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HEDGING VOLATILITY RISK
Abstract

Volatility risk has played a maor role in severa financial debacles (for example,
Barings Bank, Long Term Capital Management). This risk could have been managed
using options on volatility which were proposed in the past but were never offered for
trading mainly due to the lack of atradable underlying asset.

The objective of this paper is to introduce a new volatility instrument, an option
on a straddle, which can be used to hedge volatility risk. The design and valuation of
such an instrument are the basic ingredients of a successful financia product. Unlike the
proposed volatility index option, the underlying of this proposed contract is a traded at-
the-money-forward straddle, which should be more appealing to potential participants. In
order to value these options, we combine the approaches of compound options and
stochastic volatility. We use the lognorma process for the underlying asset, the
Orenstein-Uhlenbeck process for volatility, and assume that the two Brownian motions
are independent. Our numerical results show that the straddle option price is very
sensitive to the changes in volatility which means that the proposed contract is indeed a

very powerful instrument to hedge volatility risk.



I INTRODUCTION

Risk management is concerned with various aspects of risk, in particular, price
risk and volatility risk. While there are various instruments (and strategies) to dea with
price risk, exhibited by the volatility of asset prices, there are practicaly no instruments
to deal with the risk that volatility itself may change. Volatility risk has played a magor
role in severa financia disasters in the past 15 years. Long-Term-Capital-Management
(LTCM) is one such example, “In early 1998, Long-Term began to short large amounts
of equity volatility.” (Lowenstein, R. (2000) p.123)*. LTCM was selling volatility on the
S&P500 index and other European indexes, by selling options (straddles) on the index.
They were exposed to the risk that volatility, as reflected in options premiums, will
increase. They did not hedge this risk?. Though one can devise a dynamic strategy using
options to deal with volatility risk such a strategy may not be practical for most users.
There were several attempts to introduce instruments that can be used to hedge volatility
risk (e.g., the German DTB launched a futures contract on the DAX volatility index) but
those were largely unsuccessful®.

Given the large and frequent shifts in volatility in the recent past® especially in
periods like the summer of '97 and the fall of '98, there is a growing need for instruments
to hedge volatility risk. Past proposals of such instruments included futures and options

on a volatility index. The idea of developing a volatility index was first suggested by

! The quote and the information are taken from Roger Lowenstein’s book When Genius Failed

(2000), Ch.7.

Another known example is the volatility trading done by Nick Leeson in’93 and '94 in the
Japanese market. His exposure to volatility risk was a major factor in the demise of Barings Bank
(see Gapper and Denton (1996)).

Volatility swaps have been trading for some time on the OTC market but we have no indication of
their success.

The volatility of volatility can be observed from the behavior of avolatility index, VIX, provided
in Figure 1.
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Brenner and Gaa (1989). In a follow-up paper, Brenner and Gala (1993) have
introduced a volatility index based on implied volatilities from at-the-money options’. In
1993 the Chicago Board Options Exchange (CBOE) has introduced a volatility index,
named VIX, which is based on implied volatilities from options on the SP100 index. So
far there have been no options offered on such an index. The main issue with such
derivatives is the lack of a tradable underlying asset which market makers could use to
hedge their positions and to price them. Since the underlying is not tradable we cannot
replicate the option payoffs and we cannot use the no-arbitrage argument. The first
theoretical paper® to value options on a volatility index is by Grunbichler and Longstaff
(1996). They specify a mean reverting square root diffusion process for volatility smilar
to that of Stein and Stein (1991) and others. Since volatility is not trading they assume
that the premium for volatility risk is proportiona to the level of volatility. This
approach is in the spirit of the equilibrium approach of Cox, Ingersoll and Ross (1985)
and Longstaff and Schwartz (1992). A more recent paper by Detemple and Osakwe
(1997) also uses a genera equilibrium framework to price European and American style
volatility options. They emphasize the mean-reverting in log volatility model.

Since the payoffs of the option proposed here can be replicated by a self-
financing portfolio, consisting of the underlying straddle and borrowing, we value the
option using a no arbitrage approach. The idea proposed and developed in this paper
addresses both related issues: hedging and pricing. The key feature of the straddle option
is that the underlying asset is an at-the-money-forward (ATMF) straddle rather than a

volatility index. The ATMF straddle is a traded asset priced in the market place and well

The sameideais also described in Whaley (1993).
Brenner and Galai (1993) use a binomial framework to value such options where tradability is
implicitly assumed.



understood by market participants. Since it is ATMF, its relative value (call + put)/stock
is mainly affected by voldility. Changes in volatility trandate damost linearly into
changes in the value of the underlying, the ATMF straddle’. Thus options on the ATMF
straddle are options on volatility. We believe that such an instrument will be more
attractive to market participants, especialy to market makers. In the next section we
describe in detail the design of the instrument. In section 111 we derive the value of such

an option. Section 1V provides the conclusions.

[I.  TheDesign of the Straddle Option

To manage the market volatility risk, say of the S& P500 index, we propose a new
instrument, a straddle option or STO(K,T,,T,) with the following specifications. At
the maturity date T, of this contract, the buyer has the option to buy a then at-the-money-
forward straddle with a prespecified exercise price K. The buyer receives both, a call
and a put, with a strike price equal to the forward price, given the index level at ti meTlS.
The straddle matures at time T, .

Our proposed contract has two main features. first, the value of the
contract at maturity depends on the volatility expected in theinterval T, toT,

and therefore it is a tool to hedge volatility changes. Second, the underlying asset is a

traded straddle. We believe that, unlike the volatility options, this design will greatly

" Strictly speaking thisis truein a B-Sworld (See Brenner and Subrahmanyam (1988)) but here, with
stochastic volatility, it may include other parameters (e.g. vol. of volatility).

8 Theoretically thereis no difference if the delivered option isacall, aput or a straddle since they are all
ATMEF. Practically, however, there may be some differences in prices due, for example, to transactions
costs. A straddle would provide aless biased hedge vehicle.



enhance its acceptance and use by the investment community. The proposed instrument
is conceptually related to two known exotic option contracts. compound options and
forward start options’. Unlike the conventional compound option our proposed option is
an option on a straddle with a strike price, unknown at time 0, to be set at time T, to the
forward value of the index level. In genera, in valuing compound options it is assumed
that volatility is constant (see, for example, Geske (1979)). Given that the objective of
the instrument proposed here is to manage volatility risk, we need to introduce stochastic

volatility.

[11. Valuation of the Straddle Option

The valuation of the straddle option (STO) will be done in two stages. First, we value
the compound option on a straddle assuming deterministic volatility as our benchmark
case. In the second stage we use stochastic volatility to value the option and then we

relate the two.

A. The Case of Deterministic Volatility

To get a better understanding of the stochastic volatility case we first analyze the

case where volatility changes only once and is known a time zero. We assume a

constant volatilityS , between time O and T, (expiration date of STO) and a volatilitys ,

between T, and T, (expiration date of the straddle ST).

® Forward start options are paid for now but start at some time T1 in the future. A forward start option with
maturity T2 , asour proposed straddle, can be regarded as a special case of our straddle option in which the
is zero.

strike price K¢,



We first value the straddle at T, the day it is delivered. The straddle has the following

payoff at maturity T,

ST(T,)=C(T,)+P(T,)=max(K(T,) - S(T,)e€ ™ ™,0)
+max(S(T,)e ™™ - §(T,),0) (1)
whereC(T,) and P(T,) are the payoff of the call and put respectively, §(T2) is the
stock price at T,and S(T,)is the stock price at T,. Since the strike price is at-the-

money-forwardat T, K =S(T,)e ™™,

Assuming that the options are European as is the typical index option and that the
Black-Scholes assumptions hold we have
ST(t) =C(t) + P(t) = S()[2N(d,) - 1] - S(T,)e" [2N(d,) - 1] 2

INS /ST r(t- T)+ 28 (T,

where d, = S d,=d,-s,T,-t
ST, -t

for the price of thestraddleat T £t£T,.

In particular for t=T, we know that (See Brenner and Subrahmanyam (1988))

C(T,) = P(T,) » W/v2p)s T, - T, * S(T) 3)
Thus
ST(T,) » 2 S(T)A/2p)s ,\T,- T, @)



The straddle is practicaly linear in voldtility. The relative value of the straddle,

ST(T,)/ S(T,) issolely determined by volatility to expiration.

The vaue of the straddle option (STO) is the value of a compound option where

the payoff of STO at expiration (T,)is

max(SI'(Tl) - Ksro’o) = max[a S(-I-l) - Ksro’o] ©)
1
where a=2—+=—s,\I,-T, (6)
V2p

Equivalently, the payoff can be written as

amax [S(T) - K, /a,0] (7)
Thus the price of the straddle, using the B-S model, at any timet, O£t <T, is

STO, =a X3 XN(d)- K e ™" xN(d- s /T, - t) (8)

IN@S/Kaol ™)+ 28 (T, 1)

here d= 9
" s it X




Equation (8) gives the value of an option on a straddle'® which will be delivered at time
T,. Thisis acompound option that is easy to value since the straddle is at-the-money-
forward on the delivery date which reduces the valuation to a univariate like case where
the a term includes the parameters ,,.

Using (8) and (9) we can derive al the sendtivities of STO to changes in the

various parameters. In particular, we are interested in the sensitivities of STO to the

volatility in the first period T, called vega,, and in the second period T, , called vega, .

Vega, isgiven by

vega, = “?TO = 5T~ TN(d) (10

where N'(d) is the standard normal density function, which is a standard result for any
option except that d is also determined by @ which is in turn determined by S ,, the

volatility that will prevail in the second period. Thus, vega in the first period is affected
by volatility in the second period which makes sense since the payoff at expiration of

STO is determined by the volatility in the subsequent period. This leads to the next

question; how does the changein s , affect STO, ? Thisis given by

_1STO
s,

where d,(T) = %s JIL-T,

and N' (d,(T,)) isthe standard normal density function at T, the maturity of STO.

vega, - &N(d)%" = §N(d) 2T, - TON(A(T) @)

2

191t should be noted that the value of STO is based on an approximation to the value of the ATMF straddle,
ST. Asargued before thisis practically indistinguishable from the theoretical value.



The sengitivity of STO to the volatility during the life of the straddle itself is also
a function of the volatility in the current period, not just the volatility of the subsequent
period. Since this case is only our benchmark case, we have not derived the other
sengitivities, like theta and gamma, etc.

We would like now to turn to the case which is the very reason for offering a

straddle option, the stochastic volatility case.

B. The Case of Stochastic Volatility

Several researchers have derived option valuation models assuming stochastic
volatility. We are deriving the value of a particular compound option, an option on an
ATMF draddle, assuming a diffusion process smilar to the one offered by Hull and

White (1987), Stein and Stein (1991), and others.

We assume that an equity index, S, follows the process given by

dS =rSdt +s ,SdB! (12)

ds, =d(q - s,)dt +kdB’ (13)

Where r is the riskless rate ands , is the volatility of §. Equation (12) describes the
dynamics of the index with a stochastic volatilityS,. Equation (13) describes the
dynamics of volatility itself which is reverting to a long run mean q where d is the

adjustment rate and k is the volatility of volatility. B’ and B]are two independent

10



Brownian motions. To obtain a valuation formula for STO, the option on a straddle, we

need to go through a few steps starting from the end payoffs (values). First, to get the

index value and the volatility at time T we integrate equations (12) and (13).

S = Sep(d(r- st +ds,dBY)

S:=q+(s,-q)e’" " +kde " dy’

The conditional probability density function of S; isgiven by

f(sr |Stlstsr,T - t,d,q’k) :e‘r(T't) fO(Sre.r(T_t))
where

1. T-t

1(8)= 5 ()" g 0107+ )T Heoshinyon

S 9§

where the function | (| ) is given by equation (8) of Stein and Stein (1991).

The conditional probability density function of S | isgiven by

(s1-9-(s¢-q)e ?(TY)?

K 2d(T-t
1 e (-0

\/pcl: (1_ e—zd(T-t))

f(s,Is;T-tdq,k)=

sinces  isnormaly distributed with

11

(15)

(16)
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d(T-1)

mean E(STlst):q+(St‘Q)e_

and

2
variance V(s, |st):;_d(l_ e-Zd(T—t))

An example of the probability density function of the volatility, S ., is given in Figure 2.
The volatility is normally distributed with a mean 0.2. Theoretically we can have a

negative value for volatility but practically the probability is less than 10°° for

reasonable parameter values'.

Thejoint distributionof S, and S ; is

f(S.s.)=1(S)f(s,) (18)
since the two Brownian motions are independent. Once we have the joint probability
density function, we can price any options written on the asset price and/or the volatility,
including straddle options proposed in our paper.

Since STO is a compound option written on a straddle, we have to evaluate the

price of the straddle at time T, first, then use it as the payoff to evaluate the straddle at

time 0. Using risk-neutral valuation the price of the ATMF straddle at time T, is

™ |n the example in Figure 2 we use the same parameter values that are used by Stein and Stein (1991).

12



ST, =26V (S, - €™V (S, 18,)dS,

=2S,F(s,;T,- T,r,d,q,k) (19)

where the strike priceis S ™™
For the constant volatility model where k and d are zero the function F(S Tl) . derived

in the last subsection, can be approximated by

F.s,)= /Tzz'pTls . (20)

which is amost identical with the Black-Scholes values, as mentioned above (equation

(3)). In Tables 1, 2ab and 2c we provide the values of the straddie ST computed from
the stochastic volatility (SV) model using various parameter values.

Table 1 (and figure 3) provides the values of ST for a combination of initial

volatility, S, and k (volatility of volatility). The first column provides straddle values
using the BS model with a deterministic volatility (k=0). As expected, the value of ST
increases as S ;. does and as k does. For low levels of S | the effect of k is higher than
for high levelsof S . For example, when S . is 10 percent and k is zero, (i.e. volatility

is deterministic), the value of ST is 8.9 which will go up to 9.27 for k=.2 and 11.47 for

k=.5. However, for S T of 50% the value of ST at k=0is19 and it only goes to 20.20 for

a high k=.5. In other words, in a high volatility environment the marginal effect of k on

13



the value of a straddle is rather smal and the BS model provides values which are
indistinguishable from a stochastic volatility model.
Table 2ab shows the effects of the mean reversion parameters. The higher is (,

the long-run mean, the higher is the value of ST. The higher is the reversion parameter,
d, the lower is the value of the straddle for high initia S o since it converges faster to
the lower long-run mean. Table 2c provides the values of ST for different maturity spans
of the straddle. The value of the straddle increases with maturity much more at lower

initial volatility than at higher volatility, which is expected even when k=0. Stochastic

volatility does not change that.

Given the values of the straddle we can now compute the value of the option on

the straddle STO.

The price of STO at timet=0 is given by

STO, = G(S 1,) f (1 IS ,)ds 1, (21)
where

¥

G(s ) =2F(s e " G (S 52 2 F(S,19)08,

The values of STO are computed numerically in Table 3a to 3e using a range of
parameter values. Next to the values from the SV model, in 3a, we present the values

using the BS model (k=0). As expected, the value of this compound option using the SV

14



model is larger than the value of this option using the BS model. The difference between

the two depends on the values of the other parameters in the SV model and the strike

price K. For relatively low strike prices, K, the effect of stochastic volatility is

STO !
rather small and the values are not that different from a BS value, ignoring stochastic

volatility. For higher strike prices, out of the money, the effect of k is much larger. For
K¢ =11, currently approximately at-the-money, the value of STO at k=.3 is about 90
percent larger than STO at k=.1 (1.75 vs. 0.91) while the BS value isonly 0.77. Table 3b
shows the effect of initial volatility, S ,. At low strike prices an increase in initial
volatility has a small effect on the values of STO. At high strike prices the value of STO

is lower but the margina effect of S, is much higher. Table 3c shows the effect of q,

the long-run volatility on STO. For low values of q , the value of STO is declining as we
get to the ATM strike. Hedging against changes in volatility in a low volatility
environment is not worth much. Table 3d shows the combined effect of volatility and k,
volatility of volatility, a the ATM strike of STO. As expected , the value of STO
increases in both and is rather monotonic. Stochastic volatility has a relatively bigger
effect in alow volatility enviroment. Table 3e provides values of the straddle option for 3
maturities of the straddle. The values are higher for longer maturities since the delivered
straddle has longer time to expiration and thus has a higher value. The effect is most
pronounced when maturity is one year. The STO has some positive values even for
strikes which are way out of the money.

The effect of the various parameters on the value of STO could be discerned from
the previous tables but a better understanding of the complex relationships can be

obtained from an examination of the various sensitivities given in Tables 4ato 4c. Table

15



4a provides the sengitivity of STO to changes in volatility, which is the main issue here.
Table 4a provides these values at 5 levels of S ;. The values are high at al levels of

initial volatility , though they tend to decline as volatility increases , indicating that

changes in volatility could be effectively hedged by the straddle option. 1t becomes less
effective as the strike price K, increases, the option is out-of-the-money. Table 4b

provides values for the sensitivity of STO to k, volatility of volatility. The higher is k,
the higher is the “vega’ of STO. It is most senditive at intermediate values of the strike
price and approaches zero as the strike price increases. Table 4c provides another
interesting sensitivity. The sensitivity with respect to the time to maturity of the straddle

itself, T, - T,. For a maturity of 3 months the sensitivity is higher than for a longer

maturity, 6 months or a year, because the incremental value of STO at a shorter maturity
islarger than at alonger maturity where the value is already high.

An interesting observation regarding the value of STO emerges. Does STO have
a higher value, relative to BS value, in markets with higher volatility? It seems that
higher S , for a given k (volatility of volatility), tends to reduce the differences between
SV vaues and BS values since S is the dominant factor in the valuation. However, if
higher S is accompanied by higher k STO vaues will be served little by a stochastic

volatility model.

V. Conclusions

As was evident in several large financial debacles involving derivative securities, like
Barings and LTCM, the culprit was the stochastic behavior of volatility which has

affected options premiums enough to contribute to their near demise. In this paper we

16



propose a derivative instrument, an option on a straddle that can be used to hedge the risk
inherent in stochastic volatility. This option could be traded on exchanges and used for
risk management. Since valuation is an integral part of using and trading such an option
we derive the value of such an option using a stochastic volatility model. We compare
the value of such an option to a benchmark value given by the BS model. We find that
the value of such an option is very sensitive to changes in volatility and therefore cannot

be approximated by the BS model.
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Appendix: Benchmark Values of ST and STO

Regarding the benchmark values of ST and STO, we would like to set them depending on
amean-reverting deterministic volatility function, i.e.,

ds, =d(@-s,)dt, S;=q+(s,-q)e’TY.

Then the average volatility over the time period between T, and T is given by

T2
s, :\/@T dT = \/c‘jq +(s 4 - q)e ‘T PAdT

1- @940 T) ,1-¢€ 2d(T>-Ty)

:\/q Sy -d) = a,-T) +(s4-d) m

And the average volatility over the time period betweent1 [0, T:] and T:is given by

T T
s :Jc‘szdT :qu +(s - q)e T dT

t

1- @94 1- @ @m0
= 2+ S -q)—+(s,-g9) ——MmM—.
Jq 26 DGyt D

Especially for the case t = 0, the average volatility between O and T; is

- dT, 1- 2T
+(5,-9)°
dT, 2dT,

:\/q2+2q(so-q)l'

The price of ST at time T is given by equation (4) and the price of STO at timet isgiven
by equation (8) with s, and s; given by the formulas above. The first columns of table 1,
table 3a and table 3d are computed by using these formulas.
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VIX

Figure 1

S& P 100 Volatility Index (VIX)

High: 48.56
Low: 16.88
Average: 25.34

Oct-98 Apr-99 Oct-99 Apr-00
date

Figure 1. Closing level on the S& P 100 Volatility Index (VIX). The sample period is
April 1, 1997 — November 3, 2000. Source: CBOE.
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Figure2
Probability Density of Volatility

Figure 2. Anexample of the probability density function of the volatility .
The parameter values are the same asin Stein and Stein (1991).
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Tablel
Thevalues of the straddle ST

k 0(BYS 0.10 0.20 0.30 0.40 0.50
S,
0.00 6.9605 7.0657 7.4290 8.0932 9.0286  10.1845
0.10 8.9446 9.0276 9.2782 9.7661 10.5163 11.4783
0.20 11.2744 11.3430 11.5511 11.9298 125078 13.2818
0.30 13.7735 13.8323 14.0098 14.3219 14.7879 15.4171
0.40 16.3622 16.4134 16.5679 16.8343 17.2250 17.7497
0.50 19.0014 19.0466 19.1831 19.4157 19.7514 20.1992
0.60 21.6701 21.7104 21.8318 22.0369 22.3328 22.7234
0.70 24.3557 24.3908 245009 24.6842 24.9478 25.2938
0.80 27.0506 27.0746 27.1812 27.3459 27.5834 27.8935
0.90 29.7494 29.7642 29.8606 30.0146 30.2305 30.5135
1.00 324482 324499 325246 32.6844 32.8711 33.1440

Table 1: The values of the straddle ST for a combination of initia volatility S and
volatility of volatility k. Sn, = 100, g =0.20,d =4.00, T - T; = 0.5 year.

Figure3
Thevalues of the straddle ST

\

AAN NN
000000
OhwNE

o0}
=

0 0.2 04 0.6 0.

Figure 3: The values of the straddle ST for a combination of initial volatility S, and
volatility of volatility k. Sn, = 100, g =0.20,d =4.00, T - T; = 0.5 year.
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Table 2ab: The values of the straddle ST for a combination of initial volatility S, and
the mean-reverting parameters (q, d) of volatility. S, = 100, k=0.2, T, - T = 0.5 year.

s. g=010 g=020 =030 q=040 =020 =020 =020
' d=400 d=400 d=400 d=400 d=400 d=800 d=16.0

0.00 47148 7.4290 10.7019 14.0967 74290  9.2234 10.3086
0.10 63157 9.2782 125645 15.9299 9.2782 10.2161 10.7792
020 86366 115511 14.7267 18.0004 115511 11.4747 11.4057
0.30 11.2007 14.0098 17.0700 20.2523 14.0098 12.9187 12.1637
040 13.8507 16.5679 19.5199 22.5892 16.5679 14.4909 13.0299
0.50 16.5427 19.1831 22.0478 25.0447 10.1831 16.1523 13.9838
0.60 192517 21.8318 24.6187 27.5357 21.8318 17.8788 15.0083
0.70 21.9585 245009 27.2092 30.0273 245009 19.6506 16.0898
0.80 24.7000 27.1812 29.7943 32.4909 271812 214566 17.2171
090 274138 29.8606 32.3373 34.8785 29.8606 23.2875 18.3814
1.00 30.0962 32.5246 34.7911 37.1382 32.5246 25.1349 19.5760

Table 2c: The values of ST for a combination of initid volatility S, and different
maturity spans of the straddle. S, =100, k = 0.20, g = 0.20, d = 8.00.

T>-T: 0.25 0.5 1.0

S,

0.00 5.1472 9.2234 14.7622
0.10 6.4605 10.2161 15.4186
0.20 8.0782 114747 16.2945
0.30 9.8316 12.9187 17.3547
0.40 11.6538  14.4909 18.5667
0.50 13.5110 16.1523 19.9018
0.60 154040 17.8788 21.3358
0.70 17.3080 19.6506 22.8498
0.80 10.2215  21.4566 24.4262
0.90 21.1411  23.2875 26.0516
1.00 23.0644 251349 27.7129
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Table 3a: The value of STO at t = 0 for a combination of strike price Ksro and volatility
of volatility k. $ =100, r =0, so = 0.20, g = 0.20, d = 4.00, T; =0.5, T, = 1.0.

k 0(BS) 0.10 0.20 0.30 0.40 0.50

Ksro

0 11.2744 11.3521 11.5802 11.8411 12.1468 12.5649
1 10.2744 10.3522 105832 10.8747 11.2317 11.6998
2 0.2744 9.3522 9.5857 0.9047 10.3111 10.8294
3 8.2744 8.3522 8.5879 8.9335 9.3885 9.9570
4 7.2744 7.3522 7.5900 7.9621 8.4653 9.0839
5 6.2744 6.3522 6.5922 6.9906 7.5421 8.2108
6 5.2744 5.3522 5.5949 6.0200 6.6196 7.3381
7 4.2745 4.3527 4.6018 5.0548 5.7004 6.4673
8 3.2778 3.3607 3.6291 4.1110 4.7933 5.6028
9 2.3080 2.4080 2.7139 3.2222 3.9196 4.7545
10 1.4398 1.5648 1.9074 2.4283 3.1137 3.9424
11 0.7745 0.9086 1.2542 1.7579 2.4064 3.1956
12 0.3559 0.4700 0.7718 1.2234 1.8121 2.5386
13 0.1405 0.2181 0.4468 0.8203 1.3318 1.9812
14 0.0484 0.0920 0.2453 0.5319 0.9572 1.5218
15 0.0148 0.0358 0.1290 0.3351 0.6743 1.1523
16 0.0041 0.0131 0.0657 0.2063 0.4668 0.8614
17 0.0010 0.0045 0.0328 0.1248 0.3186 0.6368
18 0.0002 0.0015 0.0161 0.0746 0.2151 0.4665
19 0.0001 0.0005 0.0079 0.0444 0.1441 0.3392
20 0.0000 0.0002 0.0039 0.0263 0.0961 0.2454
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Table 3b: Thevaue of STO at t = 0 for a combination of strike price Ksro and the initial
volatility so. S =100, r =0, k= 0.20, g = 0.20, d =4.00, T, =0.5, T, = 1.0.

So 0.10 0.20 0.30 0.40 0.50

Ksro

0 11.2316 11.5802 11.9050 12.2228 12.5358
1 10.2513 10.5832 10.9091 11.2339 11.5587
2 9.2599 9.5857 9.9111 10.2375 10.5653
3 8.2645 8.5879 8.9124 9.2386 9.5667
4 7.2682 7.5900 7.9136 8.2392 8.5671
5 6.2720 6.5922 6.9148 7.2400 7.5679
6 5.2761 5.5949 5.9170 6.2425 6.5715
7 4.2831 4.6018 4.9253 5.2537 5.5869
8 3.3084 3.6291 3.9570 4.2916 4.6329
9 2.3948 2.7139 3.0453 3.3869 3.7372
10 1.6027 1.9074 2.2333 2.5752 2.9295
11 0.9836 1.2542 1.5577 1.8859 2.2328
12 0.5527 0.7718 1.0348 1.3327 1.6578
13 0.2860 0.4468 0.6574 0.9118 1.2023
14 0.1378 0.2453 0.4018 0.6066 0.8545
15 0.0628 0.1290 0.2379 0.3942 0.5970
16 0.0275 0.0657 0.1374 0.2515 0.4114
17 0.0118 0.0328 0.0779 0.1581 0.2804
18 0.0050 0.0161 0.0436 0.0983 0.1895
19 0.0021 0.0079 0.0242 0.0607 0.1273
20 0.0009 0.0039 0.0134 0.0373 0.0852
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Table 3c: The value of STO at t = O for a combination of strike price Ksro and the mean-
reverting level g of volatility. S =100, r = 0, k = 0.20, so= 0.2, q = 0.20, d = 4.00, Ty
:0.5, T, = 1.0.

q 0.10 0.20 0.30 0.4

Ksro

0 6.5127 115331 16.5661 21.9330
1 55732 10.5675 15.6756 20.9542
2 4.6270 90.5817 14.7327 19.9653
3 3.6795 8.5872 13.7590 18.9704
4 2.7329 7.5900 12.7693 17.9726
5 1.8161 6.5922 11.7725 16.9732
6 1.0610 5.5949 10.7732 15.9733
7 0.5478 4.6018 9.7733 14.9733
8 0.2488 3.6291 8.7737 13.9734
9 0.1002 2.7139 7.7756 12.9735
10 0.0362 1.9074 6.7825 11.9743
11 0.0119 1.2542 5.8031 10.9768
12 0.0036 0.7718 4.8525 9.9834
13 0.0011 0.4468 3.9528 8.9985
14 0.0004 0.2453 3.1296 8.0288
15 0.0001 0.1290 2.4058 7.0837
16 0.0000 0.0657 1.7963 6.1749
17 0.0000 0.0328 1.3049 5.3148
18 0.0000 0.0161 0.9246 45155
19 0.0000 0.0079 0.6411 3.7869
20 0.0000 0.0039 0.4366 2.1360

Table 3d: The value of STO at t = O for a combination of the initial volatility so and the
volatility of volatility k. § =100, r =0, g =0.20, d=4.00, T =0.5, T, = 1.0, Ksro = 11.5.

k 0.00 0.10 0.20 0.30 0.40 0.50
So

0.00 0.0951 0.2205 05477 1.0228 16334 2.3890
0.10 02729 04082 0.7453 1.2298 18503 2.6106
0.20 0.5354 0.6628 0.9918 14736 20947 2.8540
0.30 0.8493 09649 12771 1.7479 23637 3.1169
0.40 11939 1.2988 15922 2.0479 2.6535 3.3967
0.50 15582 1.6543 19299 23688 29611 3.6916
0.60 19365 2.0255 22851 27067 3.2842 4.0003
0.70 23252 24082 26540 3.0590 3.6207 4.3214
0.80 27224 28003 3.0340 34233 39690 4.6538
0.90 31267 3.2001 34229 3.7977 43277 4.9966
1.00 35372 3.6063 3.8184 4.1810 4.6947 5.3488
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Table 3e: The value of STO at t = 0 for a combination of strike price Ksro and and
different maturity spans of the straddle. $ =100, r =0, k= 0.20, s0=0.20,g=0.20,d =
8.00, T, =0.5.

Ts- 0.25 0.5 1.0
Ty
Ksro
0 8.0720 11.4667 16.2738
1 7.0894 104872 15.2968
2 6.0932 9.4949 14.3088
3 50936 84970 13.3143
4 4.0936 7.4973 12.3164
5 3.0952 6.4974 11.3171
6 2.1197 5.4974 10.3172
7 1.2541 4.4979 0.3172
8 0.6212 3.5038 8.3173
9 0.2575 2.5394 7.3173
10 0.0916 1.6684 6.3178
11 0.0289 0.9753 5.3208
12 0.0084 0.5057 4.3342
13 0.0023 0.2354 3.3787
14 0.0006 0.1004 2.4926
15 0.0002 0.0401 1.7246
16 0.0000 0.0153 1.1143
17 0.0000 0.0057 0.6733
18 0.0000 0.0021 0.3828
19 0.0000  0.0008 0.2067
20 0.0000 0.0003 0.1071
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Table 4a: The sengitivity of STO with respect to sg. $ =100, r =0, k= 0.20,g=0.20,d

= 400, T]_ = 05, T2 =1.0.

s, 010 020 030 040 050
Ksro
0 384 328 321 314 315
1 341 327 326 325 3.26
2 327 325 326 327 329
3 323 324 325 327 330
4 321 323 324 327 3.30
5 319 322 324 326 329
6 317 320 323 327 331
7 316 321 326 331 336
8 318 325 332 339 345
9 312 326 337 346 355
10 294 318 336 349 361
11 254 290 318 340 355
12 203 245 283 314 337
13 138 189 236 276 3.07
14 087 134 184 230 2.68
15 050 089 135 183 227
16 027 055 094 139 185
17 013 032 063 102 147
18 016 019 041 074 114
19 003 010 026 052 0.87
20 001 005 016 036 0.65
Figure4a
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Table 4b: The sengitivity of STO with respect tok $ =100, r =0, so = 0.20,g=0.20,d
= 400, T]_ = 05, T2 =1.0.

k 010 020 030 040 0.0

Ksro

0 161 278 282 352 485
1 161 293 329 404 530
2 161 304 374 457 577
3 161 316 417 509 6.25
4 161 327 458 560 6.72
5 161 338 501 612 7.19
6 161 350 544 6.63 7.66
7 164 365 583 713 8.07
8 1.76 389 6.12 755 855
9 210 421 6.22 7.76 8.87
10 250 446 612 7.65 8.93
11 260 437 580 7.26 8.64
12 224 389 523 6.67 8.07
13 160 310 446 592 7.33
14 098 224 360 508 6.49
15 053 150 276 421 562
16 026 094 202 338 4.77
17 012 056 142 264 397
18 005 033 098 201 324
19 002 018 065 150 260
20 000 010 043 110 2.06

Figure4b
The Sensitivity of STO
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Table 4c: The sensitivity of STO with respect to T1, S =100, r =0, k=0.2, s = 0.20, q
=0.20,d=8.00, T, - T;=0.5.

T, 025 0.50 1.00

Ksro
0 0.002 0.000 0.000
1 0.002 0.000 0.000
2 0.002 0.000 0.000
3 0.003 0.000 0.000
4 0.003 0.000 0.000
5 0.003 0.000 0.001
6 0.003 0.001 0.004
7 0.004 0.007 0.028
8 0.018 0.045 0.093
9 0.114 0.171 0.207
10 0394 0.381 0.336
11 0.708 0559 0.424
12 0.741 0585 0.444
13 0511 0472 0.401
14 0.258 0.313 0.323
15 0.105 0.180 0.239
16 0.037 0.094 0.165
17 0.012 0.046 0.109
18 0.003 0.021 0.069
19 0.001 0.009 0.043
20 0.000 0.004 0.025
Figure4c
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