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Trading Fast and Slow:
Security Market Events in Real Time

Abstract

Continuous security markets evolve as a sequence of timed events.  This study is a

descriptive analysis of NYSE market data in which trades, quote revisions and orders are

considered to constitute a stationary multivariate point process, which can be analyzed by

standard time- and frequency-domain techniques.  There are three principal findings.  (1)

Although occurrence intensities for different types of events are positively correlated,

they are not characterized by the uniform proportionality that a strict sense of time

deformation would require.  (2) The frequencies and durations of informational epochs

(periods of uncertainty and informational asymmetry) are highly variable.  (3) The

correlation in arrivals of market orders and opposing limit orders is zero or negative over

periods of thirty minutes or less.
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1. Introduction

The specification and interpretation of time is fundamental to theoretical and empirical

models of security market dynamics.  From a purely descriptive viewpoint, it is obvious that

real-world continuous security markets give rise to well-defined events (e.g., orders, trades and

quote revisions) that occur randomly in continuous real time.  If we seek tractable models of

market behavior, however, this observation is not particularly helpful.  The difficulties of

theoretically modeling or empirically characterizing such processes strongly motivate simpler

approaches, such as emphasizing one type of event (usually trades), aggregating data over

convenient intervals of real (“wall-clock”) time or viewing the events as ordered (but not timed).

While greatly facilitating empirical analysis, these simplifications suppress aspects of the

situation that may be economically important.  Market operations inherently comprise multiple

dependent processes.  Time aggregation smears the individual events and aggravates

simultaneity.  An untimed ordering of the data leaves no place for real-time arrival rates.  These

occurrence rates lie at the heart of what a practitioner might describe as a “fast market”,

circumstances that might feature an “avalanche” of orders, “waves” of program trades, and/or

quotes that are stale almost as soon as they are posted.

In light of these considerations, this paper pursues a line of inquiry that views the

collection of market events as a multivariate point process, and applies the descriptive statistical

tools that this perspective affords.  The study uses the NYSE’s TORQ data, a comprehensive

record of not only trades and quotes, but also orders, differentiated according to buy/sell,

market/limit and program/nonprogram.  The inquiry applies standard time- and frequency-

domain analysis to the point and count data associated with these series.  I discuss in detail the

activity for IBM, but supplement this with results for a broader sample.

This approach might initially appear to be preoccupied with real time to the exclusion of

all other aspects of the problem.  Indeed, in the econometrics, all attributes (“marks”) of the

events apart from their occurrence are ignored.  The paper analyzes trade occurrence times, for
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example, but not the prices or volumes of the trades.  It does not follow from this admission,

however, that the characterization of occurrence rates is irrelevant for the economic and

statistical modeling of prices and volumes.  In fact, real time plays an important role in these

models.

The present analysis is significant in several respects.  First, it affords important insights

into the microstructure foundations of time deformation.  The principle of time deformation in

security markets differentiates between real time and operational or informational time.

Analyses of mixture of distributions and/or price/volume effects often invoke this distinction.

This paper suggests that time deformation be characterized as commonality in the occurrence

rates of the events that collectively constitute the market process.

By way of physical analogy, each of the cylinders in an automobile engine contains a

spark plug that fires at a certain point in the engine’s revolution.  Suppose that, knowing nothing

of this mechanism, we analyze a dated and timed record of all the spark plugs’ firings for a week.

Random usage of the automobile will lead to extensive time variation in the occurrence rates (or

time between firings) for each and all plugs.  Nevertheless, local estimates of these rates for

different plugs will be very strongly correlated.  This is time deformation, in which operational

time is the instantaneous rate of the engine revolution.  Analogously, for market data, we seek to

determine the nature of correlations between different events.  The paper finds that that while

correlations between the arrival rates of orders, trades and quote revisions on NYSE are

generally positive, they are far less pervasively so than the automobile analogy would suggest.

This implies that the relative roles of these processes are different in fast and slow markets.

A second important insight concerns the characterization of private information.  Most

theoretical models of trading are set in a notional time frame (termed here an information epoch)

that begins with a valuation uncertainty and an information asymmetry, and ends with resolution

of the uncertainty.  In constructing robust empirical specifications for these models, however, we

have few guidelines concerning how these informational epochs might map into real time.  The

models do suggest, however, that the order flow over an epoch is one-sided.  Analyzing the point
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process characteristics of buy and sell orders is a natural way to characterize these epochs.  Here,

the findings are mostly negative.  Auto- and cross-correlations in order flow vary considerably,

suggesting that sequences of predominately one-sided runs vary in frequency and duration.  This

largely rules out a concise summary characterization of information epochs.

A third insight involves the demand and supply of liquidity.  In a continuous double

auction market such as the NYSE, liquidity hinges on the willingness of outsiders to maintain a

flow of new limit orders (to replenish the book).  From a public policy viewpoint, one might

hope that when market orders arrive rapidly, so do limit orders.  The results suggest that this is

only partially the case.  For opposing market and limit orders (e.g., market buys and limit sells),

the relationships between short and medium term components (periods less than thirty minutes)

are mostly zero or negative.  Thus, small-scale liquidity crises appear to arise frequently.

The paper is organized as follows.  The next section discusses how time (both real and

notional) figures in market models, and motivates the paper’s perspective.  Section 3 describes

the data.  Orders, trades and quotes are analyzed in Section 4, establishing the evidence in

support of (and limitations of) time deformation.  The paper then turns to a more detailed

examination of incoming orders in Section 5.  A discussion of implications and summary

concludes the paper in Section 6.

2. The role of time in security market dynamics: an overview

Most of our knowledge of security price behavior, especially as it relates to broader

economic activity, is based on real time observations with data aggregated over periods (daily or

longer) that are large relative to trading time frames.  Theoretical and empirical analyses of

trading, on the other hand, are most conveniently set in a notional time scale that sequences

agents’ moves or observable market events.  Although paper ultimately aims at bridging these

two views of time, it is initially simpler to treat them separately.  The discussion here first

considers time deformation (broadly defined), a device that arises chiefly in the empirical
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analysis of real-time aggregated data.  It next turns to the microstructure literature, and the

manner in which the notional time scales favored in that literature might map to real time.

a. Time Deformation

Many models of security prices allow fixed intervals of real time to encompass varying

amounts of “information”.  The intuition here is that since information drives prices, price

dynamics are most concisely specified when the rate of information arrival or information

intensity is constant.  Allowing real time observation periods to embody compressed or expanded

informational periods is then a convenient way to account for certain statistical properties of real

time observations.

The distinction between the operational time scale in which a system evolves and the real

observational time scale is the essential principal of time deformation.  Formally, a multivariate

latent process ξ s1 6evolves in continuous operational time s (here equivalent to information

time).  A transformation, t g s= 1 6 , maps operational time to real time t (Stock (1988), or

similarly, Ghysels, Gourieroux, and Jasiak (1998a)).  Although few analyses of security market

dynamics estimate a fully specified time deformation model, the intuition is nonetheless

pervasive.

Mixture of distributions and price/volume studies

Historically, the most prominent applications of time deformation have been to empirical

studies of short-term time-aggregated stock market data.  Most importantly, if regular real-time

intervals are allowed to encompass varying spans of informational time, returns over these

intervals will be distributed as mixtures of the informational/operational-time distributions.  The

generation of a complicated distribution via random parameterization of a simpler one is, in and

of itself, a purely mathematical device.  The idea acquires economic content in this context in its

implications for other economic variables (besides prices) that might also presumed to be driven

by information.
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The most important of these is trading activity.  Numerous studies examine returns and

trading volume (variously measured as the number of trades or units of the security exchanged)

over regular real-time intervals.  Statements of this “mixture of distributions” hypothesis are

usually formulated in this framework as joint hypotheses over returns and volume.  A related and

overlapping “price-volume” literature has evolved exploring the broader descriptive aspects of

this relationship.1

The early economic models of price-volume relationships emphasize agent preferences

and information structures (Epps and Epps (1976), Tauchen and Pitts (1983)).  This establishes,

sensibly in the spirit of Occam’s razor, a minimal framework for generating prices and trading

volumes. In these models, the price change and volume of trade are usually assumed to arise in

the course of the market’s response to an informational event.  Furthermore, the number of

informational events in a day (or other regular interval) is assumed random.  This device allows

for time deformation, in the sense of variation in the average daily rate of information arrival.

The trend in this literature is toward models that are less time-aggregated and that

incorporate the intuitions of microstructure analyses.  The analyses of Foster and Viswanathan

(1995), Andersen (1996) and Llorente et al. (1998), for example, view volume effects as arising

in part from asymmetric information.  The market clearing processes in these papers, however,

generally involve one-time clearings that are rapid enough not to impinge on any subsequent

information event.

As the time intervals of interest become finer, however, the demands on the empirical

modeling increase dramatically.  Over a day, for example, it is reasonable to measure trading

activity by the total volume, which can plausibly be considered a continuous random variable.

                                               
1 The formalities of time deformation are usually stated in terms of subordindated stochastic
processes (Bochner (1960)).  Among the numerous studies of security prices relevant to the
present paper are: Clark (1973), Gallant, Rossi, and Tauchen (1992), Harris (1986); Harris
(1987), Karpoff (1987), Mandelbrot and Taylor (1967), Richardson and Smith (1994), Tauchen
and Pitts (1983)).



Page 6

At a one-second resolution, trading undeniably consists of discrete events.  This motivates a

discussion of empirical analyses that explicitly model the point-process character of markets.

Empirical studies of market events as point processes

The simplest point process is the Poisson process with constant intensity.  Garbade and

Lieber (1977) analyze a short sample of NYSE transaction times for two stocks (Potlatch and

IBM).  They find the Poisson assumption to be roughly appropriate, but violated by bursts of

frequent arrivals.  From a time deformation perspective, this suggests periods of high

information intensity, but in this model, the trade arrival process is independent of the stock’s

value.

Recent work, facilitated by better data sets and methodological advances, has achieved

significant refinements and extensions.  Engle and Russell (1998) propose an autoregressive

conditional duration (ACD) model, a parametric specification that admits stochastic time-

variation in the expected occurrence rate.  They find that the model captures the clustering of

IBM trades in real time.

Engle and Russell point out that although the ACD specification is not, strictly speaking,

a time deformation model (no operational/real time correspondence is established), it

nevertheless admits a similar interpretation.  Most importantly in this context, clustered trading

(low intertrade duration) is associated with high volatility (Engle (1996); Russell and Engle

(1998)).  Furthermore, persistence in conditional intensity may help explain volatility persistence

(Ghysels, Gourieroux, and Jasiak (1998b); Ghysels and Jasiak (1998)).

ACD models are powerful and useful devices for characterizing market point process

phenomena.   For present purposes, however, the ACD framework is not completely suitable.

One limitation concerns the applicability to multivariate point processes.  Although Engle and

Lunde (1998) present a bivariate point process model for trades and quotes, the specification is

not symmetric in the two processes (“The transaction times are the forcing process.”)   Extending

this approach to more than two processes would appear to require the specification of a recursive
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hierarchy of timing influences.  Furthermore, although the parametric simplicity of the ACD

model is in many respects a strength, it may obscure features of the data that might be more

visible in a descriptive analysis.

Time deformation in market events

For empirical purposes, this paper suggests that time deformation in multivariate point-

process market data be measured as the variation in occurrence rates that is common across all

component point processes.  This definition draws on two themes in the above-cited literature.

First, from the event-modeling literature, come the perspectives that the collection of market

events is a multivariate point process and the occurrence intensities are indicative of the rate of

information arrival.  Second, from the formal definitions, time deformation implies a single

directing process (mapping from operational to real time) that is applicable to all components of

the system.

This working characterization of time deformation implies positive correlations among

the intensities of the component processes.  These intensities, however, are not observed.   In the

absence of a parametric model, the intensities must be locally estimated, either over short

windows of time or (as will be discussed later) frequencies.  Thus, time deformation defined in

this fashion depends fundamentally on horizon.

By way of example, suppose that information intensity is proxied by a nonnegative

continuous random variable, It, which evolves as the Ornstein-Uhlenbeck process

d I I dt dzt tlog log1 6 1 62 7= − +α θ σ .  Let the trade and quote point processes be Poisson with

intensities proportional to this variable: λ λTrade t Quote tc I c I= =1 2and  where c c1 2 0, > .

Furthermore, assume that conditional on It, the two processes are independent.  This system

exhibits the characteristics of time deformation in the present sense: variation in intensities

common to both components.  This does not imply, of course, that actual occurrences over any

arbitrary interval are perfectly correlated.  In fact, as the width of the interval shrinks, the
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correlation vanishes.  (Statistical inference is discussed Section 4 and the appendix.)  This

example easily generalizes to more than two processes.

This example is useful in motivating the empirical analysis.  Its treatment of market

events, however, is statistical, not economic. Accordingly, I now turn to a discussion of the

microstructure literature.

b. Microstructure models and their timing characteristics

In most respects and in most microstructure models, the timing structure is an assumed,

stylized framework designed to capture certain real-world features in a tractable fashion.  Most

models are set in a notional time frame, termed here an “informational epoch”, that begins with

the existence of value uncertainty (and possibly an information asymmetry), and ends with the

resolution of the uncertainty.

Economic considerations suggest considerable variation in the timing of informational

epochs.  Most microstructure models were originally motivated as applying primarily to

corporate equity securities.  The informational asymmetries generally relate to “terminal” value,

i.e., value at the end of or beyond the horizon of trading.  Informed trading is sometimes taken as

synonymous with “inside” trading.  These considerations suggest a time frame approximating

that of major corporate information development, quarterly, perhaps, excepting the odd merger

announcement or restatement of past earnings.

Other considerations suggest a much briefer period.  If traders who place limit orders in

the market do not monitor public information closely, their orders may not accurately reflect

public information.  “Private information” exists in this market, in the sense that traders’

information sets as reflected in their market interactions differ (Hasbrouck (1991)).  Of course,

the information epochs associated with this structure would tend to be of short duration.

Furthermore, private information (and the attendant price impacts) need not be related to

terminal value.  It may instead arise from transient market imbalances or uncertainty about the
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trading population, both of which may be short term (Lyons (1997); Lyons (1996); Lyons

(1995); Saar (1998)).

The concept of an informational epoch, though somewhat artificial, is a useful one.  It is

pervasive in the microstructure literature.  It is common in the price/volume literature, as well,

embracing the random periods of trading that often arise in these models.  If we broaden the

concept slightly to refer the period over which there is existence and resolution of the

uncertainty/asymmetry in one component of the security’s value (as opposed to the totality), it

becomes realistic as well.  That is, we can view the trading process as consisting of informational

epochs of varying duration, possibly overlapping.  The device is useful empirically because the

strongest content of most microstructure models pertains to activity within an epoch.

Empirical timing implications of the sequential trade models

In the sequential trade models, an information epoch is generally characterized by a one-

sided order flow, which arises from informed trading over the epoch.  In some analyses, this is an

implication of the model deriving from assumptions about preferences, endowments and

information (e.g., Glosten (1989); Glosten (1994); Glosten and Milgrom (1985)).  In other

models, this behavior is simply assumed.

If the distinguishing feature of an informational epoch is a one-sided order flow, we

should observe over the epoch a high occurrence rate on one side of the market.  This may be

distinguished from a fast market due to time deformation in that the increase in occurrence

intensity is not pervasive across all components of the system.  In particular, the sequential trade

models suggest no necessary surge in orders on the opposite side of the market.

The setup in Easley et al. (1996) is particularly suggestive.  If an information event has

occurred, then the informed agents trade on the side of the signal with Poisson intensity λ.

Liquidity traders buy and sell with intensity ε.  The unconditional probability of an information

event in a particular epoch is α, and the probability of a low signal is δ, which is here assumed to
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be one-half.  Under these assumptions, the unconditional buy and sell order intensities both equal

ε α λ+ 21 6 .

Easley and O’Hara assume that the market evolves as a sequence of independent

information epochs of one day’s duration placed end-to-end.  This is roughly appropriate in the

case where news consists of an after-hours corporate announcement that is leaked early in the

day.  From a broader empirical perspective, however, this restriction seems unrealistically

confining.  As noted above, there are good reasons to suspect that the durations of information

epochs vary considerably, from the relatively brief (a few minutes, in the case of stale limit

orders) to the lengthy (many days, in the case of advance knowledge of an earnings

announcement).   There are also, of course, few reasons to presume a priori that epochs occur

back-to-back with no intervening trading, or that they begin at regular times.

In the absence of plausible assumptions concerning the exact timing of epochs, more

general descriptive analyses may be useful.  In the present context, the statistical point process

approach offers a good characterization of the horizons over which occurrence rates of orders on

opposite sides of the market are correlated.2

The sequential trade models have additional implications for event processes within an

information epoch.  The mapping from notional to real time is largely irrelevant as long as the

sequencing of moves is preserved.  In the basic versions of these models, these moves

correspond to observable events and the market operation follows a regular cycle.  A market

maker posts quotes; an order arrives; a trade occurs; and the market maker updates the quotes.  In

such a market, we would expect the point process of trades and quotes to be identical to that of

                                               
2 The principal alternative to the sequential trade line of modeling employs auction models (Kyle
(1985); Kyle (1984) and related developments).  Although these are in the limit set in continuous
time, the point-process character of market events is not modeled.  At each instant, for example,
equilibrium is characterized by an order flow that is normally distributed.  These models have,
therefore, no direct implications for trading events per se.  The models possess the additional
property that the cumulative signed order flow is a Martingale, which implies an absence of
autocorrelation.
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orders, possibly displaced slightly by processing delays.  Consistent with the characterization of

time deformation in the last section, variation in the occurrence rate of any single component (all

orders, quotes or trades) would be common to all components.3

More sophisticated models, however, do not necessarily imply such regularity.  If there is

uncertainty about whether an information event has occurred, Easley and O'Hara (1992) show

that a “no trade” move conveys information (specifically, that an information event has most

likely not occurred).  Observable events thus constitute a censored sample of agents’ moves.

The former won’t be evenly spaced in time (even if the latter are).4

The Easley and O'Hara (1992) model also suggests that upon receiving a large order, the

dealer increases her conditional probability that an information event has occurred, and widens

the spread accordingly.  In a limit order market, this same effect may arise as a reluctance of

limit order traders to refill the book after a large order.  This hypothesis may be examined

indirectly by comparing the time patterns in arrival rates of market orders and opposing limit

orders.

c. Summary of empirical implications

The preceding discussion suggests specific issues that are usefully framed in a point-

process perspective:

                                               
3 It is interesting that from a microstructure viewpoint, the empirical price-volume relation is
problematic within an informational epoch.  O'Hara (1995) notes that relation does not arise in
the basic continuous auction or sequential trade models.   These models do not in any obvious
way, however, rule out the devices used in the price/volume literature, such as allowing variable
numbers of epochs within a real time interval.
4 It is worth noting that in Easley and O'Hara (1992), the market maker knows the times at which
trade might potentially occur.  That is, a no-trade observation is equivalent knowing that a
potential trader has arrived in the market, observed the quotes, and has declined to trade.   This
might be approximated in real markets where the public quotes are merely indicative and trading
requires negotiations that might break down.  Most equity markets, however, publicize quotes
that are firm (at least for small trades).  In these situations, the market maker would seem to be in
the position of inferring the information event from local order arrival rates.  In the empirical
implementation, Easley and O’Hara adopt a fixed rule that five minutes without a trade
constitutes a “no-trade” move.
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• To what extent can variation in market activity be characterized as time deformation?  That

is, can different sorts of market events be characterized as time-homogeneous point processes

subject to the same deformation?  This question will be investigated by considering the

extent of correlation between the occurrence intensities of different events at various

horizons.

• What are the frequencies and durations of information epochs?  This can be investigated by

determining the horizons over which incoming buy and sell orders are not positively

correlated.

• How is liquidity affected within informational epochs?  This is a broader hypothesis and will

be investigated by examining the timing relation between market orders and opposing limit

orders.

The paper now turns to an investigation of these relations.

3. Data

The data are drawn from the TORQ dataset (Hasbrouck (1992)).  This is a three-month

sample of orders, trades and quote revisions for consolidated trading in selected NYSE stocks.

The trade and quote data are comprehensive.  They contain all transactions and quote revisions in

all trading venues covered by the consolidated information systems.  The order data, however,

cover only orders handled on the NYSE’s automated systems (chiefly the SuperDOT system).

Harris and Hasbrouck (1996) provide an extensive characterization of these orders.

The time-stamp associated with a trade is imposed by the Consolidated Trade System

(CTS).  It marks when the trade was reported (not when it actually occurred).  For present

purposes a “quote” is considered to be a revision in the bid price, ask price, bid size (number of

shares “sought” at the bid) or ask size (number of shares “available” at the ask).  The time stamp

is fixed by the Consolidated Quote System (CQS).

Among the many attributes of orders, the most important are side (buy or sell) and market

vs. limit.  A market order demands immediate execution at the best available price.  Market
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orders are commonly spoken of as consuming liquidity.  A limit order is a priced order (e.g., buy

500 shares at a price of 40 or better) for which execution is not certain.  Limit orders are

sometimes said to supply liquidity.  The time stamp on an order is the time when the order was

received by the NYSE’s Common Message Switch (CMS).  If the price of a buy limit order is

above the prevailing ask price, the limit order is said to be marketable.  Unless the market is

rapidly moving, the order is functionally equivalent to a market order.  Marketable limit orders

are grouped with market orders for present purposes.

The systems that time-stamp the data are identified above by name simply to emphasize

that they are different.  Although they are all synchronized to the same clock, processing

latencies may induce errors.

Most of the statistical analysis focuses on IBM (the same firm analyzed in Engle and

Russell (1998)).  There are sixty-three days in the TORQ sample.  Of these, four were deleted.5

Also investigated were the sixteen most actively traded stocks in the TORQ sample.

Figure 1 plots occurrences of trades, quotes and orders of various types for IBM for the

first day in the sample.  Each occurrence is plotted as a point on one of six time lines (depending

on the type of event).  Points are vertically “jittered” (i.e., shifted up or down by a small random

amount) to visually spread out observations that would otherwise (at plotting resolution)

coincide.  The jittering is solely in the vertical dimension: a point’s horizontal position is an

accurate time coordinate.

The graph exhibits several interesting features.  First, despite the general rule that most

aspects of market activity are “U-shaped”, i.e., elevated at the beginning and end of trading, this

is not strikingly obvious in the picture, except perhaps for a general slowing down over the lunch

hour.  This simply reflects the fact that random variations in intensities are much larger than the

deterministic intraday variations.  The U-shape is much more apparent when intensities are

                                               
5 There was an early closing on December 24, 1990.  System failures on November 23, 1990 and
December 27, 1990 impaired trading for parts of those days.  On January 17, 1991, IBM
experienced a delayed opening.
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averaged across days.  Secondly, each type of event appears to exhibit random clustering (times

of greater occurrence density).  Thirdly, the clustering periods are not apparently uniform across

types of events.

4. Orders, Trades and Quotes

This section investigates microstructure time deformation using three essential events

related to market activity: incoming orders (of all types), trades and quote revisions.  I examine

the processes from both time and frequency-domain perspectives.  The former is more intuitive,

while the latter offers a sharper characterization of effects at various horizons.  I outline in this

section the features of the statistical framework.  The appendix contains a more complete

summary.

a. Multivariate point processes in the time domain.

The time-stamped record of market events studied here is assumed, after removal of

intraday “seasonalities”, to be a sample from a stationary vector point process (Brillinger (1974);

Brillinger (1975)).  The interpretation of the stationarity condition is similar to that of ordinary

time series: joint probabilities of occurrences at times t and t+s depend only on s (and not on t).

Although events occur in continuous time, we can investigate the process using discrete-time

averages of the occurrence rates, as long as the averaging intervals are short relative to the

phenomena of interest.  The appendix discusses the relation between the properties of these local

averages and those of the underlying continuous process.  This study averages events over 30-

second windows.6

                                               
6 A point process is said to be orderly if there is a vanishing probability that a time interval of
infinitesimal duration contains more than one event.  The present data are not, at the one-second
resolution of the time stamps, “orderly”.  In the sixty-two day TORQ sample for IBM, there were
over 14,000 one-second intervals that contained multiple events (orders, trades and/or quote
revisions).  The largest number of “simultaneously-occurring” events was twenty-five events (on
January 2, 1991 at 13:03:59).
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To facilitate the computations, the study focuses primarily on intraday stochastic

behavior.  The 30-second average intensities were demeaned (by removal of the mean for the

day).  Intraday deterministic components (“seasonalities”) were removed by regressing the

average intensities against time-of-day polynomials (and using the residuals in subsequent

analysis).

b. Results for IBM in the time domain

Figure 2 depicts the auto- and cross-correlation for order, trade and quote intensities.

Average intensities for all series are positively autocorrelated.  Intuitively, all events tend to be

clustered in time.

If the market followed a regular cycle such that an occurrence of any one type of event

were always associated (possibly at a fixed lag or lead) with occurrences of the other types, then

the cross correlations would be unity at the given lag or lead and zero otherwise.  Not

surprisingly, the cross-correlations refute this simplistic sort of time deformation.  The cross-

correlations are, however, pervasively positive.  This suggests the presence of common

components that are (at least relative to the 30-second windows) long term.  Thus, the analysis

must turn to considering the horizon of the effects.  In exploring such issues, the frequency

domain perspective is useful.

c. Multivariate point processes in the frequency domain

Like an ordinary time series, a vector point process possesses a spectral (frequency

domain) representation, in which the randomness is viewed as arising in the amplitudes of the

component sinusoid (sine and cosine) functions that constitute the process.  Because a sinusoid

has a well-defined period of repetition, the frequency domain perspective is useful for

characterizing variances and covariances over different time horizons.  In the present application,

it is economically reasonable to conjecture that market event intensities are driven in part by

short-term effects, such as a trader’s delay in getting to the phone or (nowadays) the latency time

in an Internet connection.  Nevertheless, there are also long term components arising from
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relatively infrequent news announcements.  The question of “horizon” is fundamental to the

present characterization of time deformation, defined as positive covariation among components

of a multivariate point process.  The frequency domain perspective permits a concise

characterization of these effects.

Although spectral analysis is often used in the physical sciences to uncover deterministic

regularities (seasonalities), and could be used to capture the intraday patterns in market data, this

is not the primary purpose of the present analysis.  The principal intent is to provide an

alternative perspective on the stochastic properties of the data series.  Although a market

practitioner might refer nowadays to “waves of program orders”, I suspect that the metaphor is

meant to convey strength and inevitability (once under way) rather than cyclic predictability.  In

any event, no presumption of cyclic regularity underlies the present analysis.

To illustrate the sort of inferences facilitated by spectral representations, I consider two

examples.

Example 1: Poisson orders leading to trades with a random delay.

In this stylized simulation, I assume that in each discrete time period, the number of

arriving “orders” is Poisson with mean 0.2.  The orders that arrive in time period t result in an

equal number of “trades”, but due to various random latencies in the order handling process, the

trades are reported with a delay.  This delay is assumed to be exponentially distributed with a

mean of three periods.  I simulate 10,000 time periods and compute time- and frequency-domain

statistics.

Auto- and cross-correlations are graphed in Figure 3 (Panel A).  The univariate

autocorrelations in the counts are near zero (as one would expect for a Poisson process).  The

cross-correlations reflect the mechanism linking orders and trades.  Due to the random delay, the

positive association is smeared over several lags.   Estimated spectra and cross-spectra are

graphed in Figure 3 (Panel B).  Both univariate spectra (on the diagonal) are virtually flat due to

the constant Poisson assumption.  The cospectrum decomposes the covariance in the arrival
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probabilities into components associated with various frequencies (periods or horizons).  At high

frequencies (short horizons), the cospectrum is near zero; at low frequencies (long horizons), the

cospectrum is strongly positive.  The coherence is similar to an R2.  It is a coefficient of

determination between the arrival probabilities, also decomposed by frequency.  It is near zero at

high frequencies and near unity at low frequencies.  Both the cospectrum and coherence suggest

strong long-run dependency.  An economic interpretation is that time deformation is a reasonable

conjecture at periods of roughly fifty or longer, but at shorter horizons the relationship is

corrupted by random delays.7

Example 2: Trades and quotes that jointly depend on persistent stochastic arrival intensity.

An example that arose in the discussion of time deformation in Section 2.a involved an

information intensity variable, It, which followed a persistent Ornstein-Uhlenbeck process.  Here,

I assume a discrete-time version with persistence parameter α = 0 995. .8  The Poisson intensity

parameters for trades and quotes are assumed to be λ λTrades t Quotes tI I= = and 2 . Conditional on

It, the numbers of trades and quotes in a period are independent.  As in the previous example, I

simulate this for 10,000 periods and compute time- and frequency-domain statistics.

Figure 4 graphs the results.  In Panel A, both trades and quotes evince declining

autocorrelations.  The cross-correlations are also declining and symmetrical.  In Panel B, the

univariate spectra of both series show concentrated power at low frequencies (long periods).  The

cospectrum is near zero up to approximately fifty periods, whereupon it rises sharply.  Over this

same interval, the coherence (upper right corner) rises to unity.

As in the last example, we see strong low-frequency dependence in the counts associated

with time deformation.  The mechanisms in the two examples, differ markedly however.  In the

                                               
7 The order processing delay could be investigated in the frequency domain by examining the
phase spectrum.  But this feature seems more visible in the time domain analysis.
8 The full specification is: ( ) ( ) ( )( ) tttt III ε+−−= −− 5.0log995.0loglog 11 where tε is normal with

zero mean and a standard deviation of 0.1.
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order/trade example, one order always leads to exactly one trade.  The counts would be perfectly

coherent at all frequencies were it not for the random short-term delay.  In the present

trade/quote example, there is no deterministic relation between the two count series.  The long-

run coherence arises from a common persistent component.

d. Results for IBM in the frequency domain

Figure 5 depicts the spectral properties of IBM’s orders, trade and quote point processes

(corresponding to the time domain analysis depicted in Figure 2).  The spectral statistics (like the

autocovariances) are based on the “deseasonalized” counts (i.e., after removal of daily mean and

intraday patterns).  The frequency- and time-domain analyses are therefore directly comparable.

On the diagonal of Figure 5, the univariate spectra of all three series exhibit strong long

horizon components.  These presumably mostly reflect persistent stochastic components, but

they might also arise from deterministic components left over from a misspecified

deseasonalization process.

The off-diagonal graphs in Figure 5 describe the joint properties of the event occurrence

rates.  All pairs of series show the same general features: weak dependence at low periods and

stronger dependence at longer periods.  The cospectra are near zero at periods of ten minutes or

below, and gradually rise thereafter.  The coherencies are low (roughly 10%-20%) up to periods

of ten minutes and then rise to approximately 60%.  Although the positive dependence in the

occurrences is consistent with time deformation, these coherencies are considerably lower than

those induced by time deformation in the examples.  The “speeding up” and “slowing down” of

the market is not uniform across events.  This suggests that the roles of the component processes

are changing as the overall pace of activity varies.

5. Orders in Detail

The discussion of the asymmetric information models in Section 2 suggests that the

intensities of orders differentiated by sign (buy or sell) are useful in characterizing information



Page 19

epochs. This section begins with an example that illustrates the time- and frequency- domain

properties of such models, and then turns to the results for IBM.

a. Example

Consider a simulation that is similar in some respects to Easley et al. (1996).  The arrival

intensity of uninformed buys and sells is ε = 0.2 per period.  Informed trading intensity is

λ = 10.  An information epoch lasts twenty periods.  Information epochs arise randomly.  If the

market is not currently in an epoch, there is a 0.01 probability that one will start this period.  If

an epoch starts, there is an even chance of positive or negative private information.

 Figure 6 graphs the auto- and cross-correlations of the simulated buy and sell series.  The

duration of the information epoch shows up most clearly in the auto-correlations, which are

positive and decaying up to lag 20.  Although the cross-correlations are negative, confirming the

intuition that the hallmark of informed trading is a net order imbalance, they are small in

magnitude and diffuse.

The difficulty with relying solely on the autocorrelations of the buy and sell orders to

characterize the informational epochs is that the pattern (positive and decaying) is also consistent

with a world in which there is no asymmetric information, but there is time deformation, as in

Example 2 of Section 4.

Certain features of the model emerge somewhat more clearly in the frequency domain.

Panel B of Figure 6 graphs the spectra and cross-spectra.  As in the case of time deformation, the

univariate spectra are concentrated at long periods.  The cospectra (lower left) are quite different,

however.  Whereas time deformation predicts a positive cospectrum, that associated with

asymmetric information is at long periods negative.9

                                               
9 The range of periods over which the cospectrum is negative in Panel B reflects both the
duration and occurrence frequency of the information epochs.
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b. Market Buy and Sell Orders

It will be recalled that the term “order” in the asymmetric information models generally

refers to market orders.  The present analysis accordingly differentiates orders not only as to

side, but also as to market or limit.

Figure 7 depicts time-domain (Panel A) and frequency-domain (Panel B) analyses for

orders classed by market or limit and buy or sell.  The own-effects (autocovariances and spectra

on the diagonals of the graph panels) are consistent with persistence in occurrence rates.  The

autocorrelations for limit buy orders, however, are weaker (smaller and quicker to fade) than the

other order types.

The cross-correlations (Panel A) are mostly positive, but not as strong as those in the

orders/trades/quotes analyses in the last section.  For some pairs, cross-correlations at low leads

and lags are zero or negative.  This is mirrored in the cross-spectra (Panel B), as the cospectra are

negative at certain frequencies.  The maximum coherencies are generally about 10%-20%,

substantially lower than the corresponding values for the orders/trades/quotes set.

The cross-analysis that is most appropriate for assessing asymmetric information effects

is market buys vs. market sells.  The cross-correlations (Figure 7, A, “Market Buys(t),

Market Sells(t-k)”) are generally positive, but near zero or negative at lead/lags under a minute or

so.  In addition, cross-correlations are asymmetric in that the tendency for market sells to follow

market buys after a few minutes is stronger than the tendency for market buys to follow market

sells.  The predominance of positive correlations is broadly consistent with time deformation.

That the cross-correlations are zero or negative only at leads or lags up to a minute or so suggests

that the duration of the information epochs is extremely brief.

The cross-spectra (Figure 7, B, “Market Buys, Market Sells”) suggest a slightly different

story.  In moving from low to high periods, the cospectrum is initially zero, then becomes

negative up to about thirty minutes, then becoming positive.  Thus, the long period (low

frequency) components look like time deformation, while the shorter components suggest

asymmetric information.  Recall that a “period” contains a full cycle of a sinusoid, one “high”
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interval and one  “low” level.  The twenty-minute period that marks the most negative point of

the cospectrum, therefore, reflects order surges lasting ten minutes.

Both the time- and frequency- domain analyses are consistent with a model in which

orders are jointly driven by time deformation and asymmetric information effects.  If we identify

the latter by the interval over which the cross-correlations are zero/negative, the implied duration

is on the order of a minute or two.  The frequency-domain analysis, however, suggests that

information epochs are longer, up to thirty minutes.

To further illuminate these findings, the analysis turns to the sixteen most actively traded

issues in the TORQ data.  Figure 8 presents for these stocks the cospectrum between market buy

and market sell orders, with two-standard-error confidence bands.  As in the case of IBM, most

of the cospectra are positive at the longest period considered; many are negative in some

intermediate range.   Particularly in view of the confidence bands, however, these features can

hardly be considered definitive.

This lack of uniformity suggests that the timing features of informational epochs defy

simple characterization.  The difficulty is not that buy and sell orders aren’t clustered: the

univariate spectra of buys and sells for all firms (not reproduced here) exhibit dominant low-

frequency components.  Rather, the problem is that buy and sell surges “sometimes” occur in

tandem (consistent with time deformation effects) and at other times surge on one side or the

other.  It might be supposed that we could resolve informational epochs by examining simple

transformations, e.g. “net” order flow.  In fact, any operational definition of net order flow is

contingent on fixing a horizon over which to cumulate or average.  The present results suggest

that there is no obvious choice of horizon.

The negative finding here relates to a basic construct of virtually all asymmetric

information models.  This does not, most emphatically, imply that these models are

fundamentally flawed.  It does, however, suggest caution in taking the timing assumptions of

these models literally.
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c. Market orders and limit orders

While the strongest content of the sequential trade models pertains to market buy and sell

orders, other predictions relate to the provision of liquidity.  In these models, liquidity is

measured by size of the spread and/or the slope of the price/quantity function posted by the

market maker.  In the present analysis, it is useful to take as a proxy for liquidity the arrival rates

of limit orders.

We first consider for IBM the relationships between market orders and limit orders on the

same side of the market.  Figure 7 (panel A) graphs the cross-correlations between market buys

and limit buys, and between market sells and limit sells.  These are positive and declining.

Furthermore, the corresponding cospectra (panel B) are positive at all but the briefest periods.

From a purely statistical perspective, this suggests that these relations are primarily driven by

time-deformation effects.  The findings may also arise from the economic substitutability of

market and limit orders.

Next, consider the relationships between market and limit orders on opposing sides of the

market, i.e., market buys vs. limit sells and market sells vs. limit buys.  The cross-correlations

(panel A) are mostly positive, but zero or negative at low lags and leads.  As in the market order

analysis, the buy and sell sides of the market are somewhat different.  High intensity in market

buy orders is associated with high intensity in limit sell orders over the next fifteen minutes or

so; the corresponding relation between market sell orders and limit buy orders is also positive,

but of lower magnitude.  In the frequency domain (panel B), the corresponding cospectra are

zero or negative up to approximately thirty minutes.10

                                               
10 In Figure 7 (panel B), the quadrature spectrum graphed in “Market Buys, Limits Sells” is
generally positive; that of “Limit Buys, Market Sells” is generally negative.  This does not
indicate a corresponding difference in economic relationships, but merely arises from the
ordering of the variables.  (The quadrature spectrum of x on y is the negative of the quadrature
spectrum of y on x.)
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The cospectra for the broader sample of sixteen actively traded stocks are plotted in

Figure 9 (market buys and limit sells) and Figure 10 (market sells and limit buys).  Interestingly,

the cospectra are more similar across stocks than those for market buys and market sells (cf.

Figure 8).  The cospectra at the longest periods are all positive (as are most of the two-standard-

error confidence bands).  They are near zero at the shortest periods, and turn positive only at

moderate periods (twenty to forty minutes).

d. Program and nonprogram orders

Program orders pertain to a list of stocks.  The list is submitted as a single order, but once

received by the NYSE, the components are sent to the posts for individual execution.  The most

common use of program orders is in index arbitrage trading or dynamic trading strategies that

attempt to replicate a stock index derivative.  Harris, Sofianos, and Shapiro (1994) discuss the

relation between these orders and volatility; Hasbrouck (1996) analyzes the effect of these orders

on price evolution in a VAR framework.  Program orders are of particular interest because they

are often perceived as highly clustered and as demanding liquidity in a destabilizing fashion.

Figure 11 depicts the time- and frequency-domain results for program and nonprogram

orders also differentiated by buy or sell.  (Only market and marketable limit orders are

considered here.)  The autocorrelations (on the diagonal in panel A) are positive and declining;

those of program orders are stronger than those of nonprogram orders.  Most cross-correlations

are positive.  A striking exception arises in the cross-correlations between program buys and

sells, which are negative at low lags.  This is economically reasonable because program orders

are almost by nature one-sided.  The market conditions that give rise to an index-arbitrage related

buy order would cause the reverse arbitrage to lose money.  Similarly, if most users of dynamic

trading strategies are trying to replicate protective puts, buy programs should be driven by

positive recent market returns and sell programs by negative recent returns.
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These results are amplified by the spectral analysis (Panel B).  The cospectrum between

program buys and sells is predominately negative, even at the longest period considered.  In

summary, program orders are distinctively positively autocorrelated and markedly one-sided..

6. Summary and implications.

This study views trades, quote revisions and orders (variously classified) as timed events

that can be summarily described as a stationary multivariate point process.  Although such

processes may be exceedingly difficult to model in a parsimonious fashion, their essential

descriptive features readily fall out of conventional time- and frequency-domain analyses.  The

point process perspective offers numerous insights into how the notional time of the theoretical

microstructure models might correspond to real time.  The analysis is used here to characterize

the intraday properties of actively-traded NYSE stocks (most extensively, IBM), based on the

TORQ data.

The principle of time deformation, which differentiates between real and

operational/informational time scales, is frequently invoked in security market studies.  The

present analysis suggests that it be characterized as positive commonality in the occurrence rates

of the diverse events that collectively comprise the market process, i.e., a proportional speeding

up or slowing down of order frequency, quote revision frequency, etc.  Because events occur

only at a few points in the time continuum, time deformation (in this sense) can only be assessed

conditional on a time horizon, a characterization that is most visible from frequency-domain

analyses.

The analysis of IBM’s undifferentiated orders, trades and quote revisions suggests that

over brief time horizons (say, up to ten minutes), there is little evidence of time deformation.

(Event occurrence rates are not highly correlated.)  Over long horizons, however, the

correlation/coherence increases.  At a one-trading-session period (the longest considered here),

the coherence between event pairs is typically about 50%.  This is certainly suggestive of time

deformation. It nevertheless falls considerably short of the 100% coherence that would arise
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from a simple mechanical market process, such as the regular order/trade/quote revision cycle

found in the basic sequential trade microstructure models.

This finding points to the limitations of empirical microstructure specifications that

assume stationarity in real time (e.g., Hasbrouck (1996)) or in event time (e.g., Hasbrouck

(1991)).  Real-time stationarity is refuted by the clustering of events.  Event-time stationarity is

rendered suspect by the absence of uniformity in the intensities of various events.  A fast market,

in other words, is not merely a normal market that is speeded up, but one in which the

relationships between component events differ.  Engle and Lunde (1998) find, for example, that

the price impacts of trades depends (negatively) on intertrade durations.

The joint properties of (market) buy and sell orders are also useful in characterizing a

feature that is used nearly universally in theoretical microstructure models.  Termed here an

informational epoch, this is simply the notional time span that begins with a valuation

uncertainty and an informational asymmetry, and ends with a resolution of the uncertainty.  From

an empirical viewpoint, it is demarcated by a one-sided order flow.  This would normally be

expected to give rise to clustering (positive autocorrelation) in buys and sells over lags roughly

commensurate with the average durations of the information epochs.  Information-related

clustering is distinguished from that due to time deformation in that the former gives rise to

clustering in buys that is uncorrelated or negatively correlated with that in sells (and vice versa).

The empirical results suggest that orders reflect a complicated mix of informational and

time deformation effects.  The picture for IBM is relatively straightforward and suggests that

information effects dominate up to periods of thirty minutes or so, and time deformation holds

sway for longer horizons.  But the results for the broader sample exhibit considerable variation

across stocks.

The failure of the present study to establish a strong, stable and plausible empirical

characterization of informational epochs is, although a negative finding, an important one.  This

conclusion does not vitiate the usefulness of informational epochs as modeling devices.  But it

does suggest caution in interpreting the results of empirical specifications in which assumptions
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about the frequencies and durations of these epochs figure prominently.  Logically, the results

also suggest the importance of investigating microstructure models that admit uncertainty about

the characteristics of informational epochs.  As inconclusive as the present statistical results are,

it is worth remembering that they are based on ex post analysis of an entire data sample.  The

difficulties faced by market participants making inferences solely from realized data are even

more formidable.

Interestingly, and contrary to street lore, program buy and sell orders are not more highly

clustered (autocorrelated) than nonprogram orders.  They are, however, more one-sided.  A surge

in program buy orders, for example, is accompanied by a marked slowdown or withdrawal of

program sells at periods of several minutes.

Point process analysis is also useful in characterizing the relationship between market

orders and opposing limit orders.  Most importantly, at periods up to approximately thirty

minutes, market buy orders and limit sell orders are either uncorrelated or slightly negatively

correlated, and similarly for market sells and limit buys.   Strong positive correlation comes in

only for components longer than thirty minutes.  These results are fairly uniform across the

sample.  The findings suggest that while a surge of market (liquidity demanding) orders is

matched by an increase in limit (liquidity supplying) orders, the response of the latter is slow.  It

is common to characterize monumental liquidity crises as arising from the simultaneous arrival

of sellers and withdrawal of buyers.  The results from the present study suggest that far from

being a rare phenomenon, this occurs (albeit on a smaller scale) as a matter of routine.
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Appendix: Summary of Statistical Results for Multivariate Point Processes

I summarize here some results from Brillinger (1974); Brillinger (1975) relating to vector

point processes.  Let X(t) be the vector of cumulative event counts through time t: X tj 1 6  denotes

the number of events of the jth type that occur in the interval ( , ]0 t .  Let dX tj 1 6  be the number of

events of the jth type that occur in ( , ]t t dt+ .  The process is stationary if joint distributions of

dX t dX t1 21 6 1 6, , ,�  etc.are invariant to translation.  The mean intensity of the process is cX, where

c dt E dX tX = 1 6 .  The autocovariance function is CXX(u): dC u dt Cov dX t u dX tXX1 6 1 6 1 6= + , .

The process is orderly if there is a vanishing probability that an interval of width dt

contains more than one event.  In this case, the intensity may be interpreted as an occurrence

probability.  For the jth component of X:

c dt j t t dtj ≈ +Pr ( , ]There is an event of type  in . (1)

If the proces is orderly, the autocovariance function is related to the joint occurrence probability:

dC u dt c c dt du
j t u t u du

and k t t dtjk j k1 6 + =
+ + +

+
�
! 

"
$#

Pr
( , ]

( , ]

event of type  in 

 event of type  in 
. (2)

The most intuitive statistical inference for a stationary point process is based on sample

frequency counts (i.e., histograms) of events over short time windows.  We estimate the intensity

and covariance functions by replacing the right-hand probabilities in equations (1) and (2) with

their corresponding sample frequencies computed using a small window β in lieu of the

infinitesimal du and dt.   Brillinger (1975) establishes asymptotic distribution properties for these

estimators when β → → ∞0 as T .  Note that since time in this situation is continuous, this

approach requires, in addition to the usual presumption of increasing sample size, an asymptotic

diminution of β .  This is often (and in the present case) constrained by the time resolution of the

data.

For summary descriptive purposes, we apply this strategy using a window β and estimate

the autocovariance function CXX(u) for u = ± ±0 2, , ,β β �.  This is computationally equivalent
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to estimating the autocovariance function of the local occurrence rates sampled at discrete times

D t t Tβ β β β1 6 1 6 for =1 2, , , , /� , where D t X t X tβ β β β1 6 1 6 1 6= + − −−1 2 2 .

The spectral analysis of point processes closely parallels that of ordinary time series.

Excellent presentations of the latter include Hamilton (1994), the survey of Granger and Engle

(1983) and the more detailed treatments of Brillinger (1981) and Fuller (1996).  The material

below specific to point processes is from Brillinger (1974); Brillinger (1975).

The spectral (Cramer) representation ofX t( ) is:

X t
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where ZX is a random process defined over frequencies.  As one point of contrast, most

applications of spectral analysis in econometrics involve discrete regularly-spaced data, wherein

the integration range in the integrals is − +π π, .  The frequencies of a continuous-time process

range over the real line.  The first and second moments of the ZX process are given by:

E dZ c d

Cov dZ dZ u u dF du

X X

X X XX

λ δ λ λ

λ δ λ λ
1 6 1 6

1 6 1 6 1 6 1 6
=

= −,
(4)

where δ λ1 6  is the Dirac delta function (a one-unit weighting function concentrated at zero); cX is

the mean intensity and FXX is the spectral measure (loosely speaking, the cumulative distribution)

of the process.

The power spectrum (spectral density) is the derivative of the spectral measure (where it

exists), and is also the Fourier transform of the covariance density:

f
dF

d
e c u duXX

XX i u
XXλ

λ
λ

π λ1 6 1 6 1 6 1 6= = − −

−∞

+∞I2
1

(5)

The diagonal elements of f XX λ1 6  summarize λ-frequency contribution to the variances of the

component processes; the off-diagonal elements, to the covariances.
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More precisely, we may define the cospectrum and quadrature spectrum of the process as

the real and imaginary parts of the spectrum: Co ReXX XXfλ λ1 6 1 6=  and Q fXX XXλ λ1 6 1 6= Im .

In the present context, the most useful property of the cospectrum is that it intregrates to the

covariance c dXX XX= ICo λ λ1 64 9 , and therefore suggests a decomposition of the covariance into

components associated with different frequencies (“horizons”).

It is also useful, particularly in connection with the discussion of time deformation to use

a single summary statistic that measures the overall dependence between two point processes at a

given frequency.  This is provided by the coherence, KXX λ1 6 .  The coherence between the ith

and jth components of X at freqency λ is K f f fXX ij XX ij XX ii XX jj
λ λ λ λ1 6 1 6 1 6 1 6= �

�
�
�

2

where x x x≡ +Re Im1 6 1 62 2
.  The coherence is much like a squared correlation coefficient: it

lies between zero and one and measures the strength of the overall association.  (In some graphs

here, for completeness, I also present the phase spectrum Φ λ λ λ1 6 1 6 1 62 7≡ Arctan CoQ , where

the Arctan and division operators are element-by-element.)

The sample path of a point process, much like that of an ordinary time series, may be

broken down via Fourier analysis into sinusoidal components of various frequencies.  Suitably

computed and averaged, these components yield consistent estimates of the spectral density and

derived quantities.

The consistency properties of the spectral density estimates are cleaner in some respects

than those of the time-domain characterizations.  When the data are time-stamped to resolution h

(one second, in the present case), our sample of observations is essentially the ordinary time

series D th1 6  collected at h-spaced points in time.  The condition for consistency of the

autocovariance estimates is suspect because even as the sample size increases, h can’t decline to

zero unless the precison of the time stamp increases.  Denoting the observed series as

�X t D th1 6 1 6= , the relation between the spectra of the underlying and observed series is relatively

direct:
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f
h

h
f

XX XX� �

sin
λ

λ
λ

λ1 6 1 6 1 6=
�
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"
$#

2

2

2

(6)

This shows that as λ → 0 (“long horizons”), the bias approaches zero.  Intuitively, our

estimates of hourly components are not much affected by a one-second time resolution.  The

time resolution also precludes resolving components with periods shorter than 2h: their effects

are impounded (“folded into”) longer-term components.  Thus, while a frequency domain

analysis will not extract more information from a given data sample, the limitations imposed by

the finite time resolution are somewhat more clearly defined.



Page 35

Figure 1.  IBM Events on November 1, 1990.

NYSE market activity in IBM. The figure plots occurrence times for each of the six event types.
The plotted points are vertically “jittered” to spread out overlapping observations.
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Figure 2.  IBM orders, trades and quotes (auto- and cross-correlations)

The data comprise NYSE market activity in IBM for fifty-nine trading days from November
1990 through January 1991 (TORQ data).  Event occurrence rates (per second) are averages over
thirty-second intervals; daily averages are removed; time-of-day effects  are removed by
polynomial regression.  The graphs are auto- and cross-correlations of the average occurrence
rates.
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Figure 3.  Simulated Orders and Trades in the Time and Frequency Domains.

The number of ‘orders’ in each time interval is assumed Poisson with parameter 0.2.  Each
‘order’ gives rise to a ‘trade’ d intervals later where d is an exponential random variable with
mean of three.  A simulation of 10,000 times was used in the analysis.

A. Auto- and cross-correlations in occurrence rates.
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Figure 4.  Simulated Trades and Quotes with Long Run Stochastic Variation

The simulation postulates a persistent information process:

( ) ( ) ( )( ) tttt III ε+−−= −− 5.0log995.0loglog 11 where 
tε is normal with zero mean and a

standard deviation of 0.1.  The Poisson intensity parameters for trades and quotes are assumed to
be λ λTrades t Quotes tI I= = and 2 .  Correlations and spectra are estimated from a single simulation

of length 10,000.

A. Auto- and cross-correlations in occurrence rates.
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Figure 5.  IBM orders, trades and quotes (spectra and cross-spectra)

The data comprise NYSE market activity in IBM for fifty-nine trading days from November
1990 through January 1991 (TORQ data).  Event occurrence rates (per second) are averages over
thirty-second intervals; daily averages are removed; time-of-day effects  are removed by
polynomial regression.   Graphs depict spectra and cross-spectra of the occurrence rates.
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Figure 6.  Simulated Buys and Sells with Periods of ‘Informed’ Trading

The simulation assumes that uinformed buys and sells are Poisson with intensity 0.2 per period.
Information epochs arise randomly and last for twenty periods. If the market is not currently in
an epoch, there is a 0.01 probability that one will start this period.  If an epoch starts, there is an
even chance of positive or negative private information.  Informed agents trade only on the side
of the private information (if private information exists) with intensity 10.  Estimates are based
on a single run of 10,000 periods.
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Figure 7.  IBM orders by market/limit and buy/sell.

The data comprise NYSE market activity in IBM for fifty-nine trading days from November
1990 through January 1991 (TORQ data).  Event occurrence rates (per second) are averages over
thirty-second intervals; daily averages are removed; time-of-day effects  are removed by
polynomial regression.

A.  Auto- and cross-correlations in occurrence rates.
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Figure 7.  IBM orders by market/limit and buy/sell (Continued).

B.  Spectra and cross-spectra of occurrence rates.
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Figure 8.  Market Buys and Sells for Active Stocks

Spectra and cross-spectra for orders in the sixteen most actively traded stocks in the TORQ
database, November 1990 through January 1991.  The spectra are estimated for event occurrence
rates averaged over thirty-second intervals; daily averages are removed; time-of-day effects are
removed by polynomial regression.
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Figure 9.  Market Buys and Limit Sells for Active Stocks

Spectra and cross-spectra for orders in the sixteen most actively traded stocks in the TORQ
database, November 1990 through January 1991.  The spectra are estimated for event occurrence
rates averaged over thirty-second intervals; daily averages are removed; time-of-day effects are
removed by polynomial regression.
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Figure 10.  Market Sells and Limit Buys for Active Stocks

Spectra and cross-spectra for orders in the sixteen most actively traded stocks in the TORQ
database, November 1990 through January 1991.  The spectra are estimated for event occurrence
rates averaged over thirty-second intervals; daily averages are removed; time-of-day effects are
removed by polynomial regression.
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Figure 11.  IBM Market orders (program/nonprogram and buy/sell)

The data comprise NYSE market activity in IBM for fifty-nine trading days from November
1990 through January 1991 (TORQ data).  Event occurrence rates (per second) are averages over
thirty-second intervals; daily averages are removed; time-of-day effects  are removed by
polynomial regression.  Program orders are those that comprise a list of stocks.  The orders
considered here are market and marketable limit orders, only.

A.  Auto- and cross-correlations in occurrence rates.
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Figure 11.  IBM Market orders (program/nonprogram and buy/sell) (Continued).

B.  Spectra and cross-spectra of occurrence rates.
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