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Abstract

The volatility term structure (VTS) reflects market expectations of asset volatility over different horizons.
These expectations change over time, giving dynamic structure to the VTS. This paper evaluates volatility
models on the basis of their performance in hedging option price changes due to shifts in the VTS. An
innovative feature of the hedging approach is its increased sensitivity to several important forms of model
misspecification relative to previous testing methods.

Volatility hedge parameters are derived for several volatility models incorporating different predicted
VTS dynamics and information variables. Hedging tests using S&P500 index options indicate that the
GARCH components with leverage VTS estimate is most accurate. Evidence is obtained for mean-
reversion in volatility and correlation between VTS shifts and S&P500 returns. While a convexity hedge
dominates the volatility hedges for the observed sample, this result appears to be due to sample selection
bias.
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The volatility term structure (VTS) reflects market expectations of asset return volatility over different time
horizons. In a stochastic volatility setting, relative changes in delta-neutral medium and short-term straddle
prices should be primarily attributable to shifts in the VTS. By deriving and implementing volatility hedges
consistent with several volatility models, we are able to rank volatility models based on performance in
hedging shifts in the VTS.

Heynen, Kemna, and Vorst (HKV, 1994) rank volatility models based on the closeness of the forecast
VTS and the implied volatility term structure. Several other papers including Stein (1989), Diz and
Finucane (1993), and Xu and Taylor (1994) directly estimate the volatility term structure using option
implied volatilities.

Hedging tests provide several advantages over comparing a forecast VTS to a realized VTS. First,
hedging tests focus on the relative levels of forecast variance over different horizons and are less sensitive
to unconditional variance forecasts. So, hedging tests may be able to distinguish among alternative models
with different term structure shapes but similar levels of unconditional variance. HKV (1994) find that
differences in unconditional volatility forecasts drive their test results.

Second, hedging tests evaluate predicted term structure dynamics rather than the closeness of fit to the
levels. In tests of VTS levels, it may be difficult to distinguish among models with similar rates of mean
reversion but different explanatory variables. In other words, two volatility models with different
information variables may perform similarly in pricing options, but quite differently in hedging options.
Hedging tests may be superior at identifying omitted variables or interrelationships in the volatility model,
because hedging performance depends on eliminating sensitivity to all of sources of volatility.

Hedging performance tests of the stochastic volatility models indicate that the GARCH components
with leverage VTS estimate is most accurate. The hedging performance of this GARCH model is
significantly better than the performance of all of the other stochastic volatility models, including two
simpler GARCH models. Overall, the volatility hedges in which the VTS is sensitive to the magnitude of
underlying asset returns outperform models in which the VTS is uncorrelated with returns. The least
effective hedging performance is provided by a model with the greatest volatility persistence and no
correlation between return magnitudes and volatility. This is the familiar delta-vega hedge.

It is also found that the constant volatility delta-gamma (convexity) hedge dominates the stochastic
volatility hedges in the observed sample. This result is surprising, since it indicates that S&P500 volatility is
either constant or extremely insensitive to news in the observed data sample. This is inconsistent with
evidence for stochastic volatility based on the underlying price process and option implied volatilities. For
example, HKV (1994) find that the VTS levels are best explained by an EGARCH model, and Amin and
Ng (1994) find that GARCH models with asymmetric effects provide the best fit to individual equity option
prices.

However, it is shown that the dominance of the convexity hedge over the volatility hedges may be due
to sample selection bias and that the results might be reversed if all option price changes over the sample
period could be observed. This bias does not appear to affect the relative performance among the volatility
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hedges. It is suggested that the strongest results from the hedging tests are the relative rankings of the
stochastic volatility hedges.

Previous papers concerned with option hedging performance are limited by their focus on a single type
of stochastic volatility model and reliance on interpolated prices or option values at expiration for empirical
hedging results. For instance, Hull and White (1987a) present simulation results that show that under a
continuous-time integrated variance process, constant volatility (CV) delta-gamma hedging is more
effective when implied volatility is relatively stable, and CV delta-vega hedging is more effective otherwise.
The HW empirical hedging results depend on interpolating OTC option prices using Black-Scholes
evaluated at the market implied volatility.

Melino and Turnbull (1995) present an option hedging technique under stochastic volatility using deltas
and vegas obtained from the pricing partial differential equation. They find evidence that a constant
volatility model performs poorly in pricing and hedging long-term currency options under stochastic
volatility. Model performance is measured using the replicating error of a hedge portfolio held until the
target option expiration.
 This paper provides an empirical comparison of the efficacy of techniques for hedging medium-term
S&P500 index at-the-money straddles with short-term at-the-money straddles. All hedge portfolio price
changes are based on market prices rather than interpolated prices. The hedge ratios derived in this paper
are only applicable to at-the-money options and may not be directly used to hedge an options book which
has options with a variety of moneynesses. Engle and Rosenberg (1995) provide an alternative GARCH
option hedging methodology, based on Monte-Carlo simulation, which is applicable to options of any
moneyness.

This paper is structured as follows. Section 1 presents an approximate option pricing formula applicable
to at-the-money options under stochastic volatility. Section 2 details the derivation of stochastic volatility
hedging parameters. Section 3 describes the estimation of the S&P500 volatility models and volatility hedge
ratios. Section 4 presents the accuracy of the approximate BSP hedge ratios. In Section 5, five volatility
models are tested based on their ability to hedge the effects of volatility changes on medium-term S&P500
index straddles. Section 6 investigates sample selection bias and the effect on volatility versus convexity
hedges. Section 7 concludes the study.

1. Approximate option pricing in a stochastic volatility environment

The Black-Scholes (1973) option pricing model assumes that the underlying asset variance is constant over
the life of the option. Substantial empirical evidence has been presented, see e.g. Bollerslev, Chou, and
Kroner (1992), that stochastic variance characterizes many financial return time-series. A number of option
pricing models, such as Hull and White (1987b), Melino and Turnbull (1990, 1995), Amin and Ng (1993,
1994), and Duan (1995) have been developed that allow for stochastic volatility. However, each model
provides a different specification for the variance process. The method for selecting the appropriate
variance process and thus the correct model for option pricing and hedging is left open.
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Since pricing options in a generic stochastic volatility environment is not a solved problem, we utilize
an approximate option pricing formula for at-the-money options that may be applied to a variety of
volatility models. The use of a single approximate option pricing formula for different volatility models
facilitates the derivation of the option hedge parameters using a consistent methodology.

This paper uses the following approximate pricing formula, which will be referred to as the Black-
Scholes-plug-in formula or BSP.

(1) P BSP E S S T C BSP E S S Tt t t T t t t t t T t t≅ ≅( [ ( )], , ) ( [ ( )], , ), ,σ σ                              

In equation (1), BSP is the Black-Scholes pricing formula for a put or call. Pt and Ct are the call and put

premia, St is the current underlying asset price, and T is the number of days until option maturity.

Dependence on the riskless rate and strike price are suppressed. In this approximate pricing formula,

expected average volatility σt T tS, ( ) is “plugged into” the Black-Scholes formula to obtain the stochastic

volatility option price.

The average expected volatility over the next T-t days,σt T tS, ( ) , is a single point on the volatility term

structure. The entire volatility term structure (VTS) at date t is defined by the relationship between average

expected volatility and the forecast horizon. The VTS depends on state variables describing current

volatility, unconditional volatility, and the rate of volatility persistence. Average expected volatility may

also depend on the most recent return magnitude which is a function of both St and St-1. For simplicity,

dependence on St-1 is suppressed in equation (1).

The accuracy of the BSP formula depends on several factors. First, the options to be priced should be

at-the-money, since the BSP method relies on the approximate linearity of the Black-Scholes formula in the

volatility parameter for at-the-money options. Second, the effect of volatility risk premia must be small,

since average expected volatility rather than average volatility under the risk-neutral measure is used. Third,

approximate conditional log-normality under the risk-neutral measure is necessary. The accuracy of hedge

ratios derived under BSP will be verified using simulations under the appropriate risk-neutral measure in

Section 4.

2. Hedging options in a stochastic volatility environment

Hedge parameters measure the sensitivity of an option price to changes in the state variables. When a day
passes, the option price will change in part because the underlying asset price changes and in part because
the volatility forecast changes. Changes due solely to the passage of time or changes in interest rates will be
ignored. Thus, the approximate hedge parameters developed in this section are appropriate for hedging
over a short time period, such as one day, and may not perform well for hedging over a longer horizon.
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The change in the option value due to changes in the state variables may be approximated using a
Taylor series expansion. In this case, it is natural to think of expanding the end-of-day option price as a
function of the end-of-day state variables. Just as Black-Scholes delta and gamma are derived by taking the
first-derivative of the Black-Scholes formula with respect to the end-of-day underlying price (St), the BSP
delta and gamma are obtained by taking derivatives of BSP with respect to St. If volatility (σ) is considered
to be a separate stochastic state variable, a volatility hedge parameter may be obtained using a partial
derivative of BSP with respect to volatility.

Evaluating the derivatives of BSP under constant volatility (CV) at current values of the state variables
gives the familiar Black-Scholes delta, gamma, and vega hedge parameters. Typically, these hedge
parameters are used to hedge option price changes in response to the first and second-order effect of
changes in the underlying asset price and the first-order effects of changes in the underlying asset variance.

(2) ∆ Γ ΛCV
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t
CV
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The chain rule may be used to develop BSP hedge parameters in a stochastic volatility environment.
The potential dependence of expected average volatility on the underlying price, return, and the parameters
of the volatility process suggests that the BSP hedge parameters will incorporate additional terms. In fact,
the stochastic volatility hedge parameters will be combinations of CV delta, CV gamma, CV vega, and
derivatives of the volatility term structure defined by the volatility process parameters.

For example, BSP delta is obtained by differentiating equation (1) with respect to the underlying price.
BSP delta measures the option price change due to a small (first-order) change in the current underlying
price at the current level of volatility.

(3) ∆ ∆ Λ= + =










+

=
∑CV CV

t,T

t
T

EVM VM=
S t T t t i

i

T
* ,         

∂σ
∂

σ σ2 2

1

1

The delta formula indicates that a change in the underlying price affects the option price directly

through CV delta and indirectly through CV vega and a shift in the volatility term structure. The vega

multiplier (VM) in equation (3) measures the change in the average expected volatility, σt T, , due to a first-

order change in the current underlying price.

The BSP deltas are fairly similar for the volatility models considered in this paper, since their vega
multipliers are all zero. The vega multiplier is zero when a first-order change in the underlying price does
not affect average expected volatility. In the CV and ARIV models, the underlying price change conveys no
volatility news. In GARCH models, volatility changes due to underlying price changes including the
leverage effect are captured by second and higher order terms. Setting the vega multiplier equal to zero
simplifies equation (3) to CV delta evaluated at the forecast average volatility.
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While deltas will only vary based on the average volatilities predicted by different models, the volatility
hedge parameters are potentially quite different across stochastic volatility environments. This means that
hedging tests that use the volatility hedge parameters should be able to distinguish the relative accuracy of
the volatility models. So, delta-vega or delta-gamma hedging tests are preferred to delta hedging tests for
ranking volatility models.

2.1 CV model volatility hedge parameters

While the CV model is not a stochastic volatility model, one might consider the effects on the option price
of continual updating of volatility estimates based on an investor’s expanding information set. If volatility is
constant but is estimated with error, then updating of volatility estimates will result in changes in the option
price.

The type of updating information used motivates two distinct types of CV volatility hedges. In the first
case, volatility news might be viewed as independent of the current underlying price. Then, the volatility
hedge parameter is CV vega as given in equation (2), which measures the option price change due to a
change in σ. CV vega is increasing with time-to-maturity so that longer maturity options are more sensitive
to volatility changes than short maturity options. Volatility news causes a parallel shift in the term structure,
since an unconditional volatility estimate revision affects all average variance forecasts equally.

If the unconditional volatility is estimated using historical returns, then the estimated volatility will be a
function of the current underlying price and return. Using a long historical time-series, the volatility effect
of a change in the current underlying price will typically be negligible. Thus, the volatility hedge parameter
is approximately equal to CV gamma as given in equation (2). CV gamma measures the second-order effect
of a change in the underlying price on the option price due to the convexity of the option pricing formula,
which dominates the volatility effect in this context. CV gamma is decreasing with time-to-maturity.

CV vega and CV gamma provide opposite forecasts of the relative changes in short and medium-term
options due to volatility news. These contrasting results are based on the hypothesized relationship between
return magnitudes and volatility. In either case, the CV volatility term structure is flat, since average
volatilities over all horizons are equal to the estimated unconditional variance.

2.2 ARIV model volatility hedge parameters

In this paper, the autoregressive implied volatility model (ARIV) is based on the AR(1) specification given
by Heynen, Kemna, and Vorst (1994). The ARIV model may be viewed as a reduced form of a stochastic
autoregressive volatility model (SARV) model in which the factors that drive the volatility process are
unobservable, but volatility is observable. For further discussion of SARV models, see Andersen (1994) or
Taylor (1994).

For the ARIV model, the volatility hedge parameter is ARIV vega. This is obtained by differentiating
the BSP formula with respect to the volatility news using the chain rule. The first term is the derivative of
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BSP with respect to volatility, which is CV vega.  This term is multiplied by the derivative of average
volatility with respect to the volatility news, which is the vega multiplier (VM). ARIV vega is evaluated
using current information including the average expected volatility given by the ARIV model.

(4) Λ ΛARIV CV
t T

t

VM VM==
+

* ,         
∂σ
∂σ 1

2

Consider a first-order autoregressive volatility model in which σt is the volatility on day t, and σt-1 is the
one-day lag. The ARIV model may be written in variances as:

(5) σ ω ρσ εt t t
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1
2= + +−

Using equation (5), the ARIV model volatility term structure (in variances) and vega multiplier are
defined by:
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A mean-reverting ARIV model has the property that volatility news has the greatest effect on the one-
day ahead volatility, and the effect on future volatilities decays with time. If the volatility process were
integrated, the volatility news would affect all future volatilities equally. While the VTS at any given time
might be upward or downward sloping, volatility news will always decay at a rate defined by the
autoregressive parameter of the ARIV process. This parameter will be less than one if the process is mean-
reverting, and it determines the VTS curvature.

2.3 GARCH model volatility hedge parameters

Consider hedging changes in volatility when volatility forecasts depend on the magnitude of the current
underlying asset return such as in the GARCH models. The volatility hedge parameter for GARCH models
is based on the second derivative of BSP with respect to the underlying price, which captures the impact of
volatility news.

As with the GARCH delta formula, the GARCH gamma formula is derived by eliminating the terms in
the vega multiplier that are zero when evaluated in the default case of no volatility news. GARCH gamma
is then estimated using current information including the realized return for date t, the current underlying
price, and the GARCH average expected volatility.
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The GARCH gamma in equation (7) incorporates both a volatility hedge and a hedge against non-linear
price response, since it includes both CV vega and CV gamma. The vega multiplier (VM) measures the
second-order shift in the volatility term structure due to a change in the underlying price. The VM
incorporates all the parameters of the GARCH process including leverage terms.

The VM determines the weights on CV gamma and CV vega in GARCH gamma. If variances are
insensitive to second-order changes in the underlying price, then the VM will be close to zero and the
weights will give more emphasis to the CV gamma. In the extreme case that volatility is constant, the vega
multiplier will be zero and GARCH gamma will simplify to CV gamma. If the volatility process is
integrated, then more weight will be given to BS vega. Notice that GARCH gamma is always at least as
large as CV gamma, since GARCH gamma adds the volatility effect of a price shock to the non-linear
effect of a price shock.

In contrast to the ARIV model, the GARCH models use historical data from the underlying asset to
estimate the volatility process and the volatility term structure. Bollerslev’s (1986) GARCH(p,q) model
was developed as an extension to the Engle’s (1982) ARCH(p) formulation to incorporate volatility
persistence in a more parsimonious manner. In high frequency data, the GARCH-in-mean model developed
by Engle, Lilien, and Robins (1987) which allows for a time varying risk-premium is frequently rejected.
We find this to be the case for daily S&P500 returns, so a constant risk premium is used in all of the
GARCH models.

The GARCH(1,1) model with a constant risk premium may be written as:

(8) ln( / ) , ~ ( , )S S r Nt t t t t t− − = − +1
2 21

2
0µ σ ε ε σ  

(9) σ ω αε βσt t t
2

1
2

1
2= + +− −

where ln(St/St-1)-r is the excess log-return, µ is a constant risk premium, σt
2  is the one-day conditional

variance, and r is the risk-free rate. The parameters α and β determine the relative importance lagged
squared return and lagged conditional variance on current conditional variance.

The GARCH(1,1) volatility term structure (in variances) and vega multiplier are given by:
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The GJR model (Glosten, Jagannathan, and Runkle, 1993) or TARCH model (Zakoian, 1994)
generalizes the GARCH(1,1) model to allow negative return shocks to disproportionately increase
volatility. This asymmetric effect is frequently called leverage, reflecting the increase in the debt-equity ratio
that follows a reduction in a firm’s market capitalization. In this paper, the GJR model with a constant risk
premium is defined by:

(12) ln( / ) , ~ ( , )S S r Nt t t t t t− − = − +1
2 21

2
0µ σ ε ε σ  

(13) σ ω αε γ ε βσt t t tMax2
1

2
1

2
1

20= + + − +− − −[ , ]

The leverage effect is measured by γ which determines the effect of a negative return shock on conditional
variance. The α and β terms have the same interpretations as in the GARCH (1,1) model.

In this model specification, the second derivative of volatility with respect to the current underlying
price is nonexistent. From the left, the second derivative is zero, and from the right it is γ, so .5γ is used as
an approximation. The GJR volatility term structure (in variances) and vega multiplier are given by:
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The GARCH components with leverage model (GCOMP) developed by Engle and Lee (1993) allows
for richer volatility dynamics and a leverage effect. In this model, volatility shocks have different effects on
a long-run and short-run volatility component, and each volatility component has a different rate of mean
reversion. Consider the following GCOMP formulation:

(16) ln( / ) ~ ( , )S S r Nt t t t t− − = +1
20µ ε ε σ,  

(17) σ α ε γ ε β σt t t t t t t tq q Max q q2 2
1
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1

2
1

2
1

2
1

2
1

20 5= + − + − − + −− − − − − −( ) ( [ , ] . ) ( )
(18) q qt t t t

2
1

2
1

2
1

2= + + −− − −ω ρ φ ε σ( )

Of the parameters, α reflects the effect of a shock on the short-run component of volatility, γ reflects
the short-run asymmetric effect of “bad news” on volatility, β reflects the influence of the lagged
conditional volatility, ρ reflects the persistence of the long-run component, and ϕ reflects the effect of a
volatility shock on the long-run component.

The GCOMP volatility term structure (in variances) and vega multiplier are given by:
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The GARCH(1,1) and GJR models, like the ARIV model, generate a monotonic upward or downward
sloping VTS with the curvature determined by the level of volatility persistence. The GCOMP model is
compatible with a non-monotonic VTS. In the GCOMP model, the VTS curvature is dominated by the sum
of α, β, and .5γ over the short-run and by ρ over the long-run. Notice that St-1 appears in the denominator
of all of the GARCH vega multipliers as a result of taking the second derivative with respect to St of the
current squared return in the volatility equation, which is a function of St-1.
 Figure 1 illustrates the differences in several volatility hedge parameters evaluated for at-the-money
straddles with 1 to 100 days until maturity using estimated parameters for S&P500 return volatility models.
Average expected volatilities are set to one-percent per day, the riskless rate and dividend yield are set to
zero, and the strike and underlying price are set to 100. CV vega is increasing in time-to-maturity, while
CV gamma and GCOMP gamma are both declining in time-to-maturity. ARIV vega is increasing initially,
but then decreasing in time-to-maturity.

3. Estimating volatility hedge ratios for S&P500 index options

In order to implement hedging tests, it is necessary to estimate the volatility hedge ratios which predict the
relative price change for a medium-term option position compared to a short-term option position due to
volatility news. The volatility hedge ratios depend on the estimated S&P500 return volatility model
parameters as well as the characteristics of the option position. Using the methods described in this section,
the GARCH, ARIV or CV hedge ratios could be estimated for at-the-money European options traded on
other indices, commodities, or individual stocks.

First, consider the estimated CV model presented in Table 2. The annualized sample standard deviation
of log returns (σ) is 15.47%. The sample consists of S&P500 daily log-returns from June 20, 1982 to June
30, 1996, which includes the 1000 days prior to the first day on which hedging tests begin and ends on the
last test day. The CV model sample standard deviation is also estimated for out-of-sample hedging tests
using a daily expanding window of trailing returns.

The CV gamma and CV vega hedge ratios are:
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Table 1 describes additional characteristics of the S&P500 log-return time-series. The negative return
skewness and positive excess kurtosis suggest that the unconditional distribution is poorly approximated by
a log-normal distribution. Persistence in the squared log-returns, as evidenced by the significant Ljung-Box
statistic of 234.83, suggests time-varying volatility.

The estimated ARIV model, presented in Table 2, is mean-reverting with an estimated autoregressive
parameter of .91. The ARIV process is estimated following the methodology of HKV (1994) and Stein
(1989). In these papers, the short-term implied variance is taken as a proxy for the one-day implied
variance, and the volatility process is estimated by regression of the short-term implied variance on its first
lag. For out-of-sample hedging tests, an ARIV model is estimated daily using an expanding window of
short-term implied variances.

Implied S&P500 return variances are obtained by inverting the Black-Scholes formula using the closest-
to-the-money, nearest maturity S&P500 call and put options with at least five trading days left until
maturity. The 1296 days over the period from January 1986 to June 1996 on which both short and medium-
term straddle price changes are available are used to extract the implied variances and their first lags. The
Black-Scholes formula includes a dividend adjustment in which the current index price is discounted by the
present value of dividends paid over the life of the option. Realized daily index dividends are estimated
using the total and capital appreciation returns reported in the CSP stock file index database. The risk-free
rate used is the 13-week Treasury Bill yield.

The ARIV volatility hedge ratio is:

(22)
Λ
Λ

m t T t m m

s t T t s s

m

s

S T VM T
S T VM T

( , , ) ( )
( , , ) ( )

,

,

σ
σ

The medium and short-term average volatilities used in equation (22) are the implied standard
deviations for the medium and short-term S&P500 index options. VM(Tm) and VM(Ts) are the medium and
short-term vega multipliers, which are derivatives of volatility term structure with respect to volatility news.

Consistent with a mean-reverting ARIV model, changes in short-term implied standard deviations are
more volatile than changes in medium-term implied standard deviations as shown in Table 1. Interestingly,
the mean and standard deviation of medium-term implied variances are slightly higher than the mean and
standard deviation of short-term implied variances. The large excess kurtosis of the changes in short and
medium-term volatility indicate the presence of large but infrequent implied volatility jumps.

The three GARCH models are presented in Table 2. These models are estimated by maximum
likelihood using S&P500 daily log-excess returns from June 20, 1982 to June 30, 1996. Volatility
persistence in the GARCH models is greater than in the ARIV model. For example, the GARCH(1,1)
model has volatility persistence as measured by the sum of α and β of about .99 compared to .91 for the
ARIV model. The GJR volatility persistence is about .98. The GCOMP model has higher long-run, but
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lower short-run volatility persistence than the other models. The leverage effect is significant in the GJR
and GCOMP models using standard t-statistics, but insignificant using the robust t-statistic of Bollerslev
and Wooldridge (1992). All of the models are successful in eliminating persistence in the standardized
squared returns as measured by the Ljung-Box statistic.

For out-of-sample hedging tests, the GARCH models are re-estimated daily using an expanding
window of trailing returns. In this case, the first estimation begins with return data from June 20, 1982
through January 1, 1986 for estimation on January 1, 1986. For estimation, excess returns are calculated
using the 13-week Treasury Bill yield as a proxy for the riskless rate of interest, and returns during the
week of the October 1987 crash are down-weighted by twenty percent in the log-likelihood function.

The GARCH volatility hedge ratio is:
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To better understand the volatility hedge ratios in equations (21), (22), and (23), consider hedging the
volatility sensitivity of a medium-term at-the-money straddle with 30 days to maturity with a short-term at-
the-money straddle with 10 days to maturity. Straddles are a natural position to consider for volatility
hedging, since straddles are especially sensitive to changes in volatility and insensitive to the direction of
underlying price movements.

Table 3 indicates that a CV vega hedge requires the purchase of 1.73 short-term straddles for each
medium-term straddle written. A hedge ratio greater than one reflects the increase in vega with maturity.
This corresponds to an experiment where volatility is changed once and for all, and therefore has a larger
impact on longer-lived options. Figure 1 confirms that CV vega is increasing as the option time-to-maturity
increases. In contrast, the CV gamma hedge requires the purchase of .58 short-term straddles per medium-
term straddle written.

In the ARIV model, the ARIV volatility hedge ratio incorporates mean reversion in volatility, which
counteracts the increase in vega with time-to-maturity. For this example and the estimated S&P500 ARIV
model, an ARIV volatility hedge requires the purchase of .91 short-term straddles for every medium-term
straddle written. Figure 1 shows that ARIV vega declines with time-to-maturity for straddles with greater
than two weeks until maturity resulting in a hedge ratio less than one.

In this example, the GARCH(1,1) volatility hedge ratio is .95, the GJR hedge ratio is .92, and the
GCOMP hedge ratio is .76. The volatility hedge ratios are largest for GARCH models with greatest
volatility persistence, since increased volatility persistence increases sensitivity of medium-term options to
volatility news.

Using the estimated volatility models, it is straightforward to calculate BSP volatility hedge ratios over
the sample period. This gives a another picture of the model differences. For hedging at-the-money
medium-term S&P500 straddles with short-term straddles, all average hedge ratios are less than one,
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except for the CV vega hedge ratio. As shown in Table 3, the CV gamma hedge and the GCOMP gamma
hedge have the lowest average hedge ratios.

4. Evaluating the accuracy of the approximate BSP hedge ratios

The final step before utilizing the BSP hedge ratios in hedging tests is an evaluation of the accuracy of the
BSP hedge ratios as approximations of the true hedge ratios. Hedging error due to use of approximate
hedge ratios will be proportional to the difference between the true and approximated hedge ratios. Thus,
accuracy of the approximate hedge ratios is properly evaluated on an absolute rather than relative basis.

Using Monte-Carlo simulation and the appropriate risk-neutralized processes for the ARIV and
GARCH models, the “true” hedge ratios may be calculated under the risk-neutral measure and compared
with the BSP approximations. Centered finite difference approximations of option pricing formula
derivatives are used to obtain the hedge parameters. The centered finite difference approximations for
GARCH delta and GARCH gamma are described in Engle and Rosenberg (1995). For this study,
simulation under Amin and Ng’s (1994) risk-neutralization for GARCH processes is used with the
estimated S&P500 volatility process parameters, and derivatives are evaluated at a one-tenth standard
deviation shock centered around the expected asset return.

ARIV delta and ARIV vega are calculated using simulation under the Hull and White (1987b) risk-
neutralization using the estimated ARIV parameters for S&P500 return volatility. The centered finite
difference approximation for ARIV vega is calculated by first taking the difference between a simulated
straddle price evaluated at the initial volatility plus and minus a one-tenth standard deviation shock. The
simulated option price difference is divided by the difference in the initial volatilities, giving an estimate of
ARIV vega. ARIV delta is calculated in an analogous manner using one-tenth standard deviation changes in
the initial underlying price.

All true hedge parameters for at-the-money calls and puts are calculated with 50,000 simulation
replications for maturities from 5 to 90 days and moneynesses of -.010, .005, 0.000, .005, and .010
representing the range of option maturities and moneynesses in the empirical hedging tests. Simulated
hedge parameters are smoothed according to the methodology in Engle and Rosenberg (1995). In each
simulation experiment, the level of volatility is set to the unconditional volatility for the given process. The
gamma and vega hedge ratios are based on hedging an at-the-money medium-term straddle with 25 to 90
days left with a short-term straddle with 20 fewer days until maturity. The delta hedge ratios are generated
for straddles with 5 to 90 days until maturity.

The “true” hedge ratios are compared with the BSP hedge ratios evaluated at the unconditional level of
volatility for the original process using equations (3), (21), (22), and (23). The difference between the BSP
hedge ratio and the fully-simulated alternative is defined to be the approximation error. The hedge ratio
errors are aggregated over maturities and moneynesses to evaluate accuracy and bias for the entire sample.

We expect that the particular method for delta hedge ratio calculation will have little effect on the
hedging tests for two reasons. First, Table 4 shows that average at-the-money simulated straddle deltas
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across maturities are close to zero, ranging from .0255 to .0647. This indicates that changes in the
underlying asset price have a relatively small contribution to straddle price variance. Empirically, a delta
hedge provides a negligible amount of hedging benefit for a straddle because of the insensitivity of this
position to the direction of underlying price changes. For example, a CV delta hedge for a medium-term
straddle results in a reduction of only 1.1% in portfolio variance as shown in Table 6.

Second, Table 4 also shows that the BSP at-the-money straddle deltas provide a reasonable
approximation to the simulated deltas. For example, the average errors for the GARCH deltas range from
.0081 to .0372, while the average ARIV delta error is -.0013. The presence of a leverage effect does impart
a slight downward bias in the GJR and GCOMP deltas evaluated using BSP.

The ARIV and GARCH volatility hedge ratio approximation errors are also acceptably small, as shown
in Table 4. The average GARCH volatility hedge ratio error ranges from -.0090 to -.0128 while the average
ARIV error is -.0179. These results suggest that the contribution of approximation error to the hedging
results is not significant.

5. Hedging tests

In this section, volatility hedging tests are developed for a $100 at-the-money medium-term S&P500 index
option straddle positions using short-term S&P500 index straddles. Each straddle position consists of an
equal number of calls and puts with identical strike prices and times to maturity. The positions are also
delta hedged to minimize the influence of correlation with the underlying asset on the tests. The hedging
tests are conducted using daily closing option price data from the Chicago Board Options Exchange over
the period January 1986 through June 1996.

Table 5 summarizes the data used in the option hedging tests. There are 1296 days over the 10.5 year
sample period for which price changes for all four options are available out of a total of 2654 trading days.
The short-term straddle is selected as the nearest-maturity closest-to-the-money position with at least five
trading days until maturity with a moneyness (index price/strike price - 1) less than .01. The medium-term
straddle selected is the next maturity straddle of the same moneyness as the short-term straddle with
available closing price change data. The average moneyness of the straddles is close to zero indicating the
positions are on average almost exactly at-the-money. The average time-to-maturity of the short-term and
medium-term straddles are about 14 and 38 trading days respectively.

Hedge ratios are estimated using the delta hedge ratio in equation (3) and the volatility hedge ratios in
equations (21), (22), and (23). Hedge parameters for each model are evaluated using the BSP formulas
given in section (2). In the BSP formula, the underlying price used is the closing S&P500 index price, and
the risk-free rate used is the 13-week Treasury Bill yield. The BSP formula is adjusted for realized index
dividends by discounting the index price by the present value of dividends paid over the life of the option.
The S&P500 daily dividend series is derived from capital appreciation and total returns reported in the
CRSP stock index file database.
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Two sets of hedge ratios are estimated. The first set of “in-sample” hedge ratios are based on the
estimated volatility models reported in Table 2. These hedge ratios correspond to a test of the model that
best characterizes the volatility term structure over the sample period. A second set of “out-of-sample”
hedge ratios are based on volatility models estimated using an expanding window of data. In this case, only
data that would have been available on each hedging date is used to construct the hedge portfolio.

The hedging tests are implemented as follows. Each trading day, a medium-term at-the-money straddle
position worth $100 is written. The volatility and delta hedge ratios corresponding to the volatility models
are then calculated. The number of short-term straddles to purchase is given by the volatility hedge ratio
times the number of medium-term straddles written. The number of shares of the underlying to purchase or
sell per medium-term straddle is given by the delta hedge ratio. These transactions are made, creating the
volatility hedge portfolio. This hedge portfolio is held for one day and then sold. Each day, hedge portfolio
price changes are calculated, and new positions established.

Hedging effectiveness is analyzed in Table 6. In continuous-time hedging, the optimal hedge portfolio
would have zero variance, but in discrete-time hedging the optimal hedge portfolio will exhibit volatility.
Thus, several hedging effectiveness criteria are reported to ensure that multiple dimensions of risk that arise
in discrete-time hedging are considered. We also examined hedging performance using unexpected price
changes, that is changes net of theta, and the outcomes were quite similar. We do not expect that sensitivity
to interest rate changes will have a substantial impact on test results.

Since the hedging performance results based on multiple criteria are quite similar, this discussion will
focus on two particular measures: variance reduction and absolute hedge error. The “variance reduction”
reported is defined as the percent reduction in variance of the hedged portfolio relative to the unhedged
portfolio. The absolute hedge error and associated t-statistic are used to compare the relative effectiveness
of two selected hedging methods. For example, the “absolute hedge error of model A versus model B” is
the average daily difference in the centered absolute hedge portfolio price changes for models A and B. A
positive value for this measure implies that model A has larger average absolute hedging errors, i.e. inferior
performance relative to model B.

The statistical significance of hedging performance differences for two models is evaluated using
White’s (1980) heteroskedasticity consistent t-statistic for the absolute hedge error. In this case, this t-
statistic is the same as the conventional t-statistic. A positive t-statistic greater than two indicates that the
model A is inferior to model B, while a negative t-statistic less than two indicates the reverse.

The results in Table 6 indicate that the CV delta-gamma (convexity) hedge offers the greatest reduction
in hedge portfolio variance (27.7%). The second greatest reduction in hedge portfolio variance is generated
by the GCOMP delta-gamma hedge (24.5%). These rankings are unchanged when the entire sample is
divided into two sub-periods: 1986-1991 and 1992-1996.

The absolute hedge error t-statistic is used to test whether the CV delta-gamma hedge (or the GCOMP
delta-gamma hedge) is significantly better than the alternatives. The fifth column of the second panel
compares absolute hedge errors of alternative models (model A) with the CV delta-gamma hedge (model
B). For all alternative models, the average absolute hedge error differences are positive indicating these
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models are inferior to the CV delta-gamma hedge. For example, the average daily absolute hedge error for
the ARIV delta-vega hedge is $.25 larger than the average absolute CV delta-gamma hedge error over the
sample period. The statistical significance of these differences is confirmed by robust t-statistics greater
than two, as reported in the sixth column of the second panel.

The same test is applied to compare each hedge to the GCOMP delta-gamma hedge. The seventh and
eighth column of the second panel show that all of the alternative hedges, except the convexity hedge, are
significantly inferior to the GCOMP hedge. This is indicated by positive t-statistics greater than two in the
eighth column. In terms of variance reduction, the GCOMP model improves on the alternative GARCH
models with a value of 24.5% compared to 19.0% for the GJR model and 17.1% for the GARCH(1,1)
model.

It is also notable that the CV delta-vega hedge increases portfolio variance above that of an unhedged
portfolio. Clearly, treating a volatility shock as a one-and-for-all change that affects all parts of the volatility
term structure equally is unrealistic based on this result. The fact that all of the GARCH models are
superior to the ARIV model indicates that the addition of mean-reversion to the volatility process, without
a realistic specification of the relationship between return magnitudes and future volatility, is inadequate for
modeling volatility term-structure dynamics and hedging changes in volatility. Thus, the hedging
performance tests highlight a particular form of model misspecification: an omitted variable in the volatility
equation.

The third panel of Table 6 provides an out-of-sample evaluation of hedging performance. For the out-
of-sample tests, all volatility models and volatility hedge ratios are estimated using only data available at the
time of hedge portfolio construction. These results are similar to those in the first part of Table 6 in that the
CV delta-gamma hedge is most effective followed by the GCOMP delta-gamma hedge. The t-statistics in
the out-of-sample hedging tests are lower than for the in-sample tests, as is expected due to the daily re-
estimation of the volatility models, and are not significant in all cases. However, the out-of-sample results
are consistent with the in-sample results in terms of variance reduction, and no stochastic volatility hedge is
a statistically significant improvement over the GCOMP delta-gamma hedge.

6. Convexity versus volatility hedges: the role of sample selection

The hedging results of section 5 indicate that if volatility is to be considered as a risk factor, it should be
expressed as a function of returns. However, the superior performance of the CV delta-gamma hedge
relative to the GARCH models suggests that volatility has a zero or negligible reaction to return
magnitudes. Relative S&P500 straddle price changes seem to be most accurately predicted by their
sensitivity to second-order changes in the underlying price. It is puzzling that stochastic volatility models
appear to perform well in predicting option prices, but poorly in predicting relative option price changes.

A possible source of the apparent superior performance of the convexity hedge relative to the volatility
hedges is sample selection bias. Of the 2654 trading days in the sample period, there are 1296 days for
which one-day option price changes are available for short and medium term straddles. Since at-the-money
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options are the most liquid contracts, it is most likely that an at-the-money straddle will be traded for two
days in a row when the underlying price does not change significantly. In other words, straddle price
changes tend to be available on low volatility days.

The first panel of Table 7 analyzes the movements in the S&P500 index for days with and without
option price change data. The difference in return volatility for sample and non-sample days is striking: the
annualized S&P500 return standard deviation on sample days is 11.7% compared to 19.2% for excluded
days. This implies that days without option price change data are high volatility days.

If relative hedging performance is different on low and high volatility days, the observed test results
may be biased. The second panel of Table 7 measures hedging performance on high volatility days by
constructing a subsample of the observed option price change sample into the 100 days with largest
S&P500 return magnitudes. In this subsample, all of the GARCH volatility hedges outperform the
convexity hedge. For example, the variance reduction for the GCOMP hedge is 53.5% compared to 48.9%
for the CV delta-gamma hedge. If the relative performance of the models for the unobserved days follows
this pattern, the GARCH hedges would dominate the convexity hedge.

Notice that the relative performance among the volatility hedges does not change on the high volatility
days. In other words, in this subsample the GCOMP hedge is superior to the alternative GARCH hedges as
well as the ARIV and CV delta-vega hedges. This reinforces the evidence for mean reversion in volatility
and correlation between return magnitudes and volatility. It also suggests that the strongest results from the
hedging tests are the relative rankings of the stochastic volatility hedges.

7. Conclusions

This paper provides a methodology for testing volatility models based on their ability to construct option
portfolios hedged against shifts in the volatility term structure. Approximate at-the-money option hedge
parameters are developed for several volatility model specifications, and volatility hedging tests are
implemented using S&P500 index options.

Of the stochastic volatility hedges, the GARCH components with leverage delta-gamma hedge is most
effective, indicating that it provides the most accurate estimates of VTS dynamics. The poorer hedging
performance of the CV delta-vega and ARIV models suggests that volatility changes must be linked to the
magnitude of underlying asset returns.

In the observed sample, a convexity hedge outperforms the volatility hedges. The effect of missing
observations on high volatility days (i.e. sample selection bias) indicates that volatility hedges might
outperform the convexity hedge if option price changes on all days could be observed.
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Table 1
Descriptive statistics for data used in estimation of the volatility models

Descriptive statistics for S&P500 return data used in CV and GARCH model estimation

Number obs. Mean
Standard 
deviation Skewness

Excess 
kurtosis

Ljung-Box (15) 
on log returns

Ljung-Box 
(15) on 

squared log 
returns

S&P500 index daily log return 3655 0.1286 0.1547 -3.72 88.85 32.19 234.83

Descriptive statistics for implied variance data (short term implied variance is used in ARIV model estimation)

Number obs. Mean Std. dev. Skewness
Excess 
kurtosis

First order 
autocorrelation

Short term implied std. dev. 1296 0.1403 0.0384 1.08 0.96 0.93
Medium term implied std. dev. 1296 0.1475 0.0397 1.01 0.67 0.95
Short term implied std., 1st diff. 1295 0.0000 0.0143 0.65 7.92 -0.23
Medium term implied std., 1st diff. 1295 0.0000 0.0123 0.65 5.46 -0.14

This table presents descr ipt ive stat ist ics for  data used in est im a tion of the volati l i ty models .  S&P500 dai ly  log re turns are
calculated using the log-dai ly  capi ta l  appreciat ion for  the S&P500 index f rom June 20,  1982 through June 30,  1996.  The
m ean (annual ized) ,  s tandard deviat ion (annual ized) ,  skewness,  and excess kur tos is  are sam ple stat ist ics.  L jung-Box refers to
the L jung-Box Q-stat is t ic  (Box,  1970) which measures autocorrelat ion and is  calculated using 15 lags.  The cr i t ical  value is
approx imate ly  25.  Sum m ary statist ics for im pl ied standard deviat ions and their  f i rs t  d i f ferences are reported for  the 1296 days
over  the per iod January  1986 through June 1996 for  which shor t  and medium  term a t - the-money S&P500 index  s t radd le  pr ice
changes are avai lable.  Im p l ied standard deviat ions (annual ized) are est im a ted by inver t ing the Black-Scholes (1973) formula
for  short  and m edium  term at - the-money S&P500 puts  and ca l ls  us ing c los ing opt ion pr ices.  The shor t  and medium  term
im p l ied standard deviat ions are the square root  of  the average of  the at- the-money put  and ca l l  im p l ied var iances for the
respect ive matur i ty .  The Black-Scholes form u la is  adjusted for  d iv idends by discount ing the current  index level  by the present
value of  real ized div idends over the l i fe of  the opt ion.  Real ized div idends are extracted using total  and capi tal  appreciat ion
returns reported in the CRSP stock f i le  index database.  The r isk less interest  rate used is  the 13 week U.S.  Treasury Bi l l  y ie ld.
The number of  days unt i l  expirat ion is  calculated using t rading days.



Table 2
Estimated volatility models used in volatility term structure tests

CV model

Parameter

Sample 
standard 
deviation

σ 0.1547

ARIV model

Parameter
Estimated 
coefficient t-statistic RMSE

ω 7.18E-06 6.54 2.01E-05
ρ 0.9140 81.22

Adjusted r-
squared 0.84

First-order 
autocorr. -0.17

GARCH(1,1) model GJR model GCOMP model

Parameter
Estimated 
coefficient t-statistic

Robust t-
statistic

Estimated 
coefficient t-statistic

Robust t-
statistic

Estimated 
coefficient t-statistic

Robust t-
statistic

µ 0.0004 3.17 3.06 0.0003 2.37 2.18 0.0003 2.44 2.40
ω 1.10E-06 6.83 2.48 1.36E-06 8.89 2.57 3.76E-07 5.17 2.93
α 0.0643 37.18 1.41 0.0387 6.17 2.82 0.0000 0.00 0.00
β 0.9245 247.47 22.54 0.9213 210.41 29.44 0.7044 21.28 5.33
γ 0.0489 7.46 1.03 0.1477 17.03 1.41
φ 0.0256 8.21 2.76
ρ 0.9954 853.05 369.74

Maximized log-likelihood func. value 12339.27 12349.92 12387.11
Ljung-Box (15) on std. sqr. ret. 8.45 5.86 5.71

This table presents the estim ated volatility m odels which are used to forecast the volatil ity term structure and to calculate the
volatil ity hedge ratios. The CV m odel refers to the constant volati l i ty model, which is estimated using the annualized sam ple standard
deviation of daily log-returns for the S&P500 index over the period June 20, 1982 to June 30, 1996. The ARIV model refers to the
autoregressive implied volati l i ty model which is estimated as an AR(1) model with short term implied variance proxying the one-day
implied variance, following the m ethodology of Heynen, Kemna, and Vorst (1994). The characteristics of the 1296 short term implied
variances used in ARIV estimation are detailed in Table 1. The ARIV model is defined in equation (5), and RMSE refers to the root
mean squared error from  the regression. The three GARCH models are estimated by maximization of the log-l ikelihood function
using daily log-returns excess returns for the S&P500 index over the period June 20, 1982 to June 30, 1996. Returns during the
week of the October 1987 crash are down-weighted by twenty percent in the log-likelihood function. Robust t-statistics are calculated
according to the m ethod of Bollerslev and Wooldridge (1992). The GARCH(1,1) m odel is defined in equations (8) and (9), the GJR
model is defined in equations (12) and (13), and the GCOMP model is defined in equations (16)-(18). The Ljung-Box statistic
measures persistence in squared standardized returns using 15 lags.



Table 3
Estimated volatility hedge ratios for at-the-money S&P500 index straddles

Medium term 
days until 

maturity = 25 

Medium term 
days until 

maturity = 30 

Medium term 
days until 

maturity = 40 

Volatility hedge ratio

Short term 
days until 

maturity = 5

Short term 
days until 

maturity = 10

Short term 
days until 

maturity = 20

Average hedge 
ratio over 
sample

IQR of hedge 
ratios over 

sample
CV vega hedge ratio 2.24 1.73 1.41 1.72 0.45
ARIV vega hedge ratio 1.10 0.91 0.82 0.83 0.13
GARCH(1,1) gamma hedge ratio 0.82 0.95 1.01 0.93 0.08
GJR gamma hedge ratio 0.79 0.92 0.98 0.90 0.08
GCOMP gamma hedge ratio 0.63 0.76 0.88 0.79 0.13
CV gamma hedge ratio 0.45 0.58 0.71 0.60 0.16

This table presents the estimated volatility hedge ratios for a medium term at-the-money S&P500 index straddle with a short
term straddle based on several volatility models. The volatility hedge ratio gives the number of short term straddles to be
purchased for each medium straddle written to eliminate option sensitivity to volatility news. The particular medium and short
term number of days until maturity are given in the column labels of the table. CV, ARIV, and GARCH volatility hedge ratios are
given in equations (21), (22), and (23). Volatility multipliers are calculated using the estimated volatility model parameters in
Table 2. Average annual expected volatility is set to 15.9%, the riskless rate is set to zero, the dividend yield is set to zero, and
the index level and option strike price are set to 100. The average and interquartile range (IQR) of hedge ratios over the sample
are calculated using the 1296 days of straddle price changes available from January 1986 to June 1996, the characteristics of
the contracts traded, and the estimated volatility model parameters.



Table 4
Comparison of simulated and BSP approximate hedge ratios

Characteristics of delta hedge ratio approximation error
GARCH(1,1) 

delta GJR delta
GCOMP 

delta ARIV delta
Mean error 0.0081 0.0372 0.0262 -0.0013
Std. error 0.0078 0.0077 0.0050 0.0039
Min. error -0.0055 0.0165 0.0184 -0.0126
Max. error 0.0226 0.0495 0.0405 0.0093
Avg. sim. hedge ratio 0.0373 0.0647 0.0527 0.0255

Characteristics of gamma and vega hedge ratio approximation error
GARCH(1,1) 

gamma GJR gamma
GCOMP 
gamma ARIV vega

Mean error -0.0128 -0.0143 -0.0090 -0.0179
Std. error 0.0072 0.0068 0.0092 0.0174
Min. error -0.0304 -0.0292 -0.0420 -0.0600
Max. error 0.0284 0.0210 0.0154 0.0061
Avg. sim. hedge ratio 0.9871 0.9558 0.9155 0.8478

This table presents the accuracy of the Black-Scholes plug-in (BSP) approximations to
fully-simulated option hedge parameters under GARCH and autoregressive implied
volatility (ARIV) models. Simulated option hedge parameters consistent with GARCH and
ARIV models are obtained using Monte-Carlo simulation with 50,000 replications under
the Amin-Ng (1994) and Hull and White (1987b) risk-neutral measures using empirical
values for the volatility processes in Table 2 and centered finite difference approximations.
Simulated hedge parameters are smoothed according to the methodology described in
Rosenberg and Engle (1995). The current level of average expected volatility is set equal
to the unconditional volatility for each model. BSP hedge ratios are estimated using the
estimated volatility process parameters in Table 2 and equations (3), (4) , and (7). The
simulated hedge parameters are estimated for straddles with 5 to 90 days until maturity
and for moneynesses (underlying price/strike price -1) of -.01, -.005, 0, .005, and .01 to
reflect the moneyness range used in the empirical hedging tests. Delta hedge ratios are
calculated for straddles with 5 to 90 days until maturity, while ARIV vega and GARCH
gamma hedge ratios are calculated for pairs of equal moneyness straddles which have a
difference of 20 days until maturity. The longer maturity straddle has from 25 to 90 days
until maturity and the shorter maturity straddle has from 5 to 70 days until maturity. The
approximation error is calculated by taking the difference of the simulated straddle delta,
gamma, or vega hedge ratio and the BSP approximation. The sample properties of the
approximation errors (mean, standard deviation, minimum, and maximum) over the range
of moneyness and time to maturity for each model are listed in the table along with the
average simulated hedge ratio.



Table 5
Summary of option data used in hedging performance tests

Short term 
call options

Medium term 
call options

Short term 
put options

Medium term 
put options

Number of observations 1296 1296 1296 1296
Average price 5.38 9.60 5.04 8.45
Std. dev. price 1.98 2.90 1.77 2.29
Average price change 0.03 0.04 -0.14 -0.15
Std. dev. price change 1.53 1.56 1.56 1.52
Skewness of price change 0.87 0.42 1.32 1.09
Kurtosis of price change 2.14 1.66 6.11 6.68
Average daily return 0.0069 0.0081 -0.0268 -0.0291
Std. dev. daily return 0.3160 0.1670 0.3473 0.3295
Skewness of daily return 1.35 0.64 3.97 2.88
Kurtosis of daily return 5.05 1.68 52.62 37.28
Average time to maturity 14.31 38.11 14.31 38.11
Std. dev. time to maturity 6.44 11.79 6.44 11.79
Average moneyness -0.0002 0.0038 -0.0002 0.0038
Std. dev. moneyness 0.0002 0.0038 0.0002 0.0038

This table presents summary statistics describing the S&P500 index option data used in the
hedging performance tests of the volatility term structure. There are 1296 days for which short
and medium term straddle price changes are available from January 1986 to June 1996. The
yearly number of data points used from 1986 to 1996 are:  35, 97, 60, 95, 119, 132, 147, 181,
183, 163, 84. No data is used in October 1987 subsequent to October 15. Option returns are
defined as the one-day net proportional change in the closing option price. Time to maturity is
measured in days. Moneyness is defined as the ratio of the underlying price to the strike price
minus one. Option prices are quoted in units ($100 increments). The option data is from the
Chicago Board Options Exchange.



Table 6
Tests of volatility term-structure forecasts using option hedging performance criteria

Hedge portfolios:                                       
(using in-sample forecasts)

Standard 
deviation 

(annualized)
Interquartile 

range 5th percentile

Correlation with 
market factors   (F 

probability)
No hedge 91.13 5.71 -9.52 0.0000
Constant volatility delta hedge 90.65 5.62 -9.04 0.0000
Constant volatility delta-vega hedge 136.98 7.51 -12.07 0.0000
ARIV delta-vega hedge 85.27 5.60 -8.26 0.0000
GARCH(1,1) delta-GARCH gamma hedge 82.96 5.53 -8.11 0.0000
GJR delta-GARCH gamma 82.04 5.53 -8.02 0.0000
GCOMP delta-GARCH gamma 79.18 5.35 -7.89 0.0014
Constant volatility delta-gamma hedge 77.50 5.14 -7.88 0.0169

Hedge portfolios:                                       
(using in-sample forecasts)

Variance 
reduction   

(1986-1996)

Variance 
reduction 

(1986-1991)

Variance 
reduction  

(1992-1996)

Abs. hedge error 
vs CV delta-

gamma Robust t-statistic

Abs. hedge error vs 
GCOMP delta-

GARCH gamma Robust t-statistic
No hedge 0.0% 0.0% 0.0% 0.54 7.02 0.46 4.88
Constant volatility delta hedge 1.1% -0.6% 2.8% 0.45 5.73 0.37 3.82
Constant volatility delta-vega hedge -125.9% -145.6% -105.2% 2.08 13.12 2.00 13.30
ARIV delta-vega hedge 12.4% 9.5% 15.5% 0.25 5.08 0.17 3.94
GARCH(1,1) delta-GARCH gamma hedge 17.1% 18.2% 15.7% 0.24 5.30 0.16 7.01
GJR delta-GARCH gamma 19.0% 20.1% 17.6% 0.20 4.79 0.12 6.34
GCOMP delta-GARCH gamma 24.5% 26.3% 22.4% 0.08 2.95 0.00 0.00
Constant volatility delta-gamma hedge 27.7% 29.4% 25.6% 0.00 0.00 -0.08 -2.95

Hedge portfolios:                                        
(using out-of-sample forecasts)

Variance 
reduction

Standard 
deviation 

(annualized)
Interquartile 

range 5th percentile

Correlation with 
market factors   
(F probability)

Abs. hedge error vs 
GCOMP delta-

GARCH gamma Robust t-statistic
Constant volatility delta-vega hedge -129.9% 138.17 7.50 -12.12 0.0000 2.00 13.28
ARIV delta-vega hedge 23.4% 79.75 5.37 -7.96 0.0010 0.04 1.42
GARCH(1,1) delta-GARCH gamma hedge 22.8% 80.06 5.38 -7.81 0.0000 0.04 3.36
GJR delta-GARCH gamma 23.7% 79.59 5.35 -7.81 0.0001 0.01 1.45
GCOMP delta-GARCH gamma 24.6% 79.12 5.35 -7.89 0.0006 0.00 0.00
Constant volatility delta-gamma hedge 27.7% 77.50 5.14 -7.90 0.0128 -0.08 -2.93

These panels describe the characteristics of one-day hedge portfolio price changes for hedge portfolios constructed according to several models of the S&P500 return volatility
process. Hedge ratios are estimated for a $100 written position of nearest maturity at-the-money S&P500 index option straddles. This position is hedged with the next nearest
maturity at-the-money S&P500 index straddle available and the S&P500 index portfolio. The first two panels describe tests of the volatility term structure based on in-sample
forecasts. The third panel presents tests of VTS forecasts using out-of-sample forecasts. The hedge portfolio price changes are determined using close-to-close price changes
for the index options and the S&P500 index. Hedging tests are conducted using the 1296 days where data is available over the period January 1986 - June 1996. The standard
deviation (annualized), interquartile range, and 5th percentile refer to sample statistics calculated using the one-day hedge portfolio price changes. The correlation with market
factors (F probability) is the F probability from a regression of hedge portfolio price changes on the change in the S&P500 index level and the squared change. Variance
reduction is defined as the ratio of the difference between the unhedged portfolio variance and the hedge portfolio variance with the unhedged portfolio variance expressed as
a percentage. Absolute hedge error versus CV delta-gamma and GCOMP delta-GARCH gamma are defined as the average difference between the de-meaned absolute daily
hedge portfolio price change for an alternative hedge portfolio and the CV or GCOMP portfolio. The robust t-statistic is the heteroskedasticity consistent t-statistic of White
(1980) for the null hypothesis that the hedge performance of the alternative model and the CV or GCOMP models are equal.



Table 7
Evidence of sample selection bias in option price change data

Characteristics of S&P500 daily log returns, January 1986 - June 1996

Number of 
observations

Return mean 
(annualized)

Return 
standard 
deviation 

(annualized)
All trading days 2654 0.1167 0.1596
Days used in hedging tests 1296 0.1609 0.1170
Missing data days 1358 0.0762 0.1916

Hedge performance for 100 largest absolute S&P500 return dates
Hedge portfolios:                                
(using in-sample forecasts)

Variance 
reduction

No hedge 0.0%
Constant volatility delta hedge -7.0%
Constant volatility delta-vega hedge -123.8%
ARIV delta-vega hedge 38.5%
GARCH(1,1) delta-GARCH gamma hedge 50.1%
GJR delta-GARCH gamma 50.9%
GCOMP delta-GARCH gamma 53.5%
Constant volatility delta-gamma hedge 48.9%

These panels present evidence of sample selection bias in the option price change data due to the fact that
option price changes for initially at-the-money positions are typically available only when the underlying price
does not change substantially. The first panel presents characteristics of daily S&P500 index log returns for all
trading days from January 1986 to June 1996, for days where option price changes are available, and for days
when data is not available. The second panel presents characteristics of one-day hedge portfolio price
changes for hedge portfolios constructed according to several models of the S&P500 return volatility process.
Only the 100 largest absolute S&P500 return dates are included in this analysis to approximate the
performance of the hedges for the unobserved dates. Hedge ratios are estimated for a $100 written position of
nearest maturity at-the-money S&P500 index option straddles. This position is hedged with the next nearest
maturity at-the-money S&P500 index straddle available and the S&P500 index portfolio. These results are
based on in-sample forecasts. The hedge portfolio price changes are determined using close-to-close price
changes for the index options and the S&P500 index. Variance reduction is defined as the ratio of the
difference between the unhedged portfolio variance and the hedge portfolio variance with the unhedged
portfolio variance expressed as a percentage.



0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

1 11 21 31 41 51 61 71 81 91

Option time until maturity (in days)

H
ed

ge
 p

ar
am

et
er

CV vega/1000 ARIV vega/10000 GCOMP gamma CV gamma

Figure 1
Comparison of volatility hedge parameters for an at-the-money S&P500 index straddle

CV vega and CV gamma are calculated using equation (2), and CV vega is scaled by dividing by 1000.
ARIV vega is calculated using equations (4) and (6), the estimated ARIV parameters from Table 2, and is
scaled by dividing by 10000. GCOMP gamma is calculated using equations (7), (19), and (20) with the
estimated GCOMP parameters from Table 2. Average annual expected volatility is set to 15.9%, the riskless
rate is set to 0, the dividend yield is set to zero, and the index level and option strike price are set to 100.


