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HEDGING VOLATILITY RISK 
 

Abstract 
 
 Volatility risk has played a major role in several financial debacles (for example, 

Barings Bank, Long Term Capital Management).  This risk could have been managed 

using options on volatility which were proposed in the past but were never offered for 

trading mainly due to the lack of a tradable underlying asset. 

The objective of this paper is to introduce a new volatility instrument, an option 

on a straddle, which can be used to hedge volatility risk.  The design and valuation of 

such an instrument are the basic ingredients of a successful financial product. Unlike the 

proposed volatility index option, the underlying of this proposed contract is a traded at-

the-money-forward straddle, which should be more appealing to potential participants.  In 

order to value these options, we combine the approaches of compound options and 

stochastic volatility.  We use the lognormal process for the underlying asset, the 

Orenstein-Uhlenbeck process for volatility, and assume that the two Brownian motions 

are independent.  Our numerical results show that the straddle option price is very 

sensitive to the changes in volatility which means that the proposed contract is indeed a 

very powerful instrument to hedge volatility risk. 
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I. INTRODUCTION 
 
 Risk management is concerned with various aspects of risk, in particular, price 

risk and volatility risk.  While there are various instruments (and strategies) to deal with 

price risk, exhibited by the volatility of asset prices, there are practically no instruments 

to deal with the risk that volatility itself may change.  Volatility risk has played a major 

role in several financial disasters in the past 15 years.  Long-Term-Capital-Management 

(LTCM) is one such example,  “In early 1998, Long-Term began to short large amounts 

of equity volatility.” (Lowenstein, R. (2000) p.123)1.  LTCM was selling volatility on the 

S&P500 index and other European indexes, by selling options (straddles) on the index.  

They were exposed to the risk that volatility, as reflected in options premiums, will 

increase.  They did not hedge this risk2.  Though one can devise a dynamic strategy using 

options to deal with volatility risk such a strategy may not be practical for most users.  

There were several attempts to introduce instruments that can be used to hedge volatility 

risk (e.g., the German DTB launched a futures contract on the DAX volatility index) but 

those were largely unsuccessful3.   

 Given the large and frequent shifts in volatility in the recent past4 especially in 

periods like the summer of ’97 and the fall of ’98, there is a growing need for instruments 

to hedge volatility risk.  Past proposals of such instruments included futures and options 

on a volatility index.  The idea of developing a volatility index was first suggested by 

                                                
1 The quote and the information are taken from Roger Lowenstein’s book When Genius Failed  

(2000), Ch.7. 
2 Another known example is the volatility trading done by Nick Leeson in ’93 and ’94 in the 

Japanese market.  His exposure to volatility risk was a major factor in the demise of Barings Bank 
(see Gapper and Denton (1996)). 

3 Volatility swaps have been trading for some time on the OTC market but we have no indication of 
their success. 

4 The volatility of volatility can be observed from the behavior of a volatility index, VIX, provided 
in Figure 1. 
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Brenner and Galai (1989).  In a follow-up paper, Brenner and Galai (1993) have 

introduced a volatility index based on implied volatilities from at-the-money options5.  In 

1993 the Chicago Board Options Exchange (CBOE) has introduced a volatility index, 

named VIX, which is based on implied volatilities from options on the SP100 index.  So 

far there have been no options offered on such an index.  The main issue with such 

derivatives is the lack of a tradable underlying asset which market makers could use to 

hedge their positions and to price them.  Since the underlying is not tradable we cannot 

replicate the option payoffs and we cannot use the no-arbitrage argument.  The first 

theoretical paper6 to value options on a volatility index is by Grunbichler and Longstaff 

(1996).  They specify a mean reverting square root diffusion process for volatility similar 

to that of Stein and Stein (1991) and others.  Since volatility is not trading they assume 

that the premium for volatility risk is proportional to the level of volatility.  This 

approach is in the spirit of the equilibrium approach of Cox, Ingersoll and Ross (1985) 

and Longstaff and Schwartz (1992). A more recent paper by Detemple and Osakwe 

(1997) also uses a general equilibrium framework to price European and American style 

volatility options. They emphasize the mean-reverting in log volatility model. 

              Since the payoffs of the option proposed here can be replicated by a self-

financing portfolio, consisting of the underlying straddle and borrowing, we value the 

option using a no arbitrage approach.  The idea proposed and developed in this paper 

addresses both related issues: hedging and pricing.  The key feature of the straddle option 

is that the underlying asset is an at-the-money-forward (ATMF) straddle rather than a 

volatility index.  The ATMF straddle is a traded asset priced in the market place and well 

                                                
5   The same idea is also described in Whaley (1993). 
6    Brenner and Galai (1993) use a binomial framework to value such options where tradability is 

implicitly assumed. 
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understood by market participants.  Since it is ATMF, its relative value (call + put)/stock 

is mainly affected by volatility.  Changes in volatility translate almost linearly into 

changes in the value of the underlying, the ATMF straddle7.  Thus options on the ATMF 

straddle are options on volatility.  We believe that such an instrument will be more 

attractive to market participants, especially to market makers.  In the next section we 

describe in detail the design of the instrument.  In section III we derive the value of such 

an option.  Section IV provides the conclusions. 

 

II. The Design of the Straddle Option 

 
To manage the market volatility risk, say of the S&P500 index, we propose a new 

instrument, a straddle option or STO 1 2( , , )STOK T T with the following specifications.  At 

the maturity date 1T  of this contract, the buyer has the option to buy a then at-the-money- 

forward straddle with a prespecified exercise price STOK .  The buyer receives both, a call 

and a put, with a strike price equal to the forward price, given the index level at time 1T 8.  

The straddle matures at time 2T . 

 Our proposed contract has two main features:  first, the value of the 

contract at maturity depends on the volatility expected in the interval 1T  to 2T  

and therefore it is a tool to hedge volatility  changes.  Second, the underlying asset is a 

traded straddle.  We believe that, unlike the volatility options, this design will greatly 

                                                
7  Strictly speaking this is true in a B-S world (See Brenner and Subrahmanyam (1988)) but here, with     
stochastic volatility, it may include other parameters (e.g. vol. of volatility). 
8 Theoretically there is no difference if the delivered option is a call, a put or a straddle since they are all 
ATMF.  Practically, however, there may be some differences in prices due, for example, to transactions 
costs.  A straddle would provide a less biased hedge vehicle. 
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enhance its acceptance and use by the investment community.  The proposed instrument 

is conceptually related to two known exotic option contracts:  compound options and 

forward start options9.  Unlike the conventional compound option our proposed option is 

an option on a straddle with a strike price, unknown at time 0, to be set at time 1T  to the 

forward value of the index level.  In general, in valuing compound options it is assumed 

that volatility is constant (see, for example, Geske (1979)).  Given that the objective of 

the instrument proposed here is to manage volatility risk, we need to introduce stochastic 

volatility.  

 

III.  Valuation of the Straddle Option 

The valuation of the straddle option (STO) will be done in two stages.  First, we value 

the compound option on a straddle assuming deterministic volatility as our benchmark 

case.  In the second stage we use stochastic volatility to value the option and then we 

relate the two.   

 

A.  The Case of Deterministic Volatility 

 
To get a better understanding of the stochastic volatility case we first analyze the 

case where volatility changes only once and is known at time zero.  We assume a 

constant volatility 1σ  between time 0 and 1T   (expiration date of STO) and a volatility 2σ  

between 1T  and 2T  (expiration date of the straddle ST).      

                                                
9 Forward start options are paid for now but start at some time 1T  in the future.  A forward start option with 

maturity 2T , as our proposed straddle, can be regarded as a special case of our straddle option in which the 

strike price STOK  is zero. 
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We first value the straddle at 1T , the day it is delivered.  The straddle has the following 

payoff at maturity 2T   

 

ST( 2T )=C( 2T )+P( 2T )= ± 2 1( )

2 1max( ( ) ( ) ,0)r T TS T S T e −−                            

                                       °2 1( )

1 2max( ( ) ( ),0)r T TS T e S T−+ −                    (1) 

where 2( )C T  and 2( )P T  are the payoff of the call and put respectively, °
2( )S T  is the 

stock price at 2T and 1( )S T is the stock price at 1T .  Since the strike price is at-the-

money-forward at 1T   2 1( )

1( ) r T TK S T e −= .   

Assuming that the options are European as is the typical index option and that the 

Black-Scholes assumptions hold we have 

 

1( )

1 1 2( ) ( ) ( ) ( )[2 ( ) 1] ( ) [2 ( ) 1]r t TST t C t P t S t N d S T e N d−= + = − − −                  (2) 

where     

2
1 1 2 2

1

2 2

1
ln( / ( )) ( ) ( )

2tS S T r t T T t
d

T t

σ

σ

− − + −
=

−
S              2 1 2 2d d T tσ= − −  

for the price of the straddle at  1 2T t T≤ ≤ .   

 
In particular for t= 1T  we know that (See Brenner and Subrahmanyam (1988))  

 
 

1 1 2 2 1 1( ) ( ) (1/ 2 ) * ( )C T P T T T S Tπ σ= ≈ −                                          (3) 

 
 Thus 

 

 1( ) 2ST T ≈ 1 2 2 1( )(1/ 2 )S T T Tπ σ −                                                      (4) 
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The straddle is practically linear in volatility.  The relative value of the straddle, 

1 1( ) / ( )ST T S T  is solely determined by volatility to expiration.   

 

The value of the straddle option (STO) is the value of a compound option where 

the payoff of STO at expiration 1( )T is  

 

1max( ( ) ,0)STOST T K− 1max[ ( ) ,0]STOS T Kα= −                                    (5)          

where   2 2 1

1
2

2
T Tα σ

π
= −                                                        (6) 

Equivalently, the payoff can be written as  

maxα 1[ ( ) / ,0]STOS T K α−                                                 (7) 

 

Thus the price of the straddle, using the B-S model, at any time t, 10 t T≤ <  is 

 

1( )

1 1( ) ( )r T t

t t STOSTO S N d K e N d T tα σ− −= ⋅ ⋅ − ⋅ − −                           (8) 

 

where  

1( ) 2
1 1

1 1

1
ln( / ) ( )

2
r T t

t STOS K e T t
d

T t

α σ

σ

− − + −
=

−
                                       (9) 
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Equation (8) gives the value of an option on a straddle10 which will be delivered at time 

1T .  This is a compound option that is easy to value since the straddle is at-the-money-

forward on the delivery date which reduces the valuation to a univariate like case where 

the α  term includes the parameter 2σ .   

Using (8) and (9) we can derive all the sensitivities of  STO to changes in the 

various parameters.  In particular, we are interested in the sensitivities of STO to the 

volatility in the first period 1T , called vega 1 , and in the second period 2T , called vega 2 .  

Vega 1  is given by 

1 1

1

'( )t
t

STO
vega S T t N d

σ
∂

= = − ⋅
∂

                                 (10) 

where 'N (d) is the standard normal density function, which is a standard result for any 

option except that d is also determined by α  which is in turn determined by 2σ , the 

volatility that will prevail in the second period.  Thus, vega in the first period is affected 

by volatility in the second period which makes sense since the payoff at expiration of 

STO is determined by the volatility in the subsequent period.  This leads to the next 

question; how does the change in 2σ  affect tSTO ?                        This is given by 

 2 2 1 1 1

2 2

( ) ( ) 2 '( ( ))t
t t

STO
vega S N d S N d T T N d T

α
σ σ

∂ ∂
= = = ⋅ ⋅ − ⋅

∂ ∂
      (11) 

where  1 1 2 1

1
( )

2
d T T Tσ= −                   

and 'N  1 1( ( ))d T  is the standard normal density function at 1T , the maturity of STO.      

                                                
10 It should be noted that the value of STO is based on an approximation to the value of the ATMF straddle, 
ST.  As argued before this is practically indistinguishable from the theoretical value. 
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The sensitivity of STO to the volatility during the life of the straddle itself is also 

a function of the volatility in the current period, not just the volatility of the subsequent 

period.  Since this case is only our benchmark case, we have not derived the other 

sensitivities, like theta and gamma, etc.   

We would like now to turn to the case which is the very reason for offering a 

straddle option, the stochastic volatility case. 

 

 

B.  The Case of Stochastic Volatility  

Several researchers have derived option valuation models assuming stochastic 

volatility.  We are deriving the value of a particular compound option, an option on an 

ATMF straddle, assuming a diffusion process similar to the one offered by Hull and 

White (1987), Stein and Stein (1991), and others. 

We assume that an equity index, tS , follows the process given by  

 

   1

t t t t tdS rS dt S dBσ= +                                              (12) 

   2( )t t td dt kdBσ δ θ σ= − +                                      (13) 

 

Where r is the riskless rate and tσ  is the volatility of tS .  Equation (12) describes the 

dynamics of the index with a stochastic volatility tσ .  Equation (13) describes the 

dynamics of volatility itself which is reverting to a long run mean θ  where δ  is the 

adjustment rate and k is the volatility of volatility.  1

tB  and 2

tB are two independent 
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Brownian motions.  To obtain a valuation formula for STO, the option on a straddle, we 

need to go through a few steps starting from the end payoffs (values).  First, to get the 

index value and the volatility at time T we integrate equations (12) and (13). 

 

2 11
exp( ( ) )

2
T T

T t t tS S r d dBτ τ τσ τ σ= ∫ − + ∫                                      

   ( ) ( ) 2( ) T t T T t

T t te k e dBδ δ
τσ θ σ θ − − − −= + − + ∫                      (15) 

 

The conditional probability density function of TS  is given by 

 

  ( )( ) ( )( | , ; , , , , ) r T t r T t

T t t o Tf S S r T t k e f S eσ δ θ − − − −− =                   (16)                 

where                          

 3/2 21 1 1
( ) ( ) (( ) )cos( ln )

2 4 2
t T

o T

T t t

S T t S
f S I d

S S S
η η η

π

∞

−∞

−
= +∫            

where the function ( )I λ is given by equation (8) of Stein and Stein (1991). 

 

The conditional probability density function of Tσ  is given by 

( ) 2

2
2 ( )

( ( ) )

(1 )

2
2 ( )

1
( | ; , , , )

(1 )

T t
T t

T t

e

k
e

T t

T t

f T t k e
k

e

δ

δ

σ θ σ θ

δ

δ

σ σ δ θ
π
δ

− −

− −

− − −
−

−

− −

− =
−

           (17) 

  

since Tσ is normally distributed with  
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mean  ( )( | ) ( ) T t

T t tE e δσ σ θ σ θ − −= + −      

and  

variance   
2

2 ( )( | ) (1 )
2

T t

T t

k
V e δσ σ

δ
− −= −  

 

An example of the probability density function of the volatility, Tσ , is given in Figure 2.  

The volatility is normally distributed with a mean 0.2.  Theoretically we can have a 

negative value for volatility but practically the probability is less than 810−  for 

reasonable parameter values11. 

The joint distribution of TS  and Tσ  is 

    ( , ) ( ) ( )T T T Tf S f S fσ σ=                                       (18) 

since the two Brownian motions are independent.  Once we have the joint probability 

density function, we can price any options written on the asset price and/or the volatility, 

including straddle options proposed in our paper. 

Since STO is a compound option written on a straddle, we have to evaluate the 

price of the straddle at time 1T  first, then use it as the payoff to evaluate the straddle at 

time 0.  Using risk-neutral valuation the price of the ATMF straddle at time 1T  is 

 

                 

                                                                                                                                       

 

                                                
11 In the example in Figure 2 we use the same parameter values that are used by Stein and Stein (1991). 
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2 1 2 1

( )2 11 2 1 2 1 21

( ) ( )2 ( ) ( | )r T T
T

r T T r T T

T T T T T TS e
ST e S S e f S S dS−

∞− − −= −∫  

           1 1 2 12 ( ; , , , , )T TS F T T r kσ δ θ= −                                             (19) 

 

where the strike price is 2 1( )

1

r T T

TS e −  

For the constant volatility model where k and δ  are zero the function 
1

( )TF σ , derived 

in the last subsection, can be approximated by 

 

   
1 1

2 1( )
2A T T

T T
F σ σ

π
−

=                                                         (20) 

 

which is almost identical with the Black-Scholes values, as mentioned above (equation 

(3)).  In Tables 1, 2ab and 2c we provide the values of the straddle ST  computed from 

the stochastic volatility (SV) model using various parameter values.    

 Table 1 (and figure 3) provides the values of ST for a combination of initial 

volatility, 
1Tσ  and k (volatility of volatility).  The first column provides straddle values 

using the BS model with a deterministic volatility (k=0).  As expected, the value of ST 

increases as 
1Tσ  does and as k does.  For low levels of 

1Tσ the effect of k is higher than 

for high levels of 
1Tσ .  For example, when 

1Tσ  is 10 percent and k is zero, (i.e. volatility 

is deterministic), the value of ST is 8.9 which will go up to 9.27 for k=.2 and 11.47 for 

k=.5.  However, for 
1Tσ  of 50% the value of ST at k=0 is 19 and it only goes to 20.20 for 

a high k=.5.  In other words, in a high volatility environment the marginal effect of k on 
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the value of a straddle is rather small and the BS model provides values which are 

indistinguishable from a stochastic volatility model. 

 Table 2ab shows the effects of the mean reversion parameters.  The higher is θ , 

the long-run mean, the higher is the value of ST.  The higher is the reversion parameter, 

δ , the lower is the value of the straddle for high initial 
1Tσ , since it converges faster to 

the lower long-run mean.  Table 2c provides the values of ST for different maturity spans 

of the straddle.  The value of the straddle increases with maturity much more at lower 

initial volatility than at higher volatility, which is expected even when k=0.  Stochastic 

volatility does not change that. 

 

Given the values of the straddle we can now compute the value of the option on 

the straddle STO.   

 

The price of STO at time t=0 is given by 

 

  0 1 1 0 10
( ) ( | )T T TSTO G f dσ σ σ σ

∞
= ∫                                                 (21) 

where                 

 
1

1
1 1 1 1 0 1

2 ( ) 1

( ) 2 ( ) ( ) ( | )
2 ( )STO

T

rT STO
KT T T T T
F T

K
G F e S f S S dS

Fσ

σ σ
σ

∞−= −∫  

 

The values of STO are computed numerically in Table 3a to 3e using a range of 

parameter values.  Next to the values from the SV model, in 3a, we present the values 

using the BS model (k=0).  As expected, the value of this compound option using the SV 
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model is larger than the value of this option using the BS model.  The difference between 

the two depends on the values of the other parameters in the SV model and the strike 

price STOK .  For relatively low strike prices, STOK , the effect of stochastic volatility is 

rather small and the values are not that different from a BS value, ignoring stochastic 

volatility.  For higher strike prices, out of the money, the effect of k is much larger.  For 

STOK =11, currently approximately at-the-money, the value of STO at k=.3 is about 90 

percent larger than STO at k=.1 (1.75 vs. 0.91) while the BS value is only 0.77.  Table 3b 

shows the effect of initial volatility, 0σ .  At low strike prices an increase in initial 

volatility has a small effect on the values of STO.  At high strike prices the value of STO 

is lower but the marginal effect of 0σ  is much higher.  Table 3c shows the effect of θ , 

the long-run volatility on STO.  For low values of θ , the value of STO is declining as we 

get to the ATM strike.  Hedging against changes in volatility in a low volatility 

environment is not worth much. Table 3d shows the combined effect of volatility and k, 

volatility of volatility, at the ATM strike of STO. As expected , the value of STO 

increases in both and is rather monotonic. Stochastic volatility has a relatively bigger 

effect in a low volatility enviroment. Table 3e provides values of the straddle option for 3 

maturities of the straddle.  The values are higher for longer maturities since the delivered 

straddle has longer time to expiration and thus has a higher value.  The effect is most 

pronounced when maturity is one year.  The STO has some positive values even for 

strikes which are way out of the money.   

The effect of the various parameters on the value of STO could be discerned from 

the previous tables but a better understanding of the complex relationships can be 

obtained from an examination of the various sensitivities given in Tables 4a to 4c.  Table 
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4a provides the sensitivity of STO to changes in volatility, which is the main issue here.  

Table 4a provides these values at 5 levels of 0σ .  The values are high at all levels of 

initial volatility , though they tend to decline as volatility increases , indicating that 

changes in volatility could be effectively hedged by the straddle option.  It becomes less 

effective as the strike price STOK  increases, the option is out-of-the-money.  Table 4b 

provides values for the sensitivity of STO to k, volatility of volatility.  The higher is k, 

the higher is the “vega” of STO.  It is most sensitive at intermediate values of the strike 

price and approaches zero as the strike price increases.  Table 4c provides another 

interesting sensitivity.  The sensitivity with respect to the time to maturity of the straddle 

itself, 2 1T T− .  For a maturity of 3 months the sensitivity is higher than for a longer 

maturity, 6 months or a year, because the incremental value of STO at a shorter maturity 

is larger than at a longer maturity where the value is already high. 

An interesting observation regarding the value of STO emerges.  Does STO have 

a higher value, relative to BS value, in markets with higher volatility?  It seems that 

higher σ , for a given k (volatility of volatility), tends to reduce the differences between 

SV values and BS values since σ  is the dominant factor in the valuation.  However, if 

higher σ  is accompanied by higher k STO values will be served little by a stochastic 

volatility model. 

 

IV.  Conclusions 

As was evident in several large financial debacles involving derivative securities, like 

Barings and LTCM, the culprit was the stochastic behavior of volatility which has 

affected options premiums enough to contribute to their near demise.  In this paper we 
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propose a derivative instrument, an option on a straddle that can be used to hedge the risk 

inherent in stochastic volatility.  This option could be traded on exchanges and used for 

risk management.  Since valuation is an integral part of using and trading such an option 

we derive the value of such an option using a stochastic volatility model.  We compare 

the value of such an option to a benchmark value given by the BS model.  We find that 

the value of such an option is very sensitive to changes in volatility and therefore cannot 

be approximated by the BS model. 
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Appendix: Benchmark Values of ST and STO 
 
 
Regarding the benchmark values of ST and STO, we would like to set them depending on 
a mean-reverting deterministic volatility function, i.e., 
 

 
Then the average volatility over the time period between T1 and T2 is given by 

 
And the average volatility over the time period between t ∈ [0, T1] and T1 is given by 
 

 
Especially for the case t = 0, the average volatility between 0 and T1 is  
 

 
The price of ST at time T1 is given by equation (4) and the price of STO at time t is given 
by equation (8) with σ2 and σ1 given by the formulas above. The first columns of table 1, 
table 3a and table 3d are computed by using these formulas. 
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Figure 1. Closing level on the S&P 100 Volatility Index (VIX). The sample period is 
April 1, 1997 – November 3, 2000. Source: CBOE. 
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Figure 2 
Probability Density of Volatility      
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       Figure 2 .  An example of the probability density function of the volatility . 
                       The parameter values are the same as in Stein and Stein (1991). 
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Table 1 
The values of the straddle ST      

 

             k 
 

1Tσ  
0 (BS) 0.10 0.20 0.30 0.40 0.50 

0.00 6.9605 7.0657 7.4290 8.0932 9.0286 10.1845 
0.10 8.9446 9.0276 9.2782 9.7661 10.5163 11.4783 
0.20 11.2744 11.3430 11.5511 11.9298 12.5078 13.2818 
0.30 13.7735 13.8323 14.0098 14.3219 14.7879 15.4171 
0.40 16.3622 16.4134 16.5679 16.8343 17.2250 17.7497 
0.50 19.0014 19.0466 19.1831 19.4157 19.7514 20.1992 
0.60 21.6701 21.7104 21.8318 22.0369 22.3328 22.7234 
0.70 24.3557 24.3908 24.5009 24.6842 24.9478 25.2938 
0.80 27.0506 27.0746 27.1812 27.3459 27.5834 27.8935 
0.90 29.7494 29.7642 29.8606 30.0146 30.2305 30.5135 
1.00 32.4482 32.4499 32.5246 32.6844 32.8711 33.1440 
 

Table 1: The values of the straddle ST for a combination of initial volatility 
1Tσ  and 

volatility of volatility k. ST1  = 100, θ  = 0.20, δ  = 4.00, T2  - T1 = 0.5 year. 
 
 

Figure 3 
The values of the straddle ST 
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Table 2ab: The values of the straddle ST for a combination of initial volatility 
1Tσ  and 

the mean-reverting parameters (θ, δ) of volatility. ST1 = 100, k = 0.2, T2  - T1 = 0.5 year. 
 

1Tσ  θ = 0.10 
δ = 4.00 

θ = 0.20 
δ = 4.00 

θ = 0.30 
δ = 4.00 

θ = 0.40 
δ = 4.00 

 θ = 0.20 
δ = 4.00 

θ = 0.20 
δ = 8.00 

θ = 0.20 
δ = 16.0 

0.00 4.7148 7.4290 10.7019 14.0967  7.4290 9.2234 10.3086 
0.10 6.3157 9.2782 12.5645 15.9299  9.2782 10.2161 10.7792 
0.20 8.6366 11.5511 14.7267 18.0004  11.5511 11.4747 11.4057 
0.30 11.2007 14.0098 17.0700 20.2523  14.0098 12.9187 12.1637 
0.40 13.8507 16.5679 19.5199 22.5892  16.5679 14.4909 13.0299 
0.50 16.5427 19.1831 22.0478 25.0447  19.1831 16.1523 13.9838 
0.60 19.2517 21.8318 24.6187 27.5357  21.8318 17.8788 15.0083 
0.70 21.9585 24.5009 27.2092 30.0273  24.5009 19.6506 16.0898 
0.80 24.7000 27.1812 29.7943 32.4909  27.1812 21.4566 17.2171 
0.90 27.4138 29.8606 32.3373 34.8785  29.8606 23.2875 18.3814 
1.00 30.0962 32.5246 34.7911 37.1382  32.5246 25.1349 19.5760 
 
 
 
 
 
 
Table 2c: The values of ST for a combination of initial volatility 

1Tσ  and different 

maturity spans of the straddle. ST1 =100, k = 0.20, θ = 0.20, δ = 8.00. 
 
          T2-T1 

1Tσ  
0.25 0.5 1.0 

0.00 5.1472 9.2234 14.7622 
0.10 6.4605 10.2161 15.4186 
0.20 8.0782 11.4747 16.2945 
0.30 9.8316 12.9187 17.3547 
0.40 11.6538 14.4909 18.5667 
0.50 13.5110 16.1523 19.9018 
0.60 15.4040 17.8788 21.3358 
0.70 17.3080 19.6506 22.8498 
0.80 19.2215 21.4566 24.4262 
0.90 21.1411 23.2875 26.0516 
1.00 23.0644 25.1349 27.7129 
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Table 3a: The value of STO at t = 0 for a combination of strike price KSTO and volatility 
of volatility k. S0 =100, r = 0, σ0 = 0.20, θ = 0.20, δ = 4.00, T1 =0.5, T2 = 1.0. 
 
 
 
           k 
KSTO 

0 (BS) 0.10 0.20 0.30 0.40 0.50 

0 11.2744 11.3521 11.5802 11.8411 12.1468 12.5649 
1 10.2744 10.3522 10.5832 10.8747 11.2317 11.6998 
2 9.2744 9.3522 9.5857 9.9047 10.3111 10.8294 
3 8.2744 8.3522 8.5879 8.9335 9.3885 9.9570 
4 7.2744 7.3522 7.5900 7.9621 8.4653 9.0839 
5 6.2744 6.3522 6.5922 6.9906 7.5421 8.2108 
6 5.2744 5.3522 5.5949 6.0200 6.6196 7.3381 
7 4.2745 4.3527 4.6018 5.0548 5.7004 6.4673 
8 3.2778 3.3607 3.6291 4.1110 4.7933 5.6028 
9 2.3080 2.4080 2.7139 3.2222 3.9196 4.7545 
10 1.4398 1.5648 1.9074 2.4283 3.1137 3.9424 
11 0.7745 0.9086 1.2542 1.7579 2.4064 3.1956 
12 0.3559 0.4700 0.7718 1.2234 1.8121 2.5386 
13 0.1405 0.2181 0.4468 0.8203 1.3318 1.9812 
14 0.0484 0.0920 0.2453 0.5319 0.9572 1.5218 
15 0.0148 0.0358 0.1290 0.3351 0.6743 1.1523 
16 0.0041 0.0131 0.0657 0.2063 0.4668 0.8614 
17 0.0010 0.0045 0.0328 0.1248 0.3186 0.6368 
18 0.0002 0.0015 0.0161 0.0746 0.2151 0.4665 
19 0.0001 0.0005 0.0079 0.0444 0.1441 0.3392 
20 0.0000 0.0002 0.0039 0.0263 0.0961 0.2454 
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Table 3b: The value of STO at t = 0 for a combination of strike price KSTO and the initial 
volatility σ0. S0 =100, r = 0, k = 0.20, θ = 0.20, δ = 4.00, T1 =0.5, T2 = 1.0. 
 
           σ0 

KSTO 
0.10 0.20 0.30 0.40 0.50 

0 11.2316 11.5802 11.9050 12.2228 12.5358 
1 10.2513 10.5832 10.9091 11.2339 11.5587 
2 9.2599 9.5857 9.9111 10.2375 10.5653 
3 8.2645 8.5879 8.9124 9.2386 9.5667 
4 7.2682 7.5900 7.9136 8.2392 8.5671 
5 6.2720 6.5922 6.9148 7.2400 7.5679 
6 5.2761 5.5949 5.9170 6.2425 6.5715 
7 4.2831 4.6018 4.9253 5.2537 5.5869 
8 3.3084 3.6291 3.9570 4.2916 4.6329 
9 2.3948 2.7139 3.0453 3.3869 3.7372 
10 1.6027 1.9074 2.2333 2.5752 2.9295 
11 0.9836 1.2542 1.5577 1.8859 2.2328 
12 0.5527 0.7718 1.0348 1.3327 1.6578 
13 0.2860 0.4468 0.6574 0.9118 1.2023 
14 0.1378 0.2453 0.4018 0.6066 0.8545 
15 0.0628 0.1290 0.2379 0.3942 0.5970 
16 0.0275 0.0657 0.1374 0.2515 0.4114 
17 0.0118 0.0328 0.0779 0.1581 0.2804 
18 0.0050 0.0161 0.0436 0.0983 0.1895 
19 0.0021 0.0079 0.0242 0.0607 0.1273 
20 0.0009 0.0039 0.0134 0.0373 0.0852 
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Table 3c: The value of STO at t = 0 for a combination of strike price KSTO and the mean-
reverting level θ of volatility. S0 =100, r = 0, k = 0.20, σ0 = 0.2, θ = 0.20, δ = 4.00, T1 
=0.5, T2 = 1.0. 
 
           θ 
KSTO 

0.10 0.20 0.30 0.4 

0 6.5127 11.5331 16.5661 21.9330 
1 5.5732 10.5675 15.6756 20.9542 
2 4.6270 9.5817 14.7327 19.9653 
3 3.6795 8.5872 13.7590 18.9704 
4 2.7329 7.5900 12.7693 17.9726 
5 1.8161 6.5922 11.7725 16.9732 
6 1.0610 5.5949 10.7732 15.9733 
7 0.5478 4.6018 9.7733 14.9733 
8 0.2488 3.6291 8.7737 13.9734 
9 0.1002 2.7139 7.7756 12.9735 
10 0.0362 1.9074 6.7825 11.9743 
11 0.0119 1.2542 5.8031 10.9768 
12 0.0036 0.7718 4.8525 9.9834 
13 0.0011 0.4468 3.9528 8.9985 
14 0.0004 0.2453 3.1296 8.0288 
15 0.0001 0.1290 2.4058 7.0837 
16 0.0000 0.0657 1.7963 6.1749 
17 0.0000 0.0328 1.3049 5.3148 
18 0.0000 0.0161 0.9246 4.5155 
19 0.0000 0.0079 0.6411 3.7869 
20 0.0000 0.0039 0.4366 2.1360 
 
 
 
Table 3d: The value of STO at t = 0 for a combination of the initial volatility σ0 and the 
volatility of volatility k. S0 =100, r = 0, θ = 0.20, δ = 4.00, T1 =0.5, T2 = 1.0, KSTO = 11.5. 
 
         k 
σ0 

0.00 0.10 0.20 0.30 0.40 0.50 

0.00 0.0951 0.2205 0.5477 1.0228 1.6334 2.3890 
0.10 0.2729 0.4082 0.7453 1.2298 1.8503 2.6106 
0.20 0.5354 0.6628 0.9918 1.4736 2.0947 2.8540 
0.30 0.8493 0.9649 1.2771 1.7479 2.3637 3.1169 
0.40 1.1939 1.2988 1.5922 2.0479 2.6535 3.3967 
0.50 1.5582 1.6543 1.9299 2.3688 2.9611 3.6916 
0.60 1.9365 2.0255 2.2851 2.7067 3.2842 4.0003 
0.70 2.3252 2.4082 2.6540 3.0590 3.6207 4.3214 
0.80 2.7224 2.8003 3.0340 3.4233 3.9690 4.6538 
0.90 3.1267 3.2001 3.4229 3.7977 4.3277 4.9966 
1.00 3.5372 3.6063 3.8184 4.1810 4.6947 5.3488 
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Table 3e: The value of STO at t = 0 for a combination of strike price KSTO and and 
different maturity spans of the straddle. S0 =100, r = 0, k = 0.20, σ0 = 0.20, θ = 0.20, δ = 
8.00, T1 =0.5. 
 
     T2 - 
T1 

KSTO 

0.25 0.5 1.0 

0  8.0720 11.4667 16.2738 
1  7.0894 10.4872 15.2968 
2  6.0932 9.4949 14.3088 
3  5.0936 8.4970 13.3143 
4  4.0936 7.4973 12.3164 
5  3.0952 6.4974 11.3171 
6  2.1197 5.4974 10.3172 
7  1.2541 4.4979 9.3172 
8  0.6212 3.5038 8.3173 
9  0.2575 2.5394 7.3173 
10  0.0916 1.6684 6.3178 
11  0.0289 0.9753 5.3208 
12  0.0084 0.5057 4.3342 
13  0.0023 0.2354 3.3787 
14  0.0006 0.1004 2.4926 
15  0.0002 0.0401 1.7246 
16  0.0000 0.0153 1.1143 
17  0.0000 0.0057 0.6733 
18  0.0000 0.0021 0.3828 
19  0.0000 0.0008 0.2067 
20  0.0000 0.0003 0.1071 
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Table 4a: The sensitivity of STO with respect to σ0. S0 =100, r = 0, k = 0.20, θ = 0.20, δ 
= 4.00, T1 = 0.5, T2 = 1.0. 

            σ0 

KSTO 
0.10 0.20 0.30 0.40 0.50 

0 3.84 3.28 3.21 3.14 3.15 
1 3.41 3.27 3.26 3.25 3.26 
2 3.27 3.25 3.26 3.27 3.29 
3 3.23 3.24 3.25 3.27 3.30 
4 3.21 3.23 3.24 3.27 3.30 
5 3.19 3.22 3.24 3.26 3.29 
6 3.17 3.20 3.23 3.27 3.31 
7 3.16 3.21 3.26 3.31 3.36 
8 3.18 3.25 3.32 3.39 3.45 
9 3.12 3.26 3.37 3.46 3.55 
10 2.94 3.18 3.36 3.49 3.61 
11 2.54 2.90 3.18 3.40 3.55 
12 2.03 2.45 2.83 3.14 3.37 
13 1.38 1.89 2.36 2.76 3.07 
14 0.87 1.34 1.84 2.30 2.68 
15 0.50 0.89 1.35 1.83 2.27 
16 0.27 0.55 0.94 1.39 1.85 
17 0.13 0.32 0.63 1.02 1.47 
18 0.16 0.19 0.41 0.74 1.14 
19 0.03 0.10 0.26 0.52 0.87 
20 0.01 0.05 0.16 0.36 0.65 

 
Figure 4a 

The Sensitivity of STO 
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Table 4b: The sensitivity of STO with respect to k. S0 =100, r = 0, σ0 = 0.20, θ = 0.20, δ 
= 4.00, T1 = 0.5, T2 = 1.0. 
 

            k 

KSTO 
0.10 0.20 0.30 0.40 0.50 

0 1.61 2.78 2.82 3.52 4.85 
1 1.61 2.93 3.29 4.04 5.30 
2 1.61 3.04 3.74 4.57 5.77 
3 1.61 3.16 4.17 5.09 6.25 
4 1.61 3.27 4.58 5.60 6.72 
5 1.61 3.38 5.01 6.12 7.19 
6 1.61 3.50 5.44 6.63 7.66 
7 1.64 3.65 5.83 7.13 8.07 
8 1.76 3.89 6.12 7.55 8.55 
9 2.10 4.21 6.22 7.76 8.87 
10 2.50 4.46 6.12 7.65 8.93 
11 2.60 4.37 5.80 7.26 8.64 
12 2.24 3.89 5.23 6.67 8.07 
13 1.60 3.10 4.46 5.92 7.33 
14 0.98 2.24 3.60 5.08 6.49 
15 0.53 1.50 2.76 4.21 5.62 
16 0.26 0.94 2.02 3.38 4.77 
17 0.12 0.56 1.42 2.64 3.97 
18 0.05 0.33 0.98 2.01 3.24 
19 0.02 0.18 0.65 1.50 2.60 
20 0.00 0.10 0.43 1.10 2.06 

 
Figure 4b 

The Sensitivity of STO 
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Table 4c: The sensitivity of STO with respect to T1. S0 =100, r = 0, k = 0.2, σ0 = 0.20, θ 
= 0.20, δ = 8.00, T2 - T1 = 0.5. 

             T1 

KSTO 
0.25 0.50 1.00 

0 0.002 0.000 0.000 
1 0.002 0.000 0.000 
2 0.002 0.000 0.000 
3 0.003 0.000 0.000 
4 0.003 0.000 0.000 
5 0.003 0.000 0.001 
6 0.003 0.001 0.004 
7 0.004 0.007 0.028 
8 0.018 0.045 0.093 
9 0.114 0.171 0.207 
10 0.394 0.381 0.336 
11 0.708 0.559 0.424 
12 0.741 0.585 0.444 
13 0.511 0.472 0.401 
14 0.258 0.313 0.323 
15 0.105 0.180 0.239 
16 0.037 0.094 0.165 
17 0.012 0.046 0.109 
18 0.003 0.021 0.069 
19 0.001 0.009 0.043 
20 0.000 0.004 0.025 

 
Figure 4c 

Sensitivity of STO 
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