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A Tale of Two Indices

ABSTRACT

In 1993, the Chicago Board of Options Exchange (CBOE) intced the COBE Volatility In-
dex (VIX). This index has become the de facto benchmark fislkstnarket volatility. On Septem-
ber 22, 2003, the CBOE revamped the definition and calculatfdhe VIX, and back-calculated
the new VIX up to 1990 based on historical option prices. TIB©OE is also planning to launch
futures and options on the new VIX. In this paper, we desdtieemajor differences between the
old and the new VIXs, derive the theoretical underpinnimystfie two indices, and discuss the

practical motivation for the recent switch. We also studyhfstorical behaviors of the two indices.



A Tale of Two Indices

In 1993, the Chicago Board of Options Exchange (CBOE) introduced@tE Volatility Index (VIX).
This index has become the de factor benchmark for stock market volatiigywidely followed and has
been cited in hundreds of news articles in the Wall Street Journal, Baiaod other leading financial

publications.

The volatility index uses options data on S&P 100 index (OEX) and computegeaage of the
Black and Scholes (1973) option implied volatility with strike prices close to theentispot index
level and maturities interpolated at about one month. The market ofterdsetgs implied volatility

measure as a forecast of subsequent realized volatility and also asaidndn market stress.

On September 22, 2003, following suggestions from the inddsBBOE revamped the definition
and calculation of the VIX, and back-calculated the new VIX up to 199@dbas historical option
prices. The new definition uses the more actively traded S&P 500 index spbaeplace the S&P
100 index as the underlying index. Furthermore, the new index measweiglated average of option

prices across all strikes at two nearby maturities.

Currently, the CBOE keeps track of both volatility indexes and rename the adot s VXO. The
CBOE has also been planning to launch futures and options on the newrMtxs paper, we describe
the major differences in the definition and calculation of the two volatility indices.al&o derive the
theoretical underpinnings for the two definitions and discuss the praatiotdations for the switch

from the old to the new VIX. Finally, we study the historical behavior of the waatility indexes.

1. Definitions and Calculations

1.1. The old VXO

The CBOE renames the old VIX now as VXO and continues to provide the gjootéhis index. The
calculation of the VXO index is based on options on the S&P 100 index (OEK)ah average of the

1see “Developing the New VIX — A Practitioner’s Tale,” by Sandy Rattraatdman, Sachs & Co.



Black-Scholes implied volatility quotes on eight near-the-money options at thedarby maturities.

At each maturity, the CBOE picks the two call and two put options that arestits¢he money and
average their implied volatility quotes to obtain an estimate of the approximately atghey implied
volatility at that maturity. Then, the CBOE linearly interpolates between the twceatatbney implied
volatility estimates to obtain an at-the-money implied volatility estimate at the one-month maturity

level. The interpolation is based on the number of business days.

1.2. The new VIX

The CBOE calculates the new volatility index, VIX, using market prices on & S0 index options.
The general formula for the new VIX calculation is

2o 2¢AK P, T) - 1[F 2 o
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whereT is the common time to maturity for the all the options involved in this calculafois the
forward index level derived from the index option pric&s,is the strike price of thé-th out-of-the-
money option in the calculatio®(K;, T ) denotes the midquote price of the out-of-the-money option at
strike Kj, Ko is the first strike below the forward index levé| r denotes the riskfree rate of maturity
T, andAK; denotes the interval between strike prices, defined as
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The formula in equation (1) only uses out-of-the-money options. TRUS;, T) represents the

call option price wherK; > F and the put option price whef < F. WhenK; = Ko, CBOE uses the
average of the call and put option prices at this strike as the inplR(#§, T). SinceKo < F, the
average aKg implies that the CBOE uses one unit of the in-the-money callpat The last term in

equation (1) represents the adjustment term via the put-call parity to ¢oimgan-the-money call into

an out-of-money put.

The calculation involves all available call options at strikes greater Ehand all put options at

strikes lower thark. The bids of these options must be strictly positive to be included. When at the



boundary of the available options, the definition for the inteMélmodifies as follows:AK for the
lowest strike is the difference between the lowest strike and the nextrisgfies. Likewise AK for

the highest strike is the difference between the highest strike and thiowextstrike.

To determine the forward index level, CBOE chooses the pair of put and call options whose

prices are the closest to each other. Then, the forward price is deiwéhe put-call parity relation.

The CBOE uses equation (1) to calculateat two of the most shortest maturities of the available
options,T; andT,. Then, the CBOE linearly interpolates between the twdo obtain ac? at 30-day

maturity. The VIX represents the annualized percentage of this 3@-day
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whereNr, andNy, denote the number of actual days to expirations for the two maturities. When the
shortest maturity falls within eight days, the CBOE switches to another maturitpic microstructure

effects at very short option maturities.

2. Theoretical Underpinnings

2.1. The old VXO

The VXO is essentially an average estimate of the one-month at-the-moneySBholes implied
volatility. Both the academics and practitioners often regard the at-the-mondigdnyolatility as
an approximate forecast for realized volatility. However, since the B&dteles model assumes de-
terministic volatility, there is no direct economic motivation for regarding the atxtbaey implied
volatility as the realized volatility forecast. Nevertheless, a substantial bbdynpirical work has
found that the at-the-money Black-Scholes implied volatility is an efficient, ajthduased, forecast
of subsequent realized volatility. Examples of such studies include Latmh&andleman (1976),
Chiras and Manaster (1978), Day and Lewis (1988), Day and LeW®B2)1 Lamoureux and Lastrapes
(1993), Canina and Figlewski (1993), Day and Lewis (1994), Joii®95), Fleming (1998), Chris-
tensen and Prabhala (1998), Gwilym and Buckle (1999), Hol and iKaop(2000), Blair, Poon, and



Taylor (2000), Hansen (2001), Christensen and Hansen (20823KT Chang, and de Andrade (2002),
Shu and Zhang (2003), and Neely (2003).

Thus, the wide reference to the VXO is more based on empirical evidendts oglevance to
realized volatility than based on theoretical linkages unless under the tratyassumption of the
Black-Scholes model. This situation changed recently when Carr and2068) show that at-the-
money implied volatility represents an accurate approximation of the conditiskaheutral expecta-
tion of the return volatility under general market settings. Their result itekctnat the at-the-money
implied volatility actually approximates the volatility swap rate. Volatility swap contracsraded
actively over the counter on major currencies and some equity indexasatirity, the long side of
the volatility swap contract receives the realized return volatility and pay®d Yiolatility rate, which
is the volatility rate. Since the contract costs zero to enter, the fixed volatilitp sate equals the

risk-neutral expected value of the realized volatility.

Carr and Lee (2003) assume continuous futures @ickynamics as follows,

dR/R = odW, (4)

where the diffusion volatilityo; can be stochastic, but its variation is assumed to be independent of the

Brownian motion\ in the price.

Under these assumptions, Hull and White (1987) show that the value dif @ptian is just the
risk-neutral expected value of the Black Scholes formula value, caeside a function of the random
realized volatility. In the special case when the call is at-the-moley F), we have the time-0 value

of the call option maturing at tim€ as

ATMQ,:ES{F(,[N (%)—N(—mfﬂ}, (5)

whereor is the random volatility realized ové®, T:

oT =14/ —. (6)



As first shown in Brenner and Subrahmanyam (1988), a Taylor sexjgsnsion of each normal

distribution function about zero implies:
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Substituting (7) in (5) implies that:

ATMG ~ Eg [\/%TGT \/T] , (8)

and hence the volatility swap rate is given by:

V21T 3
Edor = ~Z_ATMG+O(T2). (9)
T RVT
Since an at-the-money call value is concave in volati%AT MG is a slightly downward biased
approximation of the volatility swap rate. As a result, the coefficienfTénis positive. However,

Brenner and Subrahmanyam have shown that the at-the-money implied volAfiliyv) is also given

by:
V2n 3
ATMV = —=ATMG + O(T2). (10)
Fov'T i
Once again2LAT MG is a slightly downward biased approximation of the at-the-money implied

FovT
volatility and hence the coefficient e is positive. Subtracting equation (10) from (10) implies that

the initial volatility swap rate is approximated by the initial at-the-money implied volatility:

NIw

Edor = ATMV+O(T?). (11)

In fact, the leading source of error in (9) is partially cancelled by the Iggstinirce of error in (10). As
a result, this approximation has been found to be extremely accurate. ditterghe time to maturity,
the better the approximation. Both concepts coincide with each other andtamstans volatility as

time to maturity goes to zero.

It is worth noting that although the at-the-money implied volatility happens to appeate well

the volatility swap rate, the volatility swap contract itself is notoriously difficulteplicate and hedge.



Carr and Lee (2003) have derived some results on this, but the hestgatggies that propose are by

any means complicated and difficult (costly) to implement in practice.

2.2. The new VIX

In contrast to the old VXO, the new VIX underlies the annualized conditimtaln quadratic variation
under the risk-neutral measure, and hence the variance swap ragacéaswap contracts are actively
traded over the counter on major equity indexes. At maturity, the long sideeo¥atiance swap
contract receives a realized variance and pays a fixed variancewvtdth is the variance swap rate.
The difference between the two rates is multiplied by a notional dollar figurerteect the payoff into
dollar payments. At the time of entry, the contract has zero value. Heypem-hbrbitrage, the variance
swap rate equals the risk-neutral expected value of the realized \@riansample estimate of the
return quadratic variation. Although volatility swap contracts are difficulteadde, the variance swap
contracts can be readily replicated, up to a higher-order term, using apgattmn on a continuum
of options and a dynamic position on futures trading. The risk-neutraatgd value of the dynamic
futures trading is zero. The VIX calculation represents a discretizesiioveof the initial cost of the the

continuum of options in the replication. The theoretical relation holds uretgrgeneral conditions.

Formally, we us& to denote the spot price of an asset at tirad0, 7 |, where7 is some arbitrarily
distant horizon. We usk; to denote the timé price of a futures contract with maturifyy > t that
marks to market continuously. No arbitrage implies that there exists a rigkahprobability measure
Q defined on a probability spa¢®, 7 ,Q) such that the futures pridg solves the following stochastic

differential equation,
dR /R = o, dW + /RO (€ — 1) [u(dx dt) —v(x)dxd, te[0,T], (12)

starting at some fixed and known valeg> 0. In equation (12)i_ denotes the futures price at tirhe
just prior to a jumpRC denotes the real line excluding zeW, is aQ standard Brownian motion, and
the random measuggdx, dt) counts the number of jumps of sizéin the asset price at tinte The

process{vi(x),x € ROt € [0,7]} compensates the jump proceks= [J [0 (€ — 1) u(dx,ds), so that



the last term in equation (12) is the increment ddgure jump martingale. The proceggx) must

have the following properties (see Prokhorov and Shiryaev (1998)),
Vo(X) =0, w(0)=0, /O (X2A1)w(xdx< o, te[0T].
R

The literature often refers 1 (x) as thecompensatoor thelocal densityof the jumps. Thus, equation
(12) models the futures price change as the sum two orthogonal martirgalgonents: a purely
continuous martingale and a purely discontinuous (jump) martingale. Thisngemition is generic

for a martingale (Jacod and Shiryaev (1987), page 84).

To avoid notational complexity, we assume that the jump component in the pacessrexhibits
finite variation,

/RO(|X|A1)vt(x)dx< ©, te[0,T].

By adding the time subscripts m_ andv;(x), we allow both to be stochastic and predictable with
respect to the filtratiorr;. To satisfy limited liability, we further assume the two stochastic processes
to be such that the futures pri€gis always nonnegative and absorbing at the origin. Finally, with little
loss of generality, we assume constant interest rates and dividend. yighder this assumption, the

futures price and the forward price are identical.

Under the specification in (12), the quadratic variation on the futuresrettar horizonT can be

written as

InFr,InFr] _/(;TctzdtJr/OT/Roxzu(dxdt). (13)

Under this general setting, Carr and Wu (2003) show that the time-0 eiskal expected value
of the quadratic return variation over horizérdefined in (13) can be approximated by the value of a

continuum of European out-of-the-money options across all strikesnaaring all at timeT,

) —ZPO(K’T)dK—i—s

Eg[lnﬁ,lnﬁ]:e”/o 2 ,

(14)

wheree denotes the approximation error aRgK, T) denotes the time-0 value of an out-of-the-money
option with strike priceK and expiring at timel' (a call option wherK > Fy and a put option when

K < Fp). The approximation erraris zero when the futures dynamics is purely continuous. When the



futures dynamics has a discontinuous component, the approximatiorg érok orderO [(%F)g] and

is determined by the compensator of this discontinuous component,
T N
sz—ZE(g/ /O [e"—l—x—z} v (X)dxdt (15)
0 JR

We refer the interested readers to Appendix A for the details of the p@af. and Madan (1998)
and Demeterfi, Derman, Kamal, and Zou (1999a,b) have derived similéorelainder the assumption

of continuous sample path for the underlying futures.

It is important to note that the return quadratic variation can be written as

InFrInFr] = 2[/Fc%(K_sT)mm/F:%(sr—KﬁdK

X2
_2/0 /RO [ex—l—x—E] w(dx ds). (16)

Thus, we can replicate the return quadratic variation up to Tinby the sum of (i) the payoff from a
static position |n K European options on the underlying spot at stikand expiryT (first line), (ii)

the payoff from a dynamic trading strategy holdirgy 79 [F? — ﬁ} futures at times (second line),
and (iii) a higher-order error term induced by the discontinuity in the fgtgmice dynamics (third
line). The options are all out-of-the money forward, i.e., call options wiken K and put options

whenK < k.

Taking expectations under meast@eon both sides, we obtain the risk-neutral expected value of
the quadratic variation on the left hand side. We also obtain the forward ghlthhe sum of the startup
cost of the replicating strategy and the replication error on the right hialed 8y the martingale
property, the expected value of the gains from dynamic futures tradingrasunder the risk-neutral

measure.

Carr and Wu (2003) show that under commonly used jump-diffusion sstichalatility models

and reasonable parameters, the replication errorgésramall and negligible. The CBOE's calculation



of the new VIX in equation (1) represents a discretization of the integrajuaton (14) and therefore

a model-free approximation of the annualized conditional quadratic variatithe index return.

Comparing VIX's definition in equation (1) to the theoretical relation in (13,0lserve an extra
term in the VIX's definition,(F /Ko — 1)2. This term is zero wheR = Ko. Under normally conditions,
F > Ko because the CBOE s# equal to the first strike price available that is below the forward
value. Furthermore, instead of using all out-of-money options, the CB®E the average of the call
and put option price at strikéy. At stike Kg < F, the put option is out of money but the call option is
in the money. To convert the in-the-money call option into the out-of-the-gnpueoption, we use the
put-call parity,

&7 C(Ko,K) = &TP(Ko,T) +F —Ko. (17)

If we plug this equality into equation (1) to convert all option prices into outrohey option prices,

we have

2
- ISP R K - 1] (18)

where the second term on the right hand side of equation (18) is due talikgtstion of the in-the-

money call option aKg by the out-of-the-money put option at the same stikke
Furthermore, we can approximate the interval,

Ko —K

AKo = = 0 ~ F — Ko, (19)

whereK_; denotes the available strike price just above the forward level. We obtaabtve approx-
imation if we assume that the forward level is in the middle of the two adjacent ghiikes. Then, the
last two terms cancel out in equation (18) if we use all out-of-money optibimss, the VIX definition
matches the theoretical relation for the quadratic return variation up to theijudaped error terng,
and of course, the error induced by discretization of strikes. Anotlagrta reconcile the adjustment

term is to expand IRy aroundKg instead of arouné for the derivation in the appendix.



Therefore, the new VIX index has very concrete economic meaninganleither be regarded as
the price of a portfolio of options, or regarded as an accurate approgimf the variance swap rate

up to the discretzation error and the error induced by jumps.

2.3. Practical motivation for the switch

CBOE's switch from the old VIX (VXO) to the new VIX is motivated by a seridgfweoretical and
also practical concerns. First, until very recently, the exact economanimg of the VXO, or the at-
the-money implied volatility, is not clear. In contrast, the definition of the new MlHirectly linked
to the price of a portfolio of options. The economic meaning of the new VIX istnmore concrete.
Second, although we now understand that the VXO approximates adguha&t®olatility swap rate, it
remains true that the volatility swap contracts are very difficult to replicatehmuare difficult than
the replication of the variance swap contract. Therefore, despite itdgrdpwas a general volatility
reference index, so far no derivative products have been ladrmmehis VXO index. This is quite
unigue among indexes because almost all popular indexes have derpatilucts launched on them.
In contrast, just a few months after the CBOE switched the VIX definition, gtasted planning to
launch futures and options contracts on the new VIX. The currently pifaunching date is March
28, 2004. Actually, forward contracts on the VIX (squared) are diremvailable over the counter,

offered by major investment banks.

3. Historical Behaviors

Based on historical data on daily closing option prices on S&P 500 index &Rd180 index, the
CBOE has back-calculated the VIX up to 1990 and the VXO up to 1987. Wesehthe overlapping
sample period from January 2, 1990 to September 15, 2003 (5,005 dadyalions) and analyze the
historical behaviors of two indexes. We also download the returns on&RelB0 index (OEX) and
the S&P 500 index (SPX) from January 2, 1990 to October 15, 2003.eXtia month for the index
returns are used to compute the ex post realized return variance. Weehaw the volatility indexes

correlate with the index returns and index return realized volatilities.
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3.1. The time series of the two volatility indexes and realizbvariance

The top two panels in Figure 1 plot the time series of the new VIX and old VXCQtlagid differences.
The top left panel plots the two volatility index VIX and VXO. We see that thegrlap one another
well, indicating that they capture similar sentiments of the stock market. The toppagiel plots
the difference between VIX and VXO, which is close to zero in the earlysyand becomes mostly
negative in more recent times. The Jensen inequality would imply a positieeatiffe if the underlying
security is the same. The observed negative difference implies that the@XiRdex returns are more

volatile than the S&P 500 index returns.

We also compute the ex post realized variance of the S&P 500 index refdtiseaS&P 100 index
returns at each date over the subsequent 30 days. The bottom paRigarim 1 plot the time series
of the realized return variance (in annualized volatility percentage) amddifferences. The realized
return variance is more noisy, but the relative magnitude show similar patterieed, the realized
variance on S&P 500 index returns is lower than the realized variance oriS&idex returns during

the recent years.

Table 1 reports the summary statistics on the volatility indexes and the realized vatiance.
The two volatility indexes VIX and VXO differ by about one percentage pdiine average difference
between the realized return variance on S&P 500 and 100 indexes is sligiglyhlen one percent-
age point. Therefore, the level difference between VIX and VXO castipbe traced back to their

underlying’s volatilities.

Comparing the volatility index with the realized variance, we find that on aeerthg volatility
index constructed from the options market is five percent higher tharetilieed volatility. To test
the statistical significance of the difference between the volatility index andedilieed volatility, we
construct the following-statistic,

X
t-stat = vVN— 20
sta \/—S(, (20)

whereN = 5,005 denotes the number of observatigngenotes the difference between the volatility
index and the realized volatility, the overline denotes the sample averag&x atehotes the Newey
and West (1987) standard deviation Xfthat accounts for overlapping data and serial dependence,

with the number of lags optimally chosen following Andrews (1991) and anl\Rgecification. We

11



estimate the-statistic for the S&P 500 index return at 13 and for the S&P 100 index residBa3,

both of which are strongly statistically significant.

The volatility levels exhibit moderate positive skewness and extra kurtasishé extra kurtosis
for the daily differences is much larger. When we take logs on the volatilityntimenormalities for

both the log levels and the log differences decline dramatically.

Figure 2 plots the cross-correlations between the index returns anditheltgnges in the two
volatility indexes. We find a strong negative instantaneous correlation eettiee two, but not sig-
nificantly different from zero at other leads and lags. The same pattdds for both the correlation
between VIX and the S&P 500 index return and the correlation between \ixidhee S&P 100 index

return.

3.2. Weekday effects

It is well-known that volatilities during business days are on average higjae volatilities during mar-
ket closes. The VIX index is interpolated to be the risk-neutral returianee for the next 30 actual
days. However, different starting dates generate different nuniti®rsiness days for the subsequent
30-day period. In particular, starting on Mondays through Thursdajades eight weekend (Satur-
days and Sundays) days when the market is closed, but starting oy Frétlades on extra Saturday.
Thus, we expect the average VIX level on Fridays to be lower than teeage VIX level on other

weekdays.

To test this hypothesis, we sort the data based on weekdays and talmhie average within each
weekday. The left panel in Figure 3 plots these sample averages fovdhedekdays. Consistent with
our hypothesis, the average VIX level on Fridays is lower than the gearbX on any other weekdays.
To check its statistically significance, we compute the Newey-West seriallgtadjstandard deviation
for the difference between the averages on other weekdays andettaggawon Fridays and compute the
t-statistics for the difference according to equation (20). fFe&atistics range from 10 to 16, highly

significant.

12



Interestingly, the average VIX level also declines monotonically, albeit bgnaller magnitude,

from Monday to Thursday. This decline cannot be explained by the evekb&tory.

Although VIX is computed based on actually number of days, the old VXO is ctedpusing
some business-day adjustment. As a result, we do not observe anyoimgelday pattern for VXO.

The bar chart on the right panel of Figure 3 plots the sample averages®bn each weekday.

3.3. The FOMC meeting day effect

It has been found that Treasury bond and bill volume, bid-ask spread! volatility increase dra-
matically around FOMC meeting dates. We investigate whether the two volatility incd»a@v any
apparent changes around the FOMC meeting days. For this purpodeywntad the FOMC meeting
day logs from Bloomberg. During our sample period, there are altogetifiescheduled FOMC meet-
ings, about ten meetings per year. With a list of these meeting days, weeondlvolatility indexes
around the FOMC meeting days and compute the average index level telpedagessand ten days after
the FOMC meeting days. Figure 4 plots the sample averages of VIX (left)mmeVXO (right panel)
around the FOMC meeting days.

For both VIX and VXO, we observe that the volatility level drops markedtgrahe FOMC meet-
ing day. For VIX, the volatility reaches the highest level the day beforertaeting and drops to the
lowest level three days after the meeting. For VXO, the vol reaches thegtitevel four days before

the meeting and drops to the bottom four days after the meeting.

To investigate the significance of the drop, we measure the differencedrtive vol index one
day before and one day after the meeting. The mean difference is 0.8628X and 0.4745 for
VXO, both in percentage volatility points. Thestatistics for the two differences are 4.77 and 2.70,

respectively.

Before FOMC meeting day, people disagree on wether the Fed will chaadedéral funds rate
target. While the degree of uncertainty may not vary much during the lastidg®, the uncertainty
in annualized volatility terms increases. The fact that the option-implied equiafility increases

implies that the uncertainty on interest rates has a definite impact on the volatility @égthity market.

13



This uncertainty is resolved right after the meeting and hence the vol indgs dapidly after the

meeting.

Since we can consider a variance swap contract on S&P 500 index gadl rine VIX as the
variance swap rate of this contract, we investigate whether timing the vagameinvestment around
the FOMC meeting days makes a difference. Figure 5 plots the averagesepgyoff for longing
the swap contract around the FOMC meeting days. The payoff is definttealifference between
the ex post realized variance and the VIX squar@ r —VIX?), whereRV denotes the annualized
realized variance during the subsequent 30-day period. We find éatdrage payoffs are negative
by longing the swap on any days. That is, shorting the swap contraetajes positive payoffs on
average. In particular, we find that shorting the swap contract foua @or to the FOMC meeting days
generates the highest payoff, and that shorting the variance swapdgs after the FOMC meeting
days generates the lowest payoff. The difference in averagefpdaifveen investments in these two

days is statistically significant, withtastatistics of 7.74.

3.4. The expectation hypothesis and the market index returnariance risk premium
The VIX level reflects the risk-neutral expectation of the quadratic trariaf the index return.

VIXZ = ——E¢InFr/R,InFr /R] = Ef M1 R\ 7] (21)

1
T-—t
whereT —t is 30 days andll; + denotes the state price density that changes the measur@ flof.

Rearrange equation (21), we have

R R .
R R
- E [VYXH oo [M"T’ vatTZ] ' (22)

Therefore, if we measure the ratio of the realized variance to the VIXregual compute the average
value, any significant deviation of this average value from unity refleetctivariance between the
pricing kernel and this ratio. The negative of this covariance measuegsrémium that the market

charges on the index return variance risk.

14



We compute the average of the ratRV/V IX?) at 0.6027. Thé-statistic against the null hypoth-
esis of the ratio being one is12.38. Thus, the ratio is significantly less than one. The variance risk

premium on the S&P 500 index is significant negative.

If we consider the VIX in the variance swap context and reg&d- as future payoff and VIX as
the forward price, then the ratio defines the raw excess return. Tlativeegsk premium implies that
being long on the variance swap generates a significant negativesextes (or raw excess return

less than one).

Analogously, we can regard VXO as the volatility swap rate, which is thengskral expected
value of the OEX return volatility. A similar relation to equation (22) exists betwbherivXO level
and the realized OEX return volatility. We estimate the average (at%O/+/RV) at 0.7484. The
t-statistics against the null value of one-id551, again strongly significant and showing that the

volatility or variance risk premia on both SPX and OEX are strongly negative.

To test whether the variance risk premium is time varying, we run the followkpgaation-
hypothesis (EH) regressions:

Vit =a+bViX+ear, (23)

where we choose to represent the volatility in three different forms: volatiktyance, and log volatil-
ity. Due to the overlapping data, if we use daily data for the regression,-swguRre of the regression
will be artificially high. To correct this problem, we run the regression da dampled 30 days apart.
To make full use of the data, we run the regression at 30 different gatéites and report the sample
averages of the parameter estimates, standard deviations, and Rssglarénd that the regression
results differ very little when we change the starting dates so that the sangrkgas do not differ

much for each single run.

Table 2 report the regression results. We find that for both indexe&-swuare is highest when
the regression is on log volatility, lowest when the regression is on varidimeeslope estimate is also
closest to one when the regression is on log volatility. Indeed, the slope tsigna#ot significantly
different from one when the regression is run on log volatility, but sigafity lower than one when

the regression is on volatility or variance. Therefore, if we formulate tgeession in logarithm, we
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cannot reject the null value of one for the slope and the null hypothesigta risk premium in log

terms is a constant or independent series.

3.5. The information content of the volatility indexes

In this section, we estimate GARCH(1,1) processes on the S&P 500 inder etdrthe S&P 100
index returns during the common sample period from 1990 to 2003. Thenpmpare the relative
information content of the GACRH volatility and the option-volatility index. Tablesfarts the re-

gression results.

First, we regress the realized log volatility solely on the GARCH log volatility andpare the
R-squares with the regressions on log option-implied volatility index. Giverpmyious findings on
the high R-squares when using logarithms of volatility, we only run regnessiolog forms in this
section, using the same method as before. The regression results shometialatility index has
higher forecasting power in terms of the R-square than the GARCH volatilitye\wWve use both the
volatility index and the GARCH volatility as explanatory variables, the R-sqdaes not improve
much over the R-square using the volatility index alone. Similar results holatbr®&P 500 and 100
index return variance. Therefore, we conclude that the VIX and VXaaite efficient forecasts on
the future realized variance. The GARCH volatility does not seem to prawigsh extra information
in addition to that in the volatility index. Furthermore, the fact that the slope estisatese to one
when running the regression on log terms implies that variation rates for theatieed variance and

for the option-implied volatility index have an approximate one-to-one cooredgnce.

Comparing the two indexes, we find that that the regressions on VXOaersdightly higher R-
squares than the corresponding regressions on VIX. This differmartcome either from the difference
in the underlying index (OEX versus SPX), or from the definition of the tldglaindex (at-the-money
vol versus variance swap rate). Our experience indicates that atahey implied volatility provides
most of the information on the realized volatility. Incorporating the out-ofrtieeey options in VIX
can reduce the average bias in terms of approximating the return varianaggyen the less liquidity

for out-of-the-money options, the return variance swap rate formed withdi-the-money and out-of-
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the-money options tend to have slightly reduced forecasting power thantbsiat-the-money implied

volatility alone.

Figure 6 plots the cross-correlation between the two volatility indexes and éspiective realized
volatilities. Due to the overlapping sample and the fact that we measure tletatiom on volatility
levels, we observe high cross-correlation. The most illustrative is tHethaahappens at the 30-day
lags for both indexes. This peak implies that the current VIX and VXO lemedshe most correlated
with the realized variance during the past 30-days. Measuring the-coossation on changes generate
much smaller and also much noisier correlation estimates. However, the highresation estimates

remain at the 30-day lag for the realized variance.

Figure 7 overlaps the volatility index (solid lines) with the realized volatility (dddires). We
observe that almost all large spikes in the volatility indexes are precedbytiige spikes in the
realized volatility. Both Figure 6 and Figure 7 show that the realized varitoreeast the volatility

index better than the reverse and that many times the investors mend thaftenttee sheep have fled.

3.6. The excess return on entering a variance-swap contract

Since VIX squared can be regarded as the variance swap rate onifS#X|ong a variance swap
contract today, at maturity (30 days later) we will receive the realizedveg and pay the fixed VIX-
squared determined 30 days ago. For such a zero-financing investmeerampute the excess return

as

ERT = (RUT —VIX?)/VIX2. (24)

Analogously, we can regard VXO as the volatility swap rate on OEX. if we langlatility swap

contract, we can compute the excess return as
ERT = (VRV;T —VXQ)/VXQ. (25)
Alternatively, we can represent the excess return in continuous cardpauformat,

LER =In(1+ER). (26)
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Table 4 reports the summary statistics of the excess returns on the vaneaqarsd volatility swap,
respectively. Longing both swap contracts generate negative extesss on average. For the variance
swap contract on SPX, the average returr89.7 percent per month in simple compounded form and
—65.9 percent per month in continuously compounded form. The average mtlonging the OEX
volatility swap contract is also negative-aR5.2 percent per month in simple compounding term and

—32.4 percent per month in continuous compounding term.

The left panels in Figure 8 plots the histogram of the simple compoundedsesatesns on the
swap contracts. The excess returns are predominantly negativetfocdrttracts, but there are some
large positive return realizations so that the histogram is highly skewed tmttteIn the right panels,
we plot the histogram of the log excess returns, which are much closeriorahdistribution shape.
The skewness and kurtosis estimates reported in Table 4 tell a similar storyuglitthe simple com-
pounding excess returns generate large and positive skewnesartoglkestimates. These estimates

for the log return are close to zero.

Figure 9 plots the time series of the excess reftlR and the log excess retutie R on the SPX
variance swap contracts and OEX volatility swap contracts. The excesageare predominantly

negative, but we observe more positive returns during the later years.

Given the large and negative mean excess returns, it seems quotebpgdbtahort the two swap
contracts. The last column in Table 4 reports the annualized Sharpe nasbdding the two swap
contracts. The Sharpe ratios are between three and four, indeethkgy We compute the Sharpe
ratio using 30-day apart non-overlapping data. We report the averfane estimates from different
starting days. In computing the Sharpe ratio, the standard deviation foothevwerlapping returns are

adjusted for serial dependence according to Newey and West (1987)

The high average profitability from shorting the variance and volatility sveagracts imply that
investors are willing to receive a large average negative return by lgrigenvariance swap contract.
Why so? We investigate whether the market portfolio risk, or beta risk, imgtlais large negative risk

premium. For this purpose, we run the following capital asset pricing m@uP|) regression,

ER =a+B(R"—Rf)+a, (27)

18



where (R" — R¢) denotes the excess return to the market portfolio. If the CAPM theory holes
would expect to obtain a highly negative beta estimate for the long varianadatility swap return.
This is actually possible given the well-documented correlation between tiadex returns and the
return variance. Nevertheless, if the CAPM can fully account for thepiemium, we would expect
the estimate for the intercept not significantly different from zero. The interceptrepresents the
excess return to a market-neutral strategy that involves long a variaagecentract and short beta of

the market portfolio.

We use log returns on both sides. We proxy the excess return to the markietio using the
value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from$F} minus the one-month
Treasury bill rate (from Ibbotson Associates). Monthly data on thissxoeturn is publicly available
at Kenneth French’s data library on the web from 1926 to 2008e match the sample period with
our data and run the regression on monthly returns over non-overtadpta using the generalized

methods of moments.

The regression estimates are as follows, with standard errors of the estiméite parentheses

below the estimates,

SPX: LER = -06165 — 4.6991 (R"-Rf) +e R2=1405%

0.008 0.160

( 8 ( 7 (28)
OEX: LER = -0.3047 — 23875 (R"—Rf) +e R2=1549%

(0.0036 (0.0763

First, we observe that the beta estimates for both swap contracts are hégfalive, consistent with
the general observation that the index return and volatility are negatieetglated. However, this
negative beta cannot fully explain the negative risk premium on the variamd volatility risks. The
estimates for the intercepts, or the market-neutral excess returns, ramaiglysnegative. Actually,
the magnitudes oft are not much smaller than the raw excess returr8b(9 and—32.4 percent for
SPX and OEX, respectively). Thus, we conclude that the CAPM onlytgetsign right, but cannot

fully account for the large negative risk premium on index return vadaisk.

2The web address i$it t p: / / mba. t uck. dar t mout h. edu/ pages/ f acul t y/ ken. f rench/ data_l i brary. htni .
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It is well-known that the return volatility shows strong mean reverting ptgpand hence is pre-
dictable. Now that we have variance and volatility contracts, investorsxgaaiesuch predictability
and directly convert them into dollar returns. We investigate whether thesexeturns on SPX vari-

ance swap contract and the OEX volatility contract are predictable.

First, we look at the monthly autocorrelation estimates for the excess rewitd) are reported
under “Auto” in Table 4. These estimates are estimated using non-overdpp@iday part data. The
autocorrelation is about 0.14 for the excess returns on the SPX vasamgeand 0.07 for the excess
returns on the OEX volatility swap. Both numbers are small. When we run Ale@tessions on the
excess returns, we obtain an average R-square estimate aroundd¢emt fer returns on SPX variance
swap and below one percent for returns on OEX volatility swap. Thudptieeasting power on the
excess return is very low. Although the volatility level is strongly predictaipkgstors have priced
this predictability into the variance or volatility swap contract so that the exedgs on these swap

contracts are not strongly predictable.

Second, we investigate whether we can forecast the excess reture gariiince and volatility
swap contract using the index returns. Figure 10 plots the crosdatmrebetween the excess return
to the variance or volatility swap contract and the monthly return on the urigigdyock index, based
on monthly sampled and hence non-overlapping data. We find that the stieskrgturn and the return
on the swap contracts have strong negative contemporaneous consldtit the non-overlapping

series do not seem to have any lead-lag effects.

4. Conclusion

The new VIX differs from the old VXO in two key areas: They use diffdgranderlyings (SPX for
the new VIX versus OEX for the old VXO), and they use different formuila extracting volatility
information from the options market. The new VIX definition represents a froele approximation
of the return variance swap rate, whereas the old VXO approximates kadityoswap rate under
certain assumptions. The CBOE decides to switch from VXO to VIX mainly methe new VIX has

more concrete economic meanings and the variance swap the new VIXeriwéas a straightforward
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replicating portfolio in options. In contrast, replicating the volatility swap canttitae VXO represents

is much more difficult.

The historical behavior of the two volatility indexes are very similar. On ayesrthe VXO is about
one percentage point higher the VIX. We observe about the same magoitutifference between
the realized monthly volatility of S&P 100 index and S&P 500 index. We also findoagtnegative

contemporaneous correlation between index returns and changes oldtikty indexes.

Since the VIV is based on a maturity of 30 calendar days, we find that sage/¢ghe VIX level on
Fridays is about half a percentage lower than the VIX level on Mondayghermore, both VIX and

VXO drop about one percentage point after the FOMC meeting announteme

When comparing the volatility index with the realized return variance, we firtcbihaverage the
index is about five percentage point higher than the realized volatility. idaless, when we regress
the log realized volatility on the log option-implied volatility index, the regressioneskxgiimates are
not significantly different from one for both VIX and VXO, the null valifeve assume that the log

premium on the volatility risk is constant or independent of the log varianeg sate.

We also investigate the relative information content of the two volatility indexesugeGARCH
type volatility estimates. We find that the volatility indexes are better forecaste oé#ized volatility
than GARCH forecasts. Furthermore, once the volatility index is included® GAvolatility does not

add additional information to the volatility forecasts.

We observe that shorting the SPX variance swap contracts or OEX volatilap sontracts, as
represented by VIX and VXO, respectively, generates highly posigtiens and high Sharpe ratios.
Furthermore, the beta risk only gets the sign right, but cannot fully expleitatije magnitude of the

negative variance risk premium on the two stock indexes.
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Appendix A. Proof

Let f(R) denote a general payoff function Bf. By Itd’'s lemma, we have
f(Fr) = +/ #( dﬁ+2/ _)da?
+ / [ 1R &)~ 1R )~ (R R (€~ 1udx ) (A1)
0 Jr

Apply (A1) to the functionf (F) = InF, we have

n(Fr) — In(Fo)+/OTF3'dFt—;/OTotzdt+/OT/D;[x—e?‘+1]u(d>gdt).

Add and subtract [% -1+ fOT x2u(dx dt) and rearrange, we obtain a representation for the quadratation

for the asset return,

'/(;Totz_dtf/(;xzu(d)gdt) = 2[%—1 In(:)]JrZ/ [——%]dﬁ

_2/0T/R [e"—l—x— 2} w(dx dt). (A2)

A Taylor expansion with remainder of iy about the poinEg implies,
InFr =P+ & (Fr —Fo)— [ (K~ Fr)"ak— [ (Fr —K)"aK (A3
- Fo o K2 Je K2 :
Plug (13) into the left hand side of (A2) and plus (A3) into tight hand side of (A2), we have

InFrnFr] = 2 UF"%(K—H)+dK+/F:%(H —K)*dK]

+2/ {———}dﬁ

+2/0 /R [e"—l—x—x—ﬂ w(dx, dt). (A4)

Thus, we can replicate the quadratic return variation ofabget return by (i) the payoff from a continuum
of European out-of-the-money options: call options wken K and put options wheK < F (first line), (ii)
the payoff from a dynamic trading strategy (second line) @ijda higher order error term generated from the

discontinuity of the futures price dynamics (third line).
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Take expectations under meas@gewe obtain the risk-neutral expected value of the quadrati@tion on

the left hand side, and the cost of the replication strategthe right hand side,

) T 0 2
ES InFr,InFr] = erT/O %Kz’-r)dK—ZEOQ/O /]R {e?‘—l—x—xz]vt(x)dxdt

wherePy(K, T) denote the time-0 value of the European out-of-the-monépopt strike pricek and expiryT.
By the martingale property of the futures prices, the exgetetalue of the payoff from the the dynamic futures

trading is zero under the risk-neutral measure.

In equation (A3), we expand Fy around the current forward leve} to obtain the expected value of the
return quadratic variation as a portfolio of out-of-mongytions, up to an error term. Alternatively, we can
expand Ir aroundKy < Fo,

_ 1 Ko 1 + 1 +
InFr_InKo+K—O(Fr—K0)—/O 5 (K—Fr) dK—/KOﬁ(Fr—K) dK. (A5)

If we plug this expansion into the quadratic variation eguain (A2), we would have generate a forth term,

Ko 1

_ + +
(InFrInFr] — 2{0 5 (K—Fr) dK+/ KZFr K) dK]

+2/ {———]dﬁ 2
+2/ / [e"lxxz}p(dx,dt)

F K Fo
+2{§_K_o+l K_J (A6)

Taking expectations on this extra term, we have

FH R Fo
xtra 0 |:F0 K0+ K0:|
L R, R
= 1ot (A7)

Taylor expand the log term, we have

b h-% 1(R-K)
|nK—O KO E Kg 9 (A8)

Plug (A8) into (A7), we have
1 (Fo—Ko)? '

K2 (A9)

Extrar ———-—
X 2

which matches the extra term in the VIX definition in uskg< Fp instead offg as the benchmark point.
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Figure 1. VIX, VXO, and realized return volatilities on S&P 500 and 100 indexes.
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Figure 10. Cross-correlation between the stock index monthly returns and monthlysetur the
variance/volatility swap.

The stem bars represent the cross-correlation estimates between #ss egturns on the vari-
ance/volatility contracts and the corresponding stock index returngj bas@onthly non-overlapping
data. The two dashed lines in each panel denote the 95 confidence band.
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Table 1
Summary statistics of volatility index and realized return variance

Entries are summary statistics on the daily series of the two volatility indexes,MIX/XO, as well as
the corresponding daily estimates of the ex post realized volatility. The rdalddatility is annualized
and is based on raw second moments (without demeaning). The sample O&ag&|Q observations
from January 2, 1990 to September 15, 2003.

VIX  SPX\ol VXO  OEX Vol VIX  SPX\ol VXO  OEX Vol
Levels Daily Differences
Mean 20.180 15.241  21.254 16.030 0.000 -0.000 0.001 -0.000
Stdev 6.486 7.087 7.391 7.527 1.060 0.863 1.216 0.907
Skewness 0.807 1.282 0.811 1.257 0.668 0.728 0.676 0.539
Kurtosis 0.519 2.061 0.538 1.865 9.638 30.288  12.916 27.775
Auto 0.987 0.993 0.986 0.993 -0.029 0.051 -0.089 0.060
Log Levels Daily Log Differences

Mean 2.955 2.625 2.998 2.674 0.000 -0.000 0.000 -0.000
Stdev 0.314 0.442 0.342 0.446 0.047 0.055 0.049 0.055
Skewness 0.104 0.103 0.060 0.118 0.736 0.485 0.600 0.387
Kurtosis -0.651 -0.383 -0.697 -0.424 6.729 17.840 7.157 54B.
Auto 0.989 0.992 0.990 0.992 -0.033 0.024 -0.077 0.027
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Table 2
Expectation hypothesis on the variance risk premia

Series Intercept VIX/VXO R-square

A. S&P 500 index

Variance -12.756 (29.937) 0.658 (0.055) 0.456
vol -1.442 (1.179) 0.827 (0.056) 0.569
Log Vol -0.685 (0.197) 1.120 (0.066) 0.631

B. S&P 100 index

Variance 1.415 (30.964) 0.617 (0.050) 0.480
Vol -0.769 (1.124) 0.790 (0.050) 0.599
Log Vol -0.519 (0.177) 1.065 (0.059) 0.663

Entries report the results of regressing the realized variance aganasiltiility index. Since we have
daily estimates of monthly volatility, we sample the data monthly to avoid overlapping Ttataake
full use of the information, we run the regression with 30 different stadatgs and report the averages
of 30 estimates on the parameters, standard errors (in parentheseR}sgnares. For each index, we
run the regression based on the variance, the volatility, and the log of ddityo

33



Table 3
Information content of the volatility indexes

Series Intercept VIX/VXO GARCH R-square

A. S&P 500 index

VIX -0.685 (0.197) 1.120 (0.066) — — 0.631
GARCH 0.180 (0.166) — — 0.907 (0.061) 0.568
Joint -0.580 (0.201) 0.846 (0.147) 0.262 (0.125) 0.641

B. S&P 100 index

VXO -0.519 (0.177) 1.065 (0.059) — — 0.663
GARCH 0.173 (0.169) — — 0.911 (0.061) 0.572
Joint -0.500 (0.179) 0.969 (0.143) 0.098 (0.132) 0.666

Entries report the results of regressing the realized variance agaestotatility index and the
GARCH(1,1) volatility forecasts. Since we have daily estimates of monthly volatiigysample the
data monthly to avoid overlapping data. To make full use of the informationywéhe regression with
30 different starting dates and report the averages of 30 estimatesmarémeeters, standard errors (in
parentheses), and R-squares. For each index, we run the fegreased on the log of the volatility.
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Table 4
The excess return on long variance (volatility) swap contracts

Series Mean Std Skewness Kurtosis Auto Sharpe

A. Variance Swap Contract on SPX

ER -0.397 0.377 2.301 8.345 0.134 3.337
LER -0.659 0.541 0.253 0.033 0.153 3.745

B. Volatility Swap Contract on OEX

ER -0.252 0.205 1.116 1.864 0.077 4.103
LER -0.324 0.259 0.290 0.045 0.067 4.204

Entries report the summary statistics of the excess return on longing aceadamp contract on SPX
and longing a volatility swap contract on OEER denotes simply compounded excess return, defined
asER= (RV—VIX?)/VIX? for SPX andER= (v/RV —V X0)/VXOfor OEX. LER=In(1+ER)
denotes the continuously compounded return. Columns under “Meargkataness, Kurtosis” denote
the sample average, standard deviation, skewness, and excesssKortdse returns, respectively,
based on daily data. “Auto” measures the monthly autocorrelation using@vertepping data. We
report the average of estimates at different starting dates. The lastrtalder “Sharpe” measures the
annualized Sharpe ratio of the excess return, defined as the mean man#dyg eeturn over the Newey-
West serial dependence adjusted standard deviation of the excessmeiliiplied by the annualization
scale ofy/12. We measure the Sharpe ratio on 30-day apart non-overlappingrithen take the
average from the estimates with different starting dates.
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