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Abstract

This paper investigates the empirica characterigtics of investor risk aversion over equity return states by
edimating atime-varying pricing kernd, which is referred to as the empirical pricing kernd (EPK). The
empirica pricing kernd is the preference function that rationalizes a contemporaneous cross-section of asset
prices, given aforecast payoff probability dengty.

We egtimate the EPK on amonthly basis from 1991 to 1995 using S& P500 index option dataand a
stochastic volatility mode for the S& PS00 return process. We find substantia evidence of time-varying risk
averson over S& PS00 return states. In addition, we find that empirica risk averson over S&P500 return
datesislinked to business conditions; the level of risk averson is postively correlated with indicators of
recession and negatively correlated with indicators of expansion.

An option hedging methodology is developed to test the predictive information in the empiricd pricing
kernd and its associated state probability modd. Hedging performance is significantly improved using hedge
ratios based on atime-varying pricing kernd rather than atime-invariant pricing kerndl.

This paper has benefited from the suggestions of Allan Timmermann, Bruce Lehmann, Steve Figlewski, Jodl
Hasbrouck, Ravi Bansal, Gur Huberman, Peter Carr, Jose Lopez, David Bates, Mark Broadie, and
participantsin the 1998 Western Finance Association meetings, the 1998 Computationa and Quantitative
Finance conference, the NY U - Stern Finance Department seminar, Columbia University Finance
department seminar, the Federa Reserve Bank of New Y ork Research Department seminar, and the 1997
Time Series Andysis of High Frequency Data Conference, two anonymous referees at the Journd of
Financid Economics, and William Schwert. The author wishes to thank David Hait for research assstance.
The origind title for this paper (first draft: April 1997) was Option hedging using empirical pricing
kernels. The most recent version of this paper may be downloaded from:
http://www.stern.nyu.edu/~jrosenb0/J_wpaper.htm.



l. Introduction

The asset pricing kernd summarizes investor preferences for payoffs over different states of the world. In the
absence of arbitrage, all asset prices can be expressed as the expected vaue of the product of the pricing
kernel and the asset payoff. Thus, the pricing kerndl, coupled with a probability mode for the states, givesa
complete description of asset prices, expected returns, and risk premia.

One pricing kernd estimation strategy isto infer a pricing kernd that rationalizes observed asset prices or
returns. Estimation is congiderably smplified if the pricing kernel state variables and functiond form are
prespecified. Hansen and Singleton (1982, 1983) postulate that aggregate U.S. consumption is the pricing
kernd gdtate variable and that the pricing kernd is a power function. Using this specification and historica
consumption and return data, they estimate the two parameters that determine the pricing kernd.

Generdizations of this agpproach include Bansd and Viswanathan (1993), in which equity returnsand an
interest rate are used as pricing kernd state variables. Bansd and Viswanathan (1993) estimate the pricing
kernd semi-nonparametricaly usng neura networks. Chapman (1997) uses functions of consumption and its
lags as pricing kernd state variables, and he estimates the pricing kernd function using an orthogond
polynomia expansion. Hansen and Jagannathan (1991) derive bounds for the mean and standard deviation
of the consumption-based pricing kernd in terms of the mean and standard deviation of the market portfolio
eXCess returns.

Unfortunatdy, consumptionbased gpproaches for pricing kernd estimation are subject to problemswith
imprecise measurement of aggregate consumption. Recently, Ait-Sahdiaand Lo (2000) have used option
data and historical returns data to non-parametricaly estimate the functiona form of the pricing kernd as
defined over equity return states. This technique avoids the use of aggregate consumption dataor a
parametric pricing kernd specification. Along smilar lines, Jackwerth (2000) nonparametricaly estimates the
“risk-averson function” using option data and historicd returns data. A significant problem with both papers
is misspecification of the state probability dengity. In addition, both papers use an estimation technique based
on time-aggregated data that introduces bias and does not permit an andysis of time-variation in the pricing
kerndl.

! Equivalent concepts are the stochastic discount factor, the state-price-per-unit-probability, and the intertemporal marginal
rate of substitution. Campbell, Lo, and MacKinlay (1997, Chapter 8) provide athorough discussion of the role of the
pricing kernel in asset pricing.



In this paper, the pricing kernd is estimated as afunction of contemporaneoudy observed asset prices
and a predicted asset payoff dendity. In particular, the empirica pricing kernd (EPK) isthe preference
function that providesthe “best fit” to observed asset prices, given the payoff dengity. By estimating the EPK
at asequence of pointsintime, it is possible to observe and modd the dynamic structure of the pricing kerndl
itself. From this analysis, we obtain improved option pricing relations, hedging parameters, and a better
understanding of the pattern of risk premia

We estimate the EPK on amonthly basis from 1991 to 1995 using S& P500 index option dataand a
stochadtic volatility mode for the S& PS00 return process. We find substantia evidence of time-varying risk
averson over S& PS00 return states. In addition, we find that empirical risk aversion over S&P500 return
gatesislinked to business conditions, the level of risk averson is pogtively correlated with indicators of
recession and negatively corrdated with indicators of expangon. Thisis conastent with the Fama and French
(1989) result that risk-premia are highest at business cycle troughs and lowest at business cycle pesks.

For example, widening credit spreads are an indicator of economic contraction. We find that empirical
risk averson increases sgnificantly when credit spreads widen. Flattening of the interest rate term structureis
associated with periods of economic contraction (see, e.g., Estrella and Hardouvdis, 1991). We find that
empirica risk averson increases when the term Structure flattens.

An option hedging methodology is developed to test the predictive information in the empirica pricing
kernd. We gpply this methodology to the daily hedging of S& PS00 out-of-the-money put options. Hedges
that dlow time-variaion in the pricing kernd are found to outperform hedges based on time-invariant pricing
kernels.

The remainder of the paper is organized as follows. Section |1 describes the theory and previous
research related to the pricing kerndl. Section 111 presents the empirica pricing kernd estimation technique,
empirica pricing kernel specification, and hedge ratio specification. Section IV presents the data used for
estimation, and section V presents the estimation results. Section V1 contains the hedging test results, and

Section VII concludes the paper.

. Theory and previous research

[l.a. Thepricing kernd astheintertemporal marginal rate of substitution



Thefirg-order condition associated with solution of the optima consumption problem delinestes the
relationship between payoffs, preferences (the pricing kerndl), probabilities, and prices. One of the most
commonly utilized preference specificationsis the power utility function. The power utility function has two
preference parameters, r defines the rate of time preference, and g defines the leve of rdative risk aversion.
In this case, the asset pricing equation is:

() PR=Ele'(C./C)?g(C.)

In Equation (1), P isthe current asset price denominated in units of consumption, C; isthe current level
of consumption, C.. isthe unknown leve of optima consumption in one period, and g(C..,) isthe payoff
function that defines the number of units of consumption (in the next period) generated by current ownership
of the asset.

Equation (1) states that the asset price is the weighted expected payoff of the asset, where the
conditional expectation is denoted by E[¢]. In the asset pricing literature, the weighting function —whichin
thiscaseis e (C .1/C)® — is often referred to as the asset pricing kernel. The weights depend on the ratio
of future consumption to current consumption as well asthe time and risk preference parameters.

Equation (1) may be written usng amore generd pricing kernel, M(C.1,Cy), as.
@ R=E[M(C.C)HC.)]

The pricing kernel in equation (2) depends on current and future consumption, and the preference
parameters are implicit. As current consumption changes, the value of aunit payoff across future
consumption state may fluctuate, which may in turn generate time-variation in the pricing kerndl.

For time-separable utility functions, the pricing kernd is equd to the intertempord margind rate of
subgtitution (IMRS): M(C,,C+1) = U’ (C.1)/U’ (Cy). When investors obtain utility from sources other than
consumption, the pricing kerndl will depend on additional sate variables” For example, in the habit
persistence models of Abel (1990), Constantinides (1990), or Campbell and Cochrane (1999), the pricing

2\When the utility function depends on an additional state variable (X,) and the utility function is time-separable, the
pricing kernel isU’ (Cy.1,X1)/U’" (C,Xy). See, for example, Campbell, Lo, and MacKinley (1997, Sec. 8.4).



kernel depends on past as well as current consumption. In Eichenbaum, Hansen, and Singleton (19388) the
pricing kernel depends on leisure, and in Startz (1989) the pricing kernel depends on durable goods
purchases. Thus, changesin the pricing kernel may be associated with Sate variables other than current
consumption.

Standard risk-averson measures may be expressed as the normalized dope of the pricing kernd. For
example, the Arrow-Pratt measure of absolute risk-averson isthe negative of theratio of the derivetive of
the pricing kernd to the pricing kernd.® The Arrow-Pratt measure of relative risk aversion is absolute risk
averson multiplied by current consumption.

Inmany cases, the sate varigbles that affect the pricing kernel dso affect the leve of risk aversion.
Campbdl (1996) shows that a habit persstence utility function exhibits time-varying relative risk averson,
whererelaive risk aversonis decreasing in the amount that consumption exceeds the habit (the surplus
consumption ratio). Hence, we might expect to see decreases in relative risk averson during economic
expansons when consumption is high relative to the habit and an increase in relative risk aversion during
economic contractions when consumption falls closer to the habit. In contragt, the power utility function
exhibits (time-invariant) constant relive risk averson.

While eguation (1) is often used to find the equilibrium asset price given payoffs, probabilities, and
preferences, it isaso natural to consider equation (1) as providing an implicit definition of preferences given
an asset’ s payoffs, and payoff probabilities, and price. For example, Hansen and Singleton (1982) consider a
verson of equation (1) in which both Sdes are divided by the current asset price and the conditiona
expectation is replaced with an unconditional expectation.

@ 0=Ele (Cu/C)*(RLIR)-1]
Then, estimation of the preference parameters is accomplished using the sample andog to equation (3), in

which the sample time- series average replaces the unconditional expectation operator E[¢]. The

representative investor’ s consumption return is estimated using per-capita red seasondly-adjusted

® The Arrow-Pratt measure of absolute risk aversion is given by -U’’ (Cy.1)/U’ (C..1). So, the negative of the ratio of the
derivative of the pricing kernel to the pricing kernel is-(dM/dC.y) * (/M) = (U’ (C.)/U’ (CY)) * (U’ (CY/U’ (Cyr)) =
U (Cu)/U' (Cona).



consumption over aquarter (or month) as measured in the Nationa Income and Products Accounts. The
gross asst return (P.1/P) istaken to be the observed return to adiversified U.S. equity portfolio.

A potentidly sgnificant problem with estimation techniques that use aggregate consumption datais
measurement error. Ermini (1989), Wilcox (1992), and Sesnick (1998) discuss issues such as coding errors,
definitiond problems, imputation procedures, and sampling error. Ferson and Harvey (1992) consider
problems introduced by the Commerce Department’ s seasond adjustment technique. Breeden, Gibbons,
and Litzenberger (1989) address problemsinduced by use of time-aggregated rather than instantaneous
consumption.

To mitigate the problems with measurements of aggregate consumption, some papers use the gross
return to adiversfied equity portfolio (r.1 = S+1/S;) asaproxy for the aggregate consumption growth rate
(C+2/Cy).* Under power utility, consumption appearsin the pricing kerndl in terms of the gross consumption
growth rate, S0 M(Cy,Civ1) = €' (C 1+1/Ci)° @e" (ri+1)® = M(r1). In this case, the equity index return isthe
pricing kernel Sate variable.

In addition, areturn-based pricing kernel is economicaly important, regardless of the closeness of the
approximation to the consumption-based pricing kernd, for the following reasons. First, the return-based
pricing kernel may be interpreted as a projection of the consumptionbased pricing kernd onto equity return
sates, so the characterigtics of the return-based pricing kernd indirectly reved the characteritics of the
consumption-based pricing kernel. Second, the return-based pricing kernd provides ingght into preferences
of investors across adimension of interest, namely, states defined by returns of an equity index portfolio.
Third, the return-based pricing kernd revedss the relative importance of return state probabilities and Seate
preferencesin vauation of the index portfolio (and index derivatives). And, changes in the return-based
pricing kernd indicate the relative importance changing probakilities and changing preferencesin generating
time-varying expected returns.

[I.b. Thepricing kernel asthe state-price-per-unit-probability

* Brown and Gibbons (1995) show that when consumption is afixed fraction (k) of wealth (W,), which isheld in a diversified
equity portfalio, r.; = (1-k)(Co/C). Notice that C, = kW, and Cy.; = kW .1, and W isq = g (I-K)Wi. S0. Cit/ G = (KW )/ (KWY)
=r.1(1-k). When consumption is asmall fraction of wealth, the portfolio return is approximately equal to the gross
consumption growth rate, i.e. r; @C.1/C,.



An dternative representation of the pricing kernel may be obtained using the state price dengty formulation of
the asset pricing equation. The State price dendty defines the prices of a continuum of claimsthat pay one unit
of consumption in one state of the world, and zero otherwise.

Lety «(z+1) bethe Sate price density on date t, where States of the world are indexed by next period's
state vector (z.1). Then, the price of an asset with a payoff function of g(z.1) is given by: °

(4 R = (2.1)9(7.1)dz,,

Equation (4) shows that the value of an asset isthe integral of the product of the asset’ s state-dependent
payoff and the state price density. Since an asset is equivaent to a bundle of state contingent claims, the value
of the asst is the same as the vaue of the bundle of state contingent claims,

Now, let pi(z+1) be the state probability dengty on datet, defined over states of the world indexed by
Z.1. Then, rewriting equation (4):

(5) ‘g §2+1)Ug(zt+l)pt( t+1)dzt+1 ET ((z“-l; g(zt+1)u E [M (Zt+1)g(zt+l)]

Notice that equation (5) isidenticd to equation (2), so the pricing kernel is equivaent to the state-price-
per-unit-probakility.

Y (Z41)

6 =
6 M(z,)= 0. (2.)

The pricing kerndl defined by equation (6) is potentialy time-varying, Snce it depends on state prices and
Sate probabilities that reflect investor’ s current (date t) preferences and probability beliefs. As noted in the

> Notice that the state price formulation of the asset pricing equation may be obtained from equation (2) by defining the
state vector z.; as next period’ s optimal consumption C..;. Then, the state price density is the product of the pricing kernel
and the state probability density, i.e. y (Ci.1) = M{(C,Cir1)p«(Ci+1), Where p(C.1) is the probability density of consumption at
datet+1. Thisdefinition satisfies the characteristics of a state price density, since each state price represents the value of a
security that pays one unit of consumption in the state of the world when next period’ s consumption equals C,.; and zero
otherwise.



previous section, the pricing kernd will generdly depend on the current level of consumption, and may
depend on additiona macroeconomic state variables.

Now, consider the asset pricing equation when the asset payoff depends on only one of the dements of
the pricing kerndl state vector. Let 7', be the first element of the state vector and g(z+1) be the payoff
function for a particular asset. Then, equation (5) specidizesto:

M R=EM(z)e)|=EEM@. )2 ek = EMiE) o)

Equation (7) provides a univariate pricing ke, M(25,) = E, M (z.,1)| 2.4, that is sufficient for

vauation of assats with payoffs that only depend on the first dement of the pricing kernd state vector. This
univariate pricing kernd is the conditiona expectation of the full pricing kernd with respect to the first Sate
variable.

Two papers — Ait-Sahdiaand Lo (2000) and Jackwerth (2000) — have focused on estimation of a
univariate pricing kernd (or risk aversion function) defined over equity return States, i.e. z'1 = 1. Both
papers use a pooled cross-section and time-series of equity option prices to nonparametricaly estimate the
date price density. And, both use afour-year window of historica returns to estimate the state probability
density.® Then, the pricing kerne is approximated using equation (7).

These papers average state prices and state probabilities over time, so their estimates are perhaps best
interpreted as a measure of the average pricing kernd over the sample period. However, the proposed
estimators in these papers are biased. The sample analogue for equation (7) would be the sample average of
the ratio of conditiona state prices and conditional state probabilities. Instead of using an average of ratios,
Ait-Sahdiaand Lo (2000) and Jackwerth (2000) choose to take aratio of averages. Jensen’sinequality
implies that these estimators are not equivalent.

The estimation techniques of Ait-Sahaia and Lo (2000) and Jackwerth (2000) techniques are also
problematic, because of the misspecification of investors bdliefs about future return probabilities. Both papers

use afour-year window for estimation of the state probabilities, so that investors “forget” about events more

® Ait-Sahaliaand Lo (2000) estimate average state prices using a pool ed cross-section and time-series of S& P500 index
option data over 1993. Average state probabilities are estimated by kernel-smoothing the return histogram of S& P500 index
returns from 1990 — 1993. Jackwerth (2000) estimates average state prices using a pooled cross-section and time-series of



than four years old. And, events over the prior four years receive equa importance in predicting future
probabilities. Evidence from the extensive literature on stochedtic voldility — e.g. Bollerdev, Chou, and
Kroner (1992) — suggests that neither assumption is correct. Future state probabilities depend more on the
recent events than long-ago events, but long-ago events Hill remain useful for prediction of future seate
probabilities. These types of misspecification of the Sate probability dengty will result in errorsin the
estimated pricing kernel and risk-averson function.

In addition, the gpplicability of average pricing kernels and risk-averson functions for asset pricing and
hedging is limited, since assets will only be correctly priced when risk aversion and state probabilities are at
their average level. When either deviates from its average, inaccurate prices (and hedge ratios) will result.
Ait-Sahalia and Lo (2000) acknowledge the problem of time-variation in the sate price dendity (SPD): “In
contrast, the kernel SPD estimator is consgtent across time [emphasis added] but there may be some dates

for which the SPD edtimator fits the cross section of option prices poorly and other dates for which the SPD
estimator performs very wel (p. 22).”

[11.  Empirical pricing kernel estimation strategy

[Il.a. Egtimation technique

This paper proposes an estimator for atime-varying return-based pricing kernd (empiricd pricing kernd) as
the preference function that rationdizes a contemporaneous cross-section of asset prices using forecast
payoff probabilities. The EPK forecast payoff probabilities are obtained using a stcochastic volatility model
that captures sdlient features of the asset return process. In addition, the EPK is estimated using a
contemporaneous cross-section of option prices, rather than a pooled cross-section and time-series of
option prices. Hence, the EPK represents an estimate of the pricing kernel at a particular date, rather than an
gpproximation of an average pricing kernel over aperiod of ayear or longer.

Consider the casein which the pricing kerndl is defined over the one-period return (r.1) for a particular

asset (“the underlying asset”). Let P, be the price of the i asset whose payoff function, g(ri+1), issoldy a

S& P500 index option data over four periods: 860402-871018, 831019-910318, 910319-930818, 930119-951229. Average state
probabilities are estimated by kernel-smoothing the return histogram of S& P500 index returns over four year periods.

10



function of the one-period underlying asset return. Let fi(r:.1) be the forecast probability density of one-
period returns. Then, equation (1) speciaizesto:

® P, =E[M (1) ()] = (M () g (1) (s )dr,

Suppose the pricing kernd is represented parametricaly as Mi(r+1) = M(r+1;0t), where g isan Nx1
parameter vector. Then, identification of the pricing kerndl requires the prices of at least N assets whose
payoffs are determined by r..; and the forecast probability dengity given by fi(ri.1).

The pricing kernel parameter vector (g;) may be estimated by minimizing the distance between the
observed asset prices (P, ;) and aset of fitted prices ( I5i’t (g,) ) obtained using equetion (8). If the distance

function is chosen to be the sum of squared pricing errors, then estimation is accomplished by solving a non
linear least squares problem. When there are L observed prices of assets whose payoff depends on the
underlying asset return, then the empirica pricing kernd is My(r+1,0;) evauated at the solution of:

® Mindlr.- 8@

[N i=1

An additiond useful identifying condition is given by the vauation of ariskless one-period bond, B; =
E[M:(r+1;0)]. Weinclude a scaling factor in each parametric pricing kernd specification, (o), whichis
selected to ensure that the riskless bond price is matched exactly.

When the payoff density, fi(r.1), IS represented by aset of Jredized (or smulated) returns, rather than in
closed form, the fitted asset price may be estimated using the following gpproximation to equation (8), where
averaging replaces integration:

10 B,@) @4 M\ (100, ()

[11.b. Pricing kernel specifications

1



We congder two pricing kernd specifications. In the first specification, the pricing kernel is a power function
of the underlying asset gross return.

(11) Mi(re+1;q) = qO,t(rt+l)-q1't

The first parameter (Qo,) is ascaling factor. The second parameter (g.¢) determinesthe leve of relive
risk averson at date t. When the second parameter istime-invariant, this pricing kernd exhibits constant
relative risk averson. Otherwise, this pricing kernd only exhibits congtant relative risk averson over asingle
period.

We are d 0 interested in amore genera specification of the pricing kerndl that permits time-varying risk
averson and avariety of shapes. Following Chapman (1997), we consider alow-order orthogonal
polynomia expansion to estimate the pricing kernd.” Orthogona polynomia families have the useful property
that dl terms are mutudly orthogona under a particular weighting function. As noted by Chapman (1997),
orthogona polynomias mitigate estimation problems due to collinearity of a polynomia expansion, and
improve estimation efficiency. These estimators aso have a nonparametric interpretation, if the order of the
polynomid expangon increases with the sample size.

Consder the pricing kernd defined as the exponentid of an orthogond polynomia expansion with
coefficientsgiven by Qo ... q N and termsgiven by To(r+1) ... Tn(re)-

(12)  M(re1;0) = [Qo To(reen)]€XP[An Ta(esn) + Qo To(lesn) + ... + A vt Tn(Feea)]

We sdlect the generdized Chebyshev polynomid expansion, which is discussed in Judd (1998, Ch. 6),
that has terms defined by T,(x) = cos(ncos™(x)).2 In this case, To = 1, T; = X, and higher order terms are
periodic functions over the approximetion interva. We utilize an exponentia function of the polynomia
expangon to ensure that the pricing kernel is drictly postive.

” Chapman (1997) estimates the asset pricing kernel as afunction of aggregate consumption using afive term Legendre
orthogonal polynomial expansion. Bansal, Hsieh, and Viswanathan (1993) estimate an international asset pricing kernel asa
function of the Eurodollar interest rate and aworld equity index return. This asset pricing kernel is specified using afive
term polynomial expansion.



[Il.c. Stateprobability density specification

Egtimation of fi(r.1), the forecast probability dengity of one-period returns, is accomplished usng a stochastic
volatility modd that has been shown to incorporate key features of asset return data.” In a discrete-time
Seting, sochadtic volatility is most often modeled using extensions of the autoregressive conditiond
heteroskedasticity (ARCH) mode proposed by Engle (1982). Comprehensive surveys of ARCH and
related modes are given by Bollerdev, Chou, and Kroner (1992) aswell as Bollerdev, Engle, and Nelson
(1994). In a continuous-time setting, stochadtic voldility diffusons are commonly used. Surveys of this
literature include Ghysdls, Harvey, and Renault (1996) and Shephard (1996).

The empirica section of this paper focuses on forecasting the density of equity index returns. Three of the
important features of equity index return process, which have been found in numerous studies (see, eg.
Ghysds, Harvey, and Renault, 1996), are: (1) return voldility is stochastic and mean-reverting, (2) return
volatility responds asymmetrically to positive and negative returns, and (3) return innovations are non-normdl.

These important features of the equity returns process may be parsmonioudy modeed within the ARCH
framework. Stochastic, mean-reverting volatility dynamics may be represented using the ARCH, GARCH,
or GARCH components modds of Engle (1982), Bollerdev (1986), or Engle and Lee (1993). The
asymmetric feeture of equity return volatility, first noted by Black (1976), may be incorporated using the
ARCH modd extensions proposed by Glosten, Jagannathan, and Runkle (1993) and Zakoian (1994).
ARCH modds have aso been generdized to dlow for non-normd return innovations. Bollerdev (1987)
introduces a GARCH mode with t-distributed innovations, while Engle and Gonzaes-Rivera (1991) derive a
semi-parametric mode of the innovation dengty.

In this paper, the equity index return process is specified usng an asymmetric GARCH modd with an
empirica innovation dengty. This stochedtic volatility mode incorporates asymmetric voldility effectsusing a
specification based on Glogten, Jagannathan, and Runkle (1993). This modd aso utilizes an empirica
innovation dengty that captures the potentid non-normdities of the true innovetion dengty.

The asymmetric GARCH modd is specified asfollows:

8 The generalized Chebyshev polynomial has x = ((2r..; — a— b)/(b-a)), where aand b are the endpoints of the
approximation interval. In contrast, the Chebyshev polynomial (x = r..,) is defined over the approximation interval [-1,1].
® For the state probability density estimation, r., refers to the one-period net return (S.../S — 1).

13



13) IS /S.)-r=m+e, e ~f(0sg,)

(14) s/ =w, +w,l +ae’ +bs?, , +oMax0,-e, ]’

Equation (13) datesthat the daily log-return, In(S/S.1), has a constant mean (1m) and innovations (e;)
drawn from an empirica density function (f) that has time-varying stochastic variance (s %..1). While a
congtant expected return is not usualy compatible with time-varying risk-aversion, the effect over a short
time horizon (eg. one month) isnot likely to be important, and equation (13) may be viewed as an
aoproximeation.

Equation (14) states that the daily conditional return variance (S %.1) depends on two constants (w; and
W,) the one-day lagged squared innovation (€%.1), and whether the lagged return was negative (Max[0,-e..
1])- The second constant (w-) permits a shift in long-run volatility during the estimation period, where|l isan
indicator variable that takes the vaue zero prior to a predetermined date, and the value of one after this date.

The parameters of the stochastic volatility modd are estimated by maximum likelihood under the
assumption that the innovation dengty is normal. Bollerdev and Wooldridge (1992) provide conditions under
which this estimation technique has a quas-maximum likelihood interpretation and generates consstent
parameter estimates even when the true innovation dengity is non-normdl.

The empiricd innovation density (f) is defined by dividing the each return by its conditiona standard
deviation. Thisempiricd densty will reflect excess skewness, kurtoss, and extremd return behavior thet is
not explained by the stochastic volatility model.

Monte-Carlo smulation of the asymmetric GARCH modd is used to obtain the conditiond state
probability dengties. For example, suppose states of the world are defined by the asset’ s one-month return.
If the GARCH modd is estimated using dally deta, then a smulated one-month (twenty-day) return is
obtained by randomly sampling twenty one-day innovations (€1, € +2, ..., €u20). Then, tomorrow’s
smulated price, S.1, isequa to exp(m+ ew1S+1r), where § is the current asset price and S 41 IS
tomorrow’s conditiona voldtility. Next, the conditional volatility for date t+2, St.o+1, IS caculated using the
smulated return on date t+1 and the estimated GARCH mode. Simulated prices for the subsequent nineteen
days are obtained by repesting this process. Finaly, the smulated one-month return equas Si20/S; - 1.

14



[11.d. Hedgeratio specification

In this paper, we congtruct hedge ratios using a generd technique that is condgstent with an arbitrary
specification of state probabilities and pricing kerndl. These hedge ratios are designed to neutralize an option
portfolio to the first and second-order effects of changesin the underlying price. In a continuous-time
diffuson setting, afirg-order hedgeis sufficient to diminate al randomness in the hedge portfolio and dso
provides aminimum:-variance hedge. In a discrete-time setting with sochastic voltility, first and second-
order hedges will reduce, but not eiminate hedge portfolio variability.

Using a Taylor series expangon, the put option price change (Put.; —Put;) after one day is approximately
equd to the following function of the underlying price change (S+1 — S):

ﬂPUtHl 19 2F)Utt+1 2
15)  Put,, - Put, @=——1(S,, - S) +=———"1(S,, -
1 Pu, o (S )5 (S, S)

Hedge ratios depend on the sengtivity of the asset to be hedged to changes in the underlying price (TPut;
/1S, T Put; +1/9S:1%). The hedge ratio is given by the negative of the ratio of the sengtivity of the
insrument to be hedged and the sengtivity of the hedging insrument. For example, to diminate the sengtivity
of aportfolio containing a purchased put option to first-order underlying price effects, -{Put; +1/1S.+1 shares
of the underlying asset should be purchased. To diminate an option portfolio’s sengtivity to firgt-order and
second-order underlying price effects, two hedging instruments are used.

This paper generaizes the Engle and Rosenberg (1995) technique for estimation of option price
sengtivities to a setting with an arbitrary pricing kernel. Following Engle and Rosenberg (1995), consder
three possible one-day underlying price changes. The stock price could rise by one-standard deviationto S
+ e, remain condant a S, or fal by one standard deviationto S - e. Each underlying price change resultsin
Put

adifferent date t+1 put option price: Put or Put

tHS . ! t+1S tHS..

The three put prices may be used to caculate the following centered finite difference approximations to
the first and second derivatives of the option pricing formula:

16) Uy @Putt+lls+e - Pty T°Put,., @Putt+us+e - 2PUt, 45 + PUL

1S4 2e 154 e’
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The vaue of the put option at date t+1, for agiven leve of the underlying price (S+1), may be obtained
by applying equetion (8), which states that an asset’ s price isits pricing-kernd-weighted expected payoff.
Suppose thet the put option expires on date t+T, and the current underlying price is S.. Using areturn-based
pricing kerndl, with 1 o1 = St /S and rag o = Ser/Seea

(17) PUtt = E[ [Mt(rt,HT)MaX[O’ K- S+T ]J

(18)  Put.yg, =B, leJsﬂ (g v IMaX[O,K - Sr+T]]

Evauating equation (18) requires knowledge of the state probability density function at date t+1 and the
pricing kernel at date t+1, conditiona on the underlying price a date t+1. The conditiond state probability
densty may be determined using the underlying price process specification, and the conditiona pricing kernd
depends on the dynamics of the pricing kerndl.

For example, if the underlying price follows a geometric Brownian motion, then the underlying price &
date t+1 (S..1) provides additional information about the expected price at date t+T (S..1).2° If the underlying
price follows an asymmetric GARCH process, then the underlying price at date t+1 provides additiond
information about the expected price as wel as higher moments of the price distribution.

Under power utility, the pricing kernel as afunction of future returns is gpproximately congtant over time,
i.e. Mua(fes o) = Mi(eeer) WheN fer ot = et In generd, the date t+1 pricing kernd will be afunction,

h(-), of the date t pricing kerndl, the underlying price change, and other state variables.
(19)  Mea(rser) = (M), Sea, S Wees)  Weea isavector of state variables

One ussful specification has the parameters of today’ s pricing kernd (q;) depend linearly on a constant
(a), lagged parameter values (Qo.1 --- On,t-1), ad the one-period asset return (r).

19 the underlying price follows a geometric Brownian motion with drift and diffusion parameters of mand's, the
probability density of log(S..7) conditional on Si.; isN(IN(S.1) + (Ms%/2)(T-1),sOT-1).

™ Consider apower pricing kernel defined over return states when date t and date t+1 are close together in time. M (r, 1) =
e_rT(rt,nT)_gand M g1 (Feeer)= € (T-l)(rt+l,t+T)-g- When ryr= fugur Mut(fuser) = € M(Tyur) @M (), for small valuesof r .
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(200 g:=a +bogor1t b1Quta ...+ OOyt o)

Then, tomorrow’s pricing kerndl, M (e +7; Orer) 1S €stimated using the forecast of tomorrow’ s pricing

kernel parameter vector:dim.

(21) 0= E[Gulfur] =@ + boGort Dals ... + brGuet olfe)
V. Data

The options dataset used in this paper is obtained from a subset of Berkeley Options Database covering the
period 1991 - 1995. One of the advantages of this dataset is that option quotes are time-stamped and
recorded aong with the smultaneoudy measured underlying price. This facilitates congtruction of a detabase
of time-synchronized daily option “closng” prices.

The database of option closing prices is constructed using the following procedure. Firgt, “end- of-day”
option prices are collected each day for al contracts by averaging the last recorded bid-ask quote of the day
between 2:00 and 3:00 PM Centra Time. The cross-section of midquotes from the last hour of trading is not
entirely synchronized, since the S& P5S00 index level may change over the last hour of trading. To correct for
this, a Black-Scholes (1973) implied volatility is calculated each day for each option contract using the end-
of-day midquote, the contemporaneous S& P500 index level, the appropriate riskless interest rate, time until
expiration, and dividend yield.*? The closing price for each contract is obtained by evauating the Black-
Scholes formula using the same inputs and the implied volatility, except that the dlosing S&PS00 index leve is
used ingtead of the synchronized S& PS00 level.™ Then, each cal (put) price is averaged with the synthetic

2 A dividend time-series for the S& P500 index is extracted from the CRSP database. The present value of dividends (Dy+)
over thelife of each option contract (and the dividend yield) are calculated by discounting the realized future dividend
stream using the riskless interest rates described below. Therisklessinterest rate is obtained as using quoted bid and ask
discount ratesfor U.S. Treasury Bills with maturities of one, three, and six months from Datastream. Therisklessrate for a
particular option is calculated by linear interpolation of the interest rates of Treasury Billsthat "straddle" the option
expiration date. The option time-until-expiration is measured in trading days.

3 This technique does not require that the Black-Scholes model is correct, but simply uses the Black-Scholes formulaas an
extrapolation device to calculate an adjustment to the observed option price if the S& P500 index level changesin-between
the time of the last quote and the close of trading. If the S& P500 level does not change, then the closing option priceis
identical to the end-of-day option price.
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put (call) price obtained usng put-cal parity adjusted for dividendsto obtain the closing cal (put) price used
in the estimation procedure.

The following screening criteria are used to eliminate data errors and ensure that closing option prices are
representative of market conditions at the end of the trading day. Severd of these conditions are based on
Bakshi, Cao, and Chen (1997). (1) Only options with mid-quotes greater than $3/8 and less than $50 are
included in the sample. (2) Options with amudized implied volatilities less than 5% or greater than 90% are
excluded from the sample. (3) Options that do not satisfy the no-arbitrage lower bound (P; 3 Max[0, Ke'™
- S+ Dy1] or (C; 3 Max[0, S - Ke"™ - D, 1]) are excluded from the sample. (4) Cross-sections of cdls
(puts) for which the no-arbitrage condition that option premia are decreasing (increasing) in the exercise price
are excluded from the sample. (5) Options that violate the maximum vertical spread premium condition
(Ci(K1,T-t) - Cy(Kot) £ Ky - Ky; P(Ko, T-1) - P(K,t) £ K3 - K1) are excluded from the sample. (6) Only
options with moneyness-.10 £ (K/S; - 1) £ .10 areincluded in the sample. (7) On each trading date, for a
particular exercise price and expiration date, there must be both atraded call and put that meets the
preceding criteriato be included in the sample. (8) Only dates on which at least eight options with different
exercise prices meeting the firgt eight criteria are included in the sample.

A dataset of options with one month (twenty trading days) until expiration is obtained from the preceding
data using the following procedure. We first eliminate al options with grester than 24 or fewer than 16
trading days until expiration. Then, for each trading date, we sdlect the option series with time until expiration
closest to twenty days. We are left with a single cross-section of cal and put options each month (around the
20™ of the month) with atime-until-expiration of approximately one month. This sampling methodology is
smilar in spirit to Christensen and Prahbala (1998).

Thefirst pand of Table 1 reports the properties of the one-month option contracts used in pricing kernel
estimation. In the sample, there are 53 months (of 60 total) in which a one-month cross-section of optionsis
obtained that satisfies the screening criteria. On 39 dates (one each month), thereis an option series with
exactly twenty days until expiration; a serieswith 21 days until expiration is used eight times, and the
remaining Sx dates have option series with 18, 19, and 22 days until expiration. Thereis no satisfactory data
in seven of the sixty months of the sample.

On agiven esimation date, there are between 8 and 13 options available. There are roughly equd
numbers of options with moneyness (K/S; - 1) from 3% to 0%, 0% to —3%, and —3% to -6%. There are

somewhat fewer options with moneyness between -6% and -10%. The smalest number of options has
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moneynesses in the range from 3% to 6%, and there are no options available with moneyness greater than
6%. On average, option contracts with higher moneyness have lower implied volatilities. This pattern is often
referred to as a“ voldility skew.”

Due to put-cal parity, thereis no additiond information provided by inclusion of acal and a put with the
same exercise price (or moneyness) in the estimation procedure. So, we subset the database to include only
out-of-the-money put options (moneyness £ 0%) and out- of-the-money call options (moneyness > 0%).

FHgure 1 graphs five representative cross-sections of one-month option closing prices for June of 1991
through June of 1995 againgt dollar moneyness (K-S;). The put premia are increasing in exercise price, and
the call premia are decreasing in exercise price resulting in an inverted-V shape. The variation in the dope
and height of each curve reflects differencesin investor probability beliefs and risk-aversion acrosstime.

Thefirgt panel of Table 2 reports summary statistics for the daily S& PS00 index returns series (1970 -
1995) used for estimation of the state probability model. Over this period, the average annualized S& P500
index return (capita appreciation only) is 7.55%, and the annudized S& P500 return standard devietion is
14.79%. S& P500 returns exhibit negative skewness and pogtive kurtoss, which is consstent with a
stochedtic volatility mode with asymmetric effects. There is dso evidence of return serid correlation.

V. Estimation of the empirical pricing kernel over S& P500 return states

V.a. Esimation of S& P500 return state probability densities

The second panel of Table 2 describes the dynamic state probability modd used to estimate the State
probability dengties. Three nested GARCH models are estimated: ARCH(1), GARCH(1,1), and
asymmetric GARCH(1,1). A likelihood ratio test is used to compare the statistical sSignificance of the increase
in likelihood for each modd generdization.

The GARCH modd isfound to offer agatisticaly sgnificant improvement over the ARCH modd with a
likelihood ratio test p-value less than .0001. In addition, the asymmetric GARCH modd is found to offer a
datidticaly sgnificant improvement over the GARCH modd with alikelihood ratio test p-vauelessthan
.0001. Thisis confirmed by the significant robust t-gatigtic for the volatility asymmetry parameter (g) of 2.41.

Two specification tests are used to andyze the adequacy of the asymmetric GARCH specification. The
first test — Engle’' s (1982) ARCH LM test — measures the presence of stochadtic voltility effects have not
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been entirdly explained by the modd. The asymmetric GARCH modd passes this test with a p-vaue of
.7004. The second test — Ljung-Box (1978) Q-gatistic — measures unexplained serid corrdation in the
gandardized residuds from the estimated modd. The asymmetric GARCH model passesthistest with ap-
vaue of .7378. The asymmetric GARCH modd reported in Table 2 is chosen as the preferred modd and is
used for state probability estimation.

The standardized resduds from this modd are used to define the empirica innovation densty (f). The
third panel of Table 2 reports characteristics of the empirica innovation dendty indicating that it exhibits
negative skewness and positive excess kurtoss. These characterigtics do not affect the conditional volatility
estimates, but they do affect the higher moments of forecast state probability distribution.

The fourth pand of Table 2 compares the probability of extreme positive and negetive returns using the
empirica innovation digtribution and a stlandard normd digtribution. Under the standard normal assumption,
innovations of magnitude greater than 5 or 10 standard deviations dmost never occur (less than onetimein
one million). In practice, the probakilities of these extreme events is non-negligible. For example, empirica
return innovations less than -5 standard deviations are observed 6 times in 10,000, while empirica return
innovations less than -10 standard deviations are observed 3 timesin 10,000.

Figure 2 plots the estimated one-month state probability dengties for June of each year, using 200,000
Monte-Carlo Smulation replications. The time-variation in state probabilities is apparent.** For example,
there are higher probabilities for large negative return statesin June 1991 and June 1992 than in June of
subsequent years.

Figure 3 plots the conditiona volatility forecasts using the asymmetric GARCH modd. Over this period,
estimated annudized S& P500 volatility ranges from 6.75% to 112.86% with a standard deviation of 6.36%.
The highest volility forecasts over this period are around the time of the October 1987 market crash.

4 The annualized return standard deviation estimates (in chronological order for June 1991, June 1992, ..., June 1995) are:
15.55%, 13.03%, 11.74%, 9.98%, and 10.88%. The return density skewness estimates are -0.36, -0.43, -0.46, -0.46, and -0.47.
Thereturn density kurtosis estimates are 5.06, 5.35, 5.66, 5.54, and 5.73.



V.b. Estimation of the S& P500 empirical pricing kernel

The empiricd pricing kernd defined over one-month S& PS00 return states may now be estimated using the
cross-sections of one-month S& P500 option premia and the contemporaneous forecasts of the one-month
S& P500 return density. ™ We estimate the EPK, using equation (9), in each of the 53 months for which a
cross-section of S& P500 optionsis available. We estimate the power pricing kernel specification and a four
term orthogona polynomia pricing kernel specification (equation 10, with N=3).'®

Table 3 reports the etimation results. The orthogond polynomia specification resultsin a much closer fit
to the observed option prices than the power specification. The average forecast error standard deviation for
the orthogona polynomia specification is $.09 with aminimum of $.03 and a maximum of $.24. The average
forecast error tandard deviation for the power specification is $.63 with a minimum of $.28 and amaximum
of $1.34.

Figure 4 graphs the empirica pricing kernd in June of each year (1991-1995) estimated using the power
specification. Theleve of risk aversion varies acrosstime, as indicated by the shifting dope of the estimated
pricing kernds. The negetive dope of the curves indicates that the probability normaized vaue of adallar
payoff is greater when the S& P500 return is low than when the S& PS00 return is high. In other words,
investors are risk-averse (obtain declining margind utility) with respect to payoffs over S& PS00 return states.

Figure 5 graphs the orthogonal polynomia estimates of the empirica pricing kernd in June of each year.
This specification is more flexible than the power specification, and the data appears to assign greater vaue
to large negative S& P500 return states and lesser value to large positive S& P500 return states than the
power specification. The state- price-per-unit probability for large negative return states is especidly volatile,
potentidly reflecting time-varying demand for insurance againgt a sgnificant market decline. Thereisaso
some evidence that thereis aregion of increesng margind utility for smal positive S& P500 return states.

Average pricing kernels over the sample period are estimated by evauating each pricing kernd
specification at its average parameter estimates. The average estimates are reported in Table 4, and the
average pricing kernels are graphed in Figure 6. The average orthogond polynomid EPK has some
smilaritiesto that of Ait-Sahaliaand Lo (2000, p. 36, Figure 3) in that the pricing kerndl is steeply upward

' The estimated S& P500 return density is estimated using Monte-Carlo simulation with 200,000 replications. Fitted prices
are evaluated using equation (10).
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doping for large negative returns and downward doping for large positive returns. Ait-Sahdiaand Lo's
pricing kernd estimate also has aregion of increesng margind utility.

Jackwerth's (2000) absolute risk aversion function is closely related to the pricing kernd and may be
expressed as the negative of the ratio of the firgt derivative of the pricing kernd and the pricing kernd (-

M (ree1)/Mi(r+1)). Jackwerth (2000) notes two key empirica findings with respect to the absolute risk
averson functions:. *pogt- crash risk-aversion functions are negative around the center [return states close to
zero)... [and] risk averson functions rise for wedlth levels greater than about 0.99 [return states greater than
—1%]. (p. 441)"

In the case of the power specification, neither of these statements is supported by our estimation results.
Notice that for the power specification, the absolute risk aversion function is given by the exponent of the
power function multiplied by the inverse of the gross return [g.¢* (1) *]. Thus, the power pricing kernel
exhibits declining (but positive) absolute risk aversion aslong as the exponent (.) is positive, which iswhat
we find over the period 1991-1995.

In the case of the orthogona polynomia specification, we find some evidence consstent with
Jackwerth’ s findings. We estimate the average absol ute risk-aversion function corresponding to the average
orthogord polynomid pricing kernd graphed in Figure 6. We find that the there is aregion of negative
absolute risk-aversion over the range from —4% to 2% and that absolute risk averson isincreasing for
returns grester than -4%. The shape of our estimated average absolute risk averson function isSmilar to
Jackwerth's (p. 442, Figure 3, Panel D).

V.c. Linkagesof EPK risk aversion to business cycle conditions

Therdative risk averson function implied by the empirica pricing kernd is given by —r.1* (M ( 11)/My(r
1)1 Inthe case of the power pricing kerndl specification, the relaive risk aversion function is equal to the
scaar qp. Hence, g, ¢ provides a summary measure of risk-aversion over one-month S& P500 return states
on each estimation date. One way to anayze the dynamics of empirica risk averson isto examine the time-

series characterigtics of the estimated exponent (qy ) for the power pricing kernel specification.

' We choose an estimation interval of —10% to 10% for the EPK estimates. Outside of this range, the EPK level is set to the
estimated value of the EPK at -10% or 10%.
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Thefirst pand of Table 4 provides summary dtatigtics describing the behavior of one-month empirica
risk averson Over the sample period, the average empirica risk averson is 7.36. However, the level of risk
averson fluctuates substantially with arange 2.26 to 12.55. Empirical risk averson is pogtively
autocorrelated and is meantreverting with afirg-order auto-correlaion coefficient of .45. Figure 7 plots the
time-series of empirica risk averson estimates.

It has been shown that risk premia are correlated with the business cycle (see, e.g., Famaand French,
1989); risk premiaare lowest a busness cycle peaks and highest at business cycle troughs. Since risk
premia are determined by the level of risk (e.g. variance, skewness, and kurtosis in asset payoffs) and by the
level of risk averson, two complementary explanations of time-varying risk premia are time-varying risk and
time-varying risk averson. This paper provides evidence of time-varying risk averson through the business
cycle, which is congstent with the Fama and French (1989) results.

To identify the association of EPK risk aversion with the business cycle, severd variables that are
correlated with current and expected business conditions are constructed. One-month changesin busness
conditionsindicators are calculated using changesin variables measured contemporaneoudy with the
estimation date for each EPK and its one-month lag.

Credit (default) spreads — the difference between the yield on risky and riskless bonds — are often
used as a negative indicator of economic expangion, under the rationde that default is more likely in recesson
than expansion. We congruct the change in credit spread using the monthly percentage change in the
difference between the average yield-to-maturity for Moody’ s Baa rated seasoned corporate bonds and the
thirty-year constant maturity Treasury yield. Both dataitems are obtained from the Federd Reserve sH.15
release.

The dope of the yidd curve has been shown by Estrellaand Hardouvelis (1991) to be strongly
corrdated with the business cycle. Steepening of the dope is associated with expansion, and flattening of the
dopeis associated with contraction. We construct the change in the yied curve dope using the monthly
percentage change in the difference between the thirty-year constant maturity Treasury yield and three-month
constant maturity Treasury yield. These dataitems are aso obtained from the Federa Reserve' sH.15

release,

! Ait-Sahaliaand Lo (2000) use asimilar definition of the risk-aversion function (p. 27, eq. 5.3). Notice that the relative risk
aversion function is equal to the product of the gross return and the absolute risk aversion function.
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Thelevd of short-term interest ratesis aso associated with the state of the business cycle. Higher rates
are associated with recession, while lower rates are associated with expansion. We use the percentage
change in the three-month constant maturity Treasury yield to proxy for thisindicator.

The S&P500 index leve isacomponent of the index of leading indicators as postive indicator of
expangon. We utilize the S& P500 return as business conditions indicator, measuring it as the percentage
change in the S& PS00 index levd. In addition, the S& PS00 return may aso be used as a proxy for
aggregate consumption growth, since they are positively correlated. A finding of negative correlation between
EPK risk aversion and S& P500 returns would be consgtent with decreasing rdative risk aversion, since it
would indicate that risk-averson increases when consumption declines.

Two other variables are dso included in the analyss. Firg, it isinteresting to mesasure the persstence in
EPK risk averson by regressng EPK risk averson on itsfirst lag. Thisindicates how long risk-averson may
be expected to deviate from its long-run average. Second, it is useful to measure the association of EPK risk
averson with changesin the difference between a-the-money implied and objective volatilities. This spreed
isaproxy for risk-averson based on the amount the market is pricing at-the-money options above a risk-
neutral price based on the objective voldility.

We dso include the aggregate U.S. consumption growth rate in the regression. This variable has been
used in many studies of the stochastic discount factor. Consumption growth is calculated as the monthly
percentage growth rate of per-capita non-durable goods and services (monthly, real, seasonally adjusted)
from the Federd Reserve’ s FRED database. Monthly U.S. resident population estimates are from the
Census Bureau.

All of the above independent variables are included in a multiple regression, which isreported in the
second pand of Table 4. Individud univariate correlations and their p-vaues are o reported in the last two
columns. Independent variables are measured in percent (except lagged EPK risk averson) so that aone
basis point (.01) change in the independent variable is associated with an increase in risk-aversion equa to
one-hundredth of the regression coefficient.

The results reported in Table 4 indicate that empirica risk averson varies with business conditions. One
of the four indicators is Sgnificant with the correct Sgn in the multiple regression, two of the four indicators
exhibit a sgnificant univariate corrdaion with the correct Sgn, and one indicator has amargindly sgnificant

univariate correlaion with the correct sign.
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For example, credit sporeads are significantly associated with risk aversion; a one-basis point widening of
the credit spread is associated with an increase of .09 in the level of relative risk averson. On aunivariate
bas's, seeping of the term Structure dope is significantly associated with lower levels of risk aversion.
Increasesin “riskless’ interest rates are o weekly associated with higher levels of risk aversion.

Empirica risk averson has afirg-order autocorrelaion coefficient of .48, indicating that deviations from
the long-run average are expected to disappear after about sx months. Theimplied - objective voldility
soread is dso highly sgnificant with the correct Sgn. Findly, the regression results indicate that aggregate
consumption growth and S& P500 returns are not corrdated with empirical risk-aversion.

One of the leading dternatives to the power utility function in consumptionbased asset pricing modelsis
the habit persistence model. If S& PS00 returns are considered to proxy for consumption growth rates, then
our empirical results provide some support for habit persistence in the following ways.

Firg, we find that rdative risk averson istime-varying asimplied by many habit modds, rather than
constant as would be the case for a power utility model. Second, we find thet relative risk-averson is
counter-cyclicd. Thisis consstent with the predictions of habit persstence modelsin which risk-averson is
potentidly counter-cyclica (e.g. Campbell, 1996). For example, in some habit persstence models, the
surplus consumption retio (the proportion that current consumption exceeds the habit) is negatively correlated
with relative risk averson. If the surplus consumption ratio is cyclicd, then these habit models would aso
predict that relative risk-averson would be counter-cydicdl.

VI. Hedgingtests

The purpose of the option hedging tests used in this section is to identify whether the empirica pricing kernel
provides an effective measure of the level and dynamics of investor risk averson. Hedge ratios depend on
the pricing kerndl and state probability estimates, so the accuracy of each pricing kernel may be judged by
measuring hedging performance using different pricing kernds.

The hedging tests are based on hedging a $100 portfolio of out-of-the-money (OTM) S& P500 index
put options using at-the-money (ATM) put options and the index. The hedging objective isto minimize the
standard deviation of one-day hedge portfolio price changes. This application isinformative, Snce writing
OTM S& P500 options has been a higtoricdly profitable srategy, but methods of effectively hedging this
position are not well known.
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The hedging sampleis congtructed using the same screening criteria as for the sample constructed for
estimation of the EPK. However, the hedging sample is composed of options with approximately one-month
(from 16 to 24 days) until expiration, instead of exclusvely one-month options. On each sample date, we
select aput with moneyness (K/S; - 1) closest to zero but no more than 1% in absolute value. Thisisthe “at-
the-money” put. We then select the put option with moneyness closest to —3%, but no greater than -3%.
Thisisthe “out-of-the-money” put. When suitable options with closing prices on the sample date and the
next trading date cannot be found, the sample date is excluded from the anadlyss. Using these criteria, there
are 243 observations available for the hedging tests. The second panel of Table 1 summarizes the sample
characterigtics.

We areinterested in testing four different pricing kernel specifications. To this end, we construct hedge
ratios based on the power and orthogona polynomia pricing kernels. These two pricing kernel estimates are
time-varying but differ in their functiond form. We dso condruct two time-invariant pricing kernels to andyze
the importance of time-variation in the pricing kernd. The time-invariant pricing kernels are smply the power
and orthogona polynomia specifications, evauated a their average parameter estimates.

To estimate hedge ratios, it is necessary to estimate the one-day ahead pricing kernd. Weinitidly
condder the pricing kernd forecasting modd given by equation (21). In this modd, the one-day ahead
parameter vector (1) depends on the current parameter vector (g;) and the one-day asset return. The
forecasting modd is estimated using alinear regression of pricing kernel parameter estimates on one-day
lagged parameter estimates and the one-day S& PS00 return.

For estimation, we congtruct a sample of estimated pricing kerndls (power and orthogona polynomid)
on each of the 243 hedging sample dates. The hedging dates that are not one day apart are dropped from the
sample. The remaining 133 observations are usad in the forecasting modd estimation regressons. The
S& P500 return is not found to be statisticaly significant in any of the regressions (we cannot rgect g = 0), so
it is dropped from the forecasting modd. Also, the scaling factor (qo.) isonly included in its own forecagting
regression.

Table 5 reports the estimation results. All of the parameters are reasonably well predicted by their lagged
vaues and the lagged vaues of other parameters. The adjusted R-squared for the Six regressons ranges from
12% to 52%. For example, the second panel of Table 5 reports the g .1 forecasting modd regression
estimates for the power pricing kernd specification. In thismodd, g, 1+ is forecasted by the sum of 2.26 and
.69* ;. 1+1. Both parameters (a, b,) are datisticaly sgnificant and the regresson adjusted R-squared is 50%.
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This modd resultsin an average one-day ahead forecast of g «+1 equd to 7.49 with a stlandard deviation of
1.87.

Hedge ratios are then obtained using the methodology described in section [11.d. In particular, first and
second-order exposures to underlying price changes for each pricing kernel specification are generated using
the centered finite difference approximations. One-day-ahead derivative prices are obtained using the
estimated pricing kerndl and 200,000 smulation replications of the estimated asymmetric GARCH modd.

To measure the gatigtica sgnificance of the improvement in hedging performance using a hedge based
on atime-varying pricing kernel (EPK) versus atime-invariant pricing kernel, we formulate a predictive
accuracy datistic smilar to that proposed by Diebold and Mariano (1995). The relative performance of the
EPK hedge versus atime-invariant hedge is measured using the t-Statitic for the squared error loss, which is
defined as the average difference between the squared time-invariant kernel one-day hedging error and the
sguared EPK one-day hedging error. Standard errors are cdculated using the heteroskedasticity and
autocorrelation congstent covariance matrix of Newey and West (1987). When the t-statistic islarge and
positive, the EPK hedge performance is Sgnificantly better than the time-invariant pricing kernd hedge
performance.

Table 6 provides the hedging test results. We find strong evidence that the pricing kernd is time-varying.
Indl par-wise comparisons, the EPK hedge results in alower hedge portfolio standard deviation than the
time-invariant pricing kernel hedge. The hedging improvement provided by using atime-varying pricing
kernd, which ranges from 1% to 3%, is Satigticdly sgnificant in three of 9x cases and margindly sgnificant
in one case.

For example, the second column of Table 6 reports that the unhedged $100 OTM put position has a
daily price change standard deviation of $22.56. The mogt effective hedge using the ATM put doneisthe
EPK power specification hedge, which reduces the portfolio standard deviation to $11.10 per day. If the
time-invariant (average) power pricing kernel hedge is used, the hedge portfolio standard deviation is
$11.21. The t-gatitic for the difference in performance of these two hedgesis 2.82.

Hedging using the underlying asset aone somewhat diminishes hedging performance for dl the modds,
compared to hedging using the ATM put done. The mogt effective hedge using the underlying asset doneis
the EPK power specification hedge, which generates a hedging error of $12.11. The time-invariant power
pricing kerndl hedge generates a hedging error of $12.41.
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We ds0 see that hedging with both the underlying asset and the ATM option results in poorer hedging
performance than hedging using the ATM put aone. While it is aways superior to add additiona hedging
instruments when the true hedge ratios are known, modd error and estimation error may result in poorer
hedging performance as additional hedging instruments are added.

In dl hedging comparisons, the orthogona polynomid specification resultsin greater hedging error than
the power specification. These differences are satistically sgnificant (not reported in Table 6) for the hedge
using the underlying (t=4.2) and the hedge using the ATM put (t=3.9). In contrast to the in-sample estimation
results, the out- of- sample hedging resultsindicate that the power specification is superior to the orthogona
polynomia specification.

VII. Conclusgons

This paper proposes and implements a new estimation technique to measure time-varying investor risk
averson over equity return states. In the absence of arbitrage, the fair asset priceisthe pricing kernel
welghted expected asset payoff. Hence, a cross-section of contemporaneous asset prices and an estimate of
the payoff density function may be used to infer the asset pricing kerndl. By obtaining a sequence of forecast
asset payoff densities and cross-sections of asset prices, we are able to construct atime-series of empirica
pricing kernds and empirical risk averson estimates.

We estimate the empiricd pricing kernd and empirica risk averdon each month over the period 1991-
1995 using S& P500 index options and forecasts of the S& P500 return dendity. In-sample estimation results
and out-of-sample testing results provide strong evidence that the pricing kernel and relative risk aversion are
time-varying. Our analysis of the relationship between empiricd risk averson and business cycle indicators
indicates that empirica risk averson is counter-cyclical. Thelevd of risk averson is positively correlated with
indicators of recession and negatively corrdlated with indicators of expanson. Thisis consstent with the
results of Fama and French (1989) as well as the predictions of some habit persistence models.

We andyze two parametric specifications for the asset pricing kernd defined over S& PS00 return states.
An orthogond polynomid pricing kernd specification is found to provide amuch closer fit to the option price
data than the power specification. However, the power pricing kernel specification generates better hedging
performance than the orthogona polynomia specification. Hence, the evidence is mixed with respect to the
correct functiond form for the pricing kernd.
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Table 1 - Summary of one-month option data

Data used in estimation one-month empirical pricing kernels (1991-1995)
Number of estimation dates = 53, Minimum obs. per day = 8, Maximum obs. per day = 13

Average
Option moneyness Number of  [implied Average call |Average put
(KIS, - 1) observations |volatility price price
-6% to -10% 66 20.85% $34.83 $1.19
-3% to -6% 133 16.58% $21.81 $1.92
0% to -3% 136 13.67% $10.76 $4.13
0% to 3% 137 11.36% $3.25 $9.77
3% to 6% 37 11.61% $0.90 $16.66
Data used in one-month option hedging tests (1991-1995)
ATM put OTM put
option option
Number of observations 243 243
Average price $6.34 $2.39
Std. dev. price $1.04 $0.77
Average price change -$0.11 -$0.10
Std. dev. price change $1.38 $0.56
Average time to maturity (days) 19.88 19.88
Std. dev. time to maturity (days) 2.40 2.40
Average moneyness (K/S; - 1) 0.00% -3.61%
Std. moneyness (K/S; - 1) 0.32% 0.48%
Average implied volatility 12.90% 16.36%
Std. dev. of implied volatility 2.79% 2.76%
Minimum implied volatility 9.04% 11.69%
Maximum implied volatility 30.96% 34.39%

Table 1 summarizes the characteristics of the one-month S&P500 index option data used in this study. The source of this data is the Berkeley Options Database (1991-1995). Each month,
a cross-section of options (both puts and calls) with approximately one-month until expiration is extracted from the database. Options with moneyness between 10% and —10% are included
in the sample. Data screening criteria are described in the text of the paper.

The database of option closing prices is constructed using the following procedure. First, “end-of-day” option prices are collected each day for all contracts by averaging the last
recorded bid-ask quote of the day between 2:00 and 3:00 PM Central Time. The cross-section of midquotes from the last hour of trading is not entirely synchronized, since the S&P500
index level may change over the last hour of trading. To correct for this, a Black-Scholes (1973) implied volatility is calculated each day for each option contract using the end-of-day
midquote, the contemporaneous S&P500 index level, the appropriate riskless interest rate, time until expiration, and dividend yield. The closing price for each contract is obtained by
evaluating the Black-Scholes formula using the same inputs and the implied volatility, except that the closing S&P500 index level is used instead of the synchronized S&P500 level. Then,
each call (put) price is averaged with the synthetic put (call) price obtained using put-call parity adjusted for dividends to obtain the closing call (put) price used in the estimation procedure.

The second panel of Table 1 reports characteristics of the ATM and OTM put options used in the hedging tests. The hedging sample is composed of options with approximately one-
month (from 16 to 24 days) until expiration. On each sample date, the “ATM put” is the closest-to-the-money put (within 1% of the money). The OTM put is the put with moneyness closest
to —3%, but no greater than —3%. When suitable options with reported prices on the sample date and next trading date cannot be found, the sample date is excluded from the analysis. The
option time-until-expiration is measured in trading days.



Table 2 - Dynamic state probability models

S&P500 daily log-return summary statistics, 1970-1995

Serial
Annualized |Annualized Excess Normality test |correlation test |ARCH test p-|
Number of observations |mean std. dev. Skewness |kurtosis p-value p-value value
6571 7.55% 14.79% -2.31 60.20 <.0001 <.0001 <.0001
Estimated state probability models
ARCH(1) GARCH(1,1) Asymmetric GARCH(1,1)
Robust t- Robust t- Robust t-
Coefficient statistic Coefficient [ statistic Coefficient statistic
n 0.0004 3.09 0.0004 4.10 0.0003 2.41]
q 0.1483 6.71 0.1363 10.62 0.1361 10.60
Wy 7.06E-05 17.85 1.22E-06 3.45 1.26E-06 3.80
Wy -3.41E-05 -8.52| -4.64E-07 -1.77 -4.24E-07 -1.69
a 0.1964 2.86) 0.0663 2.41] 0.0262 3.12
b 0.9212 35.88 0.9264 53.83
o 0.0672 2.41]
Log-likelihood 21941.39 22332.09 22368.10
ARCH p-value <.0001 0.3426 0.7004
LR test p-value <.0001 <.0001
* the asymmetric GARCH components model does not improve on the asymmetric GARCH(1,1) model
Summary statistics for estimated innovation density
Serial
Excess Normality test |correlation test |ARCH test p-|
Number of observations |Mean Std. dev. Skewness |kurtosis p-value p-value value
6571 0.0004 1.0000 -0.36 4.26 <.0001 0.7378 0.7004
Probabilities of extreme events
Empirical Standard
Probability density normal
Innovation < -10 std. dev. 0.00030| <.000001
Innovation < -5 std. dev. 0.00061| <.000001
Innovation < -3 std. dev. 0.00427 0.00135
Innovation > 3 std. dev. 0.00290 0.00135
Innovation > 5 std. dev. 0.00015| <.000001
Innovation > 10 std. dev. <.000001f <.000001

The first panel of Table 2 reports summary statistics for daily S&P500 returns over the period from 1970-1995. The normality test p-value is
the p-value of the Jarque-Bera (1980) normality test statistic which measures the closeness of the empirical S&P500 log-return density to a
normal density. The serial correlation p-value is the p-value of the Ljung-Box Q-statistic (1978) which measures serial correlation in the
residuals using ten lagged values. The ARCH test p-value is the p-value of the Engle (1982) ARCH LM statistic which measures the
presence of stochastic volatility as represented by persistence in return magnitudes. Ten return lags are used in this test.

The second panel reports estimation results for three nested GARCH model specifications. Estimation is accomplished by maximization
of the log-likelihood function using daily log returns for the S&P500 index over the sample period. Robust t-statistics are calculated
according to the method of Bollerslev and Wooldridge (1992). The asymmetric GARCH model is defined in equations (13) and (14). The
ARCH p-value is the p-value of the Engle (1982) ARCH LM statistic which measures unexplained stochastic volatility effects in the model
standardized residuals, and is interpreted as a model specification test. Ten return lags are used in this test.

The LR (likelihood ratio) test p-value measures statistical significance of the improvement of the GARCH(1,1) model versus the ARCH
model and the asymmetric GARCH(1,1) with leverage model versus the GARCH(1,1) model. The reported p-value is the p-value for twice
the difference between the log-likelihood of the unrestricted and restricted model. Under the null that the added variable in the unrestricted
model is insignificant, the statistic will be a chi-squared variate with 1 degree of freedom — which represents the difference in the number
of variables in the restricted versus unrestricted model.

The third and fourth panel report the properties of the standardized residuals from the asymmetric GARCH model. The standardized
residuals are calculated by dividing the ordinary residual (e) by its conditional standard deviation (s,,,), and are used to estimate the
empirical innovation density. Deviations of the empirical innovation density from normality are illustrated by the negative skewness and
positive excess kurtosis statistics. The fourth panel compares probabilities of extreme innovations for the empirical innovation density and a
standard normal density.



Table 3 - EPK estimation results

Power specification parameter estimates

Standard
N=53 Mean deviation |Min Max
ot 1.0051 0.0063 0.9866 1.0185
O1¢ 7.36 2.58 2.36 12.55
Forecast error
standard
deviation $0.63 $0.26 $0.28 $1.34

Orthogonal polynomial specification parameter estimates

Standard
N=53 Mean deviation [Min Max
ot 0.19 0.10 0.04 0.40
Oyt -2.25 1.06 -4.38 -0.25
Ozt -0.88 0.68 -2.52 0.19
Ost -1.08 0.42 -1.94 -0.19
Forecast error
standard
deviation $0.09 $0.05 $0.03 $0.24

Table 3 reports results from the estimation of the power and orthogonal polynomial pricing kernel
specifications. These estimates are for one-month pricing kernels defined over S&P500 return
states, estimated monthly over the period 1991-1995. The power specification is defined by M(r:.1)

= Qo(1+rw1) %, and the orthogonal polynomial specification is defined by My(fi.1) =
Qo To(ree)eXPQ ¢ Ta(Fea) + Q2 To(Fte1) + O3, Ta(Tes1)]-



Table 4 - Analysis of EPK risk aversion

Properties of EPK risk aversion (monthly, 1991-1995)

First-order
Number of observations Mean Std. dev. Min Max autocorrelation
53 7.36 2.58 2.36 12.55 0.45
Multiple regression of monthly EPK risk-aversion on business cycle indicators
Number of observations = 46 (see notes below)
Regression Univariate Correlation
Variable coefficient |t-statistic p-value correlation p-value
Intercept 3.99 3.88 0.0004
Lagged EPK risk aversion
Previous month 0.48 3.54 0.0011 0.45 0.0018
S&P500 return
Percent monthly 0.04 0.29 0.7732 0.03 0.8555
Three-month Treasury yield
Percent monthly change 0.68 0.37 0.7130 0.24 0.1058
Credit spread
(Baa - 30 year Treasury)
Percent monthly change 9.95 2.12 0.0405 0.50 0.0004
Term structure slope
(30 year - 3 month)
Percent monthly change 0.23 0.12 0.9035 -0.36 0.0129
Implied vol. - objective vol. spread
Monthly change 0.52 3.36 0.0018 0.39 0.0069
Consumption growth
Percent monthly change, annual rate -0.04 -0.72 0.4789 -0.10 0.5224
Adjusted R-square 46.10%

Table 4 presents an analysis of properties of EPK risk-aversion, which is estimated monthly over the period 1991 — 1995, using
a power pricing kernel specification. The first panel contains summary statistics for EPK risk-aversion. The second panel
reports results of a multiple regression of EPK risk-aversion on business cycle indicators. There are seven months for which
insufficient data exists for estimation of the EPK, leaving 53 observations. There are seven months for which there is no one-
month lagged EPK risk-aversion, leaving 46 observations. Independent variables are measured on the same date on which
EPK risk-aversion is calculated. OLS t-statistics and p-values for each regression are reported. In addition, univariate
correlations of the independent variables with EPK risk-aversion and p-values are reported.

The independent variables are defined as follows. The S&P500 return is the monthly percent change in the S&P500 index.
The change in the implied volatility - objective volatility spread is the monthly percent change in the difference of the at-the-
money implied volatility (calculated as the square root of the average implied variance of nearest maturity S&P500 options
within one percent of the money) and the objective volatility (calculated as the conditional volatility forecast using the estimated
asymmetric GARCH(1,1) model). All interest rate variables are measured in percentage terms. The change in the credit spread
is the monthly change in the difference between average yield-to-maturity on Moody’s Baa rated seasoned long term corporate
bonds and the thirty-year constant maturity treasury bill yield, using data from the Federal Reserve’s H.15 release. The change
in the slope of the term structure is the monthly change in the difference between the thirty-year and three-month constant
maturity Treasury yield, using data from the H.15 release. The change in the three-month T-bill yield is the monthly difference
between the three month constant maturity Treasury yield reported in the H.15 release. Consumption growth is the percentage
growth rate of per-capita non-durable goods and services (monthly, real, seasonally adjusted) from the Federal Reserve’s
FRED database. Monthly U.S. resident population estimates are from the Census Bureau.



Table 5 - Models to forecast the one-day ahead pricing kernel

Time-invariant power specification

N=53 Estimate
Jot 1.0051
Oyt 7.3629
EPK power specification
Average |Std. dev.
one-day [one-day
parameter |parameter
N=133 a bo b, Adj-R2 forecast |forecasts
Jot 0.8163 0.1885 0.0000( 12.25% 1.0053 0.0030
p-value <.0001 <.0001 0.8632
Ot 2.2608 0.6947( 49.92% 7.4872 1.8717
p-value <.0001 <.0001
Time-invariant orthogonal polynomial specification
N=53 Estimate
Jot 0.1945
Ot -2.2457
Oz -0.8791
O -1.0752
EPK orthogonal polynomial specification
Average [Std. dev.
one-day [one-day
parameter |parameter
N=133 |a by b, b, bs Adj-R®>  |forecast |[forecasts
Oot 0.1756 0.4321 0.0290( -0.0075| -0.0065| 39.45% 0.2210 0.0698
p-value 0.0739 0.0996 0.1568 0.8530 0.8961
Oyt 0.1845 0.8545( -0.4116 0.2034 51.72%| -2.0464 0.7858
p-value 0.0429 <.0001 0.0556 0.6154
ot -0.1454 0.1384 0.3496 0.0240( 33.60%| -0.7196 0.4056
p-value 0.2665 0.2823 0.0217 0.9330
O3t -0.2535 0.1455( -0.1492 0.5352 45.67%| -0.9768 0.3011
p-value 0.0024 0.0729 0.1166 0.0033

Table 5 reports estimates of the models used to forecast the one-day ahead pricing kernel for use in
the hedging tests. The time-invariant power specification model is obtained by averaging the scaling
factor (go,) and the risk-aversion coefficient (g, ;) using the 53 monthly estimates from the EPK
estimation. The time-invariant orthogonal polynomial specification model is obtained by averaging
the scaling factor (qo) and generalized Chebyshev coefficients (qit, gz gsy) Using the 53 monthly
estimates from the EPK estimation.
The EPK forecasting models are estimated using a linear regression of pricing kernel parameter
estimates on one-day lagged parameter estimates and the one-day S&P500 return. For estimation,
we construct a sample of estimated pricing kernels (power and orthogonal polynomial) on each of
the 243 hedging sample dates. The hedging dates that are not one day apart are dropped from the
sample. The remaining 133 observations are used in the forecasting model estimation regressions.
The scaling factor (qo,) is only included in its own forecasting regression.
The coefficients on the lagged parameter values (a, bo, bs, ...) are reported along with their p-
values and each regression adjusted r-squared. Parameter forecasts are obtained on each of the
243 hedging dates using the estimated models. Their average values and standard deviations are
also reported.




Table 6 - Hedging test results

Reduction in hedging

Robust t-statistic

Standard error standard (performance of Average number |Average number
deviation of deviation (EPK versus |EPK versus time- |of units of of units of ATM
daily price time-invariant invariant underlying per option per written
Portfolios - pricing kernel specification changes specification) specification) written OTM put |OTM put
No hedge:
$100 OTM written put position $22.56 0.000 0.000
Hedge using underlying:
Time-invariant power pricing kernel $12.41 -0.105 0.000
EPK power pricing kernel $12.11 2.39% 1.16 -0.100 0.000
Time-invariant orthogonal polynomial pricing kernel $13.45 -0.190 0.000
EPK orthogonal polynomial pricing kernel $13.13 2.36% 1.95 -0.116 0.000
Hedge using ATM put:
Time-invariant power pricing kernel $11.21 0.000 0.298
EPK power pricing kernel $11.10 0.95% 2.82 0.000 0.293
Time-invariant orthogonal polynomial pricing kernel $11.99 0.000 0.367
EPK orthogonal polynomial pricing kernel $11.64 2.90% 1.74 0.000 0.256
Hedge using underlying and ATM put:
Time-invariant power pricing kernel $11.36 -0.024 0.231
EPK power pricing kernel $11.29 0.63% 2.94 -0.022 0.229
Time-invariant orthogonal polynomial pricing kernel $12.08 0.083 0.526
EPK orthogonal polynomial pricing kernel $11.67 3.39% 2.12 0.080 0.428

Table 6 reports the hedging test results comparing the EPK power and orthogonal polynomial pricing kernel specifications with the time-invariant (average)

power and orthogonal polynomial specifications over the period 1991 — 1995 (243 sample dates). The particular hedging problem chosen is hedging a $100
position in one-month out-of-the-money (OTM) S&P500 index put options using one-month at-the-money (ATM) put options, the S&P500 index portfolio, or
both. Hedge ratios are constructed to neutralize the hedge portfolio sensitivity to the first-order (and in one case, second order) effects of underlying price

changes using the methodology described in the paper.

The second column reports the daily price change standard deviation and may also be interpreted as a daily percentage hedging error, since the initial
portfolio value is $100. The third column reports the percentage reduction in hedging error obtained by switching from the time-invariant pricing kernel to the
time-varying pricing kernel. The fourth column reports a test of the statistical significance of the improvement in hedging performance in hedging using a time-
varying pricing kernel versus a time-invariant pricing kernel. This test is implemented using a predictive accuracy statistic similar to that proposed by Diebold
and Mariano (1995). The relative performance improvement is measured using the t-statistic for the squared error loss, which is defined as the average
difference between the squared time-invariant pricing kernel one-day hedging error and the squared EPK pricing kernel one-day hedging error. Standard errors
are calculated using the heteroskedasticity and autocorrelation consistent covariance matrix of Newey and West (1987). When the t-statistic is greater than 2
and positive, the EPK pricing kernel hedge performance is significantly better than the time-invariant pricing kernel hedge performance. The average hedge
portfolio weights are reported in the last two columns of the table.
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Figure 1
One-month S&P500 index option prices
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This figure graphs the cross-section of one-month S&P500 option prices from June 1991 — 1995 against dollar moneyness (option exercise
price — closing S&P500 index level). For negative dollar moneyness, put premia are reported. For positive dollar moneyness, call premia are
reported. Hence, all option prices depicted are for out-of-the-money contracts.



Probability density

Figure 2
Estimated S&P500 return density functions
June 1991, June 1992, ... , June 1995
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Figure 2 graphs the estimated S&P500 return probabilities density functions for five representative months (June 1991, June 1992,
..., June 1995). This density function is obtained using Monte-Carlo simulation (200,000 replications) of the estimated asymmetric
GARCH model with an empirical innovation density. The plotted density functions are obtained using a Gaussian kernel density
estimator with bandwidth equal to .9*N s, where s is the return standard deviation and N is the number of replications.
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Figure 3
Annualized S&P500 conditional volatility
Asymmetric GARCH model (1970-1995)
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Figure 4 graphs the annualized conditional volatility forecasts for the asymmetric GARCH model over
the period 1970-1995.



Pricing kernel
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Figure 4
Empirical pricing kernel: power specification
June 1991, June 1992, ..., June 1995
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Figure 4 graphs five representative one-month empirical pricing kernels for June 1991, ... , June 1995 using the power pricing kernel

specification: M(ru.1) = qo(1+r.1) %t The time variation in the one-month empirical pricing kernel suggests that constant relative risk
aversion over equity return states is not supported by the data.



Pricing kernel

Figure 5
Empirical pricing kernel: Orthogonal polynomial specification
June 1991, June 1992, ..., June 1995
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Figure 5 graphs five representative one-month empirical pricing kernels for June 1991, ... , June 1995 using the orthogonal (generalized

Chebyshev) polynomial pricing kernel specification with four terms: M(r.1) = qo (T o(rte1)€XP[01tT1(ree1) + Q2T 2(rw1) + 9z(T3(r1)]. This specification
is more flexible than the power specification, and the data appears to assign greater weight to large negative S&P500 return states and lesser
weight to large positive S&P500 return states.



Figure 6
Time-invariant (average) pricing kernels
June 1991, June 1992, ..., June 1995
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Figure 6 graphs two time-invariant (average) pricing kernels using the power and orthogonal polynomial pricing kernel specifications. Each

average pricing kernel is obtained by evaluating the pricing kernel specification at the average parameter estimates over the period from 1991 to
1995.



EPK risk aversion

Figure 7
Monthly EPK risk aversion
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Figure 7 graphs EPK risk aversion each month from 1991 through 1995. EPK risk aversion is the exponent of the
estimated power pricing kernel (g, ). The seven missing monthly observations are indicated by absence of a data
point as well as a gap in the connecting curve.




