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A Simulation-Based Pricing Method for Convertible Bonds

Abstract

We propose a pricing model for convertible bonds based on Monte Carlo simulation that is
more flexible than previous lattice-based methods because it allows to better capture the
dyn\amics of the ﬁnderlying state variables. Furthermore, the model is able to deal with
embedded American-style put and call features with path-dependent trigger conditions. The
simulation method uses parametric representations of the early exercise decisions and
consists of two stages. In the first stage, the parameters representing the exercise strategies
are optimized on a set of simulated stock prices. Subsequently, the optimized parameters
are applied to a new simulation set to determine the model price. In an empirical analysis,

the model is found to provide a better fit compared to previous studies.



1. Introduction

To raise capital on financial markets, companies may chose among three major asset
classes: equity, bonds, and convertible bonds.! While issues arising from valuing equity and
bonds are extensively studied by researchers in academia and industry, remarkably few
articles deal with the pricing of convertible bonds. This is even more surprising as
convertible bonds cannot simply be considered as a combination of equity and bonds but

present their own pricing challenges.

Convertible bonds are difficult to value because, as hybrid instruments, they depend on
state variables related to the underlying stock (price dynamics), the fixed-income
component (interest rates and credit risk), and the interaction between them. Convertible
bonds contain various types of embedded options, such as conversion, call, and put
provisions that have to be accounted for in any pricing model. These options often are
restricted to certain periods, may vary over time, and are subject to additional path-
dependent features of the state variables, which further complicates the valuation. Certain
individual convertible bonds contain innovative, pricing-relevant specifications that reqﬁiré |
a flexible valuation model capable of dealing with them. Monte Carlo simulation provides a
flexible tool that is suitable for this task. The purpose of this study is to propose a pricing
method for convertible bonds based on Monte Carlo simulation that accounts for these
pricing difficulties, to determine the pricing impact of various specifications of the
dynamics of the state variables, and to perform a pricing study of the US convertible-bond

market.

Theoretical research on convertible-bond pricing can be divided into three branches. The
first pricing approach aims at finding a closed-form solution to the. valuation problem. It
was initiated by Ingersoll (1977) who applie:s< the contingent-claims approach -to - the
valuation of convertible bonds. In this valuation model, the convertible-bond price usually

depends on the firm value as the underlying variable. Lewis (1991) follows this line of

! The Bank for International Settlements reports an amount outstanding of 299.5 billion US dollars for intemnational convertible bonds
(not including domestic issues) per June 2002 (BIS 2002). The corresponding amount for international bonds of corporate issuers
excluding financial institutions is 1012.1 billion US dollars.



research and develops a formula for convertible bonds that accounts for more complex
capital structures, i.e. multiple convertible-bond issues. More recently, Benninga et al.
(2002) develop under very restrictive assumptions (e.g. no call option, zero dividends, and
one exercise date) a closed-form solution for convertible bonds with stochastic interest
rates. While very fast in computation, closed-form solutions are not feasible for valuing
real-world convertible bonds because they require an analytically tractable setting and fail
to account for the various convertible-bond specifications. In particular, dividends and
coupon payments are modeled continuously rather than discretely, callability is restricted to
few functional forms, path dependencies cannot be included, and the underlying processes

are rough approximations of the true dynamics.

The second pricing approach values convertible bonds numerically with lattices.
Commercially available models for pricing convertible bonds, such as Bloomberg OVCYV,
Monis, and SunGard TrueCalc Convertible, belong to this category. The first theoretical
model was introduced by Brennan and Schwartz (1977) who apply a firm-value-based
approach and a finite-difference method for the pricing task. Brennan and Schwartz (1980)
extend their pricing method by including stochastic interest rates. McConnell and Schwartz
(1986) dévelop a pricing model based on a finite-difference method with the stock value as

stochastic variable. To account for credit risk, they use an interest rate that is grossed up by

a constant credit spread. Since the credit risk of a convertible bond varies with respect to its
moneyness, Bardhan et al. (1993) and Tsiveriotis and Fernandes (1998) propose an
approach that splits the value of a convertible bond into a stock component é.nd a straight
bond component. Hung and Wang (2002) propose a method that accounts for stochastic
interest rates and time-dependent default probabilities. Howevéf,"tﬁéy employ4 a non;
recombining binomial tree and assume zero correlation between the state variables.
Unfortunately, lattice methods have some general problems: Computing time grows
exponentially with the number of state variables, path dependencies cannot be incorporated

easily, and the flexibility in modeling the underlying state variables is low.

The third class of convertible-bond pricing methods uses Monte Carlo simulation and may

overcome many of the drawbacks of the lattice-based approaches. The relationship between



the number of state variables and computing time is linear. This aspect is especially
relevant for convertible bonds since they depend, due to their complex structure, on the
dynamics of various state variables, such as the stock price, interest rates, default
probabilities, and, in the case of cross-currency convertibles, exchange rates. Furthermore,
Monte Carlo simulation is very well suitable to account for discrete coupon and dividend
Vpayments, to realistically model til—e dynamics of the underlying state variables via
appropriate discretization schemes, and to account for path-dependent call features.
Typically, path dependencies arise from the fact that, for many convertibles, early
redemption is only allowed when the stock price exceeds a certain level for a pre-specified
number of days in a pre-specified period of time. Despite all the natural advantages of the
Monte Carlo approach, pricing American-style options such as those present in convertible
bonds is a demanding task within a Monte Carlo pricing framework. In recent years, a
considerable number of important articles has addressed the problem of pricing American-
style” options’ by using a combination of Monte Carlo simulation and dynamic
programming. Bossaerts (1989), Li and Zhang (1996), Grant et al. (1996), Andersen
(2000), and Garcia (2002)-Tepresent the early-exercise rule with a finite number of
parameters. The optimal exercise strategy and hence the price of the American-style option
is obtained by maximizing the value of the option over the parameter space. Carriére
(1996), Tsitsiklis and Van Roy (1999), Loﬂéstaff and Schwartz (2001), and Clément et al.
(2002) apply standard backward induction and estimate the continuation value of the option
by regressing future payoffs on a set of basis functions of the state variables. Tilley (1993),
Barraquand and Martineau (1995), and Raymar and Zwecher (1997) present methods based
on backward induction that stratify the state space and find the optimal exercise decision
for each subset of state variables. Broadie and Glasserman (1997a) and Broadie et al.
(1997) propose a method for calcﬁlaﬁng prices of Améﬁcan—style options with simulated
trees, also called bushy trees, which generates two estimates, one biased high and one
biased low. Broadie and Glasserman (1997b), Avramidis and Hyden (1999), Broadie et al.

? In general, simulation techniques only allow for a finite number of early-exercise times and hence price Bermudan options rather than
continuously exercisable American options. However, for a fairly large number of early-exercise dates, the Bermudan price may serve as
an approximation for the price of the American option.



(20003, and Boyle et al. (2000) develop stochastic-mesh methods with different choices for
the mesh weights. Finally, Haugh and Kogan (2001) and Rogers (2001) suggest a
simulation method that uses a duality approach for pricing Bermudan options. So far,
simulation methods have rarely been adopted to value convertible bonds. To our
knowledge, the only academically recorded attempt to price convertible bonds with Monte
Carlo simulation is performed by Buchan (1997, 1998). She applies the parametric
optimization approach of Bossaerts (1989) by employing the firm value as underlying
variable and allowing for senior debt. However, as pointed out by Garcia (2002), the price
obtained with this procedure is biased high because both the parameters of the early-
exercise decision and the convertible-bond price are jointly estimated from the same

simulation set.

In this paper, we contribute a stock-based pricing method for convertible bonds building on
the enhanced Monte Carlo simulation method by Garcia (2002). This is a two-stage method
designed to cope with the Monte Carlo bias that is inherent in one-stage methods. It may be
called a parametric approach because it uses a parametric representation of the early-
exercise behavior of the investor and the issuer. The first step is an optimization, in which a
set of Monte Carlo simulations is used to éstimate parameter values representing strategies
for early exercise under the condition that both the investor and the issuer exercise their
early-exercise options in an optimal way. In a next valuation stage, the optimized
parameters are applied to a second set of simulated stock-price paths to determine the
model price of the convertible bond. Since convertible bonds usually have long maturities,
it is crucial to model the dynamics accurately. As outlined above, the inherent strength of
‘this approach is its flexibility in incorporating the dynamics of the state variables. We
therefore allow for more realistic volatility dynamics, such as models froxﬁ the GARCH
family. Furthermore, besides discrete coupon and dividend payments, the introduced
method accounts for path-dependent call triggers as outlined in the offering circula;ré.
Instead of using a firm-value model, the stock price is modeled directly, as proposed by

McConnell and Schwartz (1986). Whereas stock-price-based models can easily be



estimated with standard methods, firm-value models are notoriously hard to calibrate
because the companies’ asset values are not observable.® Since the presented method is
cash-flow based, credit risk can easily be incorporated by discounting the payoffs subject to

credit risk with the appropriate interest rate.

In addition to the convertible-bond pricing model with various specifications for the
underlying dynamics, this study contributes an empirical analysis of the US market. Despite
the large size of international convertible-bond markets, very little empirical research on
the pricing of convertible bonds has been undertaken. Previous research in this area wés
performed by King (1986), who examines a sample of 103 American convertible bonds
with a lattice—B;xsed method and the firm-value as stochastic variable. Using monthly price
data and a valuation model with Cox et al. (1985) stochastic interest rates (CIR),
Carayannopoulos (1996) empirically investigates 30 American convertible bonds for a one-
year period beginning in the fourth quarter of 1989. Buchan (1997) uses a simulation-based
approach to implement a firm-value model with a CIR term-structure model for 35
Japanese convertible bonds. Buchan (1998) performs a pricing study for 37 US convertibles
issued in 1994. However, the American property of convertible bonds is not accounted for
in that study. Using data with daily frequency, Ammann et al. (2003) investigate the French

market by applying a binomial tree with the stock price as stochastic variable. -

A drawback of many of the previous pricing studies is the small number of data points per
convertible bond: Buchan (1997) tests her pricing model only for one calendar day (bonds
priced per March 31, 1994)*, King (1986) for two days (bonds priced per March 31, 1977,
and December 31, 1977), and Carayannopoulos (1996) for twelve days (one year of
monthly data). Our study covers a larger sample with 69 months of daily price data, ranging
from May 10, 1996, to February 12, 2002 and includes 32 convertible bonds in the US

market.

? The practical problems associated with firm-value models are discussed in several articles on credit risk modeling, such as Jarrow et al.
(1997).

4 All but one bond were out-of-the-money on March 31, 1994,



A second drawback of the previous pricing studies is the simple modeling of the volatility
of the underlying stock. This shortcoming is almost inherent to the lattice approaches
adopted by King (1986), Carayannopoulos (1996), and Ammann et al. (2003). Although
Buchan (1997) uses a simulation-based approach, her approach does not fully exploit the
potentials provided by Monte Carlo simulation as a constant volatility is used for the stock
'dynamlcs Because of the unportance of accurately modeling the stock dynamics, we
implement besides a discrete version of the standard geometric Brownian Motion a
GARCH(1,1) model and a fractionally integrated GARCH model. The latter is able to
capture long-run dependencies in volatility which affect the relevant risk-neutral densities

of the underlying stock prices.

The paper is organized as follows: First, we introduce the convertible-bond pricing model
that will be applied in the empirical in\}estigation. Second, we describe the data set and
- present the specific characteristics of the convertible bonds examined. Third, we discuss the
model implementation. Finally, we present results of a sensitivity analysis and the empirical

study comparing theoretical model prices with observed market prices.



2.  Pricing Convertible Bonds with Monte Carlo Simulation

The American Option Pricing Problem for Convertible Bonds

A standard, plain-vanilla convertible bond is a bond that additionally offers the investor the
option to exchange it for a predetermined number of stocks during a certain, predefined
period of time.’> The bond usually offers semi-annual coupon paymerRs and, in case it is
kept alive, is redeemed at the time of maturity T with a pre-specified amount xN, where N
1s the face value of the convertible bond and « is the final redemption ratio in percentage
points of the face value. Although x is equal to one for most convertibles, some issues are
redeemed at premium with x larger than one. Let us consider discrete times with daily
frequency, i.e. time ¢ belongs to a finite set, 1&{0,1,...,T}, where ¢=0 indicates today, and
t=T the day of maturity. In the case of conversion, the investor receives n.S,, where the
conversion ratio », is the number of stocks the bond can be exchanged for, and S, is the
equity price (underlying) at time 2.° If the underlying stock differs from that of the issuing
firm, the instrument is commonly called exchangeable. Almost all convertible bonds
additionally contain a call option, allowing the issuer to demand premature redemption in
exchange for the call price K, applicable at time ¢. The issuer is obliged to announce the
intention to call a certain period in advance, called call-notice perioai For many issued
convertible bonds, the provisions in the offering circulars limit the call option through a
call trigger 5, The call trigger is a pre-specified level that the conversion value 7,5, has to
reach before the issuer is allowed to call the convertible. In many cases, the inequality
nS> 5 must hold for a certain time (usually 20 out of the last 30 trading days) before the
bond becomes callable. If the convertible bond is called;-the investor is allowed to exercise
his conversion option at any time during the call-notice period to receive the conversion
value instead of the call price. Furthermore, some convertibles permit the investor to

exercise a put option, giving him a fixed amount P, in exchange for the convertible bond,

* Although we specifically address convertible bonds, the proposed model is also suitable for pricing convertible preferred stocks.

¢ Some convertibles in certain markets include a conversion option that entitles the holder to exchange the bond into shares of several
different companies at his discretion, adding to the complexity of the instrument.



where P; is smaller than K,. The embedded options in convertible bonds may be restricted
to certain times: # €42, for the conversion option, #€£2,; for the call option, and ¢ €2,
for the put option. The set of possible call times £2.,; consists of the call period as specified
in the offering contract given that the call-trigger condition is satisfied.” Typiéaily, maturity
1s the last possible date to convert the bond. ‘

Thus, the payoff of a convertible bond depends on whether and when the investor or the
issuer decide to terminate the convertible bond by exercising their option. While the
investor acts to maximize the value of the convertible bond, the issuer acts in the opposite
way. The outcome of this interaction may either be conversion, a call, a put, forced
conversion, or regular redemption when the bond matures. Further possibilities of the issuer
to influence the value of the convertible bond, apart from the call strategy, are generally
limited in the offering circulars. Otherwise, the company could directly influence the
conversion value by setting out the dividend policy and deciding about stock splits as well
as stock-repurchase plans. Through these measures, wealth could be redistributed from

convertible-bond holders to equity holders.®

Let 7* be the optimal stopping time at which it is optimal for either the issuer or the
investor to terminate the convertible-bond contract. The optimal stopping time of the
convertible bond is defined as 7*=min{t.p(X,t)=0}, where p(X;z) is the payoff in state X at
time ¢ resulting from the convertible bond due to the exercise decisions. Formally, p(X.?) is

represented by:

? The call-trigger condition can easily be checked in 2 Monte Carlo framework by a backward-loop that counts the number of days at
which the conversion value was higher than the call trigger during the relevant period.

® This argument does not apply to exchangeables because the issuing company has no means to influence the firm value.



[ nS if nS, >V, forteQ (Conversion)

conv

and P<V' forteQ,,
P, if P>V forteQ (Put)
and nS, <V forteQ_,
K, if V/>K, forteQ,, (Call)
p(X,1)=+ and K, 2nS, forteQ_,nQ_,

n,S, if V/>K, forte Q (Forced Conversion)

=t call

and nS >K, forteQ_ ,NnQ

conv °

KN if t=T (Redemption)
and nS <xkN forteQ,,
0, otherwise . (Continuation)

where V,’ is the conditional expected value of continuation, i.e. the value of holding the
convertible bond for one more period instead of exercising immediately. The presented
alternatives stand for all events that will cause the convertible bond to be terminated.
Besides when reaching maturity, the convertible bond will be ended by a conversion into
stock, by a call, or by_ a put. The convertible bond is called by the issuer when the
conversion value exceeds the call price and when it is permitted to call the convertible
bond. Besides by the call period as stated in the offering circulars, the possibility to call the
convertible bond may be restricted by the call-trigger condition. In the case of a call, the
investor will convert the bond if theé conversion value is above the call price (forced
~ conversion), otherwise he \;Vill prefer to have it redeemed. As soon as the investor could
receive more than the continuation value through immediate option exercise, he will
terminate the contract by either converting the bond voluntarily or by putting it, whichever
yields the highest payoff. Thus, the convertible bond should be kept alive only as long as
max(nS, P)<V,’<K,, i.e. neither the investor nor the issuer execute their options that

terminate the convertible bond.
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In addition to the payoff at the time of termination, the investor receives from the
convertible-bond investment all coupon payments that occurred prior to this date. Formally,

the function /(X 7*) represents the payoff from a convertible bond in state X at time 7*:
h(X,r *)= p(X,T *)+ c(r *),

where p(X,7*) is the payoff from the convertible bond at termination and c(7*) is the
present value at time 7* of all coupon payments’ made during the existence of the bond, i.e.

before 7*,

The price of a convertible bond can be obtained by discounting under the risk-neutral
measure all future cash flows with the risk-free interest rate » that is applicable from time

zero to 7*. Thus, valuing convertible bonds implies determining
v, = B[ h(x, 7 #),

where V) is the current value of the convertible bond, 7* is the optimal stopping time taking
values in the finite set {0,],..., T}, thé function h(X,t*) represents the payoff from a
convertible bond with embedded call and put options in state X at time ¢* and the
expectation E9/] is taken with respect to the equivalent Martingale measure Q defined

using the riskless security as the numeraire.
Characterizing the Optimal Exercise Decision

Before maturity, the optimal exercise strategy implies comparing the value of immediate
exercise with the value from continuing, i.e. not exercising this period. The crucial step
implies determining the conditional expected value of continuation ¥;’. Formally, the value
at a future time ¢ of a convertible bond which is not exercised immediately, but held for one

more period, is given by
V= Elen(x, 7 *)1,] with 7%>1,

where I, represents the information available at time ¢.

° The coupon payments also include accrued interests when agreed upon in the offering contract.
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While the investor will convert the bond as soon as n,S>V,’ for t €£2,,, the issuer will call
the convertible as soon as ¥,">K, for t €€2..z. Thus, at each point in time, both investor and
issuer decide whether they want to exércise their option or not. In both cases, the optimal
exercise boundary is the unknown continuation value of the convertible bond, V;’. Since
investor and issuer have different optimization objectives, we introduce two boundaries
described by functions of the state variables and time, G(X# 6,in) and G(Xz, 6y,
representing the exercise strategies for the investor and issuer, respectively, where &, and
0,iss are the parameter sets describing the exercise functions. If the conversion value or put
price at any relevén‘t time exceeds the corresponding exercise boundary G(Xt, 6./, the
investor will exercise her option at that time. Correspondingly, as soon as the call price falls
below the call boundary G(X¢; 6, ;5), the convertible bond will be called. In all other cases,

it will continue to exist, unless it reaches maturity.
Simulation Methodology

The pricing algorithm consists of two stages, an optimization stage and a valuation stage. In
the first stage, the exercise strategigs of the investor and of the issuer are estimated using a
set of simulated conversion-price paths. The relevant stopping times 7;(Gn, O;;) for each
path i and the corresponding payoffs A(X, ;) for determining the convertible-bond value in
each simulation path are obtained by applying an exercise rule to the simulated paths. &,
and &, are the parameter sets describing the exercise behavior of the investor and the issuer
over time. As soon as either the conversion value or the put price exceeds the
corresponding boundary, or the call price lies below the call boundary for the first time, the

convertible bond will cease to exist and the occurring payoffs can be determined.
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Action Condition Payoff

Conversion nS>G(Xt; 6,m) and P<G(X t; B, im) mSi
Put P>G(X t; B, imy) and n,S,<G(X 1, 6, imy) Py
Call G(X,t; 6,155)>K, and K.2n,S, K
Forced Conv§~rsion G(X t; 6,i)>K, and K;<n,S, S,
Redemption t=T and n,S,<kN » | KN

The value of the convertible bond under its associated exercise policy can be calculated by

averaging the discounted payoffs of every simulation path:

1406

inv?

61':: inv> ~iss

13 6.

) = E z e ’(Bl"V’e‘-‘()h(Xi, Ti 6' 0~ )) .
i=]

X; are realizations of the simulated conversion values and M is the number of simulation

paths. The initial parameters for the exercise strategy of the investor will be altered given

the parameters for the call strategy and vice versa until the algorithm finds the optimal

~

exercise behavior for investor and issuer, represented by the parameter estimates 6,, and

63,.,:. In the second stage, the optimized exercise strategies from the first stage are applied
together with a second set of simulated conversion-price paths to determine the value of the
convertible bond V(é,.nv, ém). The procedure of using a second simulation set augments the

accuracy of the pricing because the optimized parameters are not applied to the same

simulation set from which they were estimated.
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3. Data

Daily convertible-bond prices as well as the corresponding stock prices were made
available by Mace Advisers. All domestic convertible bonds on the US market outstanding
as of February 12, 2002, are considered for the empirical analysis. Convertible bonds with
embedded put options and cross-currency convertibles are excluded. Furthermore, to
estimate the parameters of the stock dynamics, only convertible bonds with a pre-sample
stock history dating back at least until January 1, 1990, are included into the sample.
Moreover, for all convertible bonds in the sample, we require that a rating is provided by
Standard & Poor’s Bond Guide, and — to be able to account for all relevant specifications
for each convertible bond in detail — that the official and legally binding offering circulars
are available. The latter proved to be necessary because some contractual provisions are so
specific that they can hardly be collected in predefined data types, and electronic databases
usually lack the needed flexibility to incorporate non-standard features. Rating changes for
the individual issues were followed up according to the monthly publications in Standard &
Poor’s Bond Guide. To account for a possible publication lag and additional potential
delays of rating adjustments by the rating companies, we apply a filter that eliminates forty
data points preceding rating changes that lead to a credit-spread change of at least 2
percentage points. As an additional liquidity requirement, we orﬂy coﬁ_sidpr data points with
a bid-ask spread of less than 2 percentage points for both the con?e&ible bond and the

underlying stock.

After filtering the sample with these criteria, we obtain a final sample of 32 convertible

bonds, with price data ranging from May 10, 1996, to February 12,-2002. A general.

description of these convertible bonds is presented in Table 1 and Table 2. Most analyzed
convertibles include a call option, alldwing the issuer to repurchase the bond for a certain
price K, called call price or early-redemption price. When a convertible bond is called, the
issuer has to notify the investor a certain period in advance about his intention to call the
convertible. This provision bears some risk for the issuer in form of a féiled forced
conversion, in which case the issuer will have to redeem the bond in cash instead of shares.

Thus, the issuer might want to avoid this eventuality by delaying the call. The call-notice

14



period in the US market is generally 30 days. However, for the convertibles in the sample,
the call-notice period varies across the individual issues with values between 15 and 30
days. Usually, the call price varies over time, but is piecewise constant. For almost all
examined convertibles, early redemption through a call is restricted during certain
predetermined times, referred to as call-protection periods. Most issues are not callable
during a certain time immediately after issuance. This feature is called hard call protection.
Subsequently, callability may be restricted by a call condition, according to which the
issuer is allowed to call the convertible only if the conversion value 7S, exceeds the call
trigger =, The profection given by the trigger is referred to as soft call protection. For the
convertibles in the sample with a call trigger, the contractual specification of the call
condition states that the conversion value must exceed the call trigger for 20 out of the last
30 trading days before the bond becomes callable. This qualifying period introduces a path-
dependent feature that can be accounted for better by a convertible-bond-pricing method
based on Monte Carlo simulation than by conventibnal lattice methods. Usually, the call
trigger is calculated as a percentage of either the early-redemption price or the face value.
More often than not, the conversion ratio », is constant over time. It changes in case of an
alteration of the nominal valuem—o-f the shares (stock subdivisions or consolidations),
extraordinary dividend payments, and other financial operations that directly affect the
stock price. Since stock splits are very common in the US market, the conversion ratio
often changes over time and deviates quite substaxitially from the initial values stated in the
offering circulars. To accommodate for this, we apply an equity-correction factor and use
the adjusted conversion ratio at each point in time. Conversion is possible duriﬁg a.certain
period, called conversion period. The conversion period starts at time ..., and ends at time
Teonv- For all issues in our sample, the end of the conversion period coincides with the
maturity of the convé&ible bond, i.e. T,,,m= T. Some convertibles in the.US market are
premium-redemption convertibles, i.e. the redemption price at maturity is above par. In this
case, the final redemption price is given by &V with the final redemption ratio « larger than
one. However, in our sample, all convertible bonds have a terminal redemption price of
1000 dollars and « is equal to one. Furthermore, while some convertible bonds in the US

market are traded dirty, all bonds in our sample are traded clean.

15



The 32 convertible bonds in the sample correspond to 5013 data points. Figure 1 and Figure
2 present summary statistics of the convertibles for these data points and thus give a richer
picture than a static breakdown performed at one date only. Since the ratings of the
individual issues change substantially over time, the histogram in Figure 1 gives a more
detailed picture as it presents the number of data points for each rating category. The
convertibles in the sample cover all categories in the Standard & Poor’s rating scheme
ranging from A- to CCC-. The absence of convertible bonds with high investment grade
ratings (AAA and AA) and the presence of low-rated convertibles (CCC) in our sample
reflects the phenomenon that, in the US market, primarily small companies issue
convertible bonds while more established companies rely on other means of financing.
While a substantial degree of rating migration occurred, none of the convertible bonds in

our sample actually defaulted during the examination period.

A Figure 2 presents the frequency of individual convertible-bond data points for various
maturity classes. While the convertible bonds in the US market have maturities of up to 30
years, the issues in our sample cover maturities ranging from half a year to slightly more
than ten years and have a mean maturity of approximately five years. Thus, within the class
of derivative instruments, convertible bonds have the longest maturities of all. They even
largely surpass long-term options that Vseldqm reach up to three years, with potentially

important implications for accurately modeling the evolution of the stochastic variables.



4. Model Implementation

Stock Dynamics

One of the most important determinants for convertible-bond prices is the evolution of the
underlying stock price over time. Although empirical evidence shows that volatility
changes over time, the traditional option-pricing model as proposed by Black and Scholes
(1973) assumes constant volatility. Amin and Ng (1993) and Duan (1995a,b) show that it is
possible to allow for more realistic volatility patterns by making fairly weak assumptions
about the joint distribution of the stock-price process and the marginal rate of intertemporal
substitution of a representative investor. These analyses pro{ride the theoretical framework
for empirical option-pricing studies that employ sophisticated stochastic processes for the

stock price (see e.g. Bollerslev and Mikkelsen, 1999).

While research on stock volatility is plentiful, there is no consensus on which model should
be applied for forecasting. A popular approach is the implied volatility concept. With
option-pricing formulas, it is possible to extract market participants’ volatility estimations
for various horizons from at-the-money option prices. However, for three reasons, implied
volatility is not suitable as input for the forecasting task in this analysis. First, most liquid
options have mannitiés-_that are much shorter than the maturities of convertible bonds.
Thus, the extracted implied volatilities do not cover the time horizons needed. Second,
empirical research is not conclusive with respect to whether implied volatility truly is an
unbiased estimator of realized volatility and therefore might be suitable for forecasting or
not. While the results reported by Day and Lewis (1992), Harvey and Whaley (1992), and
Canina and Figlewski (1993) cast doubt on the hypothesis that implied volatility is an
unbiased estimator of realized volatility, the study performed by Christensen and Prabhala
(1998), among others, seems to support it. Finally, the accuracy of implied volatilities
obtained from option data depends on the accuracy of the option pricing model used. Since
we alm at examining the accuracy of the presented convertible-bond pricing model and
want to avoid any biases from using a potentially wrong option-pricing model, we refrain

from usirig implied volatility in this analysis. For these reasons, we consider other
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alternatives and focus on possibilities to generate forecasts with volatility models that were

fitted on historical data.

Several studies indicate that stock-market volatility exhibits long-run dependencies and that )
these features can be captured best by fractionally integrated processes. Baillie et al. (1996)
propose the FIGARCH(p,d,q) model type which is able to account for the mentioned

characteristics. This model allows the conditional variance o7 to evolve in the following

way:

o =ofi - pOT" +1- (- AO)* -4@)- Q-1 2,

where w, B, ¢ as well as d are constant parameters, L is the lag operator, and ¢, are return

shocks drawn from a normal distribution with a mean of zero and conditional variance o7 .

The stock returns are modeled as y,=r+¢& with a drift term 7.

- The expression (1-L)° is defined by its binomial expansion as

t-ry =Zf(j—d)-l"(j+1)"l T(-d)"-I7,

where T'(") denotes the Gamma function. The FIGARCH(p,d,q) model differs from a
GARCH(p,q) model as it additionally contains the fractional integrating parameter d. This -

allows shocks to the conditional variance to decay at a slow hyperbolic rate.

We implement a FIGARCH(1,d,1) model and, to determine the pricing impact of
alternative volatility models, we also apply the discrete version of a standard geometric
Brownian Motion model with constant volatility, dS,=Srdt+S;05dWs,, and a GARCH(1,1)
model. In the GARCH(1,1) model, the conditional variance evolves as

2 2 2
o =w+as_, +bo,,

where &, are return shocks drawn from a normal distribution with a mean of zero and

conditional variance o ; w, a, and b are constant parameters to be estimated.

In the empirical part, the chosen volatility models are calibrated with both simulated and

historical data. The parameter set  is chosen to maximize the likelihood function

18 -



2

T
nL{y;é,, &,y ) = —0.5 1n(27r)—0.52[1n(0',2)+ [%D
=1 g,
under the assumption of normally distributed innovations &. Subsequently, the estimated
parameters are used for the simulations. The estimated parameters of the volatility models

-are presented in Table 4 for each convertible bond in the sample.
Interest-Rate Dynamics

To determine the impact of a term-structure model on convertible-bond prices, we
implement the pricing model with stochastic interest rates and perform 2 sensitivity
analysis. The interest rates are assumed to follow a CIR process and are correlated with the

stock market. The process in the CIR model is given by
dr, = x(6, - r)dt + o, [r.dw, ,,

where x, 6., and o, are constant. When simulating the interest-rate paths discretely, we

have to ensure that they remain positive. This is accomplished by considering the process
of the natural logarithm of the interest rate, x,=In(r). By Ito’s Lemma we obtain the

following dynamics for x; -

2

x6 o )
dx, = e —K— 4 dt
’ [exp(x,) " 2-exp(x,)J T

% __aw,,.
Vexp(x,)

Consistently with the chosen finite time set the simulated discrete paths have a sampling
interval of one day. To avoid the error due to discretization accompanied with the simple -

Euler scheme, we use the more accurate scheme proposed by Milstein (1978):

K6, _ o’ o’ o, )
exp(x,)

o
= - . A - - 0 )
Xiene x, + Ii 2 exp(x’ ) * 4 exp(ZxI )} T eXp(O.le )gH'AI 4CXP(2X, )gHN

For the empirical analysis, a model with constant interest rates is chosen. This is motivated
by the results obtained in the senmsitivity analysis shown later in this study. For low

correlations between the stock price and interest rates, the pricing impact of a CIR term-



structure model is rather low. This applies to the analyzed convertibles with in-sample
correlations ranging from —0.04 to 0.1. Hence, since the empirical analysis is
computationally intensive due to the large number of data points and the applied volatility
processes, the inclusion of stochastic interest rates does not seem to be lafapropriate.
However, since computational time grows only linearly with the number of state variables,
stochastic interest rates may be included in the presented approach at relatively low cost for
less extensive pricing applications.ﬁ This i1s shown in the sensitivity analysis where the

model is implemented with stochastic interest rates.

We choose as input for the empirical pricing study spot interest rates obtained from the
Federal Reserve. The time series of the risk-free interest rates are extracted from T-Bill and
T-Note prices and cover maturities from 3 months to 30 years on a daily basis. We obtain
through interpolation the complete continuous term structure of spot rates at any time.
Thus, with the complete term structure available at each point in time, it is straightforward

to discount the cash flows occurring at different dates with the corresponding interest rates.

Integrating Credit Risk

Since the simulation-approach presented in this paper is cash-flow based, we incorporate
credit risk by discounting the cash flows subject to credit risk with the appropriate risk-
adjusted interest rate. This applies to coupon payments, the final redemption payment, and
the call price in the event of a call. The stock price, on the other hand, is not subject to
credit risk and should therefore be discounted with the risk-free interest rate. In this
approach, credit spread can be implemented as constant or as following a process correlated

with other state variables.

Unfortunately, for most conveﬁible bonds in the sample, there are no straight bonds
outstanding, let alone with a maturity corresponding to that of the convertible bond, that
could be used to extract the appropriate- issue-specific credit spreads for the
implementation. In addition, such a procedure to obtain the credit spreads has the drawback
“that it does not account for issue-specific characteristics of the convertible bonds, such as
seniority. Thus, to obtain credit spreads, we extract from the Yield Book database monthty

time series of credit spreads for several rating categories according to Standard & Poor’s
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Bond Guide. For all investment-grade rating categories, we further obtain monthly credit-
spread time series covering four maturity classes (1-3, 3-7, 7-10, and over 10 years). While
this procedure allows to account for issue-specific convertible-bond characteristics through
applying the rating, it has several obstacles that potentially could influence the pricing
results. First, the credit spreads represent averages of bonds outstanding within the same
rating category. Second, ratings change over time and the publication we refer to only has a
monthly updating frequency. Additionally, this procedure does not account for potential
lags and, more importantly, differences between market valuations and the rating decisions
of the company that is performing the ratings. The resulting estimation error of the credit
spreads is potentially very relevant in our sample as it primarily consists of bonds with low

ratings and relatively high credit spreads.
Coupons and Dividends

We accommodate for discrete coupon and dividend payments at the appropriate dates and
with the appropriate frequencies: semi-annual for coupons and quarterly, semi-annually, or
annually for dividends, depending on the current dividend policy of the company. For each
pricing, we assume that the dividend yield at the last ex-dividend date remains constant and

applies to all future dividend payments until maturity.
Numerical Implementation — S

We implement the algorithm in C and use as source for normally distributed random
numbers the Box-Muller method. Correlated random numbers are obtained by Cholesky
decomposition. Equally distributed random deviates are generated by the linear
congruential generator proposed by L’Ecuyer (1988) with additional Béyé-Du:ham shuffles
as described in Press et al. (1992). Each pricing point is computed with a different sfafting
point of the random-number sequence (seed). In order to compare the results of different
pricing runs, the seed attributed to one pricing point is held constant. As optimization
method for the first stage, i.e. maximizing the value of the convertible bond given a
simulation set for the conversion value, we employ the simplex method originally proposed

by Nelder and Mead (1965). The simplex is iterated until any additional step changing the
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conversion (call) boundary cannot increase (decrease) the value of the convertible bond by

an amount larger than a tolerance of 0.1 dollars.

At any point in time, the exercise rules G(Xz; 6) of both the investor and the issuer are made
linearly dependent on the stock price. The time to maturity is divided into 10 sub-periods of
equal length with constant parameters 6, and &;,. This approach has the-advantage that the
American-style conversion option is applied to every time step, which in our setting is one
day. Consequently, the number of parameters representing the exercise strategies may be

limited while they still allow for early exercise at every day.
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a. Results

The simulation-based pricing method is implemented for a sensitivity analysis and an
empirical investigation of the US convertible-bond market. The sensitivity analysis
invesﬁgates the pricing behavior of the model, measured using fictive convertibles under
various parameter values describing the evolution of the state variables. More specifically,
the results show the impact of different specifications for credit risk, interest rates, and
stock volatility. The empirical study focuses on the relationship between prices generated

by the model and observed market prices of a representative sample of US convertibles.
Sensitivity Analysis

As for straight bonds, credit risk has a major impact on the fair value of a convertible. In
contrast to standard bonds, however, the effect of the credit spread on prices is asymmetric,
because the size of the impact critically depends on whether the convertible is in- or out-of-
the-money. As can be seen in Figure 3, changes in the credit spread are largest for out-of-
the money conve_rtibles, with decreasing magnitude the further the convertible is in-the-
money. Naturally, for bonds with maturities of 10 years, credit-spread shocks and

misspecifications of only a small magnitude potentially have a large price impact.

We now investigate the effect of introducing stochastic interest rates. Convertible-bond
prices generated by a pricing model under the assumption of constant interest rates are
compared with prices generated by a model that incorporates a CIR term structure. The
comparison is performed in Table 3 for several initial stock prices and correlation values
between the stochastic processes of the two state variables.!® To keep the analysis simple, a
zero-coupon convertible bond with no default risk and no call or put features is chosen for
the valuation. The table displays the convertible-bond price under stochastic interest rates,
the percentage deviation to the price obtained with constant interest rates, and the pfiéiﬁg

accuracy of the simulation represented by the standard deviation. The pricing effect of

1° Different initial stock prices imply different moneyness values. In analogy to standard option theory, moneyness is defined as the ratio
of the conversion value, i.e. the value of shares that can be obtained by converting the bond, and the investment value, i.e. the value of the
convertible bond under the hypothetical assumption that the conversion option does not exist.
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stochastic interest rates is largest for at-the-money convertible bonds and fades out for
higher and lower moneyness values. This result is consistent with the theory because deep
in-the-money convertible bonds are almost equivalent to stocks and hence the dynamics of
the interest rates should not affect their prices. Similarly, far out-of-the money convertibles
are practically equivalent to straight bonds because the probability of conversion
approaches zero.!! Straight bonds must have the same prices under stochastic and constant
interest rates because, in our setting, both interest-rate regimes imply the same term
structure. Actually, the fact that prices of out-of-the-money bonds with and without
stochastic interest rates are almost equivalent proves that the implemented term-structure
- model is capable of generating arbitrage-free bond prices. The presented results show
further that a positive correlation between stock process and interest rates increases
convertible-bond prices, whereas a negative correlation lowers them. The largest price
discrepancy is obtained for a moneyness of 1.03 and a correlation of +0.5 which is the
highest considered in this analysis. Overall, the inclusion of stochastic interest rates
generates the highest price deviation for at-the-money convertible bonds and a high

absolute correlation between stock price and interest rates.

The third sensitivity analysis investigates the effect of various stock-price dynamics on
prices generated by the model. We simulate, as an example, sample paths covering 50 years
(13050 trading days) for the conversion value under the assumption that the true data
generating process (DGP) is a FIGARCH(1,d,1). This is motivated by the empirical fact,
documented by Baillie et. al. (1996), that the conditional stock volatility seems to exhibit
long-run dependencies. The parameter sets for a FIGARCH(1,d,1) model, a GARCH(1,1)
model and a discrete version of the standard geometric Brownian Motion are then estimated
on the sample paths to best capture the dynamics of the underlying stock. Subsequently, the
estimated parameters are applied in connection with the simulation-based model to value a
convertible bond with suitably chosen specifications. The results are presented in Figure 4

and Figure 5. The plots in each diagram are obtained by dividing the convertible bond

' The fact that, for far out-of-the-money convertibles, very few paths reach a sufficiently high level to trigger conversion at maturity is
shown by the low values of the reported standard deviation.
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prices obtained with the three estimated models through prices obtained with the original
DGP-FIGARCH(1,d,1) and then subtracting one. The fluctuation of the lines is mainly due

to the finite simulation set of 3000 paths used for each pricing point. -

In Figure 4, the prices obtained with the three estimated volatility models for incréasing
moneyness are depicted in relation to the prices obtained with the DGP-FIGARCH(1,d,1).
The moneyness is computed by dividing the conversion value through the investment
value. The plots ‘indicate that the choice of the volatility model is not crucial for both far
out-of-the money convertibles and in-the-money convertibles. The small price discrepancy
between the three models in the far in-the-money zone is fully attributable to the numerical
pricing proceciure and will consequently disappear when using more simulation paths.
However, for at-the-money convertible bonds, the price deviations are quite substantial
despite the relatively low unconditional volatility (13.9%) of the original path generated by
the DGP. While the estimated FIGARCH(1,d,1) model provides the best fit in comparison
to the DGP-prices, the prices generated by the GARCH(1,1) and Brownian Motion models

perform worst, with price deviations of up to two percent.

Figure 5 depicts the price deviation for at-the-money convertible bonds and various
maturities up to 30 years which corresponds to 7830 trading days under the assumption of
261 trading days per year. In order to isolate the maturity effect, we artificially keep the
moneyness constant by setting interest rate, credit spread, and coupon payments equal to
zero. Otherwise, an increase in maturity would alter the moneyness of the convertible bond
and hence tend to reduce the pricing discrepancy. For all estimated volatility models, the
price deviation from DGP-prices increases with maturity following a non-linear
relationship and already for relatively short maturities reaches substantial levels. Again, the
estimated FIGARCH(1,d,1) model performs best for all maturities with maximum price
deviations of only up to 1.1 percent, while the GARCH(I,I) and the Brownién Motion
model lead to higher price deviations with maximum values of more than 2.5 percent for
the longest maturities considered. Overall, the simulation results indicate that theAvolatility

dynamics have an important pricing impact on convertible bonds. As shown by the
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example, the pricing difference can be even larger than the impact of a term-structure

model.

In summary, the presented simulation—baseci model can deal with jgveral stochastic
variables affecting the price of the convertible bond. The size of the pricing impact
significantly depends on the assumed process parameters. In particular, this study shows
evidence for an important influence of stock-volatility dynamics on convertible-bond

_ prices.
Empirical Analysis of the US Convertible-Bond Market

The model will now be tested with real gonvertible-bond data. Theoretical prices obtained
using the proposed simulation-based model are compared with convertible-bond prices
observed in the US market. First, a simple model specification is implemented with
standard geometric Brownian Motion (GBM) as process for the underlying stock price and
with credit spreads derived from the issue-specific ratings by Standard & Poor’s.
Afterwards, results for alternative specifications are presented. Figure 6 exhibits the
distribution of percentage deviations between model prices and empirical prices for the
simple GBM specification. In general, the pricing accuracy may be defined in terms of the
average deviation or in terms of the tracking error between model and market prices. The
tracking error is calculated asroot mean squared error (RMSE) of the-difference between
model and market prices. On average, generated prices are 0.34% lower than market prices,
with a standard deviation of 6.04% and a RMSE of 6.05%. Previous studies based on the
firm value report larger mean price deviations. King (1986) investigates a sample of 103
American convertible bonds and finds that market prices are 3.75% below model prices on
average. Carayannopoulos (1996) obtains for 30 US convertible bonds 'and “one year of
monthly price data a larger price deviation, with model prices higher than market prices by
12.9% on average. Buchan (1997) investigates 35 Japanese convertible bonds and reports

that model prices are below observed market prices by 1.7% on average.

To examine the obtained results more in detail, the percentage price deviation between each
daily observed market price and the theoretical fair values are presented in relation to

certain characteristics of the convertible bond. Figure 7 shows the obtained daily price
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deviations with respect to the moneyness of the convertible bond, calculated as the ratio
between conversion value and investment value. The credit spread is set equal to zero to
display the moneyness isolated from default risk. This proves to be useful because the
credit spread is potentially subject to an estimation error, as we do not observe issue-
specific credit spreads but infer them from straight-bond issues with the same rating. Since
disregarding credit risk leads to moneyness values that are slightly downward-biased, at-
the-money convertibles have a moneyness of less than one in Figure 7. The plot indicates
that the pricing accuracy is higher for in-the-money convertible bonds than for at- and out-
of-the money bonds. Table 5 presents aggregated statistics for various moneyness classes
and supports these results. The standard deviatiq_n of the error decreases with higher
moneyness values. For the two classes with the highest moneyness, the RMSE is lowest
and there is no significant mispricing at the 5% level with average price deviations of -
0.05% and -0.38%. This result can be explained theoretically because, for deep in-the-
money convertibles, the probability of conversion is very high, the time value of the
conversion option becomes very small, and thus the convertible presents less pricing
challenges. The large error dispersion for at-the-money convertibles reflects the difficulties
in pricing the option part of a convertible bond, the value of which is particularly large for
at-the-money-bonds. For deep out-of-the-money convertibles, the likelihood of exercising
the conversion option is near to zero and so is the value of the conversion option. Pricing a
deep out-of-the-money convertible is very similar to pricing its straight-bond equivalent. It
is possible that the large error dispersion of out-of-the-money convertibles is due to

difficulties in determining the appropriate credit spread.

The rating categories present in the sample range from A- to CCC-. Figure 8 and Table 6
show the relative price deviations distinguishing between rating categories. While no clear
pattern is discernible from Figure 8, a closer look at Table 6 reveals that the average
mispricing as well as the RMSE are Iargest for issue with a CCC rating, possibly indicating
that the applied credit spreads for these bonds are higher than assumed by the market.
However, after considering all rating categories, there does not seem to exist a systematic

relationship between the pricing performance and the rating categories.
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In Table 7, the relative mispricings are presented for the individual issues. Of the 32 issues
in the sample, 19 present higher average market prices than model prices. For all but one of
them, the mispricing is statistically significant at the ten percent level. For three out of the
thirteen issues with, on average, lower market prices than model prices, the deviation is not
statistically significant at the ten percent level. Clear Channel Communications 2, Rite Aid,
and Hexcel Corporation present the lowest absolute average pricing deviation with 0.02%,
0.03%, and 0.15%, respectively. Analog Devices, Alpharma, and Silicon Graphics are the
three convertibles with the lowest RMSE: 0.0189, 0.0271, and 0.0288, respectively.

To determine the impact of choosing alternative volatility models, we implement the
pricing model by assuming that the stock price follows a GARCH(1,1) process. The
GARCH(1,1) model leads to an observed price difference for the efitire sample of 0.36%
with a standard deviation of 6.17%, which is very similar to the results obtained with
standard GBM dynamics. This finding is also supported by Table 8, Table 9 and Table 10,
where the sample is divided according to moneyness, credit spread, and issue. To
investigate the extent of the pricing similarity between GBM and GARCH(1,1), Figure 9
and Table 11 show a direct comparison of the convertible-bond prices generated by these
two models. Although, for at-the-money convertible bonds, the pricing difference is not
negligible, overall, the average percentage price deviation between the models is only
0.01% which is not significantly different from zero at the ten percent level. The similarity
of the results might be explained by the long maturities of the convertibles in the sample
because the specific advantages of the GARCH model in volatility forecasting are larger at

shorter horizons and decrease quickly over time.

To determine the pricing impact of the chosen methodology to estimate credit spreads, we
create a sub-sample of convertible bonds for those companies with outstanding straight
bonds. Of the 32 bonds in the sample, only 6 have straight bonds outstanding and enter the
sub-sample (Clear Channel I, Clear Channel II, Coming/Oak Industries, Hilton Hotels, Rite
Aid, Service Corp). For each of these convertibles, a time series of credit spreads with daily
frequency. was extracted and subsequently employed as input for pricing. A comparison of

the pricing results for the sub-sample using the two different methods to caiculate the credit
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spread is presented in Table 12. Using credit spreads extracted from outstanding straight
bonds leads to a smaller average deviation from market prices and to a smaller RMSE.
Unfortunately, both methods to obtain the credit spreads have theoretical and practical
drawbacks: While the ratings are issue-specific and thus account for seniority, the spread
time series corresponding to these rating categories are only averages from a sample of
straight bonds and may be subject to a lag in adjustment. On the other hand, straight bonds
from which credit spreads can be extracted might poorly match the maturity and seniority
of the convertible bond, which may cause biases. Many companies may not even have any

straight bonds outstanding.

The presented simulation-based convertible-bond pricing model offers flexibility to account
for more sophisticated processes for the stock. Therefore, we perform the pricing study
with a process that is able to account for the long-run volatility dynamics not captured by
the GARCH(1,1). The fractionally integrated GARCH is chosen as process specification
due to its proven ability to deal with these features (see e.g. Baillie et al., 1996). Since
simulating this process is computationai.l‘y demanding, the analysis is performed on the sub-
sample with credit spreads extracted from straight bonds. In Table 12, the prices obtained
by FIGARCH(1,d,1) are compared to standard geometric Brownian motion prices. As
shown in the last row of the table, the introduction of FIGARCH(1,d,1) reduces the average
pricing error by 0.37%. The average deviation between theoretical values and observed

market prices shrinks to 0.91% with a root mean squared error of 2.85%.

These preliminary results suggest that the presented simulation-based pricing model for
convertible bonds provides a good fit to data. Nevertheless, the model still leaves spéée for
alternative processes for the state variables and offers the opportunity for additional
improvements. Further studies might be performed on modeling and estimating the

dynamics of the state variables and their interdependencies more accurately.
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6. Conclusion

This paper presents a simulation-based pricing method for convertible bonds which
incorporates credit risk, stochastic interest rates, and allows for advanced stock-price
dynamics as well as a straightforward integration of discrete coupons and dividends. It
extends existing approaches to be able to account for various convertible-bond
characteristics such as American-style embedded options with path-dependent trigger
conditions. The method uses parametric representations of the early exercise decisions and
consists of two stages. First, the parameters representing the exercise strategies are
optimized given a set of simulated stock prices. In the second stage, the optimized

parameters are applied to a new simulation set to determine the model price.

We examine the impact of stochastic interest rates and volatility models. For realistic
_ correlation values between stock price and interest rates, the inclusion of a term-structure
model is found to have a minor effect on convertible-bond prices. The impact of choosing
the correct volatility model increases with the maturity of the convertible. While GARCH
and standard geometric Brownian Motion prbvide similar prices, a FIGARCH specification
leads to a considerable price deviation. In an empirical analysis of the US convertible-bond
market covering convertible-bond prices for an entire period of 69 months using daily price
data, the model is found to fit market data better than previous studies, with a mean

deviation of 0.34 percent.

Overall, Monte Carlo simulation appears to be the appropriate approach for valuing
convertible bonds. Due to its 'ﬂexibility it can much better deal with innovative features
than closed-from\solutions and lattice-based methods. Moreover, it offers the opportunity to
further improve the pricing accuracy by capturing the subtle statistical characteristics of the

state variables, which cannot be accomplished to the same extent by the other approaches.
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7. Figures and Tables

Figure 1: Number of data points according to rating categories

This diagram splits the total number of pricing points of the sample into different classes according to the
S&P rating of the convertible bond as provided by Standard & Poor’s Bond Guide. Frequency (y-axis)
indicates the absolute number of pricing points for each rating category.
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Figure 2: Number of data points according to maturity classes

This histogram splits the total number of pricing points of the sample into different classes according to the
maturity of the convertible bond. The maturity (x-axis) is expressed in years and the frequency (y-axis)
indicates the absolute number of pricing points for each maturity class. A maturity class of # covers pricing
points with a time-to-maturity ranging from n-0.5 years to n+0.5 years.
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Figure 3: Impact of credit-spread shocks on convertible-bond prices

This graph shows the percentage impact of four credit-spread shocks, +500bp, +300bp, -300bp, and —500bp
respectively, on the price of a non-callable convertible bond with face value F=100$, maturity T=10 years,
conversion ratio y=1.0, coupon c=0 assuming a risk free interest rate r=0.05 and a volatility of 13.8957%. The
individual plots depicting relative model prices in relation to different initial conversion values are obtained
by dividing model prices generated with a credit spread of 0%, 2%, 8%, and 10%, respectively, through
model prices obtained by assuming a credit spread of 5%. The conversion value (x-axis) ranges from 0 to 150
and the relative price deviation (y-axis) ranges from 40% to 170%.
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Figure 4: Relative price deviation of various volatility models at different conversion values

This figure shows the relative pricing error of various volatility models compared to convertible-bond prices
obtained by assuming a FIGARCH(1,d,1) data generating process (DGP). First, a path of 50 years of daily
data is generated using the DGP. Second, parameters for FIGARCH(1,d,1), GARCH(1,1), and geometric -
Brownian motion are estimated using this simulated time series. Third, the estimated processes are used to
price at different levels of conversion value a convertible bond with the following specifications: face value
F=100, maturity T=10 years, conversion ratio y=1, coupon c=0, risk-free interest rate =0, and credit spread
¢s=0. The firm pays no dividends and it is not entitled to call back the convertible bond at any time apart from
maturity. The plots are obtained by dividing the convertible-bond prices obtained with the three estimated
volatility models by those obtained using DGP. Prices are generated using 3000 simulation paths and a
constant seed for the random numbers. The conversion value (x-axls) ranges from 0 to 250. The relative price
deviation (y-axis) ranges from 0% to 2.5%.
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Figure 5: Relative price deviation of various volatility models at different maturities

This figure shows the relative pricing error of various volatility models compared to convertible bond prices
obtained by assuming a FIGARCH(1,d,1) data generating process (DGP). First, a path of 50 years of daily
data is generated using DGP. Second, parameters for FIGARCH(1,d,1), GARCH(1,1), and geometric
Brownian motion are estimated using this simulated time series. Third, the estimated processes are used to
price at different ievels of conversion value a convertible bond with the following specifications: face value
F=100, stock price S=100, conversion ratio y=1, coupon c=0, risk free interest rate =0, and credit spread
cs=0. The firm pays no dividends and it is not entitled to call back the convertible bond at any time apart from
maturity. The plots are obtained by dividing the convertible-bond prices obtained with the three estimated
volatility models by those obtained using DGP. Prices are generated using 3000 simulation paths and a
constant seed for the random numbers. The maturity (x-axis) is expressed in trading days and ranges from 0 to
8000. This corresponds to a maximum maturity of the x-axis of 30.652 years. The relative price deviation (y-
axis) ranges from 0% to 3%.
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Figure 6: Distribution of percentage price deviation for the simulation-based method with geometric
Brownian motion

This histogram splits the total number of pricing points of our sample into different classes according to the
percentage overpricing as identified by the simulation-based method with standard geometric Brownian
motion. Overpricing states the extent to which market prices are, on average, above model prices.
Overpricing (x-axis) ranges from —40% to +40%. Frequency (y-axis) indicates the absolute number of pricing
points for each overpricing class.
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Figure 7: Deviation of prices obtained by applying Brownian motion plotted against moneyness

This graph shows the percentage price deviation between each daily observed market price in the sample and
the corresponding theoretical value as generated by the simulation-based method plotted against the
moneyness of the convertible bond. Stock returns are assumed to follow a standard geometric Brownian
motion with constant volatility. The plots are obtained by dividing observed prices through model prices and

subtracting one. The moneyness (x-axis) ranges from 0 to 7.
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Figure 8: Percentage price deviation for various credit rating categories obtained by applying
Brownian motion

This graph shows for each rating category the percentage price deviations between each daily observed
market price in the sample and the corresponding theoretical fair value as generated by the simulation-based
method. Stock returns are assumed to follow a standard geometric Brownian motion with constant volatility.
The plots are obtained by dividing observed prices through model prices and subtracting one. The rating is
attributed to each convertible bond according to Standard & Poor’s Bond Guide. The data in the sample
covers rating categories (x-axis) ranging from A- to CCC-. Overpricing (y-axis) ranges from —60% to +60%.
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Figure 9: Deviation of prices generated by the simulation-based method obtained by Brownian Motion
and GARCH plotted against moneyness

This graph shows the percentage price deviation between two theoretical fair values as generated by the
GARCH(1,1)-simulation-based method and the same simulation-based method with a geometric Brownian
motion. This relative price deviation for the pricing points in the sample is plotted against the moneyness of
the convertible bond. The plots are obtained by dividing GARCH(1,1) prices through Brownian motion prices
and subtracting one. The moneyness (x-axis) ranges from 0 to 7.
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Table 1: Specifications of convertible bonds in the sample

This table gives an overview of the analyzed convertible bonds with convertible bond referring to the name of
the issuing firm, date of issue, coupon as percentage of the face value, and maturity. Size indicates the amount
outstanding in million dollars as reported by Standard & Poor’s Bond Guide.

Convertible bond Date of issue Coupon Maturity Size
Adaptec Inc 28, Jan 97 4.75% 01. Feb 04 230
Alpharma Inc 25-Mar-98 5.75% 01. Apr 05 125
Analog Devices 26. Sep 00 4.75% 01-Oct-05 1200
Charming Shoppes 17. Jul 96 ' 7.50% 15. Jul 06 138
CKE Restaurants 09-Mar-98 4.25% 15-Mar-04 159
Clear Channel 1 25-Mar-98 2.63% 01. Apr 03 575
Clear Channel 2 - 17. Nov 99 1.50% 01-Dec-02 900 -
h Coming/Oak Inds 20. Feb 98 4.88% 01-Mar-08 100
Cypress Semicon 21. Jun 00 3.75% 01. Jul 05 250
Genesco Inc 06, Apr 98 5.50%‘> 15. Apr 05 104
Healthsouth Corp 17-Mar-98 3.25% 01. Apr 03 443
Hexcel Corp 18. Jul 96 7.00% 01. Aug 03 114
Hilton Hotels 09-May-96 5.00% 15-May-06 494
Interpublic Group 26-May-99 1.87% 01. Jun 06 361
Kemr McGee Corp 21, Jan 00 5.25% 15. Feb 10 550
Kulicke & Soffa 08-Dec-99 4.75% 15-Dec-06 175
LAM Research 19. Aug 97 5.00% 01. Sep 02 310
LSI Logic 16-Mar-99 4.25% . 15-Mar-04 345
NABI 02. Feb 96 6.50% 01. Feb 03 80.5
Offshore Logistics 11-Dec-96 6.00% 15-Dec-03 80
Omnicare Inc 04-Dec-97 5.00% 01-Dec-07 345
Parker Drilling 21. Jul 97 5.50% 01. Aug 04 124
Penn Treaty Amer 20. Nov 96 6.25% 01-Dec-03 74.8
Photronics Inc 22-May-97 6.00% 01. Jun 04 103
Pogo Producing 11, Jun 96 5.50% 15. Jun 06 115
Providian Financial 17. Aug 00 325% 15. Aug 05 402
Rite Aid 04. Sep 97 525% 15. Sep 02 650
Safeguard Scientific 03. Jun 99 5.00% 15. Jun 06 200
Semtech Corp 03. Feb 00 4.50% 01. Feb 07 400
Service Corp 18. Jun 01 6.75% 22.Jun 08 300
Silicon Graphics T 07. Aug 97 525% 0l. Sep 04 231
Standard Motor Prods 20. Jul 99 6.75% 15. Jul 0% 90
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Table 2: Further issue-specific information on convertible bonds in the sample

Rating represents the Standard & Poor’s Bond Guide rating as of February 2002. Callability indicates whether
the bond is redeemable at the option of the issuing company at any time prior to maturity during the period
considered in this study. Trigger indicates the existence of an additional trigger condition to be satisfied in
order to call the convertible. In case the issuing company wants to exercise the call option it has to notify to
the issuer its intent to do so a certain number of days in advance. This period is referred to as call notice
period. More often than not, the contractual provision specified in the legally binding offering circular states
that upon call accrued interest are paid to the investor.

Convertible bond
Rating Callability Trigger Call notice Accrued interest
period paid at call

Adaptec Inc B- Yes No 15 Yes
Alpharma Jnc B Yes No 30 Yes
Analog Devices BBB Yes No 30 Yes
Charming Shoppes B Yes No 30 Yes
CKE Restaurants ccC Yes No 30 Yes
Clear Channel 1 BBB- Yes No 15 Yes
Clear Channel 2 BBB- No No 30 No
Coming/Oak Inds BBB- Yes No 30 Yes
Cypress Semicon B Yes No 20 B Yes
Genesco Inc B Yes No 30 Yes
Healthsouth Corp BB+ Yes No 30 Yes
Hexcel Corp CCC+ Yes No 20 Yes
Hilton Hotels BB+ Yes No 30 Yes
Interpublic Group BBB Yes No 30 No
Kerr McGee Corp BBB- Yes No 30 Yes
Kulicke & Soffa B- Yes No 30 Yes
LAM Research B Yes Yes 20 No
LSI Logic B Yes No 30 Yes
NABI CcCC- Yes No 20 Yes
Offshore Logistics B+ Yes No 30 Yes
Omnicare Inc BB+ Yes No 30 Yes
Parker Drilling B- Yes No 30 Yes
Penn Treaty Amer cC Yes No 15 Yes
Photronics Inc B Yes No 20 Yes
Pogo Producing BB Yes No 30 Yes
Providian Financial B Yes No 30 Yes
Rite Aid CCC+ Yes No 30 Yes
Safeguard Scientific ccC Yes No 20 Yes
Semtech Corp CCC+ Yes No 30 Yes
Service Corp B N Yes No 30 Yes
Silicon Graphics CCC- Yes Yes 30 Yes
Standard Motor Prods B+ Yes No 30 Yes
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Table 3: Impact of stochastic interest rates on convertible-bond prices

This table shows the percentage price impact of a term structure model on prices of convertible bonds for
different initial stock prices and for different values of the correlation between the stock and the interest rates.
The different initial stock prices imply different values for the moneyness of the convertible bond. Moneyness
ranges from 0.03 to 5.5 with corresponding stock prices ranging from S=2 to S=350. The number of paths is
5000, with the same random-number series for each pricing. The first number indicates the absolute price of
the convertible bond. The number in parentheses indicates the error of the simulated prices computed as
standard deviation of the mean of the simulated discounted payoffs. For prices caiculated with stochastic
interest rates, the second number refers to the percentage deviation with respect to prices with constant
interest rates. All convertible bonds have a face value F=100, maturity 7=10 years, conversion ratio 3=1.0,
coupon ¢=0, and credit spread cs=0. The-issuing firm pays no dividends and is not entitled to call back the
convertible bond at any time apart from maturity. The stock price follows a geometric Brownian motion,
dS=Srdt+S,05dWs,, with volatility o=0.25 and the instantaneous interest rate follows a one-factor CIR

interest-rate process, dr, = x(6, - ’x)df“*‘o'r\/Z dw,,, with initial short rate 7=0.04, long term interest rate

6,~=0.06, mean-reversion parameter x=0.05, volatility ,=0.08, and correlations pg, between dW,, and dWs,
ranging from p;5,=-0.5 to ps,=+0.5. The short rate is simulated using the Milstein discretization scheme. The
spot rate curve resulting from the simulation with the above parameter set is upward sloping with the
following continuously compounded spot rates: r;,,,=0.0400, r,=0.0403, r;=0.0407, r;/~0.0413, r=0.0434,
r7~0.0447, and r,;~=0.0462.

Stock price 2 10 30 65 120 200 350
(Moneyness) (0.03) (0.16) (0.48) (1.03) (1.90) (3.97) (5.55)
Constant interest rates 63.03 63.09 66.43 84.55 12921 204.36 354.10 +
(0.00) (0.02) 0.23) (0.74) (1.65) (2.69) (4.76)
Stochastic interest rates
63.04 63.07 65.85 83.11 127.86 204.09 353.87
ps,=-0.5 0.03% -0.03% -0.87% -1.70% -1.05% -0.38% -0.07%
0.18) (0.18) (0.29) .77 (1.57) (2.70) @77
63.05 . 6311 6639 8439 129.12 204.84 354.13
ps.~0.2 0.04% 0.02% -0.05% -0.20% 0.07% — 90.01% 0.01%
(0.18) (0.18) (0.29) (0.76) (1.56) (2.70) (4.76)
63.03 63.12 66.78 85.18 129.88 205.30 354.29
ps=0.0 0.00% 0.04% 0.53% 0.75% 0.51% 0.21% 0.05%
(0.18) 0.18) (0.29) (0.75) (1.56) (2.69) (4.76)
62.99 63.13 67.19 8596 130.58 205.73 354.46
ps~+0.2 -0.06% 0.06% 1.15% 1.66% 1.05% 0.42% 0.10%
0.18) (0.18) (0.28) (0.75) (1.55) . _._(2.69) (4.76)
62.93 63.19 67.85 87.10 13158 206.32 354.70
ps,=+0.5 -0.15% 0.15% 2.14% 3.01% 1.83% 0.71% 0.17%
(0.18) (0.18) 0.27) (0.74) (1.54) (2.68) (4.76)
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Table 4: Parameter estimates for various volatility models

o represents the annualized unconditional volatility that was used in the implementation using Brownian
Motion, estimated from as much pre-sample data as available to us (starting at least before 1990). The
GARCH(1,1) equation is: 0',2 = w+agf_l +bo—f_ ,- The conditional variance in the FIGARCH(1,d,1) model-
evolves as: g2 = m[l - ﬁ(1)]" + [1 - (1_ ,B(L))" (L)1 - Ly ]512 The parameters m represent the estimated
drift terms in the corresponding mean equations.

Convertible bond Brownian GARCH(1I) FIGARCH(1,d,1)
Motion
4 . m @ a b m @ B [ d

Adaptec Inc 0.619601 0.001584 3.07E-05 0.014910 0.965199 0.001681 - 0.000256 0.601290 0.508965 0.141031
Alpharma Inc 0.434762 0.000894 0.000311 0.257896 0.377281 0.000872 0.000301 0.360626 0.604310 0.012850
Analog Devices 0.524330 0.000809 5.51E-06 0.030070 0.964677 0.000707 4.76E-05 0.687196 0.519559 0.282618
Charming Shoppes 0.535953 0.000657 1.05E-05 0.029823 0.960113 0.000515 4.57E-05 0.760001 0.626982 0.269265
CKE Restaurants 0.426572 0.000575 0.00016 0.161979 0.615782 0.000697 1.77E-05 0.899319 0.872380 0.210000
Clear Channel 1 0357913 0.001414 4.34E-05 0.097719 0.818231 0.001328 3.86E-05 0.672571 0.622976 0.221189
Clear Channe! 2 0.357913 0.001414 4.34E-05 0.097719 0.818231 0.001328 3.86E-05 0.672571 0.622976 0.221189
Coming/Oak Inds 0.299630 0.000371 2.61E-05 0.100687 0.829004 0.000278 1.02E-05 0.830208 0.697323 0.334785
Cypress Semicon 0.538525 0.000692 9.85E-05 0.077597 0.831327 0.000694 8.51E-05 0.845976 0.912684 0.013669
Genesco Inc 0.600186 -0.000140 0.000143 0.095389 0.805274 -0.000170 0.000242 0.437008 0.389691 0.168209
Healthsouth Corp 0.429999 0.001952 7.25E-05 0.089714 0.807925 0.00191 5.45E-05 0.628669 0.548072 0.226892
Hexcel Corp 0.471715 0.000115 5.48E-06 0.008321 0.975708 0.000321 3.67E-06 0.966751 0.226993 0.951033
Hilton Hotels 0.352844 0.000687 1.71E-05 0.069696 0.898264 0.000672 6.82E-05 0.351397 0.256534 0.230405
Interpublic Group 0.313456 0.000873 2.14E-06 0.038887 0.955268 0.000831 7.56E-06 0.756535 0.468253 0.424235
Kemr McGee Corp 0.289180 0.000244 3.42E-06 0.046240 0.943652 0.000192 1.18E-05 0.688442 0.481415 0.323558
Kulicke & Soffa 0641227 | 0.000537 1.37E-05 0.031839 0.960379 5.50E-05 9.19E-05 0.689805 0.566131 0.259942
LAM Research 0.596124 0.001008 0.000095 0.090067 0.841620 0.001021 0.000151 0.391075 0.207184 0.261515
LSI Logic 0.542819 0.000739 0.000164 0.072973 0.782621 0.000780 0.00016 0.575479 0.511618 0.164449
NABI 0.964364 0.000200 4.66E-05 0.070418 0.920182 -0.00012 7.98E-05 0.745677 0.589179 0.332907
Offshore Logistics 0.785796 0.000737 0.000338 0.098008 0.757633 3.32E-05 2.21E-05 0.855026 0.736368 0.310825
Omnicare Inc 0.411482 0.000833 4.04E-06 0.023983 0.970296 0.000985 1.27E-05 0.897241 0.763908 0.335427
Parker Drilling 0.493291 0.000218 8.76E-05 0.111824 0.798210 0.000298 9.32E-05 0.493155 0.394805 0.233519
Penn Treaty Amer 0.645585 0.001364 2.31E-05 0.112127 0.880060 0.00140% 4.25E-06 0.951543 0.226614 0.986493
Photronics Inc 0.713992 0.000966 3.22E-05 0.054081 0.931388 0.000988 0.000143 0.488868 0.299369 0.285027
Pogo Producine 0.453902 6.86E-05 8.27E-06 0.043163 0.947773 -1.00E-04 2.44E-05 0.748811 0.560364 0.351629
Providian Financial 0.292776 0.000497 - -6.09E-06 0.058140 0.924539 0.000517 1.21E-05 0.720209 0.563881 0.310937
Rite Aid 0.385032 0.000500 2.65E-06 0.026851 "0.967054 0.000527 1.93E-05 0.698083 0.523834 0.299441
Safeguard Scientific 0.675231 0.000300 0.000115 0.007935 0.945687 1.60E-07 6.63E-05 0.891473 0.249062 0.693621
Semtech Corp 0.755131 -0.000130. 9.13E-06 0.031023 0.965534 -0.000640 4.99E-05 0.802921 0.617351 0.353382
Service Corp 0.394883 0.000933 1.41E-06 0.025392 0.972872 0.000844 1.34E-05 0.781386 0.579286 0.348238
Silicon Graphics 0.508525 0.00136% 0.000267 0.142702 0.599636 0.001419 0.000283 0.323649 0.381109 0.108264
Standard Motor Prods 0.410191 0.000443 1.85E-06 0.028817 0.968659 0.000384— 8.84i5-06 0.830239 0.627657 0.415845
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Table 5: Pricing overview for various moneyness classes obtained by the simulation-based method with
geometric Brownian motion

Data points indicates the number of days for which model prices are computed. Mean percentage overpricing
states the extent to which market prices are, on average, above model prices for a given moneyness class.
Overpricing std. is the standard deviation of the observations in the respective class. Probability values refer
to a two-sided test for the H, hypothesis that model prices and observed prices are equal in the mean. Root
mean squared error is the non-central standard deviation of the relative -deviations of model prices from
market prices.

Moneyness Data Mean Overpricing Probability Root mean
Points percentage std. values squared error
overpricing
<0.50 1242 -0.0178 0.0792 0.0000 0.0811
0.50-0.80 1454 0.0018 0.0574 0.2258 0.0574
0.80-095 866 0.0232 0.0555 0.0000 0.0601
0.95-1.05 516 0.0233 0.0442 0.0000 0.0500
1.05-1.20 447 0.0110 0.0336 0.0000 0.0354
1.20-2.00 429 -0.0005 ‘ 0.0286 0.7418 0.0286
>2.00 59 -0.0(5;8 0.0262 0.2721 0.0263
Total sample 501; 0.0034 0.0604 0.0001 0.0605




Table 6: Pricing overview for various rating classes obtained by the simulation-based method with

geometric Brownian motion

Data points indicates the number of days for which model prices are computed. Mean percentage overpricing
states the extent to which market prices are, on average, above model prices for a given rating class.
Overpricing std. is the standard deviation of the observations in the respective class. Probability values refer
to a two-sided test for the H, hypothesis that model prices and observed prices are equal in the mean. Root
mean squared error is the non-central standard deviation of the relative deviations of model prices from

market prices.

Rating Data Mean Overpricing Probability Root mean
points percentage std. values squared error
overpricing

A- 11 0.0196 0.0235 0.0056 0.0298

BBB+ 18 -0.0017 0.0739 0.9216 0.0718 -
) R BBB 617 0.0096 0.0509 0.0000 0.0518

BBB- 881 0.0227 0.0444 0.0000 0.0498

BB+ 427 0.0088 0.0717 0.0110 0.0721

BB 21 0.0264 0.0269 0.0000 0.0372

BB- 563 -0.0668 0.0437 0.0000 0.0798

B+ 216 0.0271 0.0662 0.0000 0.0713

B 1751 -0.0059 0.0415 0.0000 0.0419

B- 255 0.0143 0.0577 0.0001 0.0594

CCC+ 227 0.1057 0.0503 0.0000 0.1170

cce 4 0.0473 0.1243 0.4468 0.1176

CcceC- 22 0.0473 01150 0.0536 0.1219

Total sample 5013 0.0034 0.0604 0.0001 0.0605

50



Table 7: Pricing overview for different issues obtained by applying geometric Brownian motion

Data points indicates the number of days for which model prices are computed. Mean percentage overpricing
states the extent to which market prices are, on average for a given convertible bond, above model prices as
generated by the simulation-based method with standard geometric Brownian Motion. Overpricing std. is the
standard deviation of the observations in the respective class. Probability values refer to a two-sided test for
the H, hypothesis that model prices and observed prices are equal in the mean. Root mean squared error is
the non-central standard deviation of the relative deviations of model prices from market prices.

Convertible bond Data Mean Overpricing Probability Root mean
points percentage sud. values squared error
- overpricing
Adaptec Inc 545 -0.0613 0.0517 ] - 0.0000 0.0801
Alpharma Inc 296 0.0100 - 0.0253 0.0000 0.0271
Analog Devices 39 -0.0117 0.0151 0.0000 0.0189
Charming Shoppes 83 0.0166 0.0407 0.0002 0.0437
CKE Restaurants 248 -0.0030 0.0293 0.1109 0.0294
Clear Chanel 1 240 0.0209 0.0229 0.0000 0.0309
Clear Channel 2 144 -0.0003 0.0364 0.9286 0.0363
Corning/Oak Inds 22 0.0320 0.0438 0.0006 0.0534
Cypress Semicon 124 0.0623 0.0336 0.0000 0.0707
Genesco Inc 46 0.0400 0.0295 0.0000 0.0495
Healthsouth Corp 83 -0.0501 0.0292 0.0000 0.0579
Hexcel Corp 32 0.0015 0.0439 0.8451 0.0432
Hilton Hotels 616 0.0301 0.0230 0.0000 0.0379
Interpublic Group 46 -0.0469 0.0186 0.0000 0.0504
Kerr McGee Corp 227 0.0735 0.0255 0.0000 0.0778
Kulicke & Soﬂ:a 71 -0.0493 0.0228 0.0000 0.0542
LAM Research 657 -0.0161 0.0343 0.0000 0.0379
LSI Logic 169 0.0155 0.0257 0.0000 0.0299 )
NABI 18 0.0580 0.125 0.0489 0.1347
Offshore Logistics 79 -0.0375 0.0468 0.0000 0.0597
Omnicare Inc 111 0.0357 0.0388 0.0000 0.0526
Parker Drilling 66 0.0591 0.0331 0.0000 0.0676
Penn Treaty Amer 65 -0.1072 0.0801 0.0000 0.1335
Photronics Inc 257 -0.0260 0.0561 0.0000 0.0618
Pogo Producing 43 0.0275 0.0397 0.0000 0.0479
Providian Financial - 91 -0.0242 0.1115 0.0381 0.1135
Rite Aid 266 -0.0002" 0.076 0.9698 0.0758
Safeguard Scientific 2 0.1407 0.0905 _ 0.0279 0.1546
Semtech Corp 187 0.1103 0.0402 0.0000 0.1174
Service Corp 9 0.0311 0.0228 0.0000 0.0378
Siiicon Graphics 122 0.0113 0.0266 O.QOOQ 0.0288
Standard Motor Prods 9 0.1030 0.0433 - — 0.0000 0.1108
Total sample 5013 0.0034 0.0604 ~0.0001 0.0605
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Table 8: Pricing overview for various moneyness classes obtained by the simulation-based method with
GARCH(1,1)

Data points indicates the number of days for which model prices are computed. Mean percentage overpricing
states the extent to which market prices are, on average, above model prices for a given moneyness class.
Overpricing std. is the standard deviation of the observations in the respective class. Probability values refer
to a two-sided test for the Hy hypothesis that model prices and observed prices are equal in the mean. The roor
mean squared error is the non-central standard deviation of the relative deviations of model prices from

market prices. -
Moneyness Data Mean Overpricing Probability Root mean
points percentage std. values squared error
overpricing

<0.50 1242 -0.0156 0.0822 0.0000 0.0836
0.50 —0.80 1454 0.0008 0.0588 0.6144 0.0588
0.80-0.95 866 0.0225 0.0564 0.0000 0.0607
0.95-1.05 516 0.0229 0.0442 0.0000 0.0497
1.05-1.20 447 0.0103 0.0338 0.0000 0.0353
1.20-2.00 429 0.0012 0.0292 0.4025 0.0292
>2.00 59 -0.0032 0.0258 0.3440 0.0258 -
Total sample 5013 0.0036 0.0617 0.0000 0.0618
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Table 9: Pricing overview for various rating classes obtained by the simulation-based method with
GARCH(1,1)

Data points indicates the number of days for which model prices are computed. Mean percentage overpricing
states the extent to which market prices are, on average, above model prices for a given rating class.
Overpricing std. is the standard deviation of the observations in the respective class. Probability values refer
to a two-sided test for the H; hypothesis that model prices and observed prices are equal in the mean. The roo?
mean squared error is the non-central standard deviation of the relative deviations of model prices from

market prices.

Rating Data  Mean Overpricing Probability Root mean
poinis percentage std, values squared error
overpricing
A- 11 0.0183 0.0244 0.0129 0.0296
BBB+ 18 0.0009 0.0742 0.9594 0.0721
BBB 617 0.0042 0.0525 0.0466 0.0526
BBB- 881 0.0219 0.0438 0.0000 0.0490
BB+ 427 0.0089 0.0774 0.0177 0.0778
BB 21 0.0228 0.0256 0.0000 0.0339
BB- 563 -0.0670 0.0456 0.0000 0.0810
B+ 216 0.0353 0.0715 0.0000 0.0796
B 1751 -0.0032 0.0432 0.0022 0.0434
B- 255 0.0155 0.0591 0.0000 0.0610
CCC+ 227 0.0980 0.0584 0.0000 0.1140
CcccC 4 0.0084 0.1394 0.9039 0.1210
CCC- 22 0.0440 0.1112 0.6636 0.1172
Total sample 5013 0.0036 0.0617 0.0000 0.0618
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Table 10: Pricing overview for the different issues as depicted by the simulation-based method with
GARCH(1,1)

Data points indicates the number of days for which model prices are computed. Mean percentage overpricing
states the extent to which market prices are, on average for a given convertible bond, above model prices as
generated by the simulation-based method with GARCH(1,1). Overpricing std. is the standard deviation of
the observations in the respective class. Probability values refer to a two-sided test for the Hy hypothesis that
model prices and observed prices are equal in the mean. Root mean squared error is the non-central standard
deviation of the relative deviations of model prices from market prices.

Convertible bond Data Mean Overpricing Probability Root mean
points percentage std. values squared error
overpricing
Adaptec Inc 545 -0.0616 0.0528 0.0000 0.0811
Alpharma Inc 296 0.0045 0.0249 0.002 0.0253
Analog Dcvi;:cs 39 -0.0139 0.0150 ~ 0.0000 0.0203
Charming Shoppes 83 0.0182 0.0405 0.0000 0.0442
CKE Restaurants 248 0.0002 0.0288 0.9304 0.0288
Clear Channel 1 240 0.0215 0.0233 0.0000 0.0316
Clear Channel 2 144 0.0009 0.0363 0.7619 0.0362
Coming/Oak Inds 22 0.0336 0.0424 0.0002 0.0534
Cypress Semicon 124 0.0788 0.0340 0.0000 0.0857
Genesco Inc 46 0.0397 0.0301 0.0000 0.0496
Healthsouth Corp 83 -0.0477 0.0292 0.0000 0.0558
Hexcel Corp 32 0.0225 0.0426 0.0029 0.0476
Hilton Hotels 616 0.0260 0.0229 0.0000 0.0346
Interpublic Group 46 .-0.0543 0.0152 0.0000 0.0563
Kerr McGee Corp 227 0.0722 0.0243 0.0000 0.0761
Kulicke & Soffa 7 71 -0.0511 0.0216 0.0000 0.0554
LAM Research 657 -0.0075 0.0349 0.0000 0.0357
LSI Logic . 169 0.0230 0.0281 0.0000 0.0362
NABI 18 0.0442 0.1293 0.1470 0.1332
Offshore Logistics 79 -0.0393 ‘0;0472 0.0000 0.0612
Omnicare Inc 111 0.0401 0.0431 0.0000 0.0587
Parker Drilling 66 0.0612 0.0347 0.0000 0.0702
Penn Treaty Amer 65 -0.1280 0.0746 0.0000 0.1479
Photronics Inc 257 -0.0334 0.0605 0.0000 0.069
Pogo Producing 43 0.0222 0.0393 0.0002 0.0448
Providian Financial 91 -0.0161 0.1171 0.1907 0.1175
Rite Aid 266 -0.0057 0.0789 0.2379 0.0789
Safeguard Scientific 2 0.1136 0.0982 0.1019 0.1332
Semtech Corp 187 0.1011 0.0521 0.0000 0.1136
Service Corp 9 0.0173 0.0440 0.2391 0.0449
Silicon Graphics 122 0.0166 0.0257 0.0000 0.0306
Standard Motor Prods 9 0.1019 0.0445 0.0000 0.1102
Total sample 5013 0.0036 0.0617 0.0000 0.0618
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Table 11: Deviation of prices generated by the simulation-based method obtained by Brownian Motion
and GARCH(1,1) plotted against moneyness

Data points indicates the number of data points for which model prices are computed. Mean percentage
deviation states the extent to which GARCH(1,1) prices are, on average, above Brownian-motion prices for a
given moneyness class. Deviation std. is the standard deviation of the observations in the respective class.
Probability values refer to a two-sided test for the Hy hypothesis that the model prices applying both volatility
models are equal in the mean. The root mean squared error is the non-central standard deviation of the
relative deviations of GARCH(1,1) prices from Brownian-motion prices.

Moneyness Data Mean Deviation Probability Root mean
points percentage std. values squared error
deviation

<0.50 1242 0.0021 0.0078 0.0000 0.0081
0.50 -0.80 1454 -0.0010 0.0135 0.0031 0.0135
0.80-0.95 866 -0.0007 0.0110 0.0551 0.0110
0.95-1.05 516 -0.0004 0.0080 0.2259 0.0080
1.05-1.20 447 -0.0007 0.0066 0.0208 0.0066
1.20-2.00 429 0.0016 0.0075 0.0000 0.0077
>2.00 59 0.0006 0.0032 0.1673 0.0032 ~
Total sample 5013 0.0001 0.0103 0.3454 0.0103
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Table 12: Pricing comparison between rating-based credit spreads and credit spreads directly
extracted from other outstanding straight bonds of the same issuer

This table compares pricing results obtained using two different estimation methods for credit-spreads. In the
total sample credit spreads are obtained using the individual rating in combination with average credit-spreads
from all available straight-bond issues from the same credit class. As alternative to this approach, credit
spreads may be extracted directly from other outstanding straight-bond issues of the same company. Since
only six companies in our sample have straight bonds outstanding, the pricing comparison is based on a sub
sample of the initial data. Data points indicates the number of days for which model prices are computed.
Mean percentage deviation states the extent to which market prices are, on average, above model prices for a
given moneyness class. Deviation std. is the standard deviation of the percentage difference between market
prices and prices generated by the model. Probability values refer to a two-sided test for the H, hypothesis
that the model prices and observed prices are equal in the mean. The root mean squared error is the non-
central standard deviation of the relative deviations of model prices from market prices. Simulation error is
the standard deviation of the obtained payoffs divided by the square root of the number of simulated paths.

Moneyness Data Mean Deviation Probability Root mean Simulation

points percentage sid. values squared error error
deviation

Total sample with GBM 5013 0.0036 0.0617 0.0000 0.0618

Sub sample with GBM and rating-

based credit spreads 303 0.0329 0.0269 0.0000 0.0425 0.0023

Sub sample with GBM and credit

spreads from outstanding straight-

bonds 303 0.0128 0.0249 0.0000 0.0280 0.0020

Sub sample with FIGARCH and credit

spreads from outstanding straight-

bonds 303 “~0.0091 0.0271 0.0000 0.0285 0.0024
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