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ABSTRACT 

A volatility model must be able to forecast volatility; this is the central requirement in 
almost all financial applications.  In this paper we outline some stylised facts about 
volatility that should be incorporated in a model; pronounced persistence and mean-
reversion, asymmetry such that the sign of an innovation also affects volatility and the 
possibility of exogenous or pre-determined variables influencing volatility.  We use data 
on the Dow Jones Industrial index to illustrate these stylised facts, and the ability of 
GARCH-type models to capture these features. We conclude with some challenges for 
future research in this area. 
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1. INTRODUCTION 

A volatility model should be able to forecast volatility.  Virtually all the financial uses of 

volatility models entail forecasting aspects of future returns.  Typically a volatility model 

is used to forecast the absolute magnitude of returns, but it may also be used to predict 

quantiles or in fact, the entire density.  Such forecasts are used in risk management, 

derivative pricing and hedging, market making, market timing, portfolio selection, and 

many other financial activities.  In each, it is the predictability of volatility that is 

required.  A risk manager must know today the likelihood that his portfolio will decline 

in the future.  An option trader will want to know the volatility that can be expected 

over the future life of the contract.   To hedge this contract he will also want to know 

how volatile is this forecast volatility.  A portfolio manager may want to sell a stock or a 

portfolio before it becomes too volatile.  A market maker may want to set the bid ask 

spread wider when the future is believed to be more volatile.   

 

There is now an enormous body of research on volatility models. This has been 

surveyed in several articles and continues to be a fruitful line of research for both 

practitioners and academics. As new approaches are proposed and tested, it is helpful to 

formulate the properties that these models should satisfy. At the same time, it is useful 

to discuss properties that standard volatility models do not appear to satisfy.  

 

We will concern ourselves in this paper only with the volatility of univariate series. 

Many of the same issues will arise in multivariate models. We will focus on the volatility 

of asset returns and consequently will pay very little attention to expected returns.  
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First we will establish notation. Let Pt be the asset price at time t and rt = ln(Pt) – ln(Pt-1) 

be the continuously compounded return on the asset over the period t-1 to t. We define 

the conditional mean and conditional variance as: 

(1) ]r[Em t1tt −=  

(2) 2
tt1tt ]mr[Eh −= −  

where Et-1[u] is the expectation of some variable u given the information set at time t-1 

which is often denoted ]|u[E 1t −ℑ .  Without loss of generality this implies that Rt is 

generated according to the following process: 

(3)  tttt hmR ε+= , where  Et-1[ε t] = 0 and Vt-1[ε t] = 1 

In this paper we are often concerned with the conditional variance of the process and the 

distribution of returns. Clearly the distribution of ε  is central in this definition. 

Sometimes a model will assume: 

(3) {ε t} ~ i.i.d. F( )  

where F is the cdf of ε . 

 

We can also define the unconditional moments of the process. The mean and variance 

are naturally defined as 

(4) 2
t

2
t ]r[E   ],r[E µ−=σ=µ   

and the unconditional distribution is defined  

(5) ( ) G~/rt σµ−   

where G is the cdf of the normalized returns. 
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A model specified as in equations (1), (2) and (3) will imply properties of (4) and (5) 

although often with considerable computation. A complete specification of (4) and (5)  

however, does not imply conditional distributions since the degree of dependence is not 

formulated. Consequently, this does not deliver forecasting relations.  Various models 

for returns and volatilities have been proposed and employed. Some such as the 

GARCH type of models are formulated in terms of the conditional moments. Others 

such as stochastic volatility models are formulated in terms of latent variables which 

make it easy to evaluate unconditional moments and distributions but relatively difficult 

to evaluate conditional moments.   Still others, such as multi-fractals or stochastic 

structural break models, are formulated in terms of the unconditional distributions.  

These models often require reformulation to give forecasting relations. 

 

Higher moments of the process often figure prominently in volatility models.  The 

unconditional skewness and kurtosis are defined as usual by 

(6) 
( ) ( )

4

4

3

3

,
σ

µζ
σ

µξ −
=

−
= tt rErE

 

The conditional skewness and kurtosis are similarly defined 

(7) 
( ) ( )
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Furthermore, we can define the proportional change in conditional variance as 

(8) variance return=
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Some of the variance return is predictable and some is an innovation.  The volatility of the 

variance is therefore the standard deviation of this innovation.  This definition is directly 

analogous to price volatility. 

(9) ( )return varianceVVoV =  

A model will also generate a term structure of volatility. Defining ]r[Eh 2
kttt|kt ++ ≡ , the 

term structure of volatility is the forecast standard deviation of returns of various 

maturities, all starting at date t. Thus for an asset with maturity at time t+k, this is 

defined as 

(10) ( )∑∑
=

+

=
++ ≅








≡ν

k

1j

jt
2

t

k

1j
jttt|kt rErV  

The term structure of volatility summarizes all the forecasting properties of second 

moments.  From such forecasts, several specific features of volatility processes are easily 

defined. 

 

2. STYLIZED FACTS ABOUT ASSET PRICE VOLATILITY 

 

A number of stylised facts about the volatility of financial asset prices have emerged 

over the years, and been confirmed in numerous studies. A good volatility model, then, 

must be able to capture and reflect these stylised facts. In this section we document some 

of the common features of asset price volatility processes. 
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2.1 Volatility exhibits persistence 

The clustering of large moves and small moves (of either sign) in the price process was 

one of the first documented features of the volatility process of asset prices. Mandelbrot 

(1963) and Fama (1965) both reported evidence that large changes in the price of an asset 

are often followed by other large changes, and small changes are often followed by small 

changes. This behavior has been reported by numerous other studies, such as Baillie et 

al. (1996), Chou (1988) and Schwert (1989). The implication of such volatility clustering is 

that volatility shocks today will influence the expectation of volatility many periods in 

the future. Figure 3.2, which will be described in the following section, displays the daily 

returns on the Dow Jones Industrials Index over a twelve year period and shows 

evidence that the volatility of returns varies over time.  

 

To make a precise definition of volatility persistence, let the expected value of the 

variance of returns k periods in the future be defined as 

(11) 2
ktkttt| kt )mr(Eh +++ −≡ . 

The forecast of future volatility then will depend upon information in today’s 

information set such as today’s returns. Volatility is said to be persistent if today’s return 

has a large effect on the forecast variance many periods in the future. Taking partial 

derivatives, the forward persistence is: 

(12) 2
| 

| 
t

tkt
tkt r

h

∂
∂

= +
+θ  

This is a dimensionless number as squared returns and conditional variance are in the 

same units.  
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For many volatility models this declines geometrically but may be important even a year 

in the future. A closely related measure is the cumulative persistence, which is the 

impact of a return shock on the average variance of the asset return over the period from 

t to t+k. It is defined as 

(13) 
( )

)...(
)...(

| 1| 1| 
1

2
1| 1| 

1

| tttkttktk
t

ttkttktk
tkt r

hhh
+−++

+−++
+ +++=

∂
+++∂

= θθθφ  

The response of long-term option prices to volatility shocks suggests that volatility 

models should have significant cumulative persistence a year in the future. 

 

A further measure of the persistence in a volatility model is the “half-life” of volatility. 

This is defined as the time taken for the volatility to move halfway back towards its 

unconditional mean following a deviation from it. 

(14) 2
t|1t2

12
t|kt hh:k σ−=σ−=τ ++   

 

2.2  Volatility is mean reverting 

Volatility clustering implies that volatility comes and goes. Thus a period of high 

volatility will eventually give way to more normal volatility and similarly, a period of 

low volatility will be followed by a rise. Mean reversion in volatility is generally 

interpreted as meaning that there is a normal level of volatility to which volatility will 

eventually return. Very long run forecasts of volatility should all converge to this same 

normal level of volatility, no matter when they are made. While most practitioners 

believe this is a characteristic of volatility, they might differ on the normal level of 

volatility and whether it is constant over all time and institutional changes. 
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More precisely, mean reversion in volatility implies that current information has no 

effect on the long run forecast. Hence 

(15) 0| =+
∞→

tkt
k

plim θ ,   for all t. 

which is more commonly expressed as 

(16) ∞<=+
∞→

2
| ttkt

k

hplim σ ,    for all t. 

even though they are not quite equivalent. 

 

It is possible to generalize the concept of mean reversion to cover processes without 

finite variance. Consider some other statistic such as the interquartile range or the 5% 

quantile and call it tq . The same definitions in (12), (15) and (16) can be used to describe 

persistence and mean reversion. The cumulative versions however typically do not have 

the same simple form as (13), see for example the CAViaR model of Engle and 

Manganelli (1999). 

 

Options prices are generally viewed as consistent with mean reversion.  Under simple 

assumptions on option pricing, the implied volatilities of long maturity options are less 

volatile than those of short maturity options.  They usually are closer to the long run 

average volatility of the asset than short maturity options.   

2.2 Innovations may have an asymmetric impact on volatility 

Many proposed volatility models impose the assumption that the conditional volatility 

of the asset is affected symmetrically by positive and negative innovations. The 
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GARCH(1,1) model, for example, allows the variance to be affected only by the square of 

the lagged innovation; completely disregarding the sign of that innovation. 

 

For equity returns it is particularly unlikely that positive and negative shocks have the 

same impact on the volatility. This asymmetry is sometimes ascribed to a leverage effect 

and sometimes to a risk premium effect. In the former theory, as the price of a stock falls, 

its debt-to-equity ratio rises, increasing the volatility of returns to equity holders. In the 

latter story, news of increasing volatility reduces the demand for a stock because of risk 

aversion. The consequent decline in stock value is followed by the increased volatility as 

forecast by the news.  

 

Black (1976), Christie (1982), Nelson (1991), Glosten et al. (1993) and Engle and Ng (1993) 

all find evidence of volatility being negatively related to equity returns. In general, such 

evidence has not been found for exchange rates. For interest rates a similar asymmetry 

arises from the boundary of zero interest rates. When rates fall, (prices increase) they 

become less volatile in many models and in most empirical estimates, see Engle Ng and 

Rothschild, Chan et al. (1992) and Brenner et al. (1996). In diffusion models with 

stochastic volatility, this phenomenon is associated with correlation between the shock 

to returns and the shock to volatility.   

 

The asymmetric structure of volatility generates skewed distributions of forecast prices 

and under simple derivative pricing assumptions, this gives option implied volatility 

surfaces which have a skew.  That is, the implied volatilities of out-of-the-money put 
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options are higher than those of at-the-money options, which in turn are higher than the 

implieds of in-the-money puts. 

2.3  Exogenous variables may influence volatility 

Most of the volatility characteristics outlined above have been univariate; relating the 

volatility of the series to only information contained in that series’ history. Of course, no-

one believes that financial asset prices evolve independently of the market around them, 

and so we expect that other variables may contain relevant information for the volatility 

of a series. Such evidence has been found by, inter alia, Bollerslev and Melvin (1994), 

Engle and Mezrich (1996), Engle, Ito and Lin (1990) and Engle, Ng and Rothschild 

(1990). 

 

In addition to other assets having an impact on the volatility series, it is possible that 

deterministic events also have an impact. Such things as scheduled company 

announcements, macroeconomic announcements and even deterministic time-of-day 

effects may all have an influence on the volatility process. Andersen and Bollerslev 

(1998a), for example, find that the volatility of the deutsche mark – dollar exchange rate 

increases markedly around the time of the announcement of U.S. macroeconomic data, 

such as the Employment Report, the Producer Price Index or the quarterly GDP. Glosten 

et al. (1993) find that indicator variables for October and January assist in explaining 

some of the dynamics of the conditional volatility of equity returns. 
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2.4 Tail Probabilities 

It is well established that the unconditional distribution of asset returns has heavy tails.  

Typical kurtosis estimates range from 4 to 50 indicating very extreme non-normality.  

This is a feature that should be incorporated in any volatility model.  The relation 

between the conditional density of returns and the unconditional density partially 

reveals the source of the heavy tails.  If the conditional density is Gaussian, then the 

unconditional density will have excess kurtosis due simply to the mixture of Gaussian 

densities with different volatilities.  However there is no reason to assume that the 

conditional density itself is Gaussian, and many volatility models assume that the 

conditional density is itself fat tailed, generating still greater kurtosis in the 

unconditional density.   Depending on the dependence structure of the volatility 

process, the returns may still satisfy standard extreme value theorems.   

 

2.5 Forecast Evaluation 

Establishing the effectiveness of a volatility forecast is not straightforward since 

volatility itself is not observed.  The method most consistent with the estimated models 

is simply to take each return divided by its one-step ahead forecast standard deviation 

and then apply any type of test to see if the square of this variable is predictable.   

 

An alternative type of test is to examine the forecast accuracy of the model in predicting 

“realized volatility”, future values of sample variances.  For a one period problem, this 

amounts to regressing squared returns on a constant and the conditional variance.  The 

test is whether the intercept is zero and the slope is one.  Various forecasts can be 

entered into this equation to determine which is the best. 
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(17) ttt ubhar ++=2  

This approach is not recommended for several reasons.  Because r is heteroskedastic, r2 

will be much more heteroskedastic; hence this regression will be very inefficient and will 

have misleading standard errors.  Robust standard errors should be used, however these 

may not make an adequate adjustment.  Correcting for the heteroskedasticity would 

involve dividing both sides by h, leading simply to the original approach.   

 

A second drawback is that r2 is a noisy estimate of the volatility to be estimated.  Hence 

the maximum R2 that can be achieved by this regression, if all is perfectly correct, is very 

low.  To improve this, investigators may use volatility measured over longer periods 

such as weekly or monthly realized volatilities.  When non-overlapping periods are 

used, the sample becomes much smaller, and when overlapping data are used, the 

standard errors become far more problematic.  See for example Stock and Richardson 

(1989).   Andersen and Bollerslev (1998b) proposed using a measure of realized volatility 

based on observations within the period.  For forecasting daily volatility, they used 5 

minute data to construct a daily volatility.  This improves the efficiency of this 

regression greatly.  There is however a limit as high frequency data has lots of potential 

pitfalls due to bid ask bounce and irregular spacing of the price quotes.   

 

A third drawback to this approach is that it measures the level of variance errors rather 

than the more realistic proportional errors.  This criterion will assess primarily the 

performance for high volatilities.   A solution might be to take logs of the realized 

volatility and its forecast.  For more discussion see Bollerslev et al. (1994). 
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3. AN EMPIRICAL EXAMPLE 

 

To illustrate the above points, we now present a concrete example. We use daily close 

price data on the Dow Jones Industrials index, over the period 23 August, 1988 to 22 

August, 2000, representing 3,131 observations1. The Dow Jones Industrials index is 

comprised of 30 industrial companies’ stocks, and represent about a fifth of the total 

value of the U.S. stock market. We take the log-difference of the value of the index, so as 

to convert the data into continuously compounded returns. Figures 3.1 and 3.2 plot the 

price level and the returns on the index over the sample period. 

3.1  Summary of the data 

Some summary statistics on the data are presented in Table 3.1 below. As this table 

shows, the index had a small positive average return of about one-twentieth of a percent 

per day. The daily variance was 0.8254, implying an average annualized volatility of 

14.42%. The skewness coefficient indicates that the returns distribution is substantially 

negatively skewed; a common feature of equity returns. Finally, the kurtosis coefficient, 

which is a measure of the thickness of the tails of the distribution, is very high. A 

Gaussian distribution has kurtosis of 3, implying that the assumption of Gaussianity for 

the distribution of returns is dubious for this series2. 

 

                                                 

1 These data in ASCII format are available from the second author’s web site at 
http://www.econ.ucsd.edu/~apatton/dowjones.txt . 
2 The Jarque-Bera test for normality of the returns distribution yields a statistic of 4914.116, much 
greater than any critical value at conventional confidence levels, thus rejecting the null 
hypothesis of normally distributed returns. 
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TABLE 3.1: DOW JONES INDUSTRIAL INDEX RETURNS SUMMARY STATISTICS. 

   
Mean  0.0550  
Variance  0.8254  
Skewness -0.5266  
Kurtosis  9.0474  
   
 
 

An analysis of the correlogram of the returns, presented in Figure 3.3, indicates only 

weak dependence in the mean of the series, and so for the remainder of the paper we 

will assume a constant conditional mean. The correlogram of the squared returns, 

however, indicates substantial dependence in the volatility of returns.  

3.2 A volatility model 

A widely used class of models for the conditional volatility is the autoregressive 

conditionally heteroskedastic class of models introduced by Engle (1982), and extended 

by Bollerslev (1986), Engle et al (1987), Nelson (1991), Glosten et al (1993), amongst many 

others. See Bollerslev et al. (1992) or Bollerslev et al. (1994) for summaries of this family 

of models. 

 

A popular member of the ARCH class of models is the GARCH(p,q) model: 

(18) ∑∑
=

−
=

− +−+=
q

j
jtj

p

i
itit hRh

11

2)( βµαω  
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This model can be estimated via maximum likelihood once a distribution for the 

innovations, ε t, has been specified. A commonly employed assumption is that the 

innovations are Gaussian3. 

 

Using the Schwarz Information Criterion we found that the best model in the 

GARCH(p,q) class for p ∈ [1,5] and q ∈ [1,2] was a GARCH(1,1). The results for this 

model are presented below: 

 

TABLE 3.2: RESULTS FROM THE GARCH(1,1) MODEL 

 Coefficient Robust standard error 
constant 0.0603 0.0143 

ω 0.0082 0.0025 
α 0.0399 0.0104 
β 0.9505 0.0105 

 

A test for whether this volatility model has adequately captured all of the persistence in 

the variance of returns is to look at the correlogram of the standardized squared 

residuals. If the model is adequate, then the standardized squared residuals should be 

serially uncorrelated. The Ljung-Box Q-statistic at the twentieth lag of the standardized 

squared residuals was 8.9545, indicating that the standardized squared residuals are 

indeed serially uncorrelated. 

                                                 

3 Bollerslev and Wooldridge (1992) showed that the maximum likelihood estimates of the 
parameters of the GARCH model assuming Gaussian errors are consistent even if the true 
distribution of the innovations is not Gaussian. The usual standard errors of the estimators are 
not consistent when the assumption of Gaussianity of the errors is violated, so Bollerslev and 
Wooldridge supply a method for obtaining consistent estimates of these. 
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3.3 Mean reversion and persistence in volatility 

The results above indicate that the volatility of returns is quite persistent, with the sum 

of α and β being 0.9904, implying a volatility half-life of about 73 days. Although the 

returns volatility appears to have quite long memory, it is still mean reverting: the sum 

of α and β is significantly less than one4, implying that although it takes a long time, the 

volatility process does return to its mean. The unconditional mean of the GARCH(1,1) 

process is calculated as the ratio of ω to the difference between 1 and the sum of α and β. 

For the Dow Jones over the sample period this turns out to be 0.8542, which implies that 

the mean annualized volatility over the sample was 14.67%; very close to the sample 

estimate of the unconditional volatility given in Table 3.1. A plot of the annualized 

conditional volatility estimates over the sample period is given in Figure 3.4. 

 

As described in section 2.1, a measure of the persistence in volatility is the partial 

derivative of the overnight return volatility at time t+k with respect to the squared 

return at time t, denoted θt+k,t . A plot of θt+k,t for k ranging from 1 to 100 is given in 

Figure 3.5. This plot shows that the impact decays geometrically, and is essentially zero 

beyond one hundred days. The limit of this sequence is zero, confirming that this 

volatility process is mean reverting. The equivalent measure for the volatility of k-period 

returns, denoted φt+k,t in section 2.1, also declines toward zero, though at a slower rate, 

as equation (13) suggests that it should. 

 

                                                 

4 A one-sided t-test that the sum of alpha and beta is greater than or equal to one yields a test 
statistic of –2.54, which is greater (in absolute value) than the 5% critical value of –1.96. 
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An alternative way to observe the mean-reverting behavior in ht is in the structure of 

long-term forecasts of volatility. Figure 3.6 presents forecasts at 23 August, 1995 and 23 

August, 1997 of the annualized daily return volatility out to a year from each of those 

dates. The first of these forecasts was made at a date with unusually high volatility, and 

so the forecasts of volatility decline gradually to the unconditional variance level. The 

second of these forecasts was made during a tranquil period, and so the sequence of 

forecasts is increasing toward the unconditional volatility level.  

 

One way to examine the volatility of volatility, VoV, is to plot the one period ahead 

volatility and the k-periods ahead forecast volatility. In Figure 3.7 we present these 

forecasts for the one day, one quarter, one year, and two year cumulative forecasts. It is 

immediately apparent that the movements in the one day horizon are larger than the 

movements in the 2 year horizon.  The intermediate horizons lie between.  This is an 

implication of the mean reversion in volatility.  The annualized estimates of the volatility 

of volatility for these forecasts are given below. 

   

TABLE 3.3: VOLATILITY OF VOLATILITY FOR VARIOUS FORECAST HORIZONS FROM GARCH(1,1)  

 One Day One Quarter One Year Two Years 

Std. Dev. 51.19845 39.45779 22.52775 13.77907 

     

3.3  An asymmetric volatility model 

As mentioned in the previous section, the sign of the innovation may influence the 

volatility in addition to its magnitude. There are a number of ways of parameterising 
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this idea, one of which is the Threshold GARCH (or TARCH) model.  This model was 

proposed by Glosten et al. (1993) and Zakoian (1994) and was motivated by the 

EGARCH model of Nelson (1991). 

(19) ∑∑∑
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where δt-k is an indicator variable, taking the value one if the residual at time t-k was 

negative, and zero elsewhere. 

 

The TARCH model implies that a positive innovation at time t has an impact on the 

volatility at time t+1 equal to α times the residual squared, while a negative innovation 

has impact equal to (α+γ) times the residual squared. The presence of the leverage effect 

would imply that the coefficient γ is positive; that is, that a negative innovation has a 

greater impact than a positive innovation. 

 

We estimated the TARCH(1,1,1) model, and present the results in Table 3.3 below. These 

results indicate that the sign of the innovation has a significant influence on the volatility 

of returns. The coefficient on negative residuals squared is large and significant, and 

implies that a negative innovation at time t increases the volatility at time t+1 by over 

four times as much as a positive innovation of the same magnitude. 



 19 

Table 3.4: Results from the TARCH(1,1,1) model 

 Coefficient Robust standard error 
constant 0.0509 0.0151 

ω 0.0184 0.0024 
α 0.0151 0.0070 
γ 0.0654 0.0083 
β 0.9282 0.0073 

 

3.4 A model with exogenous volatility regressors 

It may also be of interest to gauge the impact of exogenous variables on the volatility 

process.  This type of model could offer a structural or economic explanation for 

volatility.  Such a model may be written as: 

(20) 1
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As an example, we used the lagged level of the 3 month U.S. Treasury bill rate as an 

exogenous regressor in our model of Dow Jones Industrials index returns volatility. The 

T-bill rate is correlated with the cost of borrowing to firms, and thus may carry 

information that is relevant to the volatility of the Dow Jones Industrials index. 

 

TABLE 3.5: RESULTS FROM THE GARCH(1,1)-X MODEL 

 Coefficient Robust standard error 
Constant 0.0608 0.0145 

ω -0.0010 0.0016 
α 0.0464 0.0040 
β 0.9350 0.0065 
ϕ 0.0031 0.0005 

 

As the reader can see, the impact of the T-bill rate on the volatility process of the Dow 

Jones Industrials is small, but quite significant. The positive sign on this coefficient 
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indicates that high interest rates are generally associated with higher levels of equity 

return volatility. This result confirms that of Glosten et al. (1993) who also find that the 

Treasury bill rate is positively related to equity return volatility. 

 

3.5 Aggregation of volatility models 

Despite the success of GARCH models in capturing the salient features of conditional 

volatility, it has some undesirable characteristics.  Most notably, the theoretical 

observation that if a GARCH model is correctly specified for one frequency of data, then 

it will be misspecified for data with different time scales, makes a researcher uneasy.  

Similarly, if assets follow a GARCH model, then portfolios do not exactly do so. Below, 

we present some evidence of this for our example data set. We consider the estimation of 

the simple GARCH(1,1) model on the data, sampled at various frequencies. The results 

are presented in Table 3.6. 

 

TABLE 3.6: GARCH(1,1) PARAMETER ESTIMATES FOR DATA OF DIFFERING FREQUENCIES 

 Daily data 2-Day 
period 

3-Day 
period 

4-Day 
period Weekly data 

Constant 0.0603 0.1145 0.1715 0.2148 0.2730 
ω 0.0082 0.0138 0.0304 0.0238 0.0577 
α 0.0399 0.0419 0.0528 0.0416 0.0496 
β 0.9505 0.9498 0.9358 0.9529 0.9408 

 

These results indicate that the sampling frequency does indeed affect the results 

obtained. As an example, the implied half-life of volatility implied by each of the models 

(in days) is 73, 168, 183, 508 and 365. Clearly these are substantial differences although 
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the statistical and forecast significance of these differences should be assessed.  To some 

extent, the interpretation of these models with aggregate data is slightly different. 

 

Ideas such as the weak GARCH specification of Drost and Nijman (1993) may represent 

an alternative solution. However, the empirical estimates on different time scales or 

portfolios are typically reasonable, suggesting that GARCH can be interpreted as an 

approximation or filter rather than a full statistical specification.  Steps in this direction 

are developed by Nelson and Foster (1994). 

 

4.    CONCLUSIONS AND CHALLENGES FOR FUTURE RESEARCH 

The goal of this paper has been to characterize a good volatility model by its ability to 

forecast and capture the commonly held stylised facts about conditional volatility. The 

stylised facts include such things as the persistence in volatility, its mean-reverting 

behaviour, the asymmetric impact of negative versus positive return innovations and 

the possibility that exogenous or pre-determined variables may have a significant 

influence on volatility. 

 

We used twelve years of daily data on the Dow Jones Industrials index to illustrate these 

stylised facts, and the ability of models from the GARCH family to capture these 

characteristics. The conditional volatility of the Dow Jones Industrials index was found 

to be quite persistent, with a volatility half-life of about 73 days, yet tests for non-

stationarity indicated that it is mean reverting. A negative lagged return innovation was 

found to have an impact on conditional variance roughly four times as large as a 
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positive return innovation, and the 3-month U.S. Treasury bill rate was found to be 

positively correlated with volatility, implying that higher interest rates lead to higher 

equity return volatility. Finally, we found evidence consistent with the theoretical result 

that the empirical results obtained are dependent on the sampling frequency – a 

drawback of the GARCH specification. 

 

Various aspects of the volatility process are important topics of research.  The need for a 

model to forecast 100 or even 1000 steps into the future has suggested long memory or 

fractionally integrated processes.  In spite of substantial research input, the value for 

these forecast situations has not yet been established.  Shifts in the volatility process are 

sometimes thought to be discrete events; only the Hamilton and Susmel (1994) model 

and its extension by Gray (1996) have been developed for this task.  Time varying higher 

conditional moments are clearly of interest but have proven difficult to estimate.  

Hansen (1994) and more recently Harvey and Sidiqui (1999) have had some success.   
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FIGURE 3.1: THE DOW JONES INDUSTRIAL INDEX, 23 AUG, 1988 TO 22 AUG, 2000. 
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FIGURE 3.2: RETURNS ON THE DOW JONES INDUSTRIAL INDEX. 
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FIGURE 3.3: CORRELOGRAMS OF RETURNS AND SQUARED RETURNS 
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FIGURE 3.4: ESTIMATED CONDITIONAL VOLATILITY USING A GARCH(1,1) MODEL 
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FIGURE 3.5: THETA AND PHI FOR K  RANGING FROM 1 TO 100. 
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FIGURE 3.6: FORECASTS OF DAILY RETURN VOLATILITY USING THE GARCH(1,1) MODEL. 
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FIGURE 3.7  VOLATILITIES AT DIFFERENT HORIZONS FROM GARCH(1,1) 

5

10

15

20

25

30

35

8/23/88 6/23/92 4/23/96 2/22/00

HORIZOND
HORIZONQ

HORIZONY
HORIZON2Y

 

 


