
 

 
 
 
 
 
 

 
A TALE OF TWO INDICES 

 
Peter Carr  
Liuren Wu 

 
 
 

 
 
 
 
 
 

 

Working Paper Series    CENTER FOR FINANCIAL ECONOMETRICS  



A Tale of Two Indices∗

PETER CARR†

Bloomberg L.P. and Courant Institute

L IUREN WU‡

Zicklin School of Business, Baruch College

First draft: October 20, 2003

This version: March 19, 2004

∗We thank Harvey Stein, and Benjamin Wurzburger for inspiring discussions. We welcome comments, including refer-

ences we have inadvertently missed.
†499 Park Avenue, New York, NY 10022; tel: (212) 893-5056; fax: (917) 369-5629;pcarr4@bloomberg.com.
‡One Bernard Baruch Way, Box B10-254, New York, NY 10010; tel: (646) 312-3509; fax: (646) 312-3451;

Liuren Wu@baruch.cuny.edu; http://faculty.baruch.cuny.edu/lwu.



A Tale of Two Indices

ABSTRACT

In 1993, the Chicago Board of Options Exchange (CBOE) introduced the COBE Volatility In-

dex (VIX). This index has become the de facto benchmark for stock market volatility. On Septem-

ber 22, 2003, the CBOE revamped the definition and calculation of the VIX, and back-calculated

the new VIX up to 1990 based on historical option prices. The CBOE is also planning to launch

futures and options on the new VIX. In this paper, we describethe major differences between the

old and the new VIXs, derive the theoretical underpinnings for the two indices, and discuss the

practical motivation for the recent switch. We also study the historical behaviors of the two indices.



A Tale of Two Indices

In 1993, the Chicago Board of Options Exchange (CBOE) introduced theCOBE Volatility Index (VIX).

This index has become the de factor benchmark for stock market volatility. Itis widely followed and has

been cited in hundreds of news articles in the Wall Street Journal, Barron’s and other leading financial

publications.

The volatility index uses options data on S&P 100 index (OEX) and computes an average of the

Black and Scholes (1973) option implied volatility with strike prices close to the current spot index

level and maturities interpolated at about one month. The market often regards this implied volatility

measure as a forecast of subsequent realized volatility and also as an indicator on market stress.

On September 22, 2003, following suggestions from the industry,1 CBOE revamped the definition

and calculation of the VIX, and back-calculated the new VIX up to 1990 based on historical option

prices. The new definition uses the more actively traded S&P 500 index options to replace the S&P

100 index as the underlying index. Furthermore, the new index measures aweighted average of option

prices across all strikes at two nearby maturities.

Currently, the CBOE keeps track of both volatility indexes and rename the old index as VXO. The

CBOE has also been planning to launch futures and options on the new VIX.In this paper, we describe

the major differences in the definition and calculation of the two volatility indices. We also derive the

theoretical underpinnings for the two definitions and discuss the practicalmotivations for the switch

from the old to the new VIX. Finally, we study the historical behavior of the twovolatility indexes.

1. Definitions and Calculations

1.1. The old VXO

The CBOE renames the old VIX now as VXO and continues to provide the quotes on this index. The

calculation of the VXO index is based on options on the S&P 100 index (OEX). It is an average of the

1See “Developing the New VIX — A Practitioner’s Tale,” by Sandy Rattray atGoldman, Sachs & Co.



Black-Scholes implied volatility quotes on eight near-the-money options at the two nearby maturities.

At each maturity, the CBOE picks the two call and two put options that are closest to the money and

average their implied volatility quotes to obtain an estimate of the approximately at-the-money implied

volatility at that maturity. Then, the CBOE linearly interpolates between the two at-the-money implied

volatility estimates to obtain an at-the-money implied volatility estimate at the one-month maturity

level. The interpolation is based on the number of business days.

1.2. The new VIX

The CBOE calculates the new volatility index, VIX, using market prices on the S&P 500 index options.

The general formula for the new VIX calculation is

σ2 =
2
T ∑

i

∆K

K2
i

erT P(Ki ,T)− 1
T

[

F
K0

−1

]2

, (1)

whereT is the common time to maturity for the all the options involved in this calculation,F is the

forward index level derived from the index option prices,Ki is the strike price of thei-th out-of-the-

money option in the calculation,P(Ki ,T) denotes the midquote price of the out-of-the-money option at

strikeKi , K0 is the first strike below the forward index levelF , r denotes the riskfree rate of maturity

T, and∆Ki denotes the interval between strike prices, defined as

∆Ki =
Ki+1−Ki

2
. (2)

The formula in equation (1) only uses out-of-the-money options. Thus,P(Ki ,T) represents the

call option price whenKi > F and the put option price whenKi < F . WhenKi = K0, CBOE uses the

average of the call and put option prices at this strike as the input forP(K0,T). SinceK0 ≤ F , the

average atK0 implies that the CBOE uses one unit of the in-the-money call atK0. The last term in

equation (1) represents the adjustment term via the put-call parity to convert this in-the-money call into

an out-of-money put.

The calculation involves all available call options at strikes greater thanF and all put options at

strikes lower thanF . The bids of these options must be strictly positive to be included. When at the
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boundary of the available options, the definition for the interval∆K modifies as follows:∆K for the

lowest strike is the difference between the lowest strike and the next higher strike. Likewise,∆K for

the highest strike is the difference between the highest strike and the nextlower strike.

To determine the forward index levelF , CBOE chooses the pair of put and call options whose

prices are the closest to each other. Then, the forward price is derived via the put-call parity relation.

The CBOE uses equation (1) to calculateσ2 at two of the most shortest maturities of the available

options,T1 andT2. Then, the CBOE linearly interpolates between the twoσ2 to obtain aσ2 at 30-day

maturity. The VIX represents the annualized percentage of this 30-dayσ,

VIX = 100

√

365
30

[

T1σ2
1

NT2 −30
NT2 −NT1

+T2σ2
2

30−NT1

NT2 −NT1

]

, (3)

whereNT1 andNT2 denote the number of actual days to expirations for the two maturities. When the

shortest maturity falls within eight days, the CBOE switches to another maturity to avoid microstructure

effects at very short option maturities.

2. Theoretical Underpinnings

2.1. The old VXO

The VXO is essentially an average estimate of the one-month at-the-money Back-Scholes implied

volatility. Both the academics and practitioners often regard the at-the-money implied volatility as

an approximate forecast for realized volatility. However, since the Black-Scholes model assumes de-

terministic volatility, there is no direct economic motivation for regarding the at-the-money implied

volatility as the realized volatility forecast. Nevertheless, a substantial body of empirical work has

found that the at-the-money Black-Scholes implied volatility is an efficient, although biased, forecast

of subsequent realized volatility. Examples of such studies include Latane and Rendleman (1976),

Chiras and Manaster (1978), Day and Lewis (1988), Day and Lewis (1992), Lamoureux and Lastrapes

(1993), Canina and Figlewski (1993), Day and Lewis (1994), Jorion(1995), Fleming (1998), Chris-

tensen and Prabhala (1998), Gwilym and Buckle (1999), Hol and Koopman (2000), Blair, Poon, and
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Taylor (2000), Hansen (2001), Christensen and Hansen (2002), Tabak, Chang, and de Andrade (2002),

Shu and Zhang (2003), and Neely (2003).

Thus, the wide reference to the VXO is more based on empirical evidence onits relevance to

realized volatility than based on theoretical linkages unless under the very strict assumption of the

Black-Scholes model. This situation changed recently when Carr and Lee (2003) show that at-the-

money implied volatility represents an accurate approximation of the conditional risk-neutral expecta-

tion of the return volatility under general market settings. Their result indicates that the at-the-money

implied volatility actually approximates the volatility swap rate. Volatility swap contracts are traded

actively over the counter on major currencies and some equity indexes. Atmaturity, the long side of

the volatility swap contract receives the realized return volatility and pays a fixed volatility rate, which

is the volatility rate. Since the contract costs zero to enter, the fixed volatility swap rate equals the

risk-neutral expected value of the realized volatility.

Carr and Lee (2003) assume continuous futures priceQ-dynamics as follows,

dFt/Ft = σtdWt , (4)

where the diffusion volatilityσt can be stochastic, but its variation is assumed to be independent of the

Brownian motionWt in the price.

Under these assumptions, Hull and White (1987) show that the value of a call option is just the

risk-neutral expected value of the Black Scholes formula value, considered as a function of the random

realized volatility. In the special case when the call is at-the-money (K = F), we have the time-0 value

of the call option maturing at timeT as

ATMC0 = E
Q
0

{

F0

[

N

(

σT
√

T
2

)

−N

(

−σT
√

T
2

)]}

, (5)

whereσT is the random volatility realized over[0,T]:

σT ≡
√

〈X〉T

T
. (6)
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As first shown in Brenner and Subrahmanyam (1988), a Taylor seriesexpansion of each normal

distribution function about zero implies:

N

(

σ
√

T
2

)

−N

(

−σ
√

T
2

)

=
σ
√

T√
2π

+O(T
3
2 ). (7)

Substituting (7) in (5) implies that:

ATMC0 ≈ E
Q
0

[

F0√
2π

σT

√
T

]

, (8)

and hence the volatility swap rate is given by:

E
Q
0 σT =

√
2π

F0
√

T
ATMC0 +O(T

3
2 ). (9)

Since an at-the-money call value is concave in volatility,
√

2π
F0
√

T
ATMC0 is a slightly downward biased

approximation of the volatility swap rate. As a result, the coefficient onT
3
2 is positive. However,

Brenner and Subrahmanyam have shown that the at-the-money implied volatility(ATMV) is also given

by:

ATMV =

√
2π

F0
√

T
ATMC0 +O(T

3
2 ). (10)

Once again,
√

2π
F0
√

T
ATMC0 is a slightly downward biased approximation of the at-the-money implied

volatility and hence the coefficient onT
3
2 is positive. Subtracting equation (10) from (10) implies that

the initial volatility swap rate is approximated by the initial at-the-money implied volatility:

E
Q
0 σT = ATMV+O(T

3
2 ). (11)

In fact, the leading source of error in (9) is partially cancelled by the leading source of error in (10). As

a result, this approximation has been found to be extremely accurate. The shorter the time to maturity,

the better the approximation. Both concepts coincide with each other and instantaneous volatility as

time to maturity goes to zero.

It is worth noting that although the at-the-money implied volatility happens to approximate well

the volatility swap rate, the volatility swap contract itself is notoriously difficult to replicate and hedge.
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Carr and Lee (2003) have derived some results on this, but the hedgingstrategies that propose are by

any means complicated and difficult (costly) to implement in practice.

2.2. The new VIX

In contrast to the old VXO, the new VIX underlies the annualized conditionalreturn quadratic variation

under the risk-neutral measure, and hence the variance swap rate. Variance swap contracts are actively

traded over the counter on major equity indexes. At maturity, the long side of the variance swap

contract receives a realized variance and pays a fixed variance rate, which is the variance swap rate.

The difference between the two rates is multiplied by a notional dollar figure to convert the payoff into

dollar payments. At the time of entry, the contract has zero value. Hence, by no-arbitrage, the variance

swap rate equals the risk-neutral expected value of the realized variance, an sample estimate of the

return quadratic variation. Although volatility swap contracts are difficult to hedge, the variance swap

contracts can be readily replicated, up to a higher-order term, using a staticposition on a continuum

of options and a dynamic position on futures trading. The risk-neutral expected value of the dynamic

futures trading is zero. The VIX calculation represents a discretized version of the initial cost of the the

continuum of options in the replication. The theoretical relation holds under very general conditions.

Formally, we useSt to denote the spot price of an asset at timet ∈ [0,T ], whereT is some arbitrarily

distant horizon. We useFt to denote the timet price of a futures contract with maturityT > t that

marks to market continuously. No arbitrage implies that there exists a risk-neutral probability measure

Q defined on a probability space(Ω,F ,Q) such that the futures priceFt solves the following stochastic

differential equation,

dFt/Ft− = σt−dWt +
∫

R0
(ex−1) [µ(dx,dt)−νt(x)dxdt] , t ∈ [0,T ], (12)

starting at some fixed and known valueF0 > 0. In equation (12),Ft− denotes the futures price at timet

just prior to a jump,R0 denotes the real line excluding zero,Wt is aQ standard Brownian motion, and

the random measureµ(dx,dt) counts the number of jumps of sizeex in the asset price at timet. The

process{νt(x),x∈ R0, t ∈ [0,T ]} compensates the jump processJt ≡
∫ t

0

∫

R0 (ex−1)µ(dx,ds), so that
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the last term in equation (12) is the increment of aQ-pure jump martingale. The processνt(x) must

have the following properties (see Prokhorov and Shiryaev (1998)),

ν0(x) = 0, νt(0) = 0,
∫

R0

(

|x|2∧1
)

νt(x)dx< ∞, t ∈ [0,T ].

The literature often refers toνt(x) as thecompensatoror thelocal densityof the jumps. Thus, equation

(12) models the futures price change as the sum two orthogonal martingale components: a purely

continuous martingale and a purely discontinuous (jump) martingale. This decomposition is generic

for a martingale (Jacod and Shiryaev (1987), page 84).

To avoid notational complexity, we assume that the jump component in the price process exhibits

finite variation,
∫

R0
(|x|∧1)νt(x)dx< ∞, t ∈ [0,T ].

By adding the time subscripts toσt− andνt(x), we allow both to be stochastic and predictable with

respect to the filtrationF t . To satisfy limited liability, we further assume the two stochastic processes

to be such that the futures priceFt is always nonnegative and absorbing at the origin. Finally, with little

loss of generality, we assume constant interest rates and dividend yields. Under this assumption, the

futures price and the forward price are identical.

Under the specification in (12), the quadratic variation on the futures return over horizonT can be

written as

[lnFT , lnFT ] =
∫ T

0
σ2

t−dt+
∫ T

0

∫

R0
x2µ(dx,dt). (13)

Under this general setting, Carr and Wu (2003) show that the time-0 risk-neutral expected value

of the quadratic return variation over horizonT defined in (13) can be approximated by the value of a

continuum of European out-of-the-money options across all strikes andmaturing all at timeT,

E
Q
0 [lnFT , lnFT ] = erT

∫ ∞

0

2P0(K,T)

K2 dK+ ε, (14)

whereε denotes the approximation error andP0(K,T) denotes the time-0 value of an out-of-the-money

option with strike priceK and expiring at timeT (a call option whenK > F0 and a put option when

K ≤ F0). The approximation errorε is zero when the futures dynamics is purely continuous. When the
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futures dynamics has a discontinuous component, the approximation errorε is of orderO
[

(

dF
F

)3
]

and

is determined by the compensator of this discontinuous component,

ε = −2E
Q
0

∫ T

0

∫

R0

[

ex−1−x− x2

2

]

νt(x)dxdt. (15)

We refer the interested readers to Appendix A for the details of the proof.Carr and Madan (1998)

and Demeterfi, Derman, Kamal, and Zou (1999a,b) have derived similar relations under the assumption

of continuous sample path for the underlying futures.

It is important to note that the return quadratic variation can be written as

[lnFT , lnFT ] = 2

[

∫ F0

0

1
K2(K−ST)+dK+

∫ ∞

F0

1
K2(ST −K)+dK

]

+2
∫ T

0

[

1
Fs−

− 1
F0

]

dFs

−2
∫ T

0

∫

R0

[

ex−1−x− x2

2

]

µ(dx,ds). (16)

Thus, we can replicate the return quadratic variation up to timeT by the sum of (i) the payoff from a

static position indK
K2 European options on the underlying spot at strikeK and expiryT (first line), (ii)

the payoff from a dynamic trading strategy holding 2e−r(T−s)
[

1
Fs−

− 1
Ft

]

futures at times (second line),

and (iii) a higher-order error term induced by the discontinuity in the futures price dynamics (third

line). The options are all out-of-the money forward, i.e., call options whenFt > K and put options

whenK ≤ Ft .

Taking expectations under measureQ on both sides, we obtain the risk-neutral expected value of

the quadratic variation on the left hand side. We also obtain the forward value of the sum of the startup

cost of the replicating strategy and the replication error on the right hand side. By the martingale

property, the expected value of the gains from dynamic futures trading is zero under the risk-neutral

measure.

Carr and Wu (2003) show that under commonly used jump-diffusion stochastic volatility models

and reasonable parameters, the replication error termε is small and negligible. The CBOE’s calculation
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of the new VIX in equation (1) represents a discretization of the integral in equation (14) and therefore

a model-free approximation of the annualized conditional quadratic variationof the index return.

Comparing VIX’s definition in equation (1) to the theoretical relation in (13), we observe an extra

term in the VIX’s definition,(F/K0−1)2. This term is zero whenF = K0. Under normally conditions,

F ≥ K0 because the CBOE setK0 equal to the first strike price available that is below the forward

value. Furthermore, instead of using all out-of-money options, the CBOE uses the average of the call

and put option price at strikeK0. At stikeK0 ≤ F , the put option is out of money but the call option is

in the money. To convert the in-the-money call option into the out-of-the-money put option, we use the

put-call parity,

erTC(K0,K) = erT P(K0,T)+F −K0. (17)

If we plug this equality into equation (1) to convert all option prices into out-of-money option prices,

we have

σ2 =
2
T ∑ ∆K

K2
i

erT P(Ki ,T)+
∆K0

TK2
0

(F −K0)−
1
T

[

F
K0

−1

]2

, (18)

where the second term on the right hand side of equation (18) is due to the substitution of the in-the-

money call option atK0 by the out-of-the-money put option at the same strikeK0.

Furthermore, we can approximate the interval,

∆K0 =
K−1−K0

2
≈ F −K0, (19)

whereK−1 denotes the available strike price just above the forward level. We obtain theabove approx-

imation if we assume that the forward level is in the middle of the two adjacent strikeprices. Then, the

last two terms cancel out in equation (18) if we use all out-of-money options. Thus, the VIX definition

matches the theoretical relation for the quadratic return variation up to the jump-induced error termε,

and of course, the error induced by discretization of strikes. Another way to reconcile the adjustment

term is to expand lnFT aroundK0 instead of aroundF for the derivation in the appendix.
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Therefore, the new VIX index has very concrete economic meanings. Itcan either be regarded as

the price of a portfolio of options, or regarded as an accurate approximation of the variance swap rate

up to the discretzation error and the error induced by jumps.

2.3. Practical motivation for the switch

CBOE’s switch from the old VIX (VXO) to the new VIX is motivated by a series of theoretical and

also practical concerns. First, until very recently, the exact economic meaning of the VXO, or the at-

the-money implied volatility, is not clear. In contrast, the definition of the new VIXis directly linked

to the price of a portfolio of options. The economic meaning of the new VIX is much more concrete.

Second, although we now understand that the VXO approximates accurately the volatility swap rate, it

remains true that the volatility swap contracts are very difficult to replicate, much more difficult than

the replication of the variance swap contract. Therefore, despite its popularity as a general volatility

reference index, so far no derivative products have been launched on this VXO index. This is quite

unique among indexes because almost all popular indexes have derivative products launched on them.

In contrast, just a few months after the CBOE switched the VIX definition, theystarted planning to

launch futures and options contracts on the new VIX. The currently planned launching date is March

28, 2004. Actually, forward contracts on the VIX (squared) are already available over the counter,

offered by major investment banks.

3. Historical Behaviors

Based on historical data on daily closing option prices on S&P 500 index and S&P 100 index, the

CBOE has back-calculated the VIX up to 1990 and the VXO up to 1987. We choose the overlapping

sample period from January 2, 1990 to September 15, 2003 (5,005 daily observations) and analyze the

historical behaviors of two indexes. We also download the returns on the S&P 100 index (OEX) and

the S&P 500 index (SPX) from January 2, 1990 to October 15, 2003. Theextra month for the index

returns are used to compute the ex post realized return variance. We analyze how the volatility indexes

correlate with the index returns and index return realized volatilities.
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3.1. The time series of the two volatility indexes and realized variance

The top two panels in Figure 1 plot the time series of the new VIX and old VXO andtheir differences.

The top left panel plots the two volatility index VIX and VXO. We see that they overlap one another

well, indicating that they capture similar sentiments of the stock market. The top right panel plots

the difference between VIX and VXO, which is close to zero in the early years and becomes mostly

negative in more recent times. The Jensen inequality would imply a positive difference if the underlying

security is the same. The observed negative difference implies that the S&P 100 index returns are more

volatile than the S&P 500 index returns.

We also compute the ex post realized variance of the S&P 500 index returns and the S&P 100 index

returns at each date over the subsequent 30 days. The bottom panels inFigure 1 plot the time series

of the realized return variance (in annualized volatility percentage) and their differences. The realized

return variance is more noisy, but the relative magnitude show similar patterns. Indeed, the realized

variance on S&P 500 index returns is lower than the realized variance on S&P100 index returns during

the recent years.

Table 1 reports the summary statistics on the volatility indexes and the realized return variance.

The two volatility indexes VIX and VXO differ by about one percentage point. The average difference

between the realized return variance on S&P 500 and 100 indexes is slightly less than one percent-

age point. Therefore, the level difference between VIX and VXO can mostly be traced back to their

underlying’s volatilities.

Comparing the volatility index with the realized variance, we find that on average, the volatility

index constructed from the options market is five percent higher than the realized volatility. To test

the statistical significance of the difference between the volatility index and therealized volatility, we

construct the followingt-statistic,

t-stat =
√

N
X
SX

, (20)

whereN = 5,005 denotes the number of observation,X denotes the difference between the volatility

index and the realized volatility, the overline denotes the sample average, andSX denotes the Newey

and West (1987) standard deviation ofX that accounts for overlapping data and serial dependence,

with the number of lags optimally chosen following Andrews (1991) and an AR(1) specification. We
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estimate thet-statistic for the S&P 500 index return at 13 and for the S&P 100 index return as 13.8,

both of which are strongly statistically significant.

The volatility levels exhibit moderate positive skewness and extra kurtosis, but the extra kurtosis

for the daily differences is much larger. When we take logs on the volatility, thenon-normalities for

both the log levels and the log differences decline dramatically.

Figure 2 plots the cross-correlations between the index returns and the daily changes in the two

volatility indexes. We find a strong negative instantaneous correlation between the two, but not sig-

nificantly different from zero at other leads and lags. The same pattern holds for both the correlation

between VIX and the S&P 500 index return and the correlation between VXO and the S&P 100 index

return.

3.2. Weekday effects

It is well-known that volatilities during business days are on average higher than volatilities during mar-

ket closes. The VIX index is interpolated to be the risk-neutral return variance for the next 30 actual

days. However, different starting dates generate different number of business days for the subsequent

30-day period. In particular, starting on Mondays through Thursdaysincludes eight weekend (Satur-

days and Sundays) days when the market is closed, but starting on Friday includes on extra Saturday.

Thus, we expect the average VIX level on Fridays to be lower than the average VIX level on other

weekdays.

To test this hypothesis, we sort the data based on weekdays and take the sample average within each

weekday. The left panel in Figure 3 plots these sample averages for the five weekdays. Consistent with

our hypothesis, the average VIX level on Fridays is lower than the average VIX on any other weekdays.

To check its statistically significance, we compute the Newey-West serially adjusted standard deviation

for the difference between the averages on other weekdays and the average on Fridays and compute the

t-statistics for the difference according to equation (20). Thet-statistics range from 10 to 16, highly

significant.
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Interestingly, the average VIX level also declines monotonically, albeit by asmaller magnitude,

from Monday to Thursday. This decline cannot be explained by the weekend story.

Although VIX is computed based on actually number of days, the old VXO is computed using

some business-day adjustment. As a result, we do not observe any obvious weekday pattern for VXO.

The bar chart on the right panel of Figure 3 plots the sample averages ofVXO on each weekday.

3.3. The FOMC meeting day effect

It has been found that Treasury bond and bill volume, bid-ask spreads, and volatility increase dra-

matically around FOMC meeting dates. We investigate whether the two volatility indexes show any

apparent changes around the FOMC meeting days. For this purpose, wedownload the FOMC meeting

day logs from Bloomberg. During our sample period, there are altogether 110 scheduled FOMC meet-

ings, about ten meetings per year. With a list of these meeting days, we sort the two volatility indexes

around the FOMC meeting days and compute the average index level ten daysbefore and ten days after

the FOMC meeting days. Figure 4 plots the sample averages of VIX (left panel) and VXO (right panel)

around the FOMC meeting days.

For both VIX and VXO, we observe that the volatility level drops markedly after the FOMC meet-

ing day. For VIX, the volatility reaches the highest level the day before themeeting and drops to the

lowest level three days after the meeting. For VXO, the vol reaches the highest level four days before

the meeting and drops to the bottom four days after the meeting.

To investigate the significance of the drop, we measure the difference between the vol index one

day before and one day after the meeting. The mean difference is 0.7625 for VIX and 0.4745 for

VXO, both in percentage volatility points. Thet-statistics for the two differences are 4.77 and 2.70,

respectively.

Before FOMC meeting day, people disagree on wether the Fed will change the federal funds rate

target. While the degree of uncertainty may not vary much during the last fewdays, the uncertainty

in annualized volatility terms increases. The fact that the option-implied equity volatility increases

implies that the uncertainty on interest rates has a definite impact on the volatility in the equity market.
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This uncertainty is resolved right after the meeting and hence the vol index drops rapidly after the

meeting.

Since we can consider a variance swap contract on S&P 500 index and regard the VIX as the

variance swap rate of this contract, we investigate whether timing the varianceswap investment around

the FOMC meeting days makes a difference. Figure 5 plots the average ex post payoff for longing

the swap contract around the FOMC meeting days. The payoff is defined as the difference between

the ex post realized variance and the VIX squared:(RVt,T −VIX2
t ), whereRV denotes the annualized

realized variance during the subsequent 30-day period. We find that the average payoffs are negative

by longing the swap on any days. That is, shorting the swap contract generates positive payoffs on

average. In particular, we find that shorting the swap contract four pays prior to the FOMC meeting days

generates the highest payoff, and that shorting the variance swap four days after the FOMC meeting

days generates the lowest payoff. The difference in average payoffs between investments in these two

days is statistically significant, with at-statistics of 7.74.

3.4. The expectation hypothesis and the market index return variance risk premium

The VIX level reflects the risk-neutral expectation of the quadratic variation of the index return.

VIX2
t =

1
T − t

E
Q
t [lnFT/Ft , lnFT/Ft ] = EP

t [Mt,T RVt,T ] . (21)

whereT − t is 30 days andMt,T denotes the state price density that changes the measure fromP to Q.

Rearrange equation (21), we have

1 = EP
t

[

Mt,T
RVt,T

VIX2
t

]

= EP
t [Mt,T ]EP

t

[

RVt,T

VIX2
t

]

+Covt

[

Mt,T ,
RVt,T

VIX2
t

]

= EP
t

[

RVt,T

VIX2
t

]

+Covt

[

Mt,T ,
RVt,T

VIX2
t

]

. (22)

Therefore, if we measure the ratio of the realized variance to the VIX square and compute the average

value, any significant deviation of this average value from unity reflects the covariance between the

pricing kernel and this ratio. The negative of this covariance measures the premium that the market

charges on the index return variance risk.
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We compute the average of the ratio(RV/VIX2) at 0.6027. Thet-statistic against the null hypoth-

esis of the ratio being one is−12.38. Thus, the ratio is significantly less than one. The variance risk

premium on the S&P 500 index is significant negative.

If we consider the VIX in the variance swap context and regardRVt,T as future payoff and VIX as

the forward price, then the ratio defines the raw excess return. The negative risk premium implies that

being long on the variance swap generates a significant negative excess return (or raw excess return

less than one).

Analogously, we can regard VXO as the volatility swap rate, which is the risk-neutral expected

value of the OEX return volatility. A similar relation to equation (22) exists betweenthe VXO level

and the realized OEX return volatility. We estimate the average ratio(VXO/
√

RV) at 0.7484. The

t-statistics against the null value of one is−15.51, again strongly significant and showing that the

volatility or variance risk premia on both SPX and OEX are strongly negative.

To test whether the variance risk premium is time varying, we run the following expectation-

hypothesis (EH) regressions:

Vt,T = a+bVIXt +et,T , (23)

where we choose to represent the volatility in three different forms: volatility, variance, and log volatil-

ity. Due to the overlapping data, if we use daily data for the regression, the R-square of the regression

will be artificially high. To correct this problem, we run the regression on data sampled 30 days apart.

To make full use of the data, we run the regression at 30 different starting dates and report the sample

averages of the parameter estimates, standard deviations, and R-squares. We find that the regression

results differ very little when we change the starting dates so that the sample averages do not differ

much for each single run.

Table 2 report the regression results. We find that for both indexes, theR-square is highest when

the regression is on log volatility, lowest when the regression is on variance. The slope estimate is also

closest to one when the regression is on log volatility. Indeed, the slope estimate is not significantly

different from one when the regression is run on log volatility, but significantly lower than one when

the regression is on volatility or variance. Therefore, if we formulate the regression in logarithm, we
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cannot reject the null value of one for the slope and the null hypothesis that the risk premium in log

terms is a constant or independent series.

3.5. The information content of the volatility indexes

In this section, we estimate GARCH(1,1) processes on the S&P 500 index return and the S&P 100

index returns during the common sample period from 1990 to 2003. Then, wecompare the relative

information content of the GACRH volatility and the option-volatility index. Table 3 reports the re-

gression results.

First, we regress the realized log volatility solely on the GARCH log volatility and compare the

R-squares with the regressions on log option-implied volatility index. Given our previous findings on

the high R-squares when using logarithms of volatility, we only run regressions in log forms in this

section, using the same method as before. The regression results show that the volatility index has

higher forecasting power in terms of the R-square than the GARCH volatility. When we use both the

volatility index and the GARCH volatility as explanatory variables, the R-squaredoes not improve

much over the R-square using the volatility index alone. Similar results hold for both S&P 500 and 100

index return variance. Therefore, we conclude that the VIX and VXO are quite efficient forecasts on

the future realized variance. The GARCH volatility does not seem to providemuch extra information

in addition to that in the volatility index. Furthermore, the fact that the slope estimateis close to one

when running the regression on log terms implies that variation rates for the therealized variance and

for the option-implied volatility index have an approximate one-to-one correspondence.

Comparing the two indexes, we find that that the regressions on VXO generate slightly higher R-

squares than the corresponding regressions on VIX. This difference can come either from the difference

in the underlying index (OEX versus SPX), or from the definition of the volatility index (at-the-money

vol versus variance swap rate). Our experience indicates that at-the-money implied volatility provides

most of the information on the realized volatility. Incorporating the out-of-the-money options in VIX

can reduce the average bias in terms of approximating the return variance,but given the less liquidity

for out-of-the-money options, the return variance swap rate formed with both at-the-money and out-of-
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the-money options tend to have slightly reduced forecasting power than using the at-the-money implied

volatility alone.

Figure 6 plots the cross-correlation between the two volatility indexes and theirrespective realized

volatilities. Due to the overlapping sample and the fact that we measure the correlation on volatility

levels, we observe high cross-correlation. The most illustrative is the peak that happens at the 30-day

lags for both indexes. This peak implies that the current VIX and VXO levelsare the most correlated

with the realized variance during the past 30-days. Measuring the cross-correlation on changes generate

much smaller and also much noisier correlation estimates. However, the highest correlation estimates

remain at the 30-day lag for the realized variance.

Figure 7 overlaps the volatility index (solid lines) with the realized volatility (dashed lines). We

observe that almost all large spikes in the volatility indexes are precedentedby large spikes in the

realized volatility. Both Figure 6 and Figure 7 show that the realized varianceforecast the volatility

index better than the reverse and that many times the investors mend the fenceafter the sheep have fled.

3.6. The excess return on entering a variance-swap contract

Since VIX squared can be regarded as the variance swap rate on SPX,if we long a variance swap

contract today, at maturity (30 days later) we will receive the realized variance and pay the fixed VIX-

squared determined 30 days ago. For such a zero-financing investment,we compute the excess return

as

ERt,T = (RVt,T −VIX2
t )/VIX2

t . (24)

Analogously, we can regard VXO as the volatility swap rate on OEX. if we longa volatility swap

contract, we can compute the excess return as

ERt,T = (
√

RVt,T −VXOt)/VXOt . (25)

Alternatively, we can represent the excess return in continuous compounding format,

LERt = ln(1+ERt) . (26)
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Table 4 reports the summary statistics of the excess returns on the variance swap and volatility swap,

respectively. Longing both swap contracts generate negative excessreturns on average. For the variance

swap contract on SPX, the average return is−39.7 percent per month in simple compounded form and

−65.9 percent per month in continuously compounded form. The average return on longing the OEX

volatility swap contract is also negative at−25.2 percent per month in simple compounding term and

−32.4 percent per month in continuous compounding term.

The left panels in Figure 8 plots the histogram of the simple compounded excess returns on the

swap contracts. The excess returns are predominantly negative for both contracts, but there are some

large positive return realizations so that the histogram is highly skewed to theright. In the right panels,

we plot the histogram of the log excess returns, which are much closer to a normal distribution shape.

The skewness and kurtosis estimates reported in Table 4 tell a similar story. Although the simple com-

pounding excess returns generate large and positive skewness and kurtosis estimates. These estimates

for the log return are close to zero.

Figure 9 plots the time series of the excess returnERt and the log excess returnLERt on the SPX

variance swap contracts and OEX volatility swap contracts. The excess returns are predominantly

negative, but we observe more positive returns during the later years.

Given the large and negative mean excess returns, it seems quote profitable to short the two swap

contracts. The last column in Table 4 reports the annualized Sharpe ratio for shorting the two swap

contracts. The Sharpe ratios are between three and four, indeed verylarge. We compute the Sharpe

ratio using 30-day apart non-overlapping data. We report the average of the estimates from different

starting days. In computing the Sharpe ratio, the standard deviation for the non-overlapping returns are

adjusted for serial dependence according to Newey and West (1987).

The high average profitability from shorting the variance and volatility swap contracts imply that

investors are willing to receive a large average negative return by longing the variance swap contract.

Why so? We investigate whether the market portfolio risk, or beta risk, explains this large negative risk

premium. For this purpose, we run the following capital asset pricing model (CAPM) regression,

ERt = α+β(Rm
t −Rf )+et , (27)
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where(Rm
t −Rf ) denotes the excess return to the market portfolio. If the CAPM theory holds, we

would expect to obtain a highly negative beta estimate for the long variance orvolatility swap return.

This is actually possible given the well-documented correlation between market index returns and the

return variance. Nevertheless, if the CAPM can fully account for the risk premium, we would expect

the estimate for the interceptα not significantly different from zero. The interceptα represents the

excess return to a market-neutral strategy that involves long a variance swap contract and short beta of

the market portfolio.

We use log returns on both sides. We proxy the excess return to the marketportfolio using the

value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month

Treasury bill rate (from Ibbotson Associates). Monthly data on this excess return is publicly available

at Kenneth French’s data library on the web from 1926 to 2003.2 We match the sample period with

our data and run the regression on monthly returns over non-overlapping data using the generalized

methods of moments.

The regression estimates are as follows, with standard errors of the estimates in the parentheses

below the estimates,

SPX: LERt = −0.6165 − 4.6991 (Rm
t −R f) +e, R2 = 14.05%.

(0.0088) (0.1607)

OEX : LERt = −0.3047 − 2.3875 (Rm
t −R f) +e, R2 = 15.49%.

(0.0036) (0.0763)

(28)

First, we observe that the beta estimates for both swap contracts are highly negative, consistent with

the general observation that the index return and volatility are negatively correlated. However, this

negative beta cannot fully explain the negative risk premium on the variance and volatility risks. The

estimates for the intercepts, or the market-neutral excess returns, remain strongly negative. Actually,

the magnitudes ofα are not much smaller than the raw excess returns (−65.9 and−32.4 percent for

SPX and OEX, respectively). Thus, we conclude that the CAPM only getsthe sign right, but cannot

fully account for the large negative risk premium on index return variance risk.

2The web address is:http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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It is well-known that the return volatility shows strong mean reverting property and hence is pre-

dictable. Now that we have variance and volatility contracts, investors can exploit such predictability

and directly convert them into dollar returns. We investigate whether the excess returns on SPX vari-

ance swap contract and the OEX volatility contract are predictable.

First, we look at the monthly autocorrelation estimates for the excess returns,which are reported

under “Auto” in Table 4. These estimates are estimated using non-overlapping 30-day part data. The

autocorrelation is about 0.14 for the excess returns on the SPX varianceswap and 0.07 for the excess

returns on the OEX volatility swap. Both numbers are small. When we run AR(1)regressions on the

excess returns, we obtain an average R-square estimate around two percent for returns on SPX variance

swap and below one percent for returns on OEX volatility swap. Thus, theforecasting power on the

excess return is very low. Although the volatility level is strongly predictable,investors have priced

this predictability into the variance or volatility swap contract so that the excessreturns on these swap

contracts are not strongly predictable.

Second, we investigate whether we can forecast the excess return on the variance and volatility

swap contract using the index returns. Figure 10 plots the cross-correlation between the excess return

to the variance or volatility swap contract and the monthly return on the underlying stock index, based

on monthly sampled and hence non-overlapping data. We find that the stock index return and the return

on the swap contracts have strong negative contemporaneous correlations, but the non-overlapping

series do not seem to have any lead-lag effects.

4. Conclusion

The new VIX differs from the old VXO in two key areas: They use different underlyings (SPX for

the new VIX versus OEX for the old VXO), and they use different formulae in extracting volatility

information from the options market. The new VIX definition represents a model-free approximation

of the return variance swap rate, whereas the old VXO approximates the volatility swap rate under

certain assumptions. The CBOE decides to switch from VXO to VIX mainly because the new VIX has

more concrete economic meanings and the variance swap the new VIX represents has a straightforward
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replicating portfolio in options. In contrast, replicating the volatility swap contract the VXO represents

is much more difficult.

The historical behavior of the two volatility indexes are very similar. On average, the VXO is about

one percentage point higher the VIX. We observe about the same magnitude of difference between

the realized monthly volatility of S&P 100 index and S&P 500 index. We also find a strong negative

contemporaneous correlation between index returns and changes in the volatility indexes.

Since the VIV is based on a maturity of 30 calendar days, we find that on average the VIX level on

Fridays is about half a percentage lower than the VIX level on Mondays.Furthermore, both VIX and

VXO drop about one percentage point after the FOMC meeting announcements.

When comparing the volatility index with the realized return variance, we find that on average the

index is about five percentage point higher than the realized volatility. Nevertheless, when we regress

the log realized volatility on the log option-implied volatility index, the regression slope estimates are

not significantly different from one for both VIX and VXO, the null valueif we assume that the log

premium on the volatility risk is constant or independent of the log variance swap rate.

We also investigate the relative information content of the two volatility indexes versus GARCH

type volatility estimates. We find that the volatility indexes are better forecasts of the realized volatility

than GARCH forecasts. Furthermore, once the volatility index is included, GARCH volatility does not

add additional information to the volatility forecasts.

We observe that shorting the SPX variance swap contracts or OEX volatility swap contracts, as

represented by VIX and VXO, respectively, generates highly positivereturns and high Sharpe ratios.

Furthermore, the beta risk only gets the sign right, but cannot fully explain the large magnitude of the

negative variance risk premium on the two stock indexes.
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Appendix A. Proof

Let f (Ft) denote a general payoff function ofFT . By Itô’s lemma, we have

f (FT) = f (F0)+
∫ T

0
f ′(Ft−)dFt +

1
2

∫ T

0
f ′′(Ft−)dσ2

t−

+

∫ T

0

∫ 0

R

[ f (Ft−ex)− f (Ft−)− f ′(Ft−)Ft−(ex−1)]µ(dx,dt), (A1)

Apply (A1) to the functionf (F) = lnF , we have

ln(FT) = ln(F0)+
∫ T

0

1
Ft−

dFt −
1
2

∫ T

0
σ2

t−dt+
∫ T

0

∫ 0

R

[x−ex +1]µ(dx,dt).

Add and subtract 2[FT
F0

−1]+
∫ T

0 x2µ(dx,dt) and rearrange, we obtain a representation for the quadraticvariation

for the asset return,

∫ T

0
σ2

t−dt+
∫ T

0
x2µ(dx,dt) = 2

[

FT

F0
−1− ln

(

FT

F0

)]

+2
∫ T

0

[

1
Ft−

− 1
F0

]

dFt

−2
∫ T

0

∫ 0

R

[

ex−1−x− x2

2

]

µ(dx,dt). (A2)

A Taylor expansion with remainder of lnFT about the pointF0 implies,

lnFT = lnF0 +
1
F0

(FT −F0)−
∫ F0

0

1
K2 (K−FT)+dK−

∫ ∞

F0

1
K2 (FT −K)+dK. (A3)

Plug (13) into the left hand side of (A2) and plus (A3) into theright hand side of (A2), we have

[lnFT , lnFT ] = 2

[

∫ F0

0

1
K2 (K−FT)+dK+

∫ ∞

F0

1
K2 (FT −K)+dK

]

+2
∫ T

0

[

1
Ft−

− 1
F0

]

dFt

+2
∫ T

0

∫ 0

R

[

ex−1−x− x2

2

]

µ(dx,dt). (A4)

Thus, we can replicate the quadratic return variation of theasset return by (i) the payoff from a continuum

of European out-of-the-money options: call options whenF > K and put options whenK ≤ F (first line), (ii)

the payoff from a dynamic trading strategy (second line) and(iii) a higher order error term generated from the

discontinuity of the futures price dynamics (third line).
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Take expectations under measureQ, we obtain the risk-neutral expected value of the quadraticvariation on

the left hand side, and the cost of the replication strategy on the right hand side,

E
Q
0 [lnFT , lnFT ] = erT

∫ ∞

0

2P0(K,T)

K2 dK−2E
Q
0

∫ T

0

∫ 0

R

[

ex−1−x− x2

2

]

νt(x)dxdt,

whereP0(K,T) denote the time-0 value of the European out-of-the-money option at strike priceK and expiryT.

By the martingale property of the futures prices, the expected value of the payoff from the the dynamic futures

trading is zero under the risk-neutral measure.

In equation (A3), we expand lnFT around the current forward levelF0 to obtain the expected value of the

return quadratic variation as a portfolio of out-of-money options, up to an error term. Alternatively, we can

expand lnFT aroundK0 ≤ F0,

lnFT = lnK0 +
1

K0
(FT −K0)−

∫ K0

0

1
K2 (K−FT)+dK−

∫ ∞

K0

1
K2 (FT −K)+dK. (A5)

If we plug this expansion into the quadratic variation equation in (A2), we would have generate a forth term,

[lnFT , lnFT ] = 2

[

∫ K0

0

1
K2 (K−FT)+dK+

∫ ∞

K0

1
K2 (FT −K)+dK

]

+2
∫ T

0

[

1
Ft−

− 1
F0

]

dFt

+2
∫ T

0

∫ 0

R

[

ex−1−x− x2

2

]

µ(dx,dt)

+2

[

FT

F0
− FT

K0
+ ln

F0

K0

]

. (A6)

Taking expectations on this extra term, we have

Extra = 2E
Q
0 2

[

FT

F0
− FT

K0
+ ln

F0

K0

]

= 1− F0

K0
+ ln

F0

K0
. (A7)

Taylor expand the log term, we have

ln
F0

K0
≈ F0−S0

K0
− 1

2
(F0−K0)

2

K2
0

, (A8)

Plug (A8) into (A7), we have

Extra≈−1
2

(F0−K0)
2

K2
0

. (A9)

which matches the extra term in the VIX definition in usingK0 ≤ F0 instead ofF0 as the benchmark point.
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Figure 1. VIX, VXO, and realized return volatilities on S&P 500 and 100 indexes.
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Figure 2. Cross-correlations between return and volatility.
The stem bars represent the cross-correlation estimates between the index returns and the corresponding
volatility indexes. The two dashed lines in each panel denote the 95 confidence band.
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Figure 3. Weekday effects of VIX and VXO.
The bars plot the sample averages of VIX (left panel) and VXO (right panel) on each weekday.
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Figure 4. Volatility indexes around FOMC meeting days.
Lines represent the sample average of the VIX (left panel) and VXO (right panel) levels ten days before
and ten days after the FOMC meeting days.
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Figure 5. Payoffs to long variance swap contracts signed around FOMC meeting days.
The line represents the average payoff to long variance swap contractsten days before and ten days
after the FOMC meeting days.
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Figure 6. Cross-correlation between the volatility indexes with the realized volatilities.
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Figure 7. Comparing the volatility index and the realized volatility
The solid lines are the VIX (left) and VXO (right) from the options data. The dashed lines are the
annualized realized 30-day volatility for the S&P 500 and S&P 100 index returns.
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Figure 8. Histogram of the excess return on longing SPX variance swap and OEX volatility swap.
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Figure 9. Time series of the excess returns on longing the SPX variance swap and OEX volatility swap.
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Figure 10. Cross-correlation between the stock index monthly returns and monthly returns on the
variance/volatility swap.
The stem bars represent the cross-correlation estimates between the excess returns on the vari-
ance/volatility contracts and the corresponding stock index returns, based on monthly non-overlapping
data. The two dashed lines in each panel denote the 95 confidence band.
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Table 1
Summary statistics of volatility index and realized return variance

Entries are summary statistics on the daily series of the two volatility indexes, VIX and VXO, as well as
the corresponding daily estimates of the ex post realized volatility. The realized volatility is annualized
and is based on raw second moments (without demeaning). The sample has 5,005 daily observations
from January 2, 1990 to September 15, 2003.

VIX SPX Vol VXO OEX Vol VIX SPX Vol VXO OEX Vol

Levels Daily Differences

Mean 20.180 15.241 21.254 16.030 0.000 -0.000 0.001 -0.000
Stdev 6.486 7.087 7.391 7.527 1.060 0.863 1.216 0.907
Skewness 0.807 1.282 0.811 1.257 0.668 0.728 0.676 0.539
Kurtosis 0.519 2.061 0.538 1.865 9.638 30.288 12.916 27.775
Auto 0.987 0.993 0.986 0.993 -0.029 0.051 -0.089 0.060

Log Levels Daily Log Differences

Mean 2.955 2.625 2.998 2.674 0.000 -0.000 0.000 -0.000
Stdev 0.314 0.442 0.342 0.446 0.047 0.055 0.049 0.055
Skewness 0.104 0.103 0.060 0.118 0.736 0.485 0.600 0.387
Kurtosis -0.651 -0.383 -0.697 -0.424 6.729 17.840 7.157 18.549
Auto 0.989 0.992 0.990 0.992 -0.033 0.024 -0.077 0.027
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Table 2
Expectation hypothesis on the variance risk premia

Series Intercept VIX/VXO R-square

A. S&P 500 index

Variance -12.756 ( 29.937 ) 0.658 ( 0.055 ) 0.456
Vol -1.442 ( 1.179 ) 0.827 ( 0.056 ) 0.569
Log Vol -0.685 ( 0.197 ) 1.120 ( 0.066 ) 0.631

B. S&P 100 index

Variance 1.415 ( 30.964 ) 0.617 ( 0.050 ) 0.480
Vol -0.769 ( 1.124 ) 0.790 ( 0.050 ) 0.599
Log Vol -0.519 ( 0.177 ) 1.065 ( 0.059 ) 0.663

Entries report the results of regressing the realized variance against the volatility index. Since we have
daily estimates of monthly volatility, we sample the data monthly to avoid overlapping data. To make
full use of the information, we run the regression with 30 different startingdates and report the averages
of 30 estimates on the parameters, standard errors (in parentheses), and R-squares. For each index, we
run the regression based on the variance, the volatility, and the log of the volatility.
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Table 3
Information content of the volatility indexes

Series Intercept VIX/VXO GARCH R-square

A. S&P 500 index

VIX -0.685 ( 0.197 ) 1.120 ( 0.066 ) — — 0.631
GARCH 0.180 ( 0.166 ) — — 0.907 ( 0.061 ) 0.568
Joint -0.580 ( 0.201 ) 0.846 ( 0.147 ) 0.262 ( 0.125 ) 0.641

B. S&P 100 index

VXO -0.519 ( 0.177 ) 1.065 ( 0.059 ) — — 0.663
GARCH 0.173 ( 0.169 ) — — 0.911 ( 0.061 ) 0.572
Joint -0.500 ( 0.179 ) 0.969 ( 0.143 ) 0.098 ( 0.132 ) 0.666

Entries report the results of regressing the realized variance against the volatility index and the
GARCH(1,1) volatility forecasts. Since we have daily estimates of monthly volatility,we sample the
data monthly to avoid overlapping data. To make full use of the information, we run the regression with
30 different starting dates and report the averages of 30 estimates on theparameters, standard errors (in
parentheses), and R-squares. For each index, we run the regression based on the log of the volatility.
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Table 4
The excess return on long variance (volatility) swap contracts

Series Mean Std Skewness Kurtosis Auto Sharpe

A. Variance Swap Contract on SPX

ER -0.397 0.377 2.301 8.345 0.134 3.337
LER -0.659 0.541 0.253 0.033 0.153 3.745

B. Volatility Swap Contract on OEX

ER -0.252 0.205 1.116 1.864 0.077 4.103
LER -0.324 0.259 0.290 0.045 0.067 4.204

Entries report the summary statistics of the excess return on longing a variance swap contract on SPX
and longing a volatility swap contract on OEX.ERdenotes simply compounded excess return, defined
asER= (RV−VIX2)/VIX2 for SPX andER= (

√
RV−VXO)/VXO for OEX. LER= ln(1+ ER)

denotes the continuously compounded return. Columns under “Mean, Std,Skewness, Kurtosis” denote
the sample average, standard deviation, skewness, and excess kurtosis for the returns, respectively,
based on daily data. “Auto” measures the monthly autocorrelation using non-overlapping data. We
report the average of estimates at different starting dates. The last column under “Sharpe” measures the
annualized Sharpe ratio of the excess return, defined as the mean monthly excess return over the Newey-
West serial dependence adjusted standard deviation of the excess return, multiplied by the annualization
scale of

√
12. We measure the Sharpe ratio on 30-day apart non-overlapping dataand then take the

average from the estimates with different starting dates.
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