variance appears to correspond to periods in which the VIX index is higher and more 

volatile. 

 
Figure 7. The CBOE VIX Index: Out of sample combination of forecasts – Jan. 2, 1998 to Nov. 10, 1998 – 

Smallest BIC Models with AR(1) correction (Coefficients in Table 7, last column). 
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Table 7. Regression results log(VIX) regressed on a constant and the 22-day-ahead forecasts of volatility 
obtained using the base and the system specifications with and without an AR(1) correction.  
 

  In sample Out of sample 
Lowest BIC   w/ AR(1)  w/ AR(1) 
 Constant 0.778 0.412 1.393 0.973 
  (2.15) (1.88) (3.42) (2.02) 

Absolute Return 0.725 0.767 0.264 0.471 
 (10.57) (9.44) (2.56) (2.49) 
Daily Range 0.723 1.328 1.682 2.513 
 (1.60) (4.30) (3.83) (10.87) 
Realized Volatility 0.100 -1.216 -0.961 -1.565 

Multi-step  
Average Volatility  
(Base specification)  

 (0.52) (-12.25) (-3.01) (-7.61) 
Absolute Return -1.480 -0.071 -0.898 -0.790 
 (-2.53) (-0.21) (-4.09) (-7.84) 
Daily Range -0.216 -0.071 0.049 -0.023 
 (-3.01) (-3.04) (0.74) (-0.52) 
Realized Volatility 1.032 0.234 0.537 0.238 

Multi-step  
Average Volatility 
(System 
specification)  

 (3.72) (2.69) (3.84) (2.03) 
 AR(1)  0.950  0.908 
   (146.36)  (29.14) 

R-squared 0.83 0.97 0.91 0.97 
TR2  for AR(4) 2877.82** 9.12** 91.68** 4.17** Diagnostics 
TR2  for ARCH(4) 995.62** 11.91** 48.50** 3.21* 
Abs. returns terms 56.33** 49.62** 7.47** 59.36** 
Daily Range terms 3.28* 102.40** 8.41** 57.59** 
Realized Volatility terms 7.37** 4.92** 9.31** 2.11 
Base terms 109.00** 77.56** 3.22* 29.59** 

Robust Wald tests of  
joint zero coefficients 

System terms 15.56** 181.46** 10.05** 66.41** 
General to Specific      
 Constant 1.178 0.581 1.234 1.203 
  (3.82) (4.32) (3.52) (2.98) 

Absolute Return 0.679 0.837 0.194 0.557 
 (9.94) (10.29) (1.88) (2.67) 
Daily Range 1.200 1.260 0.683 1.741 
 (4.16) (5.52) (2.61) (7.40) 
Realized Volatility 0.056 -1.282 -0.238 -1.294 

Multi-step  
Average Volatility  
(base specification)  

 (0.31) (-13.61) (-0.98) (-5.09) 
Absolute Return -2.360 -0.240 -0.511 -0.802 
 (-5.52) (-0.74) (-2.99) (-6.93) 
Daily Range -0.068 -0.023 0.165 0.127 
 (-1.06) (-1.30) (2.48) (2.62) 
Realized Volatility 1.238 0.362 0.430 0.431 

Multi-step  
Average Volatility 
(System 
specification)  

 (5.00) (4.87) (7.44) (9.19) 
 AR(1)  0.947  0.945 
   (137.97)  (37.27) 

R-squared 0.84 0.97 0.91 0.97 
TR2  for AR(4) 2542.08** 8.47** 74.73** 1.90 Diagnostics 
TR2  for ARCH(4) 957.18** 11.92** 44.33** 6.87** 
Abs. returns terms 55.28** 61.19** 3.54* 27.57** 
Daily Range terms 16.47** 104.32** 4.87** 26.08** 
Realized Volatility terms 13.37** 11.89** 37.81** 54.76** 
Base terms 81.79** 72.62** 7.13** 10.28** 

Robust Wald tests of  
joint zero coefficients 

System terms 28.78** 182.80** 20.45** 34.22** 
Robust t-values under the estimated coeffcient values. * = significant at 5%; ** = significant at 1%. 
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6. Conclusions 
 
The motivation for this paper stems from the consideration that various volatility indicators used 

in the literature (absolute daily returns, daily high-low range and intra-daily realized volatility) 

may present features which should be jointly combined in a dynamic model to enhance the 

information content of individual measures. We have adopted a novel approach, called 

Multiplicative Error Model (Engle, 2002), which is suited to model the conditional behavior of 

positively valued variables choosing a convenient GARCH-type structure to model persistence. 

It turns out that a wide variety of error assumptions can be accommodated with a standard easy-

to-use procedure and inference conducted on the basis of the robust variance covariance matrix. 

For the problem at hand the chosen specification for the MEM is multivariate and is suitable to 

be dynamically solved for short to medium range forecasting horizons. For the data at hand 

(Standard and Poor 500), we show that the approach is rewarding in that the retained 

specifications for each indicator are augmented by the presence of lagged values of other 

indicators. In particular, we obtain the result that daily range and returns have explanatory power 

for realized volatility, and daily range is the indicator with the most parsimonious model. 

We evaluate the performance of this model by producing 22-step-ahead volatility forecasts for 

each of the three indicators and by using them in a regression framework to detect their 

explanatory power for an index of market volatility such as the VIX index. The results show that 

the model performs well, with significant persistence of the VIX index being captured by this 

forecasts both individually and grouped either by type of indicator and by type of specification 

adopted. 

The estimator thus derived is efficient when the choice of error distribution is within the class of 

a Gamma distribution: it retains consistency when other more flexible and time-varying density 

specifications may be more appropriate and research is under way to identify such densities. By 

the same token, in the present context we adopted a diagonal structure for the variance 

covariance matrix of the error terms, and further efficiency gains could be achieved by 

considering more complex structures of correlations among the error terms, paralleling the 

literature on multivariate GARCH models. 
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OTHER FIGURES FROM THE TEXT 
 

 
Figure 3. The S&P500 Index: Absolute returns, Daily Range, and Realized Volatility  

Sample Period: 1/4/1988 – 12/30/1997. 
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Figure 4. The S&P500 Index: Out-of-sample Volatility Forecasts: Abs. Returns, High-Low, Daily Volatility. 
Various starting dates. 
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Figure 5. The S&P500 Index: One month-ahead term structure of volatility:  
Abs. Returns, High-Low, Daily Volatility. Out of Sample - Jan. 2, 1998 to Nov. 10, 1998. 
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