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Abstract

There has been much discussion of risks tied to trading in derivatives, with some well-informed
objective observers arguing that derivatives risks are not significantly greater or different from
those associated with traditional financial instruments. Financial risks are often broken down into
market risk, credit risk, operational risk and legal risk. We review the standard classification and
observe that while derivatives are exposed to these types of risk, they are manifested quite
differently in derivatives than in traditional securities. We then consider a “new” type of risk that
is particularly important for derivatives: model risk. Derivatives trading depends heavily on the
use of theoretical valuation models, but these are susceptible to error from incorrect assumptions
about the underlying asset price process, estimation error on volatility and other inputs that must
be forecasted, errors in implementing the theoretical models, and differences between market
prices and theoretical values. Empirical evidence drawn from several important asset markets
shows that model error can be quite large and can be expected to lead to significant risk in
derivatives pricing and risk management.



Introduction

Although derivative instruments have been traded for a long time, the enormous growth in the
volume and variety of futures, options, swaps, and more exotic types of contracts in recent years
has been without precedent. Concern about the risks of trading in these instruments is also not
new, but it too has grown along with the markets. In the last couple of years, a series of widely
publicized losses related to derivatives activities has focused public attention (once again) on
derivatives risks.

The tone of the discussion has evolved, however, from calls to suppress trading in markets that
are asserted to be too speculative, like the onion futures market that was closed down by act of
Congress in 1958, to a more constructive recognition that these instruments are now a permanent
feature of our financial markets and that it is necessary to find ways to assess and manage the
risks they entail.

Any objective assessment of financial derivatives has to conclude that these markets have
contributed greatly to our ability to manage economic and financial risk. Derivatives are
invaluable in separating the bearing of risk from the natural exposure to that risk that results from
one’s ownership of risky assets or from one’s economic position generally. For example,
derivatives markets allow inventories of commodities and securities to be carried without the
necessity of also bearing the risk of price fluctuation. The traditional role of futures markets as
vehicles for hedging commodity risk has been extended to many kinds of financial instruments that
entail much greater aggregate exposure to price risk than do traditional commodities. Derivatives
make it possible for firms to obtain financing wherever and however it is cheapest and to
transform the resulting debt into the form that is desired. Today, a firm wishing to borrow dollars
at a fixed interest rate for S years may find it cheaper to borrow Japanese yen at a floating rate
and to use currency forwards and an interest rate swap to offset the exchange rate risk and turn
the floating rate liability into one with a fixed interest rate.

Through derivatives, major classes of risk that in the past were mostly borne by specialized
financial institutions, with limited risk bearing capacity, can now be shared more broadly. For
example, derivatives based on mortgages have made it possible for home buyers to acquire funds
from the bond market rather than having to rely on the ability of savings and loans and similar
financial institutions to attract deposits. Recent innovations in derivatives based on catastrophic
risks like hurricanes and earthquakes are beginning to make it possible for insurance companies to
share risk exposure more broadly with outside investors. Derivatives with option features allow
investors to restructure risk exposures to provide preferred patterns. For the public, this often
means allowing an investor to limit the risk of a loss from an adverse price change without
eliminating profits from a favorable market move.

But along with the benefits of powerful new tools for managing risks and for creating preferred
returns patterns that derivatives provide have also come what often appear to be substantial new
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risks tied to the derivative instruments themselves. Derivatives are distinctly more complicated
than stocks, bonds, loans, bank accounts, and other traditional financial instruments. In this paper
we will refer to these traditional classes of securities as “fundamental” securities. Although they
are comfortable with fundamental securities, the public at large have relatively little understanding
of derivatives, and the large derivatives losses experienced by major corporations and financial
institutions in recent years suggest that even sophisticated investors are capable of making big
mistakes about derivatives.

The large and growing importance of derivatives to our financial system, coupled with the
perception that they entail significant risk that not all investors are fully prepared to deal with, has
prompted several high-level groups to study the issues of risk in derivatives, with an eye to
promoting general principles and effective practices for managing it, and also in some cases, with
the objective of instituting more formal regulatory policies for reporting and limiting risk
exposures for banks and other regulated financial institutions. These include a major study by the
Group of Thirty, with follow-up surveys of industry practice; a study conducted by the U.S.
General Accounting Office (GAO) published in 1994; studies done by the Bank for International
Settlements (BIS) which developed principles that have been embodied in the bank capital
standards recently established for all banks in the European Community (EC); a set of proposed
risk standards for institutional investors developed by the private Risk Standards Working Group;
and continuing attention by the Financial Accounting Standards Board (FASB) to the difficult
accounting issues raised by derivatives.

With regard to derivatives risks, a common theme in these studies, as expressed by the Chairman
of the Group of Thirty, Paul Volcker, in the Foreword to their report on Derivatives: Practices

and Principles (p. 7) [1993] 1,

“The general attitude of the Study towards regulation is plain: derivatives by their nature
do not introduce risks of a fundamentally different kind or of a greater scale than those
already present in the financial markets. Hence, systemic risks are not appreciably
aggravated, and supervisory concerns can be addressed within present regulatory
structures and approaches.”

The Group of Thirty study offered 24 recommendations to market participants and to regulators
regarding the management of derivatives-related risks. Several of the other studies also made
explicit recommendations of a similar nature.

The principles of derivatives risk management contained in these recommendations are clear,
comprehensive, and likely to be very effective if put into general practice. Most of the avoidable
derivatives losses that have created headlines in the news have not occurred because the
recommendations were inadequate but because they were not followed.

However, while Volcker’s statement that derivatives do not introduce risks of a fundamentally
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different kind is basically correct, it does not capture an important aspect of derivatives, which is
that the kinds of risks present in derivatives are the same as in fundamental securities, but the
ways these risks are manifested are often significantly different, and new ways of understanding
traditional sources of risk as they apply to derivatives are required.

Moreover, there is one important type of risk that is essentially new with derivatives: model risk.
Derivatives are complex financial instruments but the theory of how they should be priced and
how they can be expected to respond to changes in market conditions is well developed. The
theoretical principles are incorporated into mathematical models, and virtually all serious
derivatives traders have access to computer implementations of these models and depend on them
in trading derivatives and in assessing and managing risk exposures.

But although derivatives models may be rigorously derived from accepted theoretical principles,
and involve complex equations and daunting mathematics understood only by “rocket scientists,”
they remain only models of reality. To the extent that the real world differs from the models,
reliance on them will lead to risk exposure due to model inaccuracy. The problem is compounded
by the fact that derivatives models require the user to input a number of parameters, including
some that are not directly observable, like the volatility of the underlying asset. Volatility can be
forecasted using standard and not-so-standard techniques, but there will necessarily be forecast
errors that add to model risk.

Some problems with the models are generally known, but no good solution is available. An
example is the widespread use of the lognormal probability distribution with constant volatility for
security returns, as in the Black-Scholes (BS) option pricing model, even though it is well-known
that volatility varies over time, and actual returns in virtually every market that has been examined
have “fat tails” (that is, the actual probability of a large price change is greater than the model
allows for). Often the existence of these problems is known, but their magnitude, in terms of their
impact on the risk exposure of a given investment position or trading strategy, is not.

It is the unique character of derivatives risks, and particularly model risk, that will be the main
focus of this paper. We begin, in Section II, with an overview of the particular ways in which the
traditional sources of financial risk impact derivatives. Section III then discusses model risk in
pricing and hedging derivatives and presents some estimates of its magnitude. The final section
presents concluding comments.

II. Traditional Sources of Risk in Derivatives

As with other financial instruments, derivatives risks can be divided into credit risk, market risk,
legal risk and operational risk:

Market risk: the risk that movements in financial market prices will impair a firm’s
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financial condition due to its positions in derivatives.

Credit risk: the risk (broadly defined) that the counterparty to a derivatives contract will
fail to fulfill its contracted obligations.

Operational risk: the risk of derivatives-related losses from deficient internal controls or
information systems.

Legal risk: the risk that derivatives contracts will not be legally enforceable.

The studies cited above show plainly that the unique characteristics of derivative instruments with
regard to these four kinds of risks are actually well-understood in both the private and the public
sectors.

The guidelines and procedures for managing derivatives risks that they propose are sensible,
reasonable, and likely to be effective if implemented generally. It is safe to say that widespread
adoption of the precepts they propose would greatly reduce the incidence of avoidable derivatives
losses, including the most widely publicized events of the last several years, such as those by
Barings, Metallgesellschaft, and Procter & Gamble.

One other class of risk that is widely discussed with respect to derivatives is “systemic” risk,

that is, the risk that an event originating in a derivatives market could spread to other markets and
precipitate a general financial crisis. Like the perennial question of whether speculation stabilizes
or destabilizes a financial market, about which much has been said without producing general
agreement, systemic risk is an important issue that will not be resolved by a single argument. In
the last subsection, I offer a brief argument that systemic risk from derivatives activities should be
much smaller than that associated with fundamental securities, because derivatives are a zero sum
game, and can not create or destroy aggregate wealth.

I1.1 Market Risk in Derivatives

Market risk is the risk that price changes in the financial markets will cause a loss on a securities
position. Evaluating exposure to market risk is usually straightforward for fundamental assets.
For instance, if the stock market falls, a financial institution holding a portfolio of equities can
expect to experience a loss on that portfolio that will be directly related to the size of the market
move. The predictions of modern portfolio theory on this issue are well-established and
empirically supported: a random fluctuation in the broad stock market can be expect to affect a
particular stock portfolio in proportion to the portfolio’s beta coefficient. If the market moves
x%, a portfolio with a beta of 1.0 is expected also to move x%, while one with a beta of 1.5
should move by 1.5x %. Firms forecast stock betas by statistical estimation using past returns for
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the stock and a market index, and these betas aggregate into beta values for portfolios. The
proportional relationship makes estimating market risk exposure for a portfolio relatively easy.
Residual risk, i.e., changes in portfolio value that are independent of the broad stock market, is
also easily estimated from the same kind of statistical analysis.

Similar approaches to market risk assessment apply to other classes of fundamental assets. Bond
prices go down when interest rates rise, according to fixed, though nonlinear relationship.
Given a measure of variability in market yields, the market risk on a bond portfolio is easily
computed. The value of a bank’s position in a foreign currency will vary directly with the
exchange rate, and so on.

Market risk exposure for derivatives positions is basically similar, and yet the results are often
quite different in practice. For example, a financial institution that has written a call option based
on the stock market index also experiences gains and losses in the value of its position as the
market fluctuates, but the relationship between the market move and the change in a derivative’s
value is typically significantly more complex than the risk exposure of a portfolio of stocks. First,
the direction of the relationship is as likely to be negative as positive; e.g., for a short call position,
it is a rising stock market that will cause a loss. Second, the relationship is nonlinear, and in some
cases highly nonlinear. The loss caused by a large market move can be proportionally much larger
than one for a small move: For example, a 1 percent move in the market might cause a 5 percent
loss on an option position, while a 2 percent market move would produce a 20 percent loss.

Third, due to higher leverage, risk exposure relative to the dollar value of a position is normally
much greater for derivative instruments than for fundamental assets. A purchased option that
ends up out of the money experiences a loss of 100% of the purchase price, even though the
underlying asset may have moved only a little, or not at all. Moreover, every option contract has
both a long side and a short side, and for an option that ends up in the money, the option writer’s
(i.e., the short’s) potential loss is essentially unlimited; it can easily far exceed 100% of the initial
price of the option. Finally, fundamental assets have fairly straightforward relationships with
market risk factors, like that connecting the value of a stock portfolio to the return on the market
index. But derivatives market risk exposure is more complex, and evaluating and managing it
typically requires the use of mathematical valuation models. These models incorporate factors
like volatility that reflect new, specifically derivatives-related, forms of market risk.

Because of the particular properties of market exposure for derivatives, dealer firms normally
hedge their positions. Quantitative valuation models are used extensively for pricing derivatives,
but their most important use is actually for managing derivatives risks.! The changeina

! Traders employ valuation models actively to price derivatives, of course, but they are
typically first tuned to current market prices by the use of implied volatility as the model’s
volatility parameter. Implied volatility is the value that sets model prices equal to observed
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derivative’s value that is caused by a given (small) change in the market value for the underlying
asset is the “delta.” To insulate a derivatives position against market risk, a hedger takes a
position in some combination of the underlying asset and other derivatives based on it that has a
delta equal in size and opposite in sign from the position to be hedged. The resulting hedged
position is said to be “delta neutral,” meaning that its value will not be affected either up or down
by a small change in the underlying asset. But in practice, delta hedging is just the beginning of
risk management for derivatives.

To illustrate how market risk actually impacts a typical derivatives dealer firm, let us take the
example of a bank that writes 3 month European call options on the Japanese yen. We assume
the spot exchange rate (S) is 90.00 U.S. cents per 100 yen and the call is struck at the money, i.e.,
the strike price X=90. For convenience in expressing the dollar values involved, we assume one
call option is for 100 yen. We will analyze the risk exposures related to this position using the
standard Garman-Kohlhagen [1983] currency option pricing model. This is a variant of the
Black-Scholes [1973] model, modified slightly to apply to exchange rates. The equation is shown
in the Appendix. To use the model, we must also specify both U.S. and foreign interest rates (r
and rygy, respectively), and the volatility of the exchange rate (0). We assume these values are: r
= 6%, Iyp=2%, and 0=12%, which are representative values for the recent past.

Putting these parameter values into the model produces the estimates shown in the first part of
Table 1. In addition to the model value for the call price of 2.57, a variety of other “Greek
letters” are computed. These are computed from partial derivatives of the option value function
and indicate the sensitivity of the model value to changes in the other input parameters. Delta is
0.57, meaning that for a small change in the exchange rate, the value of the call on 100 yen will
change by about the same amount as a long spot position in 57 yen. However, the option value is
a nonlinear function of the exchange rate, so the delta will change as the rate moves. The change
in delta per unit change in the spot rate is given by the gamma. A large gamma means that the
sensitivity of the option price to the underlying changes sharply as the market moves away from

its current level. In this case, a one point rise in the exchange rate will increase the delta by about
0.73.

The change in option value is smaller than the change in the underlying but it is a larger
percentage. The leverage ratio or elasticity of the option price is sometimes referred to as
lambda. The value of 20.1 indicates that a 1 percent change in the exchange rate would produce
about a 20 percent change in the option value.

market prices, so in effect “model values” come largely from the market. Theoretical pricing
models are needed most for predicting how a derivative’s market price will behave as the
underlying asset price and other parameters change, so that the resulting risk exposures can be
managed.



Other factors that influence option value and need to be taken into account in managing
derivatives risk include time decay, measured by theta, sensitivity to changes in volatility,
measured by vega?, and sensitivity to interest rates, measured by rho. An option’s value is partly
a function of its time to expiration. Theta is the change in value if the underlying price is constant
as one day elapses. For this option, if the exchange rate does not move for a day, it should lose
value by about 0.017 cents per 100 yen.

Volatility is the one input parameter to a theoretical valuation model that is hardest to judge
accurately. Unlike the option’s strike and maturity which are fixed, or the asset price and interest
rate that can be observed directly in the market, volatility must be forecasted. There are several
basic approaches for obtaining a value for the volatility input, but all are subject to error.
Moreover, the implied volatility (which is often thought of as the “market’s” volatility forecast, as
embodied in current market option prices) can vary substantially from one day to the next. Thus
vega is an important risk measure in assessing the exposure of a derivatives position to factors
that affect its market value. For this option, a rise in ¢ from 0.12 to 0.13 should raise its value
about 0.174.

With rho of 0.001, sensitivity to interest rates (holding the underlying constant) for this option is
very low. Longer term instruments have larger rho values.

To illustrate how a derivatives dealer might evaluate and manage the market risk involved in
writing options, let us consider a dealer who has sold $100 worth of these 3 month yen calls. (At
the model call price, this amounts to writing $100/ $0.0257 = 3894 calls, each based on 100 yen.)
We will use the pricing model to simulate the profit or loss on this position over one day for a
range of possible exchange rates, and then to examine how the risk exposure might be hedged.
The results of the analysis for the whole position are shown in the lower portion of Table 1 and
are plotted in Figures 1 and 2. With an initial position value of 100, the profit and loss figures can
be interpreted as percentage returns.

First consider the behavior of the short call position with no hedging. This is plotted as the solid
line in Figure 1. If the spot exchange rate does not change, the position value increases by less
than 1 percent, due to the effect of time decay on the value of the calls that were sold. A dropin
the spot rate produces a gain for the position, which is capped at 100 since the option value can
not fall below zero. If the exchange rate rises, however, losses accrue at an accelerating rate,
such that a 5 point rise produces a loss almost twice as large as the gain that would result from a
5 point drop. There is no cap on the possible loss.

2 Vega, of course, is not a Greek letter, though it sounds like one and it starts with v,
supgesting volatility. Purists may refer to an option’s partial derivative with respect to volatility
g8 g y y p p
as kappa.



The position’s directional market risk is due to the fact that the option delta is positive, meaning
writing the option produces a negative delta. For a small change in the exchange rate, writing one
contract is like taking a short position in 57 yen. Since the public much prefers buying options to
selling them, derivatives market makers must be option writers on average. But they do not want
to assume a large directional market risk to do so. The first step in managing derivatives risk
exposure is to set up a delta neutral hedge. The textbook procedure is to take an opposite

position in delta units of the underlying; in this case, the dealer would buy 57 yen per written call
contract.

The market exposure of this delta neutral position is indicated by the curve with hollow boxes in
Figure 1 and in Table 1, by the Delta Hedge line with volatility 0.12. Visibly, the position value is
now much less affected by a small change in the spot rate and the sign of the result no longer
depends on market direction. Delta hedging greatly reduces market risk exposure for the dealer,
but there is still a problem. Due to the curvature of the option value function, a delta neutral
hedge does not remain delta neutral as the underlying moves. A hedged position in which options
are held short will lose money if a large price move occurs in either direction (and the position
gains value from time decay if the underlying does not move). This is market risk of a new kind,
that affects derivatives but not their underlying assets. Since market makers will typically hedge
their positions, they do bear significant market risk, but it generally has quite a different character
from that borne by investors in traditional securities.

The extent of the curvature in the hedged position is measured by its gamma, and gamma risk
(also known as convexity risk) is a significant concern for a derivatives dealer, and for anyone
who writes options. Dealers quickly understood this, and found ways to manage gamma risk
along with delta. To offset the effect of curvature in the options that are sold, one can purchase
options whose aggregate (positive) gamma is the same size as the position’s negative gamma.
Any options based on the same underlying can be used; here we consider buying 3-month 95
strike calls. Given the gamma of those options, it is necessary to buy 1.27 95 strike calls for each
90 strike call that is written. The resulting delta of the combined options position is -0.27, which
is then hedged by buying 27 yen per 90 strike call contract being hedged.

The risk exposure of this delta-gamma hedge is illustrated by the curve marked with triangles in
Figure 1. The effect of hedging both “Greek letter risks” is striking. The range over which this
position has little market risk exposure has widened considerably: position value changes less than
10 percent for a 1 day exchange rate movement of 5 points either up or down (assuming nothing
else, like volatility, changes). Again, we see that standard risk management procedures
significantly transform the market risk exposure of derivatives dealers.

However, delta-gamma hedging does not eliminate all sources of derivatives risk. Both option
value and the Greek letter risk exposures are functions of all of the input parameters to the
valuation equation. Changes in volatility (implied volatility, to be precise, since it is variation in
market option prices that is being hedged) will introduce risk into the hedge. To show the impact
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of volatility changes, we consider position values for three different volatility levels, the original
value 6 = 0.12, plus lower and higher values of ¢ = 0.08 and o = 0.16. Figure 2 plots the effect
on the delta-gamma hedge, and Table 1 shows results for both hedged positions.

The response of these positions to volatility risk is sizeable, and also complex. A changein
volatility causes the market values of the options in the position to deviate from the values that
were projected when the hedge was set up. Moreover, the pattern of market risk exposure is
altered. For example, at o = 0.12 the delta-gamma hedge gains value as the exchange rate rises,
but with o = 0.08, it first loses value for a moderate rise but then begins to gain when the yen gets
above about 97. Notice that the basic delta hedge is more affected by volatility changes than the
delta-gamma hedge when the spot rate is constant, because the latter contains options with largely
offsetting vegas. '

It should be no surprise that sophisticated derivatives dealer firms also try to hedge vega nisk
along with the other kinds. Moreover, sensitivities beyond these basic ones are scrutinized as
well, like the change in delta when time elapses (“charm™) and numerous others.

Two general principles should be clear from this discussion. First, while market risk is very
important to derivatives dealers, the variety of risk management strategies that they routinely
employ completely transform its impact on them. Derivatives market risk is significantly different
from what investors in fundamental assets experience as market risk. Second, all of the
derivatives risk assessment and risk management strategies we have discussed depend heavily on
quantitative theoretical models. Plainly, if these models are wrong, derivatives dealers will be
exposed to market risk in different amounts and in different ways from what they are expecting.

It is fair to say that for non-dealer investors and users of derivatives, the most important new form
of market risk they bear related to derivatives is convexity, or gamma risk. The profile of returns
for the written call options in Table 1 clearly illustrates the impact of convexity on an option
position. Market risk exposure when options are written may be relatively small for small market
moves, but it can accelerate rapidly for large moves. Serious derivatives-related losses occur
when a trader is short options and the market makes a substantially larger move than he believes is
possible.

Convexity risk can be insidious: a trader may hit upon a trading strategy that in one way or
another amounts to writing deep out of the money options. A small option premium is earned
each time and almost always the written options end up expiring out of the money. An incautious
trader can come to feel that the strategy is a safe way to make money. But when a very large
market move does cause the options to go into the money, the loss to the writer will typically be
many times the premium that was received. Moreover, as we will discuss below, the probability
of a very large market move is considerably greater in practice than would be expected under the
lognormal distribution that is generally assumed for security prices. A recent example of this
occurred as a result of the major stock market drop on October 27, 1997, when a well-established
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hedge fund run by Victor Niederhoffer was bankrupted. They had been writing deep out of the
money put options on the Standard and Poors 500 stock index and collecting small amounts of
option premium. When the stock market fell by more than 7.0 percent in one day--a virtual
impossibility under the lognormal probability distribution assumed by the most prevalent option
pricing models--the entire equity of the fund was lost.?

Some derivative instruments can have very large gammas under certain circumstances, especially
those like barrier options that specify a price boundary at which the derivative’s value undergoes a
sharp change over a small price interval for the underlying. These derivatives are very hard to
hedge effectively, which means that no good alternative may exist to simply bearing the convexity
risk.

The fact that derivatives are a “zero sum game” has important implications for risk management.
Since every contract must have both a long and a short side, if one trader makes a dollar profit,
the counterparty on the other side loses a dollar. This principle extends to risk management:
Derivatives shift risk, they do not eliminate it. If one dealer hedges her gamma risk by buying
options, as in the above example, then someone else has to take on that risk. If the public prefers
to buy options, dealers must on balance be short options. This means that while any one of them
may hedge her gamma risk, as a group they must bear all of the risk that comes from taking the
other side of the public’s trades.

Since the effect of convexity is that delta changes as the underlying moves, the standard way to
manage gamma risk is with a dynamic hedge, that alters the amount held of the hedging
instruments as the delta changes. This is the heart of the arbitrage strategy Black and Scholes
assumed in deriving the option pricing model. However, it has two significant shortcomings in
practice that make it less than a perfect system for managing convexity risk. First, it is not
actually possible to rebalance the hedge continuously, so the strategy can not eliminate all of the
risk. A sharp change in the underlying while the market is closed overnight, for example, will still
lead to a loss on the delta neutral hedge of a written option, as Figure 1 shows. Second, the way
the hedge must work is that the underlying is sold as the market goes down and purchased as the
market goes up. Thus hedge rebalancing generates positive feedback trading in the underlying. It
becomes expensive and difficult to execute the necessary trades when they are needed most.

I1.2 Credit Risk in Derivatives

The second broad category of financial risk exposure for those who trade derivatives is credit risk.
Like market risk, credit risk is a familiar concept for fundamental securities, but its manifestation
in derivatives is more complex. If a bank makes a loan of $1 million and the borrower declares

3 See Barron’s, Nov.3, 1997, p. MW 17.
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bankruptcy the following day, the bank can lose the full $1 million. Similarly, if an investor buys
$1 million of bonds or stocks and the issuer becomes insolvent, the full amount can be lost.

By contrast, if the bank had entered into a forward contract or a swap with a notional principal of
$1 million and the counterparty became insolvent the next day, the loss might be negligible.
Normally the bank could simply return to the market and replace the defaulted contract with
another at approximately the same terms; the value of the underlying asset for a derivatives
contract is never at risk. For example, it is not possible to lose $1 million, or anything close to
that amount, from a default on a $1 million notional principal swap contract.

Depending on the particular instrument involved, there need be no loss at ll from the failure of 2
derivatives counterparty, unless the market has moved away from the initial level, and in the
direction that favors the solvent counterparty. Both forwards and swaps are normally set up to
have zero value at the outset, so there is no credit risk at first. However, over time market prices
relevant to the contract will tend to drift away from their initial values and one side of the contract
will develop an embedded profit, while the other side will have a matching embedded loss. If the
holder of the unprofitable position defaults at that point, there is 2 loss to the counterparty equal
to the cost of replacing the defaulted contract at its original terms in the current market
environment. Thus, a derivatives contract may involve little credit risk at the outset, but entail an
exposure that grows over time.

How credit risk impacts derivative instruments varies across different types of contracts. A
futures contract establishes a binding commitment to trade a fixed quantity of the underlying on
the maturity date, at a price that is set today. When the trade is cleared, the original bilateral
contract is broken into two contracts, each between one of the counterparties and the exchange
Clearing House. The Clearing House is 2 AAA rated credit, so risk of default is minimized.
Moreover, all contracts are collateralized by initial margin deposits, that are adjusted daily
through the mark to market process to maintain adequate coverage of the potential credit risk
exposure over the immediate future. Thus, there is effectively no credit risk on futures positions.

Forward contracts are like futures in that the contract specifies a commitment to a future
transaction that is binding on both counterparties. The price is set so that the contract has zero
value at the outset. However, as over the counter instruments, forwards are not automatically
collateralized and marked to market, so credit risk exposure can build up over time. The
expected future credit risk on a given trade depends on several factors, of which the volatility of
the underlying asset is one of the most important. To see this, let us look at a forward contract
tied to LIBOR.

We will first consider the case of a 3 year forward rate agreement on 6-month LIBOR with §1
million notional principal. The current level of LIBOR for all maturities is 6.00 percent and the
forward is struck at the money. Thus, the counterparty with the long position enters into a 3 year
commitment. At maturity, the strike rate of 6.00 will be subtracted from the actual value of 6-
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month LIBOR in the market. If LIBOR has gone up, the short pays the long a cash amount equal
to the difference between 6 months interest on $1 million calculated at the actual LIBOR and at
6.00 percent. If the rate has gone down, this calculation will yield a negative amount, meaning
that the long pays the short.

For example, suppose the rate ends up at 7.00 percent. The short will pay the long
(0.0700-0.0600) x 1/2 x $1,000,000 = $5,000. If the rate were 5.00 percent, the long would pay
$5,000 to the short. Thus, if the rate is 7.00 at maturity, the long has a $5,000 credit exposure
with respect to the short, but if the rate is 5.00, there is no credit exposure. (The short now is at
risk that the long will default.) Obviously, under any reasonable interest rate scenario, neither
counterparty can lose the $1 million notional principal or any amount near that.

Prior to maturity, the replacement value of a $1 million forward rate agreement struck at 6.00
percent will depend on the current market level of LIBOR and the possible rates that might occur
at expiration. If the contract has positive value for the long at the current rate, there will be a
credit exposure, while if the value is negative, the long has an embedded loss, no credit risk
exposure, and would actually be made better off if the counterparty were to fail in such a way as
to remove the long’s liability.*

The time pattern of expected risk exposure for a forward with no initial market value starts at
zero and rises over time as maturity approaches. The expected credit exposure at each future
date is calculated as the expected value of the contract’s market value on that date over all levels
of LIBOR for which the market value is positive. Since the expectation is computed over only
one side of the probability distribution for future interest rates, higher volatility that leads to wider
dispersion in rates will produce greater expected credit risk.

We have built a simple binomial interest rate model to simulate the possible paths of future
interest rates and the values of several types of interest rate derivative instruments over a 3-year
horizon under the conditions described above. The model has one time step per month, and over
a single step, the rate can go to only 2 possible levels, up or down by one standard deviation. We
assume the annual volatility of the rate is 20%, making the volatility per time step equal to 20 x
(1/12)* = 5.77%. This is a reasonable value for LIBOR volatility, that gives steps of about * 35
basis points starting from an initial level of 6.00 percent. As is done in the binomial framework,
we start by constructing a lattice of interest rates for the 36 months out to expiration. At
expiration the derivative’s payoff is computed for every interest rate in the tree on that date. The
valuation then is rolled back through the lattice, to give the theoretical value for each date and
rate all the way back to the present. Once we have this derivative value tree, the credit exposure

4 As we will discuss further below, there remain legal questions in some jurisdictions
about whether a counterparty’s failure may remove the solvent counterparty’s liability to make
payments on derivatives transactions that have gone in the insolvent counterparty’s favor.
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for a given date is computed by multiplying the forward’s value at each node for which the value
is positive by the binomial probability of reaching that node, and adding them up.

Figure 3 plots the resulting estimates. The lowest curve shows the time pattern of risk exposure
for the forward contract we have just described. For a $1 million notional principal contract
under these assumptions, expected credit risk begins at 0 and rises over time to about $4,200.
The slight waviness in the line is spurious. It is a result of approximation error in the binomial
model we are using--a kind of model risk. Note that this calculation gives the mean value of the
credit exposure, not the worst case.

The other common kind of derivative with a single maturity date is an option. A call option on

. LIBOR with a strike level set at 6.00 percent will pay the long the same amount as the forward if
the market rate at expiration is above 6.00 percent, and zero for rates below 6.00. Because the
Jong can receive payments at maturity if the rate moves up but does not have to make any
payment to the counterparty when the rate has moved against her, the option has a positive value
at the outset. The long must buy it from the option writer at the beginning, and in return, the
writer must stand ready to make the payments called for at maturity if the option ends up in the
money.

Since the option has positive market value at time 0, unlike a forward, the long has a credit risk
exposure with respect to the writer from the outset, while the writer has all of the future liability
under the contract and never has any credit risk exposure with respect to the option buyer. The
dashed line in Figure 3 shows the time pattern of expected credit risk exposure for the option
buyer. Under the assumed parameter values, an immediate failure of the option writer will
produce a loss of $3,340. The expected value of the credit exposure rises gradually to $4,200 by
expiration date. This is the same as the credit exposure for the forward because the option pays
off for interest rates above 6.00 percent, which are the same rates at which the long to the
forward would be owed a payment from the short.

An interest rate swap specifies a fixed “swap rate” at the outset, corresponding to the strike rate
for a forward, and a set of future payment dates. On each date, the difference between the
floating rate (the current market level of 6-morith LIBOR in this case) and the swap rate is
computed and the difference is applied to the notional principal. If the floating rate is above the
swap rate, the “floating rate payer” pays the calculated amount to the “fixed rate payer,” and if the
floating rate is below the fixed swap rate, the cash flow goes the other way. It should be clear
that a swap is simply a sequence of forward rate agreements with the same strike rate. The fixed
rate payer is the long in the forward contracts and the floating rate payer is the short.

We have computed the pattern of credit risk exposure for a $1 million 3-year swap with payment

dates every six months. The final swap payment occurring in 36 months is exactly the same as the
forward we looked at before, and earlier payments correspond to five forwards with maturities of
6, 12, 18, 24, and 30 months. The dash-dotted line in Figure 3 shows the results. Since there are
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now six payments rather than one, the total credit exposure for the swap must be greater than for
the forward until all but the final one remains outstanding. But since the swap rate is set to give
zero value at the outset, there is no credit exposure at the beginning. There are then two factors
operating in opposite directions as time elapses. Like a single forward contract, each outstanding
component forward of the swap increases its exposure over time as rates drift away from the
initial level. However, every six months one of them reaches maturity and pays off, which reduces
the remaining aggregate risk exposure. This produces a humped total exposure curve, with a
sawtooth pattern that is created by the periodic payments. The expected maximum exposure in
this case is $11,200 and occurs in month 12 (just before the second payment is made). This curve

shows greater choppiness than it should, again due to the effect of approximation error in the
model.

Finally, we consider an interest rate cap contract. Similar to a swap contract which is a sequence
of forwards, a cap contract is a sequence of call options with the same strike interest rate. Each
individual option, known as a “caplet,” entails a payment from the writer to the option buyer if 6-
month LIBOR is above the strike rate on the periodic payment date. Like a single call, the cap
contract requires a cash payment from the buyer to the writer at the outset, and subsequently only
the buyer has credit risk exposure. The time pattern, shown in Figure 3 as the dotted line, is
greatest at the initial date and falls in stair steps as the individual caplets mature.

There are several important points that should be clear from this discussion. First, credit risk in 2
derivative is much smaller than for an outright position in the same notional principal amount of
the underlying asset. A $1 million loan for three years would have expected credit exposure of $1
million at every date, while the largest exposure among these derivative contracts was under
$16,000 for the cap at time 0. Second, the time pattern of exposure is complex, it is significantly
different for different instruments, and it depends on the volatility of the underlying in an
important way, and frequently on a variety of other market factors. In fact, we have simplified
this example considerably from what would have to be done to assess credit risk exposure for
actual LIBOR-based derivatives. For example, by assuming LIBOR at all maturities was 6.00
percent at the outset, we eliminated a set of computations that would normally be required to take
proper account of the current term structure and its future evolution. Finally, once again, it is
apparent that this kind of analysis requires heavy use of mathematical models.

I1.3 Operational Risk in Derivatives
Operational risk refers to the risk of a loss to a firm that is related to the internal handling of
transactions and positions: the accounting and other back office operations supporting the firm’s
derivatives activities. Some of the more spectacular derivatives-related losses of recent years
were primarily the result of operational risk.

A prime example was the huge losses mostly on futures and options tied to the Japanese stock
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market, that led to the collapse of Barings Bank, PLC. in 1995. The trades had been entered into
by a 28 year old trader in the bank’s Singapore office, who had been given overall responsibility
both for trading derivatives and for the back office support of the trading desk. After losing a
substantial amount for the firm’s proprietary account through speculative trading in the Japanese
derivatives market, he was able to conceal the losses in a bogus “customer” account while he
increased the size of the bets he was making with the firm’s capital in an attempt to recover the
funds. The larger trades also went bad, causing increasing losses. By the time these were
uncovered, they amounted to more than the total net capital of the bank, which was bankrupted.

Although operational risk can affect all of the trading operations of 2 financial firm, there are two
factors that may make derivatives mote susceptible to problems of operational risk than
fundamental securities are. First, derivatives are generally much more leveraged. Since the object
of contracts like futures, options, swaps, and similar instruments is to fix the terms fora
transaction that will only take place in the future, a trader can make very large commitments on
behalf of the firm and expose it to very great risk, with only a small amount of cash being
exchanged in the present. For “cash market” transactions in fundamental securities, it is not easy
to take large risk positions without there also being large concurrent cash flows that tend to make
the situation visible to others in the firm. Although it is hard for a firm to protect itself completely
against a determined fraud, uncontrolled trading that produces large losses is much harder to
conceal in the cash market than in derivatives.

Second, since derivatives are more complex and less likely to be fully understood by non-
specialists, senior management may be more disposed to leave the back office work and risk
management of the derivatives business to the traders who seem to understand what they are
doing. As the case of Barings shows, this is an extremely dangerous practice.

The recommendations from the Group of Thirty, as well as the other studies, with regard to
dealing with operational risk in derivatives trading are clear and comprehensive. The two major
themes are that senior management must be fully involved in setting risk standards and in
overseeing the risk management system in their firms, and that there must be a clear separation of
authority between the trading desks and the back office support and risk management functions.
Implementing these recommendations throughout the financial services industry would eliminate
much of the operational risk in derivatives trading.

I1.4 Legal Risk in Derivatives

Legal risk is a problem whose essence is lack of information: Counterparties enter into a
contractual agreement without full understanding of its legal aspects, and at a later date it turns
out that the terms of the contract are not legally enforceable. This may come as a surprise to both
counterparties (though only one will be damaged, while the other is relieved to be let out of a
losing trade). The misunderstanding might simply be due to ignorance of 2 possibly obscure point
of law applying to a particular transaction or type of transaction. More commonly, it arises
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because it has not been firmly established how the existing legal framework applies to a new type
of instrument or trading strategy.

Legal risk is potentially present in all kinds of securities trading. Once again, however, it impacts
derivatives particularly. We will not attempt to cover the legal risk faced by derivatives dealers in
detail here. However, it is worth pointing out a few of the special ways in which it affects them.

One of the largest losses to dealers in derivatives in the 1990s occurred on a number of swap
contracts they had entered into with several municipal governments near London. The largest of
these were the boroughs of Hammersmith and Fulham. When rates went against the boroughs,
the British courts, culminating in a 1991 decision by the House of Lords, ruled that they had
exceeded their legal authority in entering into such contracts, and the swaps were void. This left
the dealers to absorb losses of about $178 million on the defaulted contracts. Legal risk from lack
of understanding of this law produced major losses for derivatives dealers. It is unlikely that
financial transactions involving more traditional kinds of securities would have been as susceptible
to this legal risk.

Examples of legal risk stemming from the lack of a fully established legal framework for new
kinds of instruments are not uncommon. The U.S. regulatory system for derivatives divides
responsibility among several authorities according to the type of instrument involved. Futures are
regulated by the Commodity Futures Trading Commission (CFTC), options are regulated by the
Securities and Exchange Commission (SEC) and the Federal Reserve and the Comptroller of the
currency regulate banks and many of the activities of government bond dealers. This presents
problems as new derivative contracts are created with elements that span more than one class of
instrument. The CFTC found it necessary to resolve a significant source of legal uncertainty
regarding whether swaps, traded extensively in the over the counter market, were actually a kind
of futures and therefore requiring oversight by the CFTC. The CFTC’s legal right to exempt

swaps from oversight was made explicit by act of Congress only in 1992, and the CFTC did so in
1993.

Another source of legal uncertainty in the handling of derivatives transactions internationally
concerns the enforceability of bilateral netting agreements among dealers. The general principle,
which is well established in the U.S. and most other countries where major derivatives business is
currently being done, is that when two firms are counterparties in multiple derivatives contracts, if
one should become insolvent, the values of all of their outstanding contracts with each other are
netted together. For example, suppose Firms A and B have two outstanding swaps with each
other, one of which has market value of $300 million in B’s favor and the other is worth $400
million in A’s favor. If B becomes insolvent, under bilateral netting the two swap values will be
combined, and B will owe A $100 million. In some countries, however, it has not been
established clearly that this kind of agreement is enforceable in practice. One alternative would be
that B, as the insolvent party, is protected from having to pay the $400 million to A, while A is
still obliged to pay B on the $300 million swap. Uncertainty of this sort plays havoc with credit
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risk calculations. One of the specific recommendations of the Group of Thirty report on
derivatives was a call for all countries to guarantee the enforceability of bilateral netting
agreements.

A new source of legal risk has also been developing recently in the U.S., in response to several
large losses involving derivatives. The risk stems from the possibility that a transaction which
would seem to fall within an established set of legal principles may be called into question in'a
lawsuit. When a case involving complex derivatives is argued before a jury and a judge, who can
not be expected to have a complete understanding of the financial instruments, the outcome is
uncertain. There is a significant risk that an incorrect decision may be reached in such a case
leading to a loss—-perhaps unjustified, but a loss nevertheless. There is also the serious problem
that for a derivatives dealer simply to have to defend itself against an extended public attack on its
business practices and behavior can be very costly in terms of legal fees, a major distraction to the
firm’s personnel and very damaging to its client relationships. A firm facing such a lawsuit may
well feel that it is completely in the right on the legal questions, but that winning in court is not
worth the cost. The threat of a lawsuit by a disgruntled counterparty may be sufficient to make
the firm accept a loss in an out of court settlement.

Legal risk from the threat of lawsuits presents a difficult problem that applies especially, though
not exclusively, to derivatives. The recent dispute between Procter & Gamble (P&G) and
Bankers Trust (BT) presents an example of how such a case can be made. Procter & Gamble
entered into a nonstandard kind of swap agreement whose terms were fairly complex.’ The
nature of it was that if interest rates stayed low P&G would obtain financing at a very attractive
rate. But with sharply rising rates, they were committed to pay interest at a floating rate that
could quickly increase to extremely high levels, well over 20 percent annually. In fact, during the
winter of 1994, rates did go sharply higher and P&G ended up realizing 2 $157 million loss on the
position.

P&G claimed that they had not fully understood the terms of the contract and that Bankers Trust,
not P&G, should be liable for the losses they incurred, because BT had not revealed relevant
information. During the ensuing few years, the case was widely discussed publicly, damaging
ihformation was revealed, and BT found itself in difficulty with its public image and it customers,
not to mention bearing mounting legal costs and loss of valuable personnel. In the summer of
1997, BT settled out of court, paying P&G about $150 million to end the case.

Without attempting to pass judgment on the rights and wrongs of this specific case, the known
facts illustrate a new legal risk applying particularly to derivatives dealers. Derivatives are
inherently more complex instruments than fundamental securities. If a firm enters into a

5 See Smith [1997] for a fuller description of the actual contract and the possible reasons
for it.
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detivatives transaction with a dealer firm and makes a large profit, there will be no complaints.
But if it makes a loss, it has the option of attempting to gain some or all of the losses back from
the counterparty dealer by a lawsuit. If the case goes to trial, the plaintiff can be expected to
argue that the transaction was complex and confusing, and that the dealer did not fully reveal its
riskiness. In such an argument, it does not hurt the plaintiff if the jury and judge are confused
about the transaction and about derivatives in general, since they may then be sympathetic to the
claim that the deal was not well understood. The defendant firm, on the other hand, must attempt
to make the jury understand how the transaction worked and to show that the plaintiff could and
did understand what they were doing. Of the two, it is obviously easier to confuse a group of
laymen about derivatives than to explain a complex derivatives strategy to them.

The option to sue whenever a customer experiences a large loss introduces an important new kind
of risk for derivatives dealers. It is potentially extremely damaging to the derivatives market, if its
use becomes widespread. Dealers are in the weaker strategic position in such cases for two
reasons: They have the harder case to make in court, and it is extremely costly for them to be
involved in the suit at all. But the practice of settling quietly out of court can add huge costs to
being in the derivatives business, that will be reflected in higher fees and spreads, and greatly
restricted markets, as firms will be obliged to reject many potential customers. Yet because a
given dealer facing a bad case will still frequently find it cheaper overall to settle than to fight it '
out in court, there is a serious “public goods” problem with regard to this kind of legal risk.
Dealers as a group would be better off if a few of them went to court and established legal
precedents about how much responsibility they bear for their customers’ investment decisions.
But individually, the economics of the situation will frequently dictate settling rather than fighting.

I1.5 Derivatives and Systemic Risk

The kinds of risks we have been discussing are all experienced at the individual firm level. A
failure to oversee the back office operations properly can cause major losses for a single firm, but
the problem is not expected to extend very far into the financial markets in general By contrast,
one of the frequently voiced concerns about derivatives is that they could lead to “systemic’ > risk,
risk that a problem originating in the derivatives markets might end up damaging the entire
financial system. While avoiding unnecessary losses at individual firms is clearly desirable, it is
much more important to avoid the possibility of system-wide damage, from any source. Concern
about systemic risk may be used to justify a call for increased governmental regulation of the
markets, or restrictions of various kinds on participation by certain classes of investors.

Clear evidence that derivatives trading contributes to systemic risk, or even a clear description of
how a derivatives-related event could cause a systemwide problem has been lacking, consistent
with Volcker’s comment that “...systemic risks are not appreciably aggravated” by derivatives.
Yet the importance of the issue keeps concern alive that derivatives activities may cause systemic
risk in some unforeseen way either today or in the future.
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This is a major issue that can not be fully addressed here. However, 1 will offer a perspective on
the question to suggest that, by their nature, derivatives activities are less likely to cause systemic
problems than is trading in fundamental securities. This is not meant to be a rigorous proof, but
rather an intuitive discussion of the consequences of an important difference between derivatives
losses and fundamental losses.

Derivatives are inherently different from fundamental securities with respect to systemic risk
because they are a zero sum game. To illustrate why that can be expected to make a difference
with respect to systemic risk, let us take an analogy. Consider 2 family that holds a nightly poker
game around the kitchen table. From the perpective of an individual family member, the effects of
losing $100 in poker and losing $100 when his wallet is stolen in the subway are similar: his
wealth falls by $100. But from the perpective of the “system,” in this case the household as a
whole, there is a lot of difference between these events. The loss in the poker game simply
transfers $100 from one family member to another; it has no impact on overall household wealth.
But losing $100 in the subway is a net reduction in total household assets. The latter can be
expected to have more serious potential consequences for overall household welfare.

As far as the financial system is concerned, derivatives losses are like the losses in the family
poker game. A dollar lost by one market participant always produces a dollar gained by someone
else. This means derivatives risk can only be redistributive risk--money changes hands but there is
no loss of wealth to the system as a whole. By contrast, events such as an earthquake that
destroys a town, a firm’s investment project that fails, or a decline in a nation’s overall
productivity that drives the stock market down, all produce losses in aggregate wealth to the
whole economy. These are the kinds of risks that fundamental securities are exposed to. Losses
of this kind may be shared through diversification, they may be transferred by insurance contracts
(or by hedging with derivative instruments) from those less able to bear the risk to those more
willing and able to do so, but however it is redistributed, the entire loss must be borne within the
system.

Therefore, I suggest that by the nature of a derivative contract as a zero sum game, derivatives

risks inherently entail less chance of systemwide disruption than do the risks on fundamental
securities that correspond to losses of wealth to the whole system.

III. Model Risk in Trading Derivatives

One of the most apparent differences between trading in derivatives and trading in fundamental
securities is the enormous importance of theoretical models and sophisticated mathematical tools
to the derivatives market. Derivative instruments themselves tend to be more complex than
fundamental securities, and what are now standard operating procedures for trading them and
managing the associated risks involve much greater complexity.
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An important reason for this is that valuation theory is fundamentally different for the two kinds
of financial instruments. Theoretical valuation models for fundamental assets are deduced from
considerations of equilibrium in the capital markets. The principles at work are well-established
(e.g., investors like high returns and dislike risk) but they do not produce very precise valuations.
For example, a risky security should have a higher expected return than a risk free security. But
how much higher? Pricing theory can not give a specific value; it depends on the degree of risk
aversion in the investor population. This dependence on unobservable expectations and risk
aversion makes precise valuation difficult for fundamental securities. It also means that market
participants do not rely very much on theoretical models in trading them.

Pricing models for derivatives, on the other hand, value a derivative instrument relative to its
underlying asset. The underlying need not be priced “right” in the market for us to say with
considerable confidence how a derivative instrument based on that asset ought to be valued given
the price of the underlying. This is possible because the models are derived from considerations
of arbitrage between the derivative and its underlying. If the derivative’s market price differs very
much from the model value, there will be an arbitrage strategy that earns riskless excess returns,
regardless of how the underlying is priced vis-a-vis other securities in the market.

The pricing model for forward and futures contracts is quite straightforward. It is based on the
cost of buying the underlying asset, hedging its risk by selling it forward, carrying the hedged
position through time until futures maturity, and then delivering. The resulting “cost of carry”
pricing mode! is applicable for all forwards and futures for which the underlying is storable, i.e., it
can be bought in the present and held over time. Financial instruments, including long term
government bonds, equities and foreign currencies are good examples of storable underlying
assets; live animals, commodities like oil and electricity for which supply comes from current
production, and economic variables, like the Consumer Price Index, that are not prices of traded
securities are not easily storable, and are not governed by the cost of carry relation. For markets
in which the model applies, the possibility of arbitrage between the derivative and its underlying
enforces theoretical pricing in the marketplace, at least to an approximation, whose degree of
closeness will be a function of how hard the arbitrage trade is to execute.

Theoretical models for pricing derivatives with option features are significantly more complicated.
The celebrated Black-Scholes [1973] formula is also derived from an arbitrage-based trading
strategy that combines the option and its underlying to create a delta neutral portfolio that is free
of market risk for small changes in the underlying price over a short time interval. As we
discussed above, however, in practice a delta neutral hedge of an option against its underlying is
far from completely risk free, and keeping it delta neutral over time requires what can be a very
active rebalancing strategy. In fact, while market pricing of options depends heavily on
theoretical models derived from such dynamic hedging strategies, there is virtually no trading in
actual markets that attempts to execute exactly the continuous rebalancing option replication
strategy that these models are based on. For one thing, the theoretical strategy involves an
enormous number of transactions, but trading costs in practice are too large for that to be feasible.
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Nor is continuous trading possible even if one wanted it, when markets are closed at night and on
weekends. Nor are potential arbitrageurs certain that they know the exact values of volatility and
other model parameters.

Option pricing formulas require assumptions about the stochastic process that the price of the
underlying asset follows. The form of the distribution must be specified and the numerical values
of some of its parameters must be known. The most common assumptions are that the asset price
follows a lognormal probability distribution with a known volatility.® The Black-Scholes model
and the variants derivable from it embody these assumptions. It is widely used in the marketplace,
both for pricing options and for estimating the Greek letter risk exposures. Yet even while the
model is used actively, traders are also well aware that its assumptions do not hold in practice.

Actual security returns are not really lognormal and volatility is not known, but must be estimated
subject to considerable error.

In this section, we will consider the risks in trading derivatives and managing derivatives risks that
result from the need to use theoretical valuation models. We will focus on several classes of
model risk. The first is risk that comes from using wrong models, in particular assuming
lognormality when the true distribution has “fat tails.” The second type of risk arises even when
one has the right model, because necessary input parameters such as volatility can only be
obtained as forecasted values, subject to error. Third, beyond risk from the use of models that do
not exactly correspond to reality, there is implementation risk, that programming errors and other
extra-model problems will cause incorrect answers even though the model is essentially correct.
Finally, there is the risk that a model may give correct theoretical values, but the market prices
will be different.

1II.1 Wrong Models

There are many ways a valuation model can go wrong. Indeed, derivatives practitioners know
well that their models are not exactly correct, and will try to make accommodations for model
problems that they are familiar with. To deal with the fact that the Black-Scholes model assumes
the underlying asset’s volatility is a known constant, while in the real world, the true value of
volatility is quite uncertain, traders will frequently use “implied” volatility obtained from market
option prices as the model input. Implied volatility (IV) for a given option is obtained by solving
a valuation model backwards to find the volatility that would make the model value equal to the
observed market price.

6§ A random variable follows a lognormal distribution if its logarithm has a normal
distribution. This is (almost) the same as assuming that the asset’s rate of return over short
intervals is normally distributed.
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Ofcourse, this procedure is circular: one assumes the market price is the true value, and then
fiddles the volatility input parameter until the model produces that value. Worse still, the
procedure does not work exactly right. The underlying is one asset and can have only one actual
volatility. But, there are typically numerous options with different strike prices trading on the
same underlying asset, and each of them will produce a different implied volatility. The existence
of multiple implied volatilities shows that option prices in the market are not consistent with the
valuation model.

The array of implied volatilities for different strike prices has a customary pattern known as the
volatility “smile.” When IVs are graphed against option “moneyness” (how far an optionisin or
out of the money) options that are at the money normally have the lowest implied volatilities,
while those on the wings have higher values, producing a generally smile-shaped pattern.
Although a smile means option pricing in the market is inconsistent with the model, traders still
tend to use a familiar though incorrect model and try to adjust in various ways for its known
shortcomings. Such adjustments are simply rules of thumb, however; they are not rigorously
justifiable.

This leads to model risk, the amount of which is not easily known. To the extent that risk
managers, being further removed from the market than traders, are less able to make the
subjective corrections necessary to make the models work, the importance of model risk may not
be as well understood as the other types of risk described in the previous section. Theoretical
option valuation models do not fully capture how the market actually prices options, but the
reasons for the discrepancies are not directly observable. We will now discuss several of the most
important important sources of model error.

“Fat Tails” in the Distribution of Asset Returns

The lognormal probability distribution is widely used in option pricing models as the assumed
stochastic process for the price movements on the underlying asset. There are theoretical and
practical reasons for this. On theoretical grounds, the lognormal arises naturally when asset
returns follow a random walk with a constant variance as the interval between price observations
goes to zero .

Equation (1) describes the returns process for an asset price that follows a random walk.
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In period t, the asset’s expected return is given by an annualized rate r multiplied by the length of
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the time interval At. The actual return is the expected return plus a zero mean random
disturbance €, whose variance, o At, is proportional to the length of the interval. The random
disturbance is independent across time periods.

The limiting process, the lognormal diffusion that is the foundation of the Black-Scholes option
pricing formula and many subsequent variants, is given by

%'S-=rdt+odz; E[dz]=0

VAR[ dz] = 1dt
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The random component of returns denoted dz still has zero mean and a variance of ©* At overa
finite time period of length At, and it is independent over time. One difference is that in going to
the limit, the disturbance converges to a normal distribution, which induces a lognormal
distribution for the asset price and for its returns over finite time periods.

The random walk model has received a great deal of support from empirical researchers over
time, so it is natural to extend it to the continuous-time world of option pricing. On practical
grounds, the mathematics of lognormal distributions is well-known and relatively simple, at least
in comparison with the alternatives. Option pricing models that drop this assumption tend to
become significantly more complex. Greater complexity typically allows a model to achieve a
better fit to the available data (a smile pattern in implied volatilities can be partially flattened out,
for example), but at the cost of greater fragility in forecasting (the model’s performance tends to
degrade more rapidly when it is used out of sample). Moreover, non-rocket scientist model users
often have some familiarity with normal distributions, which extends to the lognormal, but very
little intuition about more complex distributions.

Yet, one feature of actual returns distributions that is observed in all sorts of financial markets is
“fat tails.” Empirical returns distributions exhibit more very large values, both positive and
negative, than a lognormal distribution with the same mean and variance. That is, they have more
probability weight in the tails of the distribution. In order for there to be more very large
deviations from the mean without an increase in the variance, these fat-tailed distributions also
have more very small returns than the lognormal, and fewer middle-sized ones. We will be
considering percentage returns over short intervals which will have a normal distribution when the
prices are lognormal.” Figure 4 illustrates the difference between 2 normal and a fat-tailed

7 Strictly speaking, for a diffusion model like equation (2), the continuously compounded
return has a normal distribution while the percentage returns over a discrete interval will be
lognormal.  For returns over an interval as short as one day, there is no appreciable difference
between the normal and the lognormal distribution.
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distribution.

Fat tails can arise from a variety of causes. One is the existence of “jumps” in prices. Ina
diffusion model like equation (2), all randomness is contained in the dz term so the variance of
price changes goes to zero as the observation interval shrinks. This means the price process
becomes continuous, ruling out the possibility that it could jump from one level to another
without passing through every value in between. Yet actual financial series like exchange rates

and interest rates may do just that, which produces larger moves over short time intervals than the
lognormal-allows for.

Beyond inducing a nonlognormal returns distribution, price jumps cause more fundamental
problems for derivatives pricing models. Because it is impossible to rebalance a delta neutral
hedged position continuously when the price jumps, the ability to replicate the derivative’s payoff
exactly with a dynamic trading strategy is eliminated. This undermines the whole principle upon
which the pricing formula is based. Alternative option pricing models that allow price jumps have
been devised, but they are less satisfying than models based on pure diffusion processes: the jump
risk can not be hedged, so option values must incorporate an unobservable market-determined
premium for jump risk. This eliminates one of the great strengths of the Black-Scholes model,
that theoretical option values do not depend on unobservable preferences. Practitioners typically
use pricing models that do not include jump risk, and try to adjust the model values subjectively in
cases where it is expected to be especially important, such as short maturity out-of-the-money
options.

Fat tails in the returns distribution may come from other sources as well. Equation (2) assumes
the volatility at each instant is a constant (annualized) value o, but the empirical evidence shows
that realized volatility for actual financial variables varies over a broad range. Uncertainty about
the future volatility makes derivatives pricing and risk management into a forecasting problem.

In the next subsection we will examine in detail how volatility forecast errors translate into risk
for derivatives traders. Here we simply observe that time-varying volatility induces nonlognormal
returns distributions, and invalidates the use of a simple BS-type model.

Various lines of attack have been followed in attempting to extend the standard framework to
stochastic volatility. One simple approach is to focus on the empirical observation that volatility
appears to be related to the level of the asset price, going up when the price falls and down when
it rises. This can be accommodated with minor modification to equation (2) by allowing the
volatility parameter ¢ to become a function of the asset price, o(S). The volatility is then
random but the model still has only one source of risk, dz. More elaborate models of this kind
employ the GARCH (Generalized Autoregressive Heteroskedasticity) framework to model
volatility changes.

A more general class of stochastic volatility models allows volatility to evolve independently from
asset prices by introducing a second stochastic variable. Unfortunately, like allowing for jumps,
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this creates an unhedgeable risk in the option price and eliminates preference-free pricing. Option
valuation models become quite difficult computationally under any sort of stochastic volatility.
Moreover, introducing new unobservable parameters associated with the volatility process into
the valuation model makes the estimation and forecasting problems of putting the model into
practice much more severe. Again, traders are aware that volatility changes unpredictably over
time, but they continue to use fixed-volatility pricing models with subjective adjustments.

These are known problems with the standard derivatives valuation paradigm. Others could easily
be added to the list: stochastic variation over time in other input parameters like interest rates and
dividend payouts, random fluctuations in the parameters of the volatility process itself, variation in
the market prices of unhedgeable risks, and so on. Such things are to be expected: after all, a
model is just that, a model. It is inherently oversimplified, representing a compromise between
realism and tractability. It would be naive to expect great accuracy from a theoretical model of
derivatives prices, or of any other economic relationship. However, the size of the model error
and the proportion contributed by different sources is not widely known.

Use of theoretical models is becoming more prevalent outside trading rooms, for purposes for
which it is not easy, nor necessarily appropriate, to apply the subjective adjustments that permit
traders to correct for their significant shortcomings. Firmwide risk management will be
determined by estimated exposures to different risk factors, as obtained from pricing models;
Value-at-Risk computations will be made by putting estimated volatilities and correlations into
lognormal distributions; risk exposures will be reported and regulatory risk capital standards will
be set based on estimated probabilities of extreme events, as calculated from normal or lognormal
distributions; and so on. In all of this, there is little formal recognition of the fact that these
seemingly rigorous calculations actually are made by putting inaccurately estimated parameter
values into incorrect theoretical models.

To illustrate the impact of fat tails in actual returns distributions on risk calculations using a
lognormal distribution, we examine estimates of “tail events” for four major financial variables
that might have been made using data available at the time. We obtained daily data for 3 month
LIBOR, the U.S. Treasury 10 year bond yield, the Standard and Poor’s stock index, and the
dollar / yen exchange rate, for 750 trading days, ending Dec. 31, 1996.% Starting on day 251, we
computed the sample value of o from the previous 250 days’ prices and used it to estimate the
5% and 1% tails of the returns distribution under the assumption of lognormality. An observation
falling in the 5% tail is generally taken to be a rare event or outlier in statistical work; the 1% tail
is both used in research as a more stringent cutoff point, and more importantly for this discussion,
it has become widely adopted as an appropriate benchmark for measuring Value-at-Risk and for
risk reporting by banks.

¢ Data were obtained from Datastream.
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Treating a fat tailed distribution as if it were lognormal leads to two related but different types of
estimation errors. First, setting the critical value for the x% tail based on a lognormal with the
same variance as the actual distribution can not be expected to capture exactly x% of the actual
observations. The true distribution will have more weight in the extreme tails than the lognormal,
but less at intermediate values. Thus, there could be more or less than 5% of the actual
observations that are below the mean by greater than the 5% critical value for the lognormal (1.64
standard deviations). For the more extreme 1% tail, the fat tail of the empirical distribution
should become apparent, so we expect to find that more than 1% of the realized returns exceed
the lognormal’s 1% critical value of 2.33 standard deviations away from the mean.

The second difference between a fat tailed distribution and the lognormal is that those values that
do end up in the tail will tend to be more extreme. The average across all observations in the tail
will be greater for the empirical distribution than for the lognormal. For example, the average 1%
event will be worse in reality than the lognormal would suggest. Table 2 shows both aspects of
model error-in using an estimated lognormal distribution in actual markets.

If S follows equation (2), its logarithm has a normal distribution. In derivatives pricing formulas,
the actual probability distribution for the underlying is replaced by the “risk neutral” distribution
that has the same volatility but a mean return equal to the riskless interest rate. The diffusion
equation is just equation (2) with a redefinition of r. For an underlying whose total return comes
from price appreciation, r is the risk free interest rate instead of the mean return on the underlying.
If the underlying pays a dividend or some other cash distribution at a continuous rate q, r is the
riskless rate minus q, while if the underlying is an interest rate, r is normally set to zero. For
simplicity, we will set r to zero for all of the instruments we consider. The results will therefore
only be approximate, but for the short time interval of one day the difference is negligible, because
the results are dominated by the random component of returns.’

Assuming In(S,/S,) has a normal distribution with mean 0 and annualized standard deviation G,
for the return over a time interval At, the cutoff for the lower x% tail of the distribution will be a
number ¢ of standard deviations below the mean, such that

S 2
m=t + T A
S, 2 €)

o VAt

where NJ.] denotes the cumulative normal distribution. The upper x% tail is obtained by solving

® For example, if the true r is 15 percent and volatility is 0.1500, setting r to zero for
calculations at the one-day interval would increase the measured volatility to 0.1503.
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(3) for the a value that gives a lower tail probability of (1 - x).

We will also be interested in the size of the average tail event, that is, the expected value of the
percentage change in S (i.e., S;/ S, - 1) for all changes large enough to exceed the critical value.

Under our assumptions, those values are given in terms of standard deviations by equations 4)
and (5).

Define

d—-(x+0‘/7 and d——a—g_‘/_"f_

! 2 2 2

Then,
1-N[4]

Expected value in the 0% lower tail (in standard deviations) = —1———]\—,—[7—]- C))
- 2

N[d ]

2

Expected value in the a% upper tail (in standard deviations) =

The upper portion of the table presents results for the 5% upper and lower tails, and the lower
portion does the same for the 1% tails. To enhance comparability across markets and dates, all
results are expressed in terms of the (estimated) volatility, rather than in percents or dollars. To
convert these into percents, they should be multiplied by o, , the standard deviation of the percent
return over one trading day, where o, =6 /V255.

The tail cutoff values for a lognormal distribution and the theoretical mean value for observations
that fall in that tail are shown for each subsection, followed by four columns of results. The first
column gives the fraction of actual returns that would have exceeded the lognormal tail cutoff
value. Thus, for 3-month LIBOR the estimated 5% lower tail captured only 2.80% of the actual
changes (14 out of 500), while the T-bond yield fell by more than the 5% cutoff value on 5.80%
of the days in the sample. The second column gives the average of the actual returns for those
observations that did fall in the theoretical 5% tail. For example, under the lognormal the average
5% lower tail observation should be -2.06 o, , but for the 14 days classified as “5% tail events”
for 3-month LIBOR, the actual average was -3.42 0.

The third column shows where the cutoff point would have had to be placed to capture the
desired percentage of actual returns: For LIBOR, to cover 25 out of 500 observations, the lower
tail cutoff would have had to be -1.15 o, . Finally, the last column gives the actual mean return
for observations in the desired tail of the actual distribution. By setting the cutoff at -1.15 0,
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there would have been 25 tail events for LIBOR, with a mean return of -2.50 0, .

The results in this table combine model error from two different sources. There is parameter
forecasting error because the tail cutoff points are derived from volatility estimates computed
from past data. There is also distributional error due to the fat tails of the actual distributions.
Estimation error is presumably random, so it should cause overestimates of the tail cutoff point as
often as underestimates. The distributional error, however, will cause mistakes biased toward one
side: observed extreme values will be more extreme than the estimated lognormal distribution
accounts for.

The table presents results in terms of numbers of standard deviations, since the estimated
volatilities of yield or price changes are different each day. But to get an approximate idea of
what these discrepancies might translate to in terms of one day risk exposures, the standard
deviation figures can be multiplied by the average 1-day standard deviation estimates in basis
points or percents, as shown in the Note. For example, consider the 1% lower tail for the S&P
500 index. Over the 500 days in the sample, the average of the estimated volatilities for the S&P
index was 0.599% per day. Taking that value as g, the 1% tail was estimated to cover losses of
more than -1.40% over a day. The average among losses at least that large was expected to be -
1.59%. However, by setting the tail cutoff at -1.40%, there were actually 2.60% of the days
classified as tail events, and the average loss among them was -1.89%. The 1% tail of the actual
returns distribution contained the 5 days with losses exceeding -1.97%, and on those days the
average loss was -2.39%. Thus, the combination of statistical error in estimating volatility from
past data and the fat tails of the actual distribution of stock returns produced a substantial

underestimate of the loss on the S&P 500 stock index portfolio that would be experienced with
1% probability.

Comparing results across markets and tail definitions, there are several regularities that are
important in assessing and managing risk for these instruments. First, while three out of four
markets exhibited fewer tail events at the 5% level than predicted, for the extreme 1% level only
one tail for one market was right; the other seven cases showed “too many” tail events, and at
least twice as many as predicted for four of them. Moreover, for those returns that were
classified as tail events under the lognormal, the average size of the event exceeded the predicted
average in every case. LIBOR presents an interesting example: There were relatively fewer tail
events than expected, except for the 1% upper tail, but those that did occur were much larger
than the predicted average under the lognormal.

The tail cutoff points for the desired 5% and 1% critical values in the actual distribution were not
too far from those in the lognormal at the 5% level, but were distinctly more extreme at the 1%
level, and in every single case the mean return for observations in the desired tail of the true
distribution was substantially greater than what was indicated by the lognormal.
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[I1.2 Wrong Parameter Values

The previous subsection focused on errors in assessing risk exposure due to assuming an incorrect
probability distribution for underlying asset returns. A closely related problem is that even a
correct model requires the user to input a value for the volatility of the underlying from the
present through expiration day, as well as other variables like future interest rates and dividend
yields, all of which must be forecasted using current information. Estimation error causes model
risk when forecasted values are used in place of true values in a pricing model. Model risk will
produce mispricing of derivatives and also inaccurate hedging calculations.

There are a number of procedures for obtaining a volatility estimate, that fall into three broad
classes. The most basic is simply to calculate the realized volatility in a sample of recent price
data for the underlying and assume that the same value will apply over the future life of the
derivative one is pricing. Variations on this method involve the choice of how much past data to
include, periodicity (e.g., daily data versus monthly data), whether deviations are measured
around the sample mean or around an imposed mean value such as zero, and whether to
downweight old data.

In Figlewski [1997], I examined the impact of these variations on forecast accuracy for volatility
of the 3 month T-bill rate, the 20 year T-bond yield, the S&P 500 index and the Deutschemark /
dollar exchange rate. A capsule summary of the findings with regard to the choice of volatility
estimator is as follows.

* Qut of sample forecast errors of even the best method tend to be quite large.
* The forecast error for longer horizons tends to be lower than for short horizons.

* Although in practice it is common to estimate volatility from quite short historical
samples, using a larger amount of past data (e.g., several times the length of the forecast
horizon or more) generally gives considerably greater accuracy, except when forecasting
over the very shortest horizons (e.g., less than 3 months).

* Estimating from daily data improves accuracy for short horizons (6 months or less), but
for longer horizons, monthly data gives better results because it is not affected so much by
transient noise in market prices.

* Since the statistical properties of the sample mean make it a very inaccurate estimate of
the true mean, taking deviations around zero rather than around the sample mean typically

increases forecast accuracy.

As an example of the second point, for each month from January 1952 through December 1990
estimating volatility from 5 years of past monthly data and using it to forecast volatility over the
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next two years gave a root mean squared error (RMSE) of 4.17% when the realized volatility
averaged 14.25%; RMSE for 3 and 5 year forecasts, respectively, were 3.62% and 3.10%.

The issue of whether to weight each sample point equally or to downweight old data was not
addressed in that study, but we present some evidence on that question below.

Since the reason to forecast volatility is that it is time-varying, there is a logical inconsistency in
using a framework that assumes constant volatility to estimate it. Another class of volatility
estimators based on past data try to model the volatility process in order to take the current state
of the system into account in computing the volatility. The most common of these approaches
uses the GARCH framework. Figlewski [1997] also examined GARCH estimators. They were
found to be useful primarily for short term forecasting of stock returns volatility with daily data;
for longer horizons and in different markets they did not work as well as historical volatility. And
for the cases in which GARCH was the most accurate estimator, the errors were still very large.
For example, RMSE in forecasting daily volatility of the S&P 500 index over a three month
horizon was 5.37% relative to the average realized volatility of 13.29%.

The other major way to obtain a volatility estimate is directly from the market prices of traded
options. The implied volatility derived from an option’s market price is felt by many practitioners,
and academics as well, to be the best estimate. That implied volatility is a very accurate estimate
of true volatility is far from established by empirical research, however. One large study, by
Canina and Figlewski [1993], found that IVs from the S&P 100 stock index options market (one
of the most active in the U.S.) appeared to contain no information at all about future realized
volatilities. Figlewski [1997] reviews a number of empirical studies of the forecast accuracy of
implied volatilities. The typical study shows that IV does contain information about future
volatility, and generally more than the particular variant of historical volatility tested, but that IV
is biased and forecast errors are substantial.

As we discussed above, there is an inconsistency in using implied volatility as a forecast of the
underlying asset’s actual volatility, when each option traded on the underlying typically produces
a different IV value. Yet, each IV is obtained directly from an option’s market price, so it may be
the most useful volatility input to the pricing model when one is trying to assess short term market
risk for that particular option. This is true regardless of whether the IV is a good forecast of the
actual volatility of the underlying. IV is a measure of how the market is currently pricing the
option relative to the underlying, and that relationship may be fairly stable over short time
intervals even if it only means the option’s mispricing today is a pretty good indicator of
tomorrow’s mispricing. IV may produce considerable model error, however, if it is an input to a
model that is being used to value long term derivatives or for a purpose like computing Value at
Risk that depends on an accurate estimate of the true probability distribution. Lack of a broad
range of prices for traded options with different strike prices and maturities also limits the
availability of implied volatilities in many cases.
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The nature of the estimation error in predicting volatility from historical data is illustrated in
Tables 32 and 3b. We have daily and monthly data on the same markets we examined above: 3
month LIBOR, the 10 year T-bond yield, the S&P 500 stock index and the yen / dollar exchange
rate. For each market, several different forecasting horizons are examined, and for each, we try
three historical sample lengths and also a forecast using exponentially declining weights.

To explain the details of the procedure, let us focus on the single example of forecasting the
volatility of 3 month LIBOR over a 24 month horizon using 24 months of historical data, shown
in Table 3b. Our data sample begins in January 1971. Since we need up to 5 years of past data to
compute some of the estimates and we want to be able to compare the performance of all of the
methods over the same period, the first forecast date is January 1976. In this case, continuously
compounded changes for the observed interest rates from the last 24 months are computed by
taking the first differences of their logarithms. Rather than calculating the standard deviation
around an inaccurate sample mean, we impose zero as the mean value for the change in rates.
The variance is then just the average of the squared log changes. This is annualized by
multiplying the monthly variance by 12, and taking the square root gives the volatility. This
estimate is then used as the volatility forecast going forward from January 1976; the historical
volatility over the past 24 months just calculated becomes the first forecast for both the 24 month
horizon and the 60 month horizon.

Next we compute the realized volatility over the 24 month period from January 1976 to January
1978, also constraining the mean to zero. The difference between the forecast and the realized
volatility becomes the forecast error for January 1976. The forecast date is then advanced one
month and the procedure is repeated. This continues until December 1991, the last date for which
our data sample allows calculation of the realized volatility over a 60 month forecast horizon.

The series of volatility forecast errors are then squared and averaged, and the square root taken to
produce the root mean squared forecast error of 13.3%. This is the measure of forecast accuracy

for the strategy of using 24 months of past data to predict future LIBOR monthly volatility over a
24 month horizon.

We note that the forecast errors computed in this way will not be serially independent, since the
volatilities calculated for consecutive dates will come from almost exactly the same data points.
Lack of independence will not bias the estimated RMSEs, although it would cause inconsistency
in an estimate of the standard error of the RMSE. We think of this procedure as a way 0 assess
the impact of estimation error for a financial institution that writes at the money calls every
month, basing pricing and hedging strategy on volatility values estimated from past dataina
standard way. Lack of independence will produce serial correlation in the pricing errors, which
will show up in the form of runs of losing and winning months. To give an idea of how this
impacts performance, in later tables we report both the worst single month and the worst year for
the strategy.

The same procedure is used to fill in RMSE values for all combinations of market, historical
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sample and forecast horizon. The sample period labeled “All available™ uses all past data back to
the beginning of the sample as of each date. Thus, unlike the other methods, the amount of
historical data in this volatility estimate grows over time, from 5 years on the first date to 20 years
or more on the last. The table shows that this is an effective strategy in three of the four markets
we consider.

The “All available” estimate uses every past observation weighted equally. However, it is
generally felt that recent observations are more meaningful than ones from the distant past. A
relatively easy way to take account of this is to weight each data point in inverse proportion to its
age. The exponentially declining weight forecast is computed as in equation (6), where 0 <w <1
is the weighting factor and r, is the log price relative from date t.

In the results shown here, the weights were computed for each date by analyzing only historical
data that would have been available at the time, with the optimality criterion being out of sample
RMSE. For each date, this required dividing the available historical data into an estimation
sample and a forecast sample. The procedure we have adopted is somewhat arbitrary, but
represents one plausible way for such a computation to be done.

As an example, consider the 24 month forecast horizon using monthly observations. To allow
multiple past forecast horizons, on date t we compute realized volatility over 12 overlapping 24-
month periods, {t-25 to t-1, t-26 to t-2, ..., t-36 to t-12}. Given a trial value for w, for each of
those periods we compute a volatility forecast using equation (6) with all available data prior to
the beginning of that period. This produces 12 (unfortunately overlapping) forecasts and forecast
errors from which the RMSE is calculated. We then search over values for w to obtain the value
that would have minimized RMSE. That is the w used on date t to forecast volatility over t+1 to

t+24. We then advance a month and repeat the process to obtain a weighted volatility forecast for
the period t+1 to t+25.

The difficulty arises at the beginning of the sample. To the extent possible, we would like to use
an estimation sample of at least five years and a forecast sample allowing multiple periods of
length equal to the forecast horizon we are trying to optimize for, so that a meaningful RMSE can
be computed. That is not feasible in every case. To give a larger historical sample for the first
forecast dates, we set w=1.0 for the first year with the daily data and for the 24-month horizon,
and for the first 4 years with the 60 month horizon. This still can leave only 3 years of sample
data to compute the volatility for the first of the forecasts that go into the RMSE we are testing to
find the optimal w. This problem only affects the beginning of the sample, but it is inherent in the
use of an exponentially declining weight forecast when the weight must be obtained by examining
past data.

The optimal decay factor must be determined by searching over possible values. Although there
is no strict necessity for the weight to be no greater than 1.0, a w above 1.0 would have the

effect of increasing the importance of a data point as it ages, which makes no intuitive sense. It is
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customary to constrain w < 1.0, and we have done so here, with the result that some of the
optimal decay factors turn out to be no decay at all, making them identical to the “All available”
figures.

Table 3a presents forecast results for daily volatility over horizons of 1, 3, and 12 months using
daily historical data. Table 3b does the same thing for monthly observations to forecast over 2
and 5 year horizons. In the daily table, for convenience in estimation a “month” is defined to be
21 trading days in all cases. Notice that the samples span slightly different periods. In particular,
it is only necessary to hold out 12 months of daily data at the end of the sample for post-sample
forecasting, rather than 5 years as in the monthly table.

Ore striking result is how large the forecasting errors are. For example, on average the forecast
of 3-month LIBOR volatility over the next 24 months based on the last 24 months had an RMSE
of 13.3 percent, which is very large relative to a mean realized volatility of 25.4 percent. Roughly
speaking, this means that about a third of the time, the predicted volatility would be more than
50% above or below the true value. LIBOR is actually the worst case, but errors are substantial
for all of these markets.

The results shown in these tables are consistent with those found in Figlewski [1997] for different
sample periods and different markets. For monthly data, it is generally the case that the best
estimates come from using the largest possible historical sample, but for daily observations and
shorter forecasting horizons, performance is better if the historical sample is several times as long
as the horizon, but not too long. Exponentially declining weights seem to increase forecast
accuracy with daily data in some cases. Surprisingly, forecasting accurately over longer horizons
seems to be easier than over shorter ones.

One interesting feature of these results is that (annualized) volatility for daily data appears to be
substantially lower than for monthly data. This may be due partly to the somewhat different
sample periods. It also may be a result of short term positive serial correlation in the data series.
If price changes are not independent over time, estimated volatility will be affected. Positive
autocorrelation, which occurs when observed prices adjust to new information with a lag over
short intervals, reduces estimated volatility. This problem largely disappears with longer
differencing intervals, which is the reason to use monthly rather than daily data for longer horizon
forecasting. '

In Tables 4 and 5, we examine the impact of volatility forecasting errors on a bank or financial
institution that writes at the money calls each period (either every month or every day). The
option pricing models we employ are all standard variants of the Black-Scholes model that are
commonly used for these securities. The relevant equations are given in the Appendix. In each
case, enough options are sold to produce $100 of premium income, so the performance figures
shown in the table may be interpreted as percentages of the initial option price. Results are
presented for all daily and monthly horizons examined in Tables 3a and 3b.
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Table 4 looks at the strategy of selling the options at their model values, investing the proceeds,
and simply holding the short position until maturity without hedging. The left side of the table
uses the forecast based on historical data that had the lowest RMSE in Tables 3a and 3b as the
volatility input.'® The results therefore reflect model error due both to inaccurate volatility inputs
and to shortcomings of the model. The right side of the table shows the results if the options are
priced using the realized volatility over the option’s life as the input to the model. This removes
the effect of volatility estimation error, leaving only the impact of inaccuracy in the valuation
model itself.

For each volatility, the first two columns give the mean return and standard deviation of the
strategy. Since there is no hedging, the mean return on option writing should be a function of the
expected value of the change in the underlying asset. For the stock market, this should be
positive and well above the risk free interest rate. (Over the long run, stocks have averaged
returns between 8 and 9 percent above Treasury bills, and as leveraged instruments, call options
have higher expected returns than the underlying stock index.) Thus, a call writing strategy for
the S&P 500 index should lose money on average, as it does here. For the other three markets,
there is no presumption that the expected change will be either positive or negative, so our prior
expectation is that call writing with reinvestment of the proceeds at the riskless rate should break
even on average.

One thing that is clear is that without hedging, standard deviations are very large, and it does not
make much difference whether the volatility is known or just forecasted. Indeed, since the
strategy simply amounts to taking a directional bet that the underlying will not rise too far over
the option’s lifetime, the results are dominated by what these markets actually did during this
period. In the top portion of the table, the percentage of options that ended up in the money
(requiring a cash payout by the writer at maturity) for most cases was about 50% or slightly
under, except for the stock index contracts. For the longer horizons in the bottom panel,
percentages were lower, and results of writing at the money calls turned out a little better than
could be expected. The exception is the stock market, in which the impact of the long bull market
period of the 1980s and 1990s is apparent. However, the worst cases were very large losses.
Some individual contracts ended up costing the writer 5 to 10 times their initial prices, and
average losses in the worst years were several hundred percent.

Given the clear danger of simply writing options and holding the short position until maturity,
regular writers of options tend to hedge their positions as described in Section II. Many rely on
hedging delta alone, however, and not the entire range of Greek letter risk exposures. One reason
for this is lack of available options that can be purchased at reasonable prices to hedge gamma
risk. :

19 This is not quite a true out-of-sample test, since only at the end of the period would one
know which variant produced the most accurate forecasts. These results present a best case.
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Delta hedging for options based on stock indexes or exchange rates can be done by taking a
position in the underlying index portfolio or currency. However, hedging options based on
interest rates is normally done using futures, Eurodollar or Treasury bond futures in this case.
That analysis is still in progress at the present time. A complete examination of model risk faced
by a financial institution writing options and hedging its positions for all four of these markets will
be presented in a subsequent paper.

Table 5 shows the results of writing at the money calls on the S&P 500 index and the Japanese
yen and delta hedging them over their lifetimes. When an option is first sold, we assume its
market risk is hedged by trading delta units of the underlying. Funds needed for the purchase are
assumed to be borrowed at the risk free interest rate so that the option writing strategy is entirely
self-financing. Subsequently, as time elapses and the market moves, each period (either every
month or every day) a new delta is computed for the option using the volatility estimate based on
data up to that point. The hedge is then rebalanced by adjusting the position in the hedge
instrument appropriately. All cash inflows are invested and outflows are financed at the current
riskless interest rate. At expiration, the hedge position is liquidated and any payoff on options
finishing in the money is made. Option valuation models are based on the principle that such a
trading strategy is riskless (if it could be followed continuously) and should produce a return of
zero (because there is no net investment of capital--all funds required are borrowed at the riskless
rate). Note that we are taking no account of transactions costs that would be incurred in pursuing
a hedging strategy that can involve a large amount of trading.

The contrast with the previous table clearly shows the value of a delta neutral hedging strategy.
Mean returns are relatively small and the standard deviations have been sharply reduced. Even so,
there are some very bad single events, and some fairly bad full years.

These results allow us to isolate the impact of volatility forecasting errors. Inaccurate volatilities
will introduce risk to the hedged call writing strategy both because options are mispriced when
they are written and also because incorrect deltas will be calculated as the positions are hedged.
The effect of estimation error shows up here in substantially lower standard deviations and less
bad “worst” return figures when the realized volatility is used in the model in place of the forecast.
However, the fact that mean returns are negative using realized volatilities indicates the presence
of errors in the models themselves. This is consistent with the existence of fat tails in the
probability distributions, that expose option writers to greater risk of having to make a large
payout than the lognormal accounts for. It is rather unsettling to note that the standard deviation
in the return for writing at the money calls and delta hedging on a daily basis using estimated
volatility in the pricing model is distinctly larger than the volatility of the underlying asset itself.

1.3 Incorrect Model Implementation

Model risk can occur because of deficiencies in the model or because of inaccurate parameter
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values. Another real, though seemingly avoidable, source of model risk is simply errors in
implementing it. Programming errors or errors in running a model (for example, entering input
values incorrectly) of course should not happen. However, of course, they do happen.
Implementation problems are more likely to occur for derivatives than for fundamental securities
for two reasons. First, the models themselves are so much more complex that it can be very hard
to find all of the programming bugs in a valuation system. Moreover, the models are called upon
to do much more for derivatives than simply pricing them. A programming mistake in the
calculation of gamma, for example, might lead to serious losses even if the option value is correct.

Second, because the instruments are complex, pricing and hedging errors can be hard to detect
with the naked eye."

Although “war stories” abound, in the form of large losses at one firm or another that are
attributed to incorrect pricing models, quantitative data on implementation risk is not easy to
find.> However, in one published controlled experiment, Marshall and Siegel [1997] presented
the identical asset portfolio to a number of commercial vendors of software for Value at Risk
calculations. Each was asked to use the same volatility inputs, obtained from J.P. Morgan’s
RiskMetrics system and to report an aggregate VaR for the entire portfolio and separate figures
for specific components, like swaps, and caps and floors. The variation across vendors in results
were striking, even though they were all supposed to be analyzing the same position with the
same methodology and parameter values. For the whole portfolio, the estimates ranged from $3.8
million to $6.1 million, and for the portion containing options, the VaR estimates varied from
about $747,000 to $2,100,000.

II1.4 Model Values versus Market Prices

The sources of model risk we have discussed to this point are all of a particular kind:
discrepancies between the output of a particular model being used in derivatives valuation and
what the “true” model with exact parameter inputs would produce. Model risk so far has come
from not having the right model, not having the exact parameters for the model, or not

I This author has personal experience with a major securities clearing firm whose model
for valuing foreign currency forwards allowed a trader-client to run a large unrecognized deficit in
his account for more than a year. The back office staff running the model were not aware that the
computer program they had obtained from an outside vendor required them to input current
interest rates, and did not notice that the values for account equity it was producing were
incorrect. The trader noticed, however, and quickly learned how to exploit the mistake to
generate false equity in his account--which he subsequently lost in trading.

12 In a recent issue of Risk magazine, Paul-Choudhury [1997] cites several recent losses
attributed to incorrect models.
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implementing the model correctly.

There is a much deeper model risk problem that we have not yet mentioned. Modern derivatives
pricing models are virtually all based on the principle that the derivative can be priced quite
exactly relative to its underlying asset because there is an arbitrage trade that will produce riskless
excess returns if the market price for the derivative differs from the model value. For example,
there is model risk in pricing options with the Black-Scholes formula because the arbitrage trade.
does not work the same with a fat-tailed distribution as under lognormality. A “true” model,
incorporating the actual returns distribution would produce the correct price, based on a fat-tailed
arbitrage strategy.

The problem is that the arbitrage strategies that these models are derived from are generally hard
to execute under the best of circumstances, and actually impossible in many cases. Replicating an
option payoff by arbitrage requires continuously rebalancing a hedged position, which can not be
done in practice. Transactions costs from even moderately frequent rebalancing can become very
large, and in many cases, the underlying can not be separately traded at all. Consider the
problems of delta hedging an option on the Federal funds rate; or the call option component of a
callable bond or mortgage-backed security; or a futures contract based on a stock index
containing illiquid stocks or stocks with restrictions on ownership. Without arbitrage, even
knowing the true model and exact input parameters does not guarantee that the market price will
be close to the model value.

A pricing model gives a theoretical value for a derivative instrument, but all transactions have to
be made in the market, at market prices. A major source of model risk is simply that on the date
one needs to trade, the market may not obey the model, and the arbitrage trading that should
theoretically force it into conformance is not strong enough to do so. This can pose great
problems for valuing positions in complex derivative instruments, such as the more exotic
mortgage-backed securities. Since they are not very liquid, market prices may not be available, so
positions will be “marked to model” rather than marked to market.”®* But if a position must be
liquidated, the market prices at which trades can be executed may be very far from the model
values. An excellent example of this problem occurred when Askin Capital Management, holding
a portfolio of the most complex mortgage-backed securities was forced to liquidate quickly in an
unaccomodating market environment. The total loss realized on the portfolio was reported to be
close to $600 million. The valuation models used in pricing these instruments may well have been
correct, in terms of the arbitrage-based pricing paradigm, but the reality was that when the
securities had to be sold quickly, there were no arbitrageurs prepared to buy them at their
theoretical values, and the market, as always, priced them according to supply and demand.

Further evidence on this issue comes from a study of an auction of mortgage-backed derivatives

13 See Beder [1994], for example.
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by-Bernardo and Cornell [1997]. A holder of a portfolio of CMOs all issued by government
agencies wished to liquidate them. A public bidding process was set up that attracted broad
participation from major securities firms. Although this was a public auction rather than a forced
sale, and the securities involved were Federal agency issues, the range of bids received was
extremely wide, reflecting a wide range of valuations across the dealer community. For the
average security sold, the high bid was 63 percent above the low. Such disparity across dealer
valuations indicates that whatever the market price for such derivatives is, it will be far away from
many of the dealers’ model values.

To the extent that many derivatives are hard to value and are traded with less liquidity among

fewer market participants than fundamental securities, the problem of deviations between market
prices and model values is a real risk that particularly applies to derivatives.

IV. Conclusion

Innovation in the financial markets in recent years has been spectacular, with much of it coming in
the broad area encompassed by the term derivatives. Derivatives contribute to the overall
strength of the financial markets by facilitating the management of financial and economic risks.
A wheat futures market improves overall economic efficiency by permitting those involved in the
production, storage, and distribution of wheat to hedge the price risks inherent in their activities.
Hedging does not eliminate the risk--that is a product of the vagaries of weather and world grain
markets and must be borne somehow by the whole economy--but it permits redistributing the
burden of risk bearing away from those upon whom it naturally falls, to others who are not
directly tied to the physical grain trade, but are more numerous and more able to bear risk. Inthe
same way, the development of newer derivatives markets based on financial instruments are
creating multiple channels for repackaging and redistributing much larger risk exposures of all
varieties, making the overall economy better able to manage them efficiently and to withstand the
effects of economic and financial shocks.

Beyond the risk shifting that new derivatives markets permit, the technology of option pricing has
been extensively developed to create new types of financial instruments with payoff patterns that
are especially desired by investors and other market participants. Equity investments with
downside protection, loan agreements with interest rates that adjust to market conditions but can
" not float too high or too low, credit derivatives that allow hedging of a bond’s credit risk
independently of its exposure to interest rate movements, among a great many others, all
contribute to the efficiency of the financial system in channeling funds from savers to borrowers.
Investors can be offered securities structured with terms they find most attractive, and borrowers
can receive funds under terms they find least burdensome, because of the ability of derivative
instruments to transform the risk characteristics of the underlying assets that are involved.

But along with their rapid growth has come concern about the risks these new instruments entail.
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Although derivatives are exposed to the same kinds of risks as more traditional securities, exactly
how those risks affect them can be quite different. In this paper we have examined the major
classes of financial risk and the particular ways in which they are manifested in derivative
instruments.

One major type of derivatives-related risk is largely new to the financial markets: model risk.
Trading in derivatives involves heavy use of complex mathematical models that are needed to
understand valuation relationships and risk exposures. These models require a compromise
between realism and tractability . The difference between reality and a model leads to model
inaccuracy because we do not understand everything that is relevant to valuation in the real world.
The need for tractability introduces model inaccuracy because it limits our ability to incorporate
features of financial markets that are known to be important but are hard to model. In other
words, derivatives are exposed to model risk because we don’t know everything that determines
true values and we can’t capture everything we do know in usable models.

In this paper, I have focused on several major sources of model risk in derivatives, including the
use of the lognormal probability distribution for risk assessment when actual security returns
exhibit fat tails, i.e., more extreme events than the lognormal allows for, and the need to
implement models with forecasted rather than true values for volatility and other critical input
parameters. These sources of risk are widely known among market participants; what this paper
contributes is an indication of how large their impact can be in practice, as well as a methodology
that can be used to assess model risk in other cases.

In closing, then, based on the above analysis I offer these suggestions for dealing with model risk
in derivatives.

1. Be aware of it. Model risk is inherent in the use of theoretical models in trading derivatives.
Prudence dictates avoiding placing undue faith in model values, and being especially aware of the
sources of model inaccuracy and the situations in which can be expected to have the biggest
effect.

2. Estimate model risk quantitatively. Model performance can be simulated on historical data,
taking care at each point that one is conducting a true out-of-sample test, using only data that
would have been available to 2 model user at the time. Stress testing should involve examining
possible inaccuracies in the valuation models themselves, both as to parameter values and model
structure. It is not sufficient to conduct stress tests by assuming one’s model is exactly correct
and simply using it to estimate the impact of changes in market variables on the value of a given
security position within the model.

3. Build formal treatment of model risk into overall risk management procedures. One strong

result found in studies of model risk is that simple but robust models tend to work better when
used out of sample than more ambitious but fragile ones. Ideally, valuation and risk management
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models should be built that explicitly incorporate empirical, and perhaps subjective, estimates of
parameter uncertainty and model drift. Along these lines, there is a role for both model-based and
non-model based techniques in overall risk management. Finally, it makes sense to recognize
cases in which one’s model is weak and limit the firm’s exposure in markets for which sturdy
models are not available.
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Appendix

The original Black and Scholes [1993] model for option pricing applies to a European call option
on a non-dividend paying stock. This model can easily be modified to apply to an underlying
asset that makes a regular cash payout at a continuous rate q during the life of the option. The
version used for stock index options sets q equal to the rate of dividend payout on the underlying
index portfolio. For options on foreign currencies, q is the foreign riskless interest rate, which
leads to the Garman-Kohlhagen [1983] formula. For options on interest rates (and futures
contracts), q is set equal to the riskless interest rate r, giving the formula presented in Black
[1976].

The general valuation equation for a call option is given by equation (A.1).

C=S8&9TN[d] - Xe T N[d-o\T] (A.1)

where
S o2
hs +(r-q+—)T
¥ (r-gq 5 )

ofT

d =

and C is the call value, S is the current price or level of the underlying, X is the strike price, T 1s
the time to option maturity, r is the (domestic) riskless interest rate, q is the appropriate value for
the option in question as defined above, and o is the volatility of the underlying.

The formula for a put option, P, is given by

P= Xe 'TN[-d+0oyT]-S¢T N[-d] (A2)
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Table 1
Model Estimates of Risk Exposure for Short Yen Call Position and Two Hedges

A. Model Values

Parameters: S=90, X=90, T=3 months, r=6.0%, Iyy= 2.0%, 0=0.12

Call Value 2.57
Delta 0.57
Gamma 0.073
Lambda 20.1
Theta -0.017
Vega 0.174
Rho 0.001

Note: All values are in U.S. cents per 100 yen. Delta is the change in option value per unit
change in S; Gamma is the change in delta per unit change in S; Lambda, the leverage ratio or
elasticity, is the percent change in option value per percent change in the underlying; Theta is the
change in option value over 1 day if S is unchanged; Vega is the change in option value for .01
increase in volatility; Rho is the change in option value for 1 basis point increase in r (holding S
fixed).

B. Pgsition Risk Exposure

All positions involve writing $100 worth of 3 month 90 strike call options. The “Delta Hedge”
position hedges market risk by holding 0.57 units of the underlying (i.e., 57 yen) per call option
written. The “Delta-Gamma Hedge” position hedges gamma risk by purchasing 1.27 3-month 95
strike calls at the initial model price of 0.718, and overall delta risk by purchasing 27 yen, per call
option written. The table shows the model estimate for the change in position value over 1 day,
for various ending spot exchange rates and volatility levels.

Posiion _ Volatility - S=80  §=8  §=90  §=95 = 100
Unhedged ~ 0.12 97.4 76.2 0.6 1417 3222
Delta Hedge
0.12 -124.4 34,6 0.8 306  -1002
0.08 -122.0 -182 27.6 -18.5 -98.1
0.16 -131.9 -55.5 263 489  -107.4
Delta-Gamma
Hedge 0.12 -42.9 72 0.1 8.6 59.6
008 . -40.7 4.9 3.6 1152 443

0.16 482 -16.4 1.9 26.6 77.8
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Table 3a

Forecast Accuracy of Volatilities Estimated from Historical Data
Daily Data

The table shows root mean squared forecast error for annualized volatility calculated from daily data around a
mean of zero, for different forecast horizons and historical sample lengths. Also reported is the performance
of exponential weighting across all past data, in which the optimal weight is chosen to minimize the forecast
error for each forecast horizon. One "month" is defined as 21 trading days. Shading indicates minimum

RMSE sample size.

London Inter-Bank 3 Month Rate 10 Year Treasury Bond Yield
November 1, 1979 - January 12, 1996 January 26, 1976 - January 5, 1996
Months Forecast Horizon (Months) ° Months Forecast Horizon (Months)

in Sample 1 3 12 in Sample 1 3 12
3 10.2% 9.3% 8.4% 3 4.4%
12 10.2% 8.8% 8.1% 12 .
60 13.0% 11.5% 10.3% 60 5.7% 5.1% 4.6%

Exp. wgt'ed Exp. wgted| 4.7% 4.6% 4.7%
Avg. wgt. 0.973 0.984 0.987 Avg. wgt. 0.976 0.986 0.992
Average Average
Realized 20.8% 21.5% 21.5% Realized 12.7% 13.0% 13.5%
S&P 500 Stock Index Yen Exchange Rate
December 30, 1975 - January 3, 1996 January 30, 1976 - January 4, 1996
Months Forecast Horizon (Months) . Months Forecast Horizon (Months)
in Sample 1 3 12 in Sample 1 3 12
3 7.2% 7.2% 7.1% 3 3.7% 3.2% 3.1%
12 7.5% 7.1% 9 12 2.6%
60 7.8% 72% 60 2.5%
Exp. wgt'ed 6.5% Exp. wgted| 3.7% 3.1%
- Avg. wgt. 0.990 Avg. wgt. 0.986 0.991
Average Average
Realized 12.9% 13.2% 13.7% Realized 9.5% 9.8% 10.1%




Table 3b

Forecast Accuracy of Volatilities Estimated from Historical Data
- Monthly Data

The table shows root mean squared forecast error for annualized volatility calculated from monthly data
around a mean of zero, for different forcast horizons and historical sample lengths. Also reported is the
performance of exponential weighting across all past data, in which the optimal weight is chosen to minimize
the forecast error for each forecast horizon. Shading indicates minimum RMSE sample size.

London Inter-Bank
3 Month Rate
Jan 1976 - Dec 1991
Months Forecast Horizon
in Sample 24 60
24 13.3% 11.9%
60
All available 15.2% 13.5%
Exp. wgt'ed 13.7% 12.8%
Avg. wgt. 0.898 0.942
Average
Realized 25.4% 25.3%
S&P 500 Stock Index
Jan 1976 - Dec 1991
Months Forecast Horizon
in Sample 60
24 5.4%
60 4.5%
All available
Exp. wgt'ed 4.2% 4.1%
Avg. wgt. 0.976 0.987
Average
Realized 15.4% 15.2%

10 Year
Treasury Bond Yield
Jan 1976 - Dec 1991
Months Forecast Horizon
in Sample ‘
24
60
All available
" Exp. wgt'ed 5.3% 3.7%
Avg. wgt. 0.971 0.991
Average
Realized 15.2% 15.7%
Yen Exchange Rate
Jan 1976 - Dec 1991
Months Forecast Horizon
in Sample 24 60
24 4.3% 4.1%
60 3.6% 2.83%
All available
Exp. wgt'ed 3.6% 2.9%
Avg. wgt. 0.957 0.982
Average
Realized 12.1% 12.1%
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Abstract

There has been much discussion of risks tied to trading in derivatives, with some
well-informed objective observers arguing that derivatives risks are not significantly
greater or different from those associated with traditional financial instruments.
Financial risks are often broken down into market risk, credit risk, operational risk
and legal risk. We review the standard classification and observe that while
derivatives are exposed to these types of risk, they are manifested quite differently
in derivatives than in traditional securities. We then consider a “new” type of risk
that is particularly important for derivatives: model risk. Derivatives trading
depends heavily on the use of theoretical valuation models, but these are susceptible
to error from incorrect assumptions about the underlying asset price process,
estimation error on volatility and other inputs that must be forecasted, errors n
implementing the theoretical models, and differences between market prices and
theoretical values. Empirical evidence drawn from several important asset markets
shows that model error can be quite large and can be expected to lead to significant
risk in derivatives pricing and risk management.






