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1 Introduction

Perhaps the most puzzling feature of currency prices is the tendency for high interest rate
currencies to appreciatel’ when the expectations lypothesis suggests the opposite: that
investors will demand higher interest rates on currencies expected to fall in value. This
departure from uncovered interest parity]' whih we term the forward premium anomalyl’
has been documented in dozens — and possibly hundreds — of studiesI' and has spavned
a second generation of papers attempting to account for it. One of the most influential
of these is Fama (1984)I" who attributed the behaior of forward and spot exchange rates
to a time-varying risk premium. Fama showed that the implied risk premium must (i) be
negatively correlated with the expected rate of depreciation and (ii) have a greater variance.

We refer to this feature of the data as an anomaly because asset pricing theory to date
has been notably unsuccessful in producing a risk premium with the requisite properties.
Attempts include applications of the capital asset pricing model to currency prices (Frankel
and Engell’ 1984; MarkI' 1988)T statistical models relating risk premiums tdanging second
moments (Cumbyl' 1988; Domitz and Hakkiol' 1985; Hansen and Hodrikl' 1983)I' and
consumption-based asset pricing theoriesI' including departures from time-additie prefer-
ences (BackusI' Gregory' and Elmerl’ 1993; Bansall' 1991; MddemI" 1991)I' from expected
utility (Bekaertl’ HodrikI' and Marshalll’ 1992)T" and from frictionless trade in goods (Holli-
field and Uppall’ 1995). V¢ address more recent attempts to account for the anomaly with
affine models later in the paper.

We study the anomaly in both a general theoretical framework and in the more limited
class of affine models. We express our general framework in terms of pricing kernels:
stochastic processes governing prices of state-contingent claims. In this frameworkD' ve
relate the spot exchange rate to pricing kernels in the two currencies and describe the
properties the kernels must have to account for the puzzling behavior of forward and spot
exchange rates. The anomaly impliesI” in generall’ an werse relation between differences in
conditional means and differences in conditional higher moments of pricing kernels.

We then turn to specific models that might account for the anomaly and other features of
currency prices and interest rates. Natural candidates are affine modelsI" in whih conditional
means and variances of logarithms of pricing kernels are linear functions of state variables.
Affine models have been widely used in pricing fixed income securitiesI’ their linear structure
makes them relatively transparent. IndeedI’ affine models of currency pricing hae become
increasingly popular in recent yearsI' with notable applications ty Ahn (1995)' Amin and
Jarrow (1991)I" Bakshi and Chen (1995)I" Bansal (1995)'rkchot (1994)I' Nielsen and Sa‘
Requejo (1993)I" and Sa’Requejo (1994). We describel’ for the Duffie-Kan (1993) class of
affine modelsI" the conditions needed to reconcile the anomaly with strictly positie interest
rates.



We begin with a summary of the properties of dollar exchange rates and one-month
eurocurrency interest ratesI” whih serves as an anchor to the theoretical modeling that
follows.

2 Properties of Currency Prices and Interest Rates

The properties of exchange rates and eurocurrency interest rates have been widely doc-
umentedl’ but a review seres to focus our attention on the issues to be addressed and
provides a quantitative benchmark for theoretical developments. Accordinglyl’ ve summa-
rize the properties of spot and forward exchange rates for the US dollar versus the remaining
(G7 currencies and interest rates for the same currencies. Here and elsewherel's; is the loga-
rithm of the dollar price of one unit of foreign currency and f; is the logarithm of the dollar
price of a one-month forward contract: a contract arranged at date ¢ specifying payment of
exp( fi) dollars at date ¢ + 1 and receipt of one unit of foreign currency.

In Table 1 we report sample moments for depreciation rates of the dollarl's;4q — s,
continuously-compounded one-month eurocurrency interest ratesI'r,[' and forvard premi-
umsl' f; — s;. Panel A is concerned with depreciation rates. For the currencies in our
samplel’ mean depreciation rates are smaller than their standard deviationsI'ytpically by a
factor of about eight. In this sensel wlatility is one of the most striking features of currency
prices. There is also weak evidence that depreciation rates exhibit greater kurtosis than one
would find with the normal distributionI’ but none of our estimated measures of slkewness or
kurtosis exceeds twice its estimated standard error. Earlier work — Kritzman (1994)I" for
example — suggests that kurtosis may be more apparent over shorter time intervals. There
is little evidence of autocorrelation in depreciation rates for any of the six currencies we
examine. Panels B and C are concerned with interest rates and interest rate differentials.
Unlike currency pricesI’ both inerest rates and their differentials are highly persistent. They
also exhibit less variabilityl' both absolutely and relatie to their means. As with currency
pricesI’ none of the measures of skwness and kurtosis are more than twice as large as their
standard errors.

One way to think about this evidence is to relate it to the expectations hypothesis:
that forward rates are expected future spot rates. We express this in logarithmic form as
ft = Eysiy1 or fi — 8¢ = Fyspyq1 — s, where E; denotes the expectation conditional on
date-t information. Although we do not observe expected future spot ratesI’ ve can get
an indication of the accuracy of the expectations hypothesis by comparing mean forward
premiums with mean depreciation rates across currencies. We see in Figure 1 (based on
entries from Table 1) that while the two means are not the samel their differences are
small relative to their cross-sectional variation. Currencies with large forward premiumsl’
on averagel are also those against whih the dollar has depreciated the most. In other



wordsI" currencies with aerage interest rates higher than the dollar have typically fallen in
value relative to the dollar.

This sanguine view of the expectations hypothesis changes dramatically when we turn
from cross-section to time-series evidence — that isI' from unconditional momets to con-
ditional moments. A huge body of work has established' for the extait flexible exchange
rate periodl' that forvard premiums have been negatively correlated with subsequent de-
preciation rates for exchange rates between most major currencies. Canova and Marrinan
(1995)T" Engel (1995)I' Hodrk (1987) provide exhaustive references to the literature. The

most common evidence comes from regressions of the form
St41 — 8¢ = a1 + aa( fi — s¢) + residual. (1)

The expectations hypothesis implies a regression slope a; = 1I" vt most studies estimate «;
to be negative. Thus they find not only that the expectations hypothesis provides a poor
approximation to the datal’ but that its predictions of future currency morements are in the
wrong direction. We report similar evidence in Table 2" where estimates ofa, range from
—0.073 for the lira to —1.840 for the pound. All these estimates are at least two standard
errors from the value of one indicated by the expectations hypothesis. Although the R?s are
small (the largestI’ for the Canadian dollarl is 0.034)I" equation (1) can be used to construct
profitable investment strategies. One might investl' for examplel' in the currency with the
higher interest rate. Bekaert and Hodrick (1992) show that while such strategies are not
risklessI” they hare positive and statistically significant average excess returns.

Evidence of negative correlation between forward premiums and depreciation rates has
survivedI' so farl' a mmber of attempts to reverse it. One issue is stability. Although
estimates of ay vary substantially over timel' they remain consisteitly negative. Bekaert
and Hodrick (1993)T for examplel’ find that estimates based on data subsequemto Fama’s
(1984) sample are more strongly negative than those based on the entire sample. Data
from the early 1990s moderates this conclusion’ but does not iwalidate it. A second issue
concerns measurement error and bid/ask spreads. Bossaerts and Hillion (1991) and Bekaert
and Hodrick (1993) arguel’ haveverl' that neither of these factors has a material effect on
the sign or magnitude of estimates of ay. A third issue concerns the exchange-rate regime.
Flood and Rose (1994) find that negative slope parameters are less apparent for currencies
covered by the Exchange Rate Mechanism of the European Monetary System. In factl
the evidence for exchange rates in the ERM is mixed: estimates of ay are close to one
for the German mark and the French francl’ but large and negatie for the mark and the
Dutch guilder. Flood and Rose estimate a typical ERM slope parameter of 0.581' whid is
significantly different from one but nevertheless positive. For floating exchange rate regimes
they estimatel’ as others dol" negativ values for as.

The anomaly has motivated a large and growing number of studies suggesting explana-
tions. Foremost among these is Fama (1984)I" who labels the difference beteen the forward



rate and the expected future spot rate a risk premium and proceeds to document its prop-
erties. In Fama’s interpretationl’ the forvard premium[ f; — s;1" includes a risk premiump;
as well as the expected rate of depreciation ¢;:

fi—si = (fi— Ewsip1) + (Eiseq1 — 51)
= pt+q:. (2)

The cross-section evidence (Table 1 and Figure 1) suggests that risk premiums are small on
averagel’ but the time series evidence implies they are highly wariable. Since the population
regression coeflicient is

_ Cov(g,p+¢q) _ Couv(g,p) + Var(q) (3)
Var(p + q) Var(p+q)

it is clear that a constant risk premium p generates a; = 1. To generate negative values of
ay we need Cov(gq,p)+ Var(q) < 0. Fama notes that this requires (i) negative covariance
between p and ¢ and (ii) greater variance of p than g. We refer to these requirements as
Fama’s necessary conditions. They serve as hurdles that any theoretical explanation of the
anomaly must surpass.

In summaryl’ ima interprets the evidence as suggesting a highly variable risk premium
that reverses the sign of the slope parameter oy in the forward premium regression relative
to what it would be under the expectations hypothesis. We refer to this feature of the data
as an anomaly because of the large number of unsuccessful attempts to account for it with
risk-based theories. In this sensel’ the term “risk premium” is more a cowenient label than
an explanation.

3 A Theoretical Framework

The challenge of currency pricing is to account simultaneously for currency prices and prices
of fixed income securities denominated in both currencies. A model of the dollar/pound ratel’
for examplel’ mist account for the properties of interest rates in dollars and poundsI' as vell
as those of the exchange rate between the two currencies. From a theoretical perspectivel’
this challenge places demands on a model’s internal consistency. It gains greater force in
quantitative applicationsI' when parameter wlues chosen to imitate (say) movements in
exchange rates must be reconciled with properties of interest rates.

Before turning to specific modelsI' ve find it useful to consider currency prices in a
fairly general theoretical setting. We characterize asset prices with a pricing kernel: a
stochastic process governing prices of state-contingent claims. Existence of such a process
(or equivalentlyl' of risk-neutral probabilities) is guaraneed in any economic environment
that precludes arbitrage opportunities. The beauty of this result is its simplicity. It requires



only that market prices of traded assets not permit combinations of trades that produce
positive payoffs in some states with no initial investment — a departure from covered interest
rate parityl' for example. The framevork encompassesI’ among other thingsI' the possibilit
that agents trade on different informationl’ or that some ageits harbor “irrational” beliefs.

In the rest of this section' we adapt this approach to the pricing of currenciesI’ relate
the volatility of currency prices to the variability of pricing kernels in two currenciesI' and
examine the relation between pricing kernels and the forward premium anomaly.

3.1 Pricing Kernels

We begin with assets denominated in domestic currency (“dollars”)I' then moe on to those
denominated in foreign currency (“pounds”). With respect to dollar assetsI’ consider the
dollar value v; of a claim to the stochastic cash flow of d;;1 dollars one period later. The
price v and cash flow d satisfy the pricing relationI’

vy = By (7nt+1dt+1) s (4)

or
1 = Ey(myp1 Reyr), (5)

where Riyy = diy1/v; is the gross one-period return on the asset. We refer to m as the dollar
pricing kernel. In economies with a representative agentI'/n is the nominal intertemporal
marginal rate of substitution and (5) is one of the agent’s first-order conditions. More
generallyl' there exists a positie random variable m satisfying the pricing relation (5) for
returns R on all traded assets if the economy admits no pure arbitrage opportunities. When
the economy has a complete set of markets for state-contingent claimsI'm is the unique
solution to (5)I' but otherwise there is a range of doices of m that satisfy the pricing relation
for returns on all traded assets. These issuesI' and the relewnt literaturel’ are revieved by
Duffie (1992).

The pricing kernel m and the pricing relation (5) are the basis of modern theories of
bond pricing: given a pricing kernell' ve use (5) to compute prices and yields for bonds of
all maturities. Denote by b} the price of an n-period zero-coupon bond: the claim to one
dollar at date ¢t + n in all states. Since the one-period return on an (n + 1)-period bond is
b;brl/b?“l“ ve can compute bond prices recursively from

bt = By (megablyy), Y

starting with 49 = 1 (a dollar today costs a dollar). The price of a one-period bondI' for
examplel isb! = E;my, 1. Continuously-compounded bond yields y are related to prices by
b? = exp (—y*n). The short rate r; is the yield y; on a one-period bond:

Ty = — 10g bl = — log Et"lH—l- (7)

[ ]



We return to this equation when we examine exchange rates.

When we consider assets with returns denominated in poundsI’ ve might adopt an anal-
ogous approach and use a random variable m* to value them. Alternativelyl' ve could
convert mark returns into dollars and value them using m. The equivalence of these two
procedures gives us a connection between exchange rate movements and pricing kernels in
the two currenciesI'm and m*. If we use the first approachl’ pound returnsR} satisfy

L= Ey(mig, Riy,) . (8)

If we use the second approachl’ withS = exp(s) denoting the dollar spot price of one poundI’
then
1 = Et [mt_}_l(StH/St)RfH .

If the pound asset and currencies are both tradedI' there are olvious arbitrage opportunities
unless the return satisfies both conditions:

Ey (miy Ripq) = By [myg1 (S /SR -

This equality ties the rate of depreciation of the dollar to the random variables m and
m* that govern state prices in dollars and pounds. Certainly this relation is satisfied if
miyy = Muy15t41/5:. This choice is dictated when the economy has a complete set of
markets for currencies and state-contingent claims. With incomplete marketsI' the doices
of m and m* satisfying (5I'8) are not uniquel’ but w will see that we can choose them to
satisfy the same equation.

We summarize the connection between pricing kernels and currency prices in

Proposition 1 Consider stochastic processes for the depreciation rate, S;+1/5:, and re-
turns Ryy1 and R} on dollar and pound denominated assets. If these processes do not
admit arbitrage opportunities, then we can choose the pricing kernels m and m* for dollars
and pounds to satisfy both

77Z?+1 /mt+1 = SH—I /St (9)

and the pricing relations (5,8).

Proof. Consider dollar returns on the complete set of traded assetsI' including the dollar
returns (S¢y1/5¢)Ri,; on pound-denominated assets. If these returns do not admit arbitrage
opportunitiesT' then there exists a positie random variable m;yy satisfying (5) for dollar
returns on each asset (Duffie 1992T" Theorem 1A and extensions). Br any such mI' the hoice
My = Myg1S41/ 5 automatically satisfies (8). [

The intuition is straightforward: if we know prices of state-contingent claims in dollars
and poundsI’ ve can compute the implied exchange rate from their ratio. The only ambignity
stems from combinations of state-contingent claims that are not traded.



The proposition tells us that of the three random variables — m 1 I'm; T’ and.S;q /9
— one is effectively redundant and can be constructed from the other two. Most of the
existing literature uses the domestic pricing kernel m (or its equivalent expressed as state
prices or risk-neutral probabilities) and the depreciation rate. We start instead with the
two pricing kernelsI" whih highlights the essential symmetry of the theory between the two
currencies.

One implication of this symmetric perspective is that pricing kernels appear to be highly
correlated. To see thisT' note that equation (9) implies

Var(sip1 — s¢) = Var(logmi ) + Var(logmiyr) — 2Cov(log my, |, log myyy). (10)

Estimates of Var(s,y; — s;) are in the neighborhood of 0.03% for most of the exchange
rates in Table 1T smaller for the Canadian dollar. Estimates of Var(logm) are typically
larger: Backus and Zin (19941 Section 6) suggest that 015% is a conservative estimate for
monthly dollar returns. Estimates from closely related Hansen-Jagannathan (1991) bounds
are similar. If pricing kernels for other currencies exhibit comparable variabilityl' then
equation (10) implies that the correlation between the logarithms of the two kernels is 0.98.
Larger estimates of Var(logm) and Var(logm*) and smaller estimates of Var(si41 — s¢)
imply larger correlations. The strong correlation between pricing kernels is not an indication
of international capital mobility — capital mobility wasl" in factI’ a premise of Proposition 1.
We find it striking neverthelessI" since it implies that state prices are more highly correlated
across currencies than returns. Roughly speakingl' the wo pricing kernels appear to be
more highly correlated than their conditional means.

3.2 Forward Rates and Risk Premiums

Given pricing kernels for two currencies and equation (9) for spot exchange ratesl’ ve can
derive the forward premium and its components from the pricing relation (4). Consider a
forward contract specifying at date ¢ the exchange at ¢t 4+ 1 of one pound and Fy = exp(f;)
dollarsI' with the forvard rate F; set at date ¢ as the notation suggests. This contract
specifies a net dollar cash flow at date ¢ + 1 of F; — S¢41. Since it involves no payments at
date tI' the pricing relation implies

0= E¢[mepa(Fr — Seq)]
If we divide by 5; and apply Proposition II' v find
(F/SO)E(mug1) = By (mag1Sie1/9:) = Ed(miyy).
Thus the forward premium is

[t —s¢ =log Eymiy — log Eymygy. (11)



This equation and the definition of the short ratel’ equation (7)I' giwus
fo—si=re =1, (12)
the familiar covered interest rate parity condition.

Now consider the components of the forward premium. The expected rate of depreciation
isI" from (9)T
qr = EtSH-l — 8 = Et lOg mz‘_H - Et log mi4q- (13)

Thus we see that the first of Fama’s components is the difference in conditional means of
the logarithms of the pricing kernels. The risk premium isI' from (2I'11)I’

pt = (log BEymi, — Eylogmyyy) — (log Eymigqy — Ejlogmeyy), (14)

the difference between the “log of the expectation” and the “expectation of the log” of the
pricing kernels m and m*.

With additional structure we can be more specific about the factors that affect the risk
premium. Many popular models of bond and currency pricesI" including the affine models ve
examine later]' start with conditionally log-normal pricing lernels: logm;;; and log mj,,
are conditionally normal with (say) means (u1¢, u3,) and variances (po:, p3,). With this
structurel’ one-period bond prices are

Eymipr = exp (g + p2e/2)
exp (U3¢ + Hae/2)

*
Emi,

and the risk premium is

pe = (pe— pa)/2- (15)
Fama’s conditions requirel in this casel' (i) negativcorrelation between differences in condi-
tional means and conditional variances of the two pricing kernels and (ii) greater variation
in one-half the difference in the conditional variances. We needI' in shortl' a great deal of
variation in conditional variances.

If the conditional distributions of log m and logm* are not normall’ the risk premium
depends on higher moments. For an arbitrary distributionI' equation (13) tells us (again)
that only the means affect the expected rate of depreciation. The risk premium is givenl’
in generall' ly (14)T but if all of the conditional momets of log m existl’ logFym;y1 can be
expanded

oo
log Eymyyq = Z Kiefgh (16)

7=1
where £, is the jth cumulant for the conditional distribution of log m41. Equation (16) is
an expansion of the cumulant generating function (the logarithm of the moment generating



function) evaluated at one; seel' for examplel’ Stuart and Ord (1987[hs 3I'4). Cumlants
are closely related to momentsI” as v see from the first four: k1, = p1lk2e = poilkse = el
and k4 = plg — 3(p2¢)?. The notation is standardl’ withy; denoting the conditional mean
of log my1 and p;l forj > 1T' denoting thejth central conditional moment. For the
normal distribution' curmlants are zero after the first twol' so equation (16) gies us a way
of quantifying the impact of departures from normality. If the foreign kernel has a similar
representationl’ the forvard premium is

oo
fo—se =Y (K5 — ki) /3,
i=1
and the risk premium is
pt:";*_Lt“"@—l,ta (17)

where
o0 o0
. _ . * _— * -
K1t = E K/jt/]!a K1t = E :’%/JL
i=2 i=2

We refer generically to the sums x_1; and x*,, as “higher moments.”
- )

With equations (17) and (13) describing risk premiums and expected rates of deprecia-
tionI" ve have

Remark 1 If conditional moments of all order exist for the logarithms of the two pricing
kernels, m and m*, then Fama’s necessary conditions for the forward premium anomaly
imply (1) negative correlation between differences in conditional means, pi, — p1i, and dif-
ferences in higher-order cumulants, k¥, — k-1, and (11) greater variation in the latter.
A necessary and sufficient condition is a negative covariance between g, = puij, — p1¢ and

Jo—se=pyy — pue t+ f‘iiu — K14t

Our characterization of the risk premium suggests an interpretation for the failure of
GARCH-M modelsT’ whih model the risk premium as a function of the conditional variance
of the depreciation rate. Studies by Bekaert (1995)I' Bekert and Hodrick (1993)I" and Do-
mowitz and Hakkio (1985) document strong evidence of time-varying conditional variances
of depreciation ratesI’ but little that connects the conditional wriance to the risk premium
p. One view of this failure is that GARCH-M models violate our sense of symmetry: an
increase in the conditional variance of the depreciation rate increases risk on both sides of
the marketT’ and hence carries no presumption in faror of one currency or the other. Our
framework indicates why. The conditional variance of the depreciation rate is

Var(siy1 — s¢) = Vary(logmyi,, — logmy),

the conditional variance of the difference between the logarithms of the two kernels. The
risk premiumI on the other handl is half the difference in the conditional ariances [equation
(15)] and possibly higher moments [equation (17)]I' whih need bear no specific relation to
the conditional variance of the depreciation rate. GARCH-M modelsI" to put it simpl¥' focus
on the wrong conditional variance.



4 Affine Models with Independent Factors

Remark 1 suggests that it should be relatively easy to construct examples that reproduce the
anomaly: we simply arrange for differences in first and second moments of pricing kernels
to move in opposite directions. Consider a model like Engel and Hamilton’s (1990) in
which the conditional distributions of two pricing kernels alternate between two log-normal
regimes. If the difference in conditional means of the pricing kernels is higher in regime 1I'
and one-half the difference in conditional variances is higher in regime 2I" and wries more
than the difference in meansI" then the model will reproduce the anomaly

A greater challenge is to construct a model that mimics the properties of currency
prices and interest rates more generally. We approach this problem with affine models.
Affine models have a number of clear advantages. Firstl' conditional means and wriances
of logarithms of pricing kernels are linear functions of a vector of state variables. SecondI’
we havel' as a profession’ more than a decade’s experience with these models in pricing
fixed income securities; much of this experience can be transferred directly to currency
pricing. Finallyl' ve will see that many of the models in this class automatically generate
the contrary movements in the conditional mean and variance of pricing kernels suggested
by Fama’s condition (i) in log-normal settings.

In this section we consider specific examples of affine models motivated by related work.
In the next section we consider the general class of afline currency models.

4.1 A Cox, Ingersoll, and Ross Model for Two Currencies
An obvious starting point is a two-currency version of CoxI' Ingersolll' and Ross (1985) lik
Bakshi and Chen (1995). Our version is adapted from Sun’s (1992) discrete-time translation.

In discrete timel' the Cox-Ingersoll-Ross model can be expressed in two equationsl’” one
specifying a “square-root” process for a state variablel’ the other relating the pricing lernel
to the state. Let us say that the state variable z follows

i = (1- @0+ 9z + 02 Perg, (18)

with 0 < ¢ < 1I'¢ > OI' and{e;} ~ NID(0,1). The unconditional mean of z is AT the
autocorrelation is ¢I' the conditional wriance is 02z and the unconditional wriance is
020/(1 — ¢?). With the substitution x = 1 — I ve can write (18) as

1/2
2i41 — 2y = K0 — z) + 02" “eg g,

10



a direct analog of the continuous-time original. The critical ingredient of (18) is the square-
root term in the innovationI’ whose conditional wriance falls to zero as z approaches zero.
In continuous timel" this feature and the Feller conditionT’

(1-9)0 = k0> a?/2, (19)

guarantee that z remains positive. In discrete timel z can turn negative with a large
enough negative realization of £. This happens with positive probabilityl' but the probabiliy
approaches zero as the time interval shrinks (SunI’ 1992).

The pricing kernel for the discrete-time Cox-Ingersoll-Ross model can be expressed
—logmuyr = (14 X2/2)z + /\ztl/stl. (20)

The coefficient of z is a normalizationI' hosen to make z the one-period rate of interest;
see Appendix A.l. The parameter A controls the covariance of the kernel with movements
in interest rates and thus governs the risk of long bonds and the average slope of the yield
curve. Note that equation (20) builds in an inverse relation between the conditional mean
and variance of the logarithm of the pricing kernel.

This structure is an example of the conditionally log-normal pricing kernels described
in Section 3. The conditional mean and variancel’

Etlog myy1 = —(1 + /\2/2)2’75
Varilogmey, = Mz,

are both linear in the state variable z. The short-term rate of interest is
1
ry = —log Bymy = — (Et log my4q + 5 Var, log mt+1> = z, (21)

as claimed earlier.

If m is the dollar pricing kernell’ ve complete the model by considering a second pricing
kernell'm*T" for pounds. If the pound pricing lernel is based on an analogous state variable
z* following an identical but independent processI' then the pound short rate isr} = 2.
The forward premium is

fo—se =2 — 2z,

with expected depreciation q; = (1 4+ A2/2) (2; — 2}) and risk premium p; = —A?/2(z; — 27).
Thus the linearity of the conditional mean and variance translate into forward premium
components that are linear functions of the differential z—2*. More importantI’ this structure
automatically generates the negative correlation between p and ¢ of Fama’s condition (i):
since equation (20) implies an inverse relation between the conditional mean and variance of
log m¢y1 [ and the to pricing kernels are independentI’ the difference in conditional means

11



is inversely related to the difference in conditional variances. Bakshi and Chen (19951 eq
47) make a similar observation.

This model cannotI’ haveverl” reproduce the anomaly If we regress the depreciation rate
on the forward premium in this modell' the slope is

g = 1-1—/\2/2

The slope is not only positivel’ and therefore inconsistert with the anomalyl’ it exceeds onel’
and is therefore inconsistent even with the Flood and Rose (1994) evidence for the ERM.

There is a simple solution to this problemI’ but it has a cost. Suppose ve replace (20)
with

. 9 .
—logmypy = (=14 X2/2)z + /\ztl/ Et41, (22)
so that the coefficient of z contains —1 rather than +1. Short-term interest rates are then
ry = —z and r; = —z; and the forward premium is —(z; — 2;). Expected depreciation is

(=14 A\2/2)(z — z}). The regression slope is therefore
ay =1—\2/2,

which is always less than onel’ and negatie for large enough values of A. We have lostT’
howeverl" the trademark positie interest rates of the Cox-Ingersoll-Ross model.

4.2 Models with Independent Factors

The two-currency model that accounts for the anomaly has two properties that clearly
differ from the evidence: interest rates are uncorrelated across currencies and negative with
probability one. We consider a generalization in an attempt to resolvel or at least mitigatel’
both problems.

Our generalization extends the model in two directions: we replace the independent
univariate Cox-Ingersoll-Ross models for each currency with independent general affine
modelsI' and ve introduce a common state variableI’ independert of currency pricesI’ that
affects interest rates in both currencies. The latter allows us to reproduce the positive
correlation of interest rates across currencies. The former offers the potential to reduce
or eliminate the possibility of negative interest rates. An additional benefit of this class of
models is that they use factors parsimoniously. To model the dollar/pound ratel for examplel’
we need only the dollarl’ poundIl’ and common factors:factors for other currencies are
irrelevant. And since the exchange rate between two currencies depends only on the factors
governing the two currenciesI' these models are easily extended to additional currencies ly
introducing additional currency-specific factors. Perhaps for this reasonl’ Bakshi and Chen
(1995) and Bansal (1995) examine models in this class.
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Considerl’ thenl" awo-currency world based on three independent vectors of state vari-
ables: a common state variable 2y and currency-specific state variables z; and zT sy. (In
an effort to streamline the notation we have replaced z and z* with z; and z,.) Our class
of independent factor models consists of laws of motion

Zitgr = (I —0)0;, + @2 + Vi(Zit)l/25it+1 (23)
for each state variable ¢ and pricing kernels

—logmiyr = &+ 200 + 1 21t + /\(_)rVO(ZOt)l/250t+1 + )\Ivl(zlt)l/251t+1
—logmy,, = 6+ 'YOTZOt + ’)’gTZm + /\;I)_VO(ZOt)l/250H—1 + /\;"/2(2%)1/252“_17 (24)

with {e;;} independent standard normal random variables. The autoregressive matrices ®;
have stable roots with real parts between zero and one and positive diagonal elements. The
volatility matrices V* have typical elements

v;-(z) = aé%—/j’fz,;

We define admissible values of the state variables as those for which volatility functions are
nonnegative. Readers will recognize this model as an example of the affine class character-
ized by Duffie and Kan (1993)I" who report sufficiet conditions for keeping state variables
in the admissible set (Condition AT described in Appendix A.2 belaw).

This model builds a lot of structure into asset prices. Since the common factor z; and
its innovation g affect both pricing kernels the same wayl' they hae no effect on currency
prices or interest differentials. They therefore have no effect on the slope parameter a; that
characterizes the forward premium anomaly. We findI" as result of this structurel’ that these
models retain one of the weaknesses of the two-currency Cox-Ingersoll-Ross model:

Proposition 2 Consider the Duffie-Kan class of affine models with independent currency
factors summarized by equations (23,24). If such a model implies positive bond yields for
all admissible values of the state variables, then it cannot generate a negative value of the
slope parameter as from forward premium regressions.

A proof is given in Appendix A.3. The intuition is similar to the two-currency Cox-Ingersoll-
Ross model. The affine models permitted in Proposition 2 are based on state variables that
are unbounded in one direction. In our version of Cox-Ingersoll-RossI' for examplel” the state
variable z assumes all positive values with positive probability. This state variable has two
effects on the short ratel’ one operating through the mean of the pricing lernell’ the other
through the variance. An increase in the conditional mean tends to raise the short ratel’
while an increase in the conditional variance lowers it. If the mean effect is largerl’ as it
is in the Cox-Ingersoll-Ross modell’ then the short rate is uibounded above. The anomaly
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requires instead that the effect of the variance must be largerI’ and this that increases in
variance be associated with decreases in the short rate. But since the conditional variance
is unbounded abovel' the short rate will be negatie for large enough values of the state
variable.

Proposition 2 indicates that we cannot use this class of models to reconcile the anomaly
with strictly positive interest ratesI’ but does notl' in our viewI' rule them out altogether.
If a small probability of negative interest rates led to an affine model that was realistic in
other respectsI’ ve might view it as a small cost paid for the convenience of linearity. Duffie
and Singleton (1995) and Pearson and Sun (1994) make a similar argument in extending
the Cox-Ingersoll-Ross model of bond pricing. We examine this possibility in the next
subsection.

4.3 Informal Estimation of an Independent Factor Model

We estimate the parameters of the simplest independent factor model to see how this
structure might work in practice. We findT" for this examplel' that Proposition 2 understates
the difficulties. Although estimated parameters imply a small probability that short rates
are negativel' the model differs sharply from the data along other dimensions.

Our model starts with three scalar state variables following square root processes
1/2
Zigwr = (1= @)l + @iz + 002 "
for ¢ = 0,1, 2l and pricing lernels

‘ 1/
6 + Yozor + 11216 + )\ozét/zéotﬂ + M 21{251t+1

— log m4q

1/2 1/2
—logm;,, = 6" + vozor + v222t + )\OZ()t/ €ot+1 + A2zy; €141,

where {e;;} is independent standard normal. We refer to 2 as the common factor and
z1 and zy asT respectielyl’ the dollar and pound factors. We assumel’ as velll' that the
parameters related to z; and z; are the same: ¢ = @3 = @'y = 0y = l'oy = 03 = ol
§* = 6Ty = 99 = yI' andA; = Ay = A. This presumption of symmetry is pure convenience:
it reduces the number of parameters andl’ in the processI' clarifies the relation beteen
parameter values and features of the data. We use the normalizations

Yo = 1+23/2
vy = —1—|—/\2/‘2.

As in the two-currency Cox-Ingersoll-Ross modell’ the latter allovs the model to reproduce
the anomaly.
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Given parameter valuesI' ve can compute properties of currency prices and interest rates
in dollars and pounds. Here we do the reverse: we use sample moments for the dollar/pound
exchange rate and short rates in dollars and pounds to estimate the model’s parameters.
We do this informally to illustrate as simply as possible the issues that arise in formal
estimation of such models. The sample moments are those reported in Tables 1 and 2. The
model’s structure allows us to estimate its parameters recursively:

1. The regression slope underlying the anomaly identifies A. The depreciation rate is
sie1 — St = (=14 X/2)(z1e — 220) + A (Z}t/ziltﬂ - Z;tﬂf‘zwl) .

Short rates are

re = 0+ 201 — 21t
%
ry = 6+ zoy — 22,
so the forward premium is f; —s; = —(2z1; — 2z2;). The slope parameter in the forward
premium regression is
ay =1- /2

Since the estimated slope parameter in Table 2 is —1.840T ve estimate [A| = 2.38 (the
sign is not identified).

2. We use properties of the forward premium to estimate the parameters governing the
currency factors z; and z,I' whih we have assumed are the same. The autocorrelation
parameter ¢ is the autocorrelation of the forward premiumlI in this case 0900.

3. The variance of z; (equivalently z;) is related to the variance of the forward premium
by
Var(f — s) = Var(z — z) = 2Var(z).

Since Var(f — s) = 0.0027% for dollar/pound ratesI' ve have Var(z ) = 0.00272/2 =
1.82 x 107%. Given Var(z)T' ve find 8 from the variance of the depreciation rate:

Var (s;41 — 8¢) = 203 Var(z1) + 2X%6. (25)
Our estimates of A and Var(z;) imply 6 = 5.46 X 1076,
4. We compute o from our estimates of Var(z)I'6I" ande:

fo?

l-¢p

Var(z) =

PR

which implies ¢ = 0.251.



5. We identify the parameters of the common factor from properties of short-term interest
rates. The mean determines 8y:

E(r)=0.0069 = 6, + 6,
implying 6y = 6.91 x 1073,

6. The other two parameters of the common factorl'¢g and ogl’ are inertwined. The
former is an input into the autocorrelation of z:

~ 2 Var(zo) o Var(z1)
Var(zo) + Var(z) Var(z) + Var(z)

Auto(r)

We find Var(z) from the variance of the short rate: Var(r) = Var(z) + Var(z).
Given our earlier estimate of Var(z;)T' we compute Var(z) = 2.68 x 107¢ and ¢o =
0.996. Roughly speakingl’ greater persistence in interest rates than interest differentials
implies ¢g > .

7. We use our estimate of Var(zy) to determine og:

2
00(70

27
%0

Var(z) = 2.68 x 107° = ;
which implies o9 = 1.80 x 1073,

We can now provide a quantitative assessment of Proposition 2. Since 2z; and z; range
between zero and infinityl' ve see that short rates are negative with positive probabilityl’ as
required by the theory. Since both zy and z; have approximately gamma distributions (see
Appendix A.4)T the probabiliy is easily computed. We find that the probability is less than
107°.

The difficulty with these parameter values isT" insteadT’ that the unconditional distribution
has enormous skewness and kurtosis. One symptom of this is the Feller condition: our
estimates of {6, 7, ¢} violate the condition by five orders of magnitude:

2(1—;;’91(3 = 1.73x 107° # 1. (26)
Holding sample moments fixedT' the Eller ratio declines as we increase ay toward onel’ but
exceeds one for the dollar/pound rate only when oy > 0.98. Even the Flood-Rose estimate
of 0.58 for the ERM is too small to eliminate the problem. By one interpretationl’ parameters
that violate the Feller condition are infeasible: the state variables are absorbed at zero and
the model has a degenerate limiting distribution. Another interpretation is that zero is
a reflecting barrierl' and that violation of the FEller condition indicates extreme values for
higher moments; see Appendix A.4.
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This difficulty stems directly from the anomaly. As we see in equation (25)I" the wriance
of the depreciation rate depends on both A and #. The anomaly dictates a large value of
A. For the model to reproduce the observed volatility of the depreciation ratel’ ve therefore
need a small value of #. With small # we find that large ¢ is required to reproduce the
variability of the forward premiumI" whid violates the Feller condition.

Stated somewhat differentlyl’ the model is squeezed beween the anomalyl’ on the one
handl' and the wriability of the depreciation ratel’ on the other. The anomaly indicates
a large value of |A|. But the variance of the depreciation rate restricts the independent
variation in the two kernelsI' and therefore indicates a small wlue of A26. A small value of
6 is the compromisel’ whih leads to a violation of the Feller condition.

5 Affine Models with Interdependence

We turn next to the general class of affine currency models. We show for such a model
to account for the anomalyl’ it must exhibit asymmetric interdependence: common factors
must influence interest rates differently in the two currencies.

5.1 Two Examples

We illustrate the intuition for interdependence with two examples. One of the simplest
examples is based on a single state variable z obeying a process like (18)I' with pricing
kernels

- lOg mi41 = (1 + /\2/2)25 + /\Zt1/26t+1
—logmi,, = (v"+ N2/2)z, + /\*ztl/ZeH,l.

The model is interdependent in the sense that the same factor z affects both pricing kernels
and asymmetric if its effects are different: if (1, A) # (y*, A*). In this setting short rates are
re = z; and 7} = 7"z so the forvard premium is fy — s, = (1 — 7")2;. Both interest rates
are strictly positive if v* > 0. Depreciation is

Si41 — St = [1 - ’y* + (/\2 - )\*2)/2] 2z + (/\ - /\*)Zt1/2€t+1,

so expected depreciation is ¢; = [1 —v* 4+ (A% — A*?)/2]z. The slope of the forward premium
regression is therefore

/\2 _ /\*‘2
2(1 = v7)
If v* = 1 the forward premium is zero: the model has no forward premium and thus no
forward premium anomaly. For other valuesI' the model implies an iwerse relation between
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the forward premium and the interest differential if 2(1 — v*) and A2 — A*? have opposite
signs and the latter is larger in absolute value. Frachot (1994) describes a similar example
in continuous time.

This example is asymmetric in two respects. The first is that the two interest rates
follow different processes. The second is that the state variable z has different effects on the
two pricing kernelsI" and hence on itterest rates. A second example indicates that the latterl’
which we refer to as asymmetric interdependencel is the ky to explaining the anomaly.

ConsiderT thenT a similar model based onwo state variablesI'z; and z;I" obeying idetical
independent square root processes (18) with pricing kernels

—logmiyr = (14 X2/2)z 4+ (7" + A*/2)2g + /\z}t/Zsu_H + A*z;t/2szt+1
- 10g mfﬂ = (')’* + /\*2/2)2’“ + (1 + /\2/2)22,5 + /\*211{28”4_1 -+ /\Z;t/2€21+1‘

Ahn (1995)T Nielsen and Sa’Requejo (19931 pp 9-10)T and Sa-Requejo (1994 p 17) describe
similar models. QOur version is symmetric in the sense that the unconditional distributions
of the two pricing kernels are the samel’ but the state wuriables z; and 2, potentially affect
the two kernels in different ways.

Short rates in this model are

E 3
re = 2ty R

e = Y rut 2
The forward premiumI’
fr—st=ri—r{ = (1 =9") 21t — 22t)-
and depreciation ratel’
St41 — St = [1 -+ (AN - /\*2)/2] (210 = 220) + (A = N4 e 1041 — 23] Eai),

imply a regression slope of

/\2 _ /\*2

21 —y~)’

as in equation (27). As in the first examplel' appropriate hoice of parameters allows us
to generate a negative value. The critical feature in this regard isI' againl' that edc state

a =1+

variable affects the two kernels differently.

These two examples highlight the role of asymmetric interdependence: of state variables
that affect pricing kernels differentially. In the secondT this taks a particularly striking form.
Suppose y* < 1 (if v* > 1 the argument is similar). From the short rate equationsI’ ve might
say then that z; is the “dollar factor['” since it has a greater effect on the dollar short rate
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than z,. For similar reasons we might refer to 29 as the pound factor. But the anomaly
(in factl’ aty value of ay less than one) implies A*? > A’I" implying that innoations in the
“pound factor” have greater influence on the dollar kernel than do innovations in the dollar
factor. It’s as if (to use a concrete example) US money growth had a larger influence than
British monetary policy on dollar interest ratesI’ but a smaller influence on the dollar pricing
kernel.

5.2 Informal Estimation of the Two-Factor Example

Despite this unusual featurel' an informal estimation exercise suggests that this model pro-
vides a closer approximation than the independent factor model to the properties of currency
prices and short-term interest rates. The model has six parameters and thus requires six
sample moments to estimate:

1. We use the relative variance of the forward premium and the dollar short rate to
identify v*:
Var(f —s) _ 2(1 —77)?
Var(r) 14 y*2
This equation has two solutionsI" but they are obserwtionally equivalent. We choose
the smaller rootI'y* = 0.333.

2. Given 7*I" the mean wulue of the dollar short rate determines 6:
E(r)y=(1+~7)8.
With a mean short rate of 0.006904I" v estimate # = 0.00518.
3. The autocorrelation of the forward premium identifies ¢ = 0.900.

4. We use the standard deviation of the dollar short rate to compute . The variance of
the short rate is

Var(r) = (1 + v**) Var(z),
implying Var(z) = 0.002862. Since

%6
VaT(Zl) = 1_7992,
we find ¢ = 0.0173. Unlike the independent factor modell' the estimates of'I" and
o satisfy the Feller condition.

We use properties of currency prices to estimate A and A*. The difference in the
squared values is determined by the anomaly: equation (27) implies

[

A2 = 379,
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6. Finallyl' the wriance of the depreciation rate identifies (A — A*)2:
Var(siy1 — s1) = 2(1 — y*)%a3 Var(z1) + 2(\ — X*)?8.

Given values for ayl' Var(z1)I' and Var(s;41 — ;)T ve compute (A — A*)? = 0.111.

On the whole this example fits the data much better than the independent factor model.
The Feller conditionI’ for examplel is satisfied. Outstanding issues are the magnitudes oh
and A*I" whib play an important role in the shape of the yield curvel’ and the unexpected
asymmetry in the effects of each state variable on short rates and pricing kernels noted
earlier.

5.3 Affine Models of Currency Pricing

The general affine currency model is characterized by a law of motion for a vector of state
variablesI’

zipr = (1= ®)0 + &z + V() %110 (28)
and pricing kernels
— log miy1 = é + "/TZt + /\TV(Zt)l/ZEt+1
—logmi, = 6+ 7Tz 4 /\*TV(Zt)lﬂstH, (29)

where {g;} ~ NID(0,7)I" ® is stable with positie rootsI' andV is diagonal with typical
element

vi(2) = o+ 8] .

Equations (281'29) daracterize what we term the general class of affine currency models.
Duffie and Kan’s (1993) Condition A guarantees that state variables remain in the region
defined by nonnegative volatility in the continuous-time analog; see Appendix A.2.

With this structurel’ the depreciation rate is
sipr =8 = (6 =6+ (Y= 7) T2+ (A= ATV () Perp.
Short rates are

re = (6—w)+(y—T)z

o= (0T -+ (7 -z,
where w = >, Al /2Tw* = 3, A%a; /20T = 30, A36;/2 > O andr™ = 37, A265/2 > 0.
For interest rates to be positivel' ve need each z; bounded (say) belowI" and therefore  —7)
and (v* — 7°) must have nonnegative elements.
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Together these two equations imply a negative value of @y in the forward premium
regressionl’ equation (1) if

Cov(seas — s i = 1) = [(7 = 77) = (7 = ) Var(2)(y — 7).

We see immediately that the anomaly hinges on differences between v and * and between
T and 7*. If Var(z) is diagonall’ as in the examples of Section 5.1T then theth elements of
v —~* =7+ 7" and v — v* must have different signs for at least one ¢. More generallyl' the
covariance hinges on differences in the effects of state variables on interest rates and pricing
kernels in the two currencies. In this sensel’ the asymmetric effect of the state wriables
on the two pricing kernels in our two examples is a general requirement of a model that
accounts for the anomaly.

This model also makes it clear why models with independent factors in Section 4.2 cannot
account for the anomaly with positive interest rates. This model is a special case in which
z can be partitioned into independent subvectors: z = (zp, 2,22). Then v = (v0,71,0)
and v* = (70,0,72). These models can be asymmetricI’ but the “exclusion restrictions” and
the assumption that the common factor zg affects both kernels the same way limits their
interdependence. Proposition 2 is the result.

6 Final Remarks

We have examined the implications for models of currency pricing of the forward premium
anomaly: the tendency for currencies with high interest rates to rise subsequently in value.
Many regard this feature of the data anomalous because of the many failed attempts to
build theoretical models that account for it.

We findl" insteadl’ that it is relatisly easy to construct models consistent with the
anomaly: we need an inverse relation between the difference in the conditional means of the
logarithms of pricing kernels in two currencies and differences in the conditional variances.
In the class of affine modelsI' this requires either a positie probability of negative interest
rates or that some state variables have asymimetric effects on the pricing kernels in the
two currencies. Examples of each exist in the literature. Informal estimation suggests that
within the class of affine modelsI’ those with asymmetries offer the best hope of explaining
the properties of currency prices and interest rates in general.

We are left with two outstanding issues. The first is whether a closer look finds that affine
models with a small number of state variables are capable of approximating the properties
of currency prices and fixed income securities in different currencies. Ahn (1995) and Sad-
Requejo (1994) have made some progress along these linesI' extending the analysis to yields
on bonds with longer maturities. The second is the economic foundations of pricing kernels
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that reproduce the anomaly. We have followed a “reverse engineering” strategy in which
pricing kernels are simply a stochastic processes that account for observed asset pricesl’
but one might reasonably ask what kinds of behavior by policy makers and private agents
might lead to such pricing kernels. One possibility is outlined by Alvarez and Atkeson
(1996)T" Stulz (1987)I' and ¥on (1995)I' who deelop dynamic general equilibrium models
in which interest rates and currency prices reflect monetary policies. Perhaps further work
will connect pricing kernels in these models to properties of interest ratesI’ currency pricesl’
and monetary aggregates.
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A Mathematical Appendix

A.1 Representations of One-Factor Affine Models

We show that affine models capable of reproducing the anomaly can be characterized by
two equations of the form:

a1 = (1 - @+ oz + 02, e (18)

and

—logmuyr = 6+ voz + /\23/25t+1 (30)
for a fixed positive parameter o (a normalization). This model differs from Cox-Ingersoll-
Ross in two respects: (i) the intercept & in the relation for the pricing kernel and (ii) the
possibility of negative coefficient of z in the same equation. We assume 3 # OI since other-
wise the conditional variance is constant and the model cannot account for the anomaly.

Considerl" as an alternatiel’ a more heaily parameterized model:
zie1 = (1 — )0+ oz + (a + /3Zt)1/25t+1
and
—logmyyr = 6 + vz + Ma + ﬂzt)1/25t+17

with a Feller-like condition guaranteeing that « + 8z is always positive in the continuous-
time analog. This structure nests the one-factor models of Cox-Ingersoll-Ross (1985) and
Pearson and Sun (1994) as special cases.

The goal is to show that the second model can be expressed in the form of the firstl’
equations (18730). The ley is that the state variable z is not observable: its role is simply
to help characterize the conditional distribution of my4; for 7 > 1. In particularl’ linear
transformations of z leave the distribution of future m’s unchanged.

We proceed in steps. ConsiderI firstT’ a reparametrization of the second model based on
the substitution z/ = a4+ 3z. In terms of this new state variablel' the equations for the state
and pricing kernel are

2
G = (L—@)a+0) + ¢z + 82 Pers
(1 - )8 + oz + 2 e

and

a B
—logmyy = (6 - E) + 7—322 + /\zil/zaH_l

= (5’ —I— ’)/IZ; + /\Zél/ZgH.] .
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The state equation is now in the same form as (18)I" but ve have an additional parameter
7" in the relation for the kernel. Step two is to eliminate the extra parameter with a
normalization' whih we do by offsetting changes in 4’ by rescaling 2. The only subtly is
that the scaling must retain the sign of the state variable. If v/ > 0T definez” = (yo/7')7'.
Then we can rewrite the equations for the state and pricing kernel in terms of 2:

[y

70 " Fyl 1/2 //1/2
(1—99)<70 ) + ¢z +ﬁ(%> zy e

(1= Q)" + oz + 3" ey

i

"
Zt41

and

Y0 1/2 1/2
—logmiyr = & 4702 + A (7) 2 et
= § 477 + /\"22/1/28&1,

which are in the form of (18I'30). When+' < 0 this procedure does not workl' since ve
would be taking the square root of z” < 0. We instead define 2" = —(y0/7’)z’ and proceed
analogously. The equation for the pricing kernel in this case becomes

~logmipr = & — 2! + /\"22’1/25t+1,
which is also in the form of (30).

We use two normalizations in the paper. One is “+v,” = 1 + A%/2D whih results in =z
being the short rate. The other is “dvo” = —1 + A?/2I" whih allows the model to account
for the anomaly.

An alternative representation of the one-factor affine model is
zii1 = (1= 90+ @z + (a + B2) e

and

—logmipr = (1+ A2/2)z 4 Aa+ Bz)Y %6144,

This effectively loads the sign change for v¢ into 3 and the intercept ¢ into «. This repre-
sentation has the property that it reproduces the nonstochastic volatility case when 3 = 0.

A.2 Affine Models of Bond Pricing

Duffie and Kan (1993) characterize a class of affine bond pricing models in continuous time.
We translate their class of models into discrete time and derive conditions under which
bond yields are strictly positive.
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Duffie and Kan’s affine models are based on a k-dimensional vector of state variables z
following

s — = (1= 9)(0 - 2) + V(2) %141, (31)

where {¢;} ~ NID(0,I)[' ® is a stable matrix with positie diagonal elementsI'V(z) is a
diagonal matrix with typical element

vi(2) = o + B 2,
and J3; has nonnegative elements. State prices are governed by a pricing kernel of the form
—logmip; =6+ 7" 2 + /\TV(zt)l/ZetH. (32)
The process for z requires that the volatility functions v»; be positive.

We define the set D of admissible states as those values of z for which volatility is
positive:
D ={z:v(z) >0 all i}.

Duffie and Kan (19931 Section 4) shav that z remains in D if the process satisfies
Condition A For each i:

(a) for all z € D satisfying vi(z) = 0 (the boundary of positive volatility), the drift is
sufficiently positive: B (I — ®)(0 — z) > B 3:/2; and

(b) if the jth component of B; is nonzero for any j # i then v;(z) and v;(z) are proportional
to each other (their ratio is a positive constant).
We refer to models characterized by (31'32) and satisfying Condition A as the Duffie-Kan

class of affine models.

Our characterization of these models differs from Duffie and Kan’s in two respects. Firstl’
Duffie and Kan write (31) as

zig1 — 2= (I = )0 — 2) + SV (2)Y %41, (33)

which includes a matrix ¥ that is missing in our version. We show that our choice is
innocuous by reducing their model to ours. As in Section A.1I' the lky is that z is not
directly observable. Assume ¥ is invertible (this is convenient but not essential) and define
2! = 71z, If we substitute for zI' equation (33) becomes

A — 2= (=)0 = 2) + V() erp,
Cwith vl(2') = a; + BT 2'T & = X71OXT9 = £710T andB!" = 3. Equation (32) becomes

—logmyp =6+ 2 + ATV (VY 2,4,
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with 4'T = v TX. Thus we have effectively eliminated ¥ from the model.

Our second difference from Duffie and Kan is the assumption that the volatility pa-
rameters (3; are nonnegative. Define the matrix 5 = (f1,...,0;) with 3;; denoting the
jth element of 3; and the (i,7)th element of 37. Note that we can choose the diagonal
elements of 3 to be nonnegative: if 3; < 0 for any i' v replace z; and —z; and 3;; with
—f3;; and change the other parameters in the model accordingly. This produces a matrix 3
with positive diagonal elements. Condition A(b) tells us that if § has nonzero off-diagonal
elementsI’ then they are proportional to diagonal elemerts and hence positive as well.

Given this structurel’ bond prices are log-linear in the state wuriables z. If b} is the price
at date ¢t of a claim to one dollar in all states at date ¢t + nI' then ly log-linearity we mean
that

—logb? = A(n) + B(n)" z
for some parameters {A(n), B(n)}. Since bond yields are y7* = —n~!log b?T they are linear
in z:

—log b} = A'(n) + B'(n)z,
where A’'(n) = n~1A(n) and B'(n) = n=! B(n). We use equation (6) to generate parameters
recursively:

Aln+1)

f

1 k
A(n)+ 6+ B(n)7( —EZ)\+B7L o
7=1

k
2. (A + B(n);)* 8],

i=1

l\D[»—*

Bn+1)T (7 + B(n) )

starting with A(0) = 0 and B(0) = 0. We say that a model is invertible if there exist k
maturities for which the matrix

B = [B'(n)-- - B'(ny)]

is nonsingular. The assumption of invertibility is not restrictive: if a model is not invertiblel’
we can construct an equivalent invertible model with a smaller state vector. Analogouslyl’
define the vector AT = [A/(nq),..., A'(ny)].

We now turn to a smaller class of models in which bond yields are always positive:

Lemma 1 Consider the Duffie-Kan class of affine models. If the model is invertible and
bond yields are positive for all admissible states z, then 3 is diagonal with strictly positive
elements.
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In words: the volatility functions have the univariate square root form
vi(z) = i + Piizi,

with strictly positive 3;. As a consequencel' § has full rank. This rules out both pure
Gaussian factors like 87 = (0,0,...,0) and multivariate factors like 3, = (1,1,...,1).

Proof. Supposel' in conradiction to the lemmal' thatf has less than full rank. Then
there exists a nonzero vector h satisfying 37 h = 0. For any admissible 2I'z' = z + ph is also
admissible for any real p since it generates the same values for the volatility functions. Now
consider bond yields. For yields to be positive we need bond prices to be less than one. If
y denotes a vector of yields for a set of maturities for which B is invertiblel' then ve need

y=A+B"z>0
for all admissible z. Since 2’ = z 4+ ph is also admissibleI' ve have
y=A+ BT 24+ pBTh.

By assumptionI'B is invertible so BTh # 0. Thus we can choose p to make yields as negative
as we likel’ therely violating the premise of the lemma. We conclude that # has full rank.
Condition A(b) then tells us that 3 must be diagonal. n

Our final result is that in this environment (univariate volatility functions)I' Var(z) has
nonnegative elements:

Lemma 2 Consider the Duffie-Kan class of affine models in which 3 is diagonal with
strictly positive elements ;. Then Var(z) has all positive elements.

The proof hinges on Condition A(a)I' Duffie and Kan’s miltivariate analog of the Feller
condition. Since 3 is diagonal with positive elementsI' the condition implies that for eah ¢

k
Zlﬁj(ej — Zj) > ,8“/2 > 0.
J=1

for all admissible z satisfying v;(z) = OI' where K = [ — & has elements x;;. The new
ingredient relative to the univariate Feller condition is the effect of variables z;,7 # ¢, on
the drift of z;. The structure placed on § means that the set of admissible z’s includes
values of z; that are arbitrarily large. The condition therefore implies ;; < 0 for all j # ¢ .
The admissible set also includes z; = 6;I sok;; > 0. Since ® = I — K has positive diagonal
elementsl ly assumptionls;; < 1.
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We have established that the elements of ® are nonnegative. We now show that the
unconditional variance of zI" whih we denote by the matrix QI has no negatie elements.
Since z is a first-order autoregression with stable ®I" its wriance is the solution to

Q=9000" +V(8),

where V(6) is a diagonal matrix with positive elements v;(6;) = «; + 0;;6;. Since ® is stablel’
we can compute §) iteratively using

Qi = 00,07 + V(6),

starting with g = 0. We see that at each stage the elements of Q;, are sums of products
of nonnegative numbersI” so ve conclude that the elements of {1 are nonnegative. m

We have addressed positive bond yields (Lemma 1) and nonnegative covariances (Lemma
2) in affine models for admissible values of the statel' whih need not be the same as values of
the state that occur with positive probability. ConsiderI" for examplel’ the bnriate process

(1— )0 + 92 + 21! *ere4

Il

21t+1
1/2
Zot42 = it Zu/ E2¢41-
The admissible region for this model includes any real number for z,I" et by design 2z, cannot

be negative (subject to the discrete time approximation). NeverthelessI' the coariance
between z; and 2y is positive.

A.3 Proof of Proposition 2

Proposition 2 is based on a model with three independent state variables or factors: a
cominon factor zg and currency-specific factors z; and z;. The common factor hasI' ly
constructionl’ no influence on currency prices or the forvard premium. It therefore has no
influence on the anomalyl’ and ve can disregard it.

With this simplificationI" iterest rates in the two currencies are

f

Tt

(6 —w)+ (y-7) 21
rro= (8 —w) (=T 2,

where w = 37, )\fa}f‘w* =3, /\;QQ?FT =2 )\5/3]1 /2" and7™ = 7, A;2/3f/2. The forward
premium is therefore
Ji=se=(y =) T2 — (7" =) 22

The depreciation rate is

Spp1 — 8= (6 — 6"+ 210 =7 2 /\Tvl(zlt)l/251t+l - /\*TVZ(ZZt)]/ZE‘Zt-H-
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The anomaly therefore requires
0> Cov(sipq — s, fi — s1) = (= 7) T Var(z))y + (v = 7°) T Var(zg)7v*. (34)
The question is whether this is consistent with interest rates that are always positive.

The condition that interest rates are positive for all admissible states places restrictions
on the parameters. For the “dollar” short rate 7 we need the elements of ¥ — 7" and hence
of ¥I' to be nonnegatiel sincer > 0 and each element of z; is unbounded above. By Lemma
2I' Var(z ) has nonnegative elementsI’ so the bilinear form

(y—7)" Var(z1)y,

is nonnegative. Similar reasoning applies to the second term in (34)I' so ve conclude that
the model cannot reproduce the anomaly with strictly positive interest rates. [

An example indicates that the proposition is limited to the Duffie-Kan class of affine
models. Consider a model based on an iid state variable z drawn from the uniform distri-
bution on [0I'1] with pricing lernel

—logmyp1 =6 +v2 + /323/2£t+1,
with {e;} ~ NID(0, 1) and independent of z. Then the short rate is
re =68+ (y = 5/2)z

If v < %2/2 and 6 + v — $%/2 = O the short rate wries between 0 and ¢ and is thus always
positive. With a similar model for the foreign interest ratel’ based on an analogous state
variable z*T' the forvard premium is (y — 32/2)(z — z*) and the forward premium regression

has slope
v

Sy =Y

which is negative under the stated conditions. This example is affine in the sense that yields
are linear functions of state variablesI' and is capable of accoutting for the anomaly with
positive interest rates’ but it is not in the Duffie-Kan class.

23)

A.4 Distribution of State Variables

Consider a state variable z following the square root process (18). For short time intervalsI’
the unconditional distribution of z is approximately Gamma with density

f(z) = [b*T(a)]7" 207 e™/.

and parameters a,b > 0. This conclusion relies on a similar statement by CoxI' Ingersolll
and Ross (1985) for their continuous-time analog and Sun’s (1992) demonstration that the
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discrete time model converges to Cox-Ingersoll-Ross. The mean and variance for a Gamma
random variable are ab and ab?I’ whih defines the parameters as

1 - ¢2)8

4 = 520)
ag

b= T
1—¢?

In the continuous-time limit 1 — ¢? — 2k = 2(1 — ) soa — 2(1 — ¢)8/a>T the Eller ratio
in inequality (26). We compute other moments using the moment generating function:

¢(s) = (1= bs)™",
for s < 1/b. Indicators of the first four moments are

p1(mean) = 6

(variance) = o’
palvarance) = =)
2 o? 172
vi(skewness) = Yo 2 (m>
. 6 602 )
v2(kurtosis) = P 3= Y - 3.

In continous timel" the Eller condition (19) is equivalent to @ > 1. Thus parameter values
implying small a violate the Feller condition and generate large values of the skewness and
kurtosis measuresI'y; and ~,.
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Table 1

Properties of Currency Prices and Interest Rates

Currency Mean Std Dev Skewness Kurtosis Autocorr

A. Depreciation Ratel's;41 — s¢

British Pound —0.0017 0.0342* —0.187 2.075 0.084
Canadian Dollar —-0.0015 0.0122* —0.343 0.636 0.057
French Franc —0.0005 0.0328* —0.357 1.198 —0.002
German Mark 0.0021 0.0340* —0.289 0.901 —0.015
[talian Lira —0.0038 0.0334* —0.712 1.961 0.049
Japanese Yen 0.0044 0.0324* 0.403 0.622 0.067

B. One-Month Interest Ratel'r;

American Dollar 0.0069* 0.0030* 0.996 0.884 0.957*
British Pound 0.0093* 0.0027* 0.045 -0.077 0.915*
Canadian Dollar 0.0081~ 0.0028* 0.822 1.145 0.965*
French Franc 0.0091* 0.0035* 2.380 7.906 0.755%
German Mark 0.0053* 0.0020* 0.652 -0.235 0.969*
Italian Lira 0.0122* 0.0045* 1.732 4.140 0.743*
Japanese Yen 0.0046* 0.0020* 0.564 2.095 0.914*

C. Forward PremiumI' f, — s, = r, — 1}

British Pound —0.0024* 0.0027* —0.053 1.169 0.900*
Canadian Dollar —0.0014~ 0.0014~ 0.018 0.480 0.842*
French Franc —0.0023* 0.0032* —0.670 2.546 0.660™
German Mark 0.0017* 0.0029* —0.573 0.088 0.953*
Italian Lira —0.0056* 0.0045* —-2.117 6.384 0.724*
Japanese Yen 0.0021* 0.0029* 0.298 0.303 0.888*

Entries are sample moments of depreciation ratesI's;y; — s;I' one-monh eurocurrency in-
terest ratesI'r,I" and forvard premiumsI' f; — s;. The data are monthlyl’ last Fiday of the
monthI" from the Harris Bank’s Weekly Review: International Money Markets and Foreign
Fzchangel' compiled ly Richard Levich at New York University’s Stern School of Business.
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The data are available by anonymous ftp: aleast.gsia.cmu.edu in directory /dist/fx. Dates
¢ run from July 1974 to November 1994 (245 observations). An asterisk (*) indicates a
sample moment at least twice its Newey-West standard error. The letters s and f denote
logarithms of spot and one-month forward exchange ratesI' respectielyl’ measured in dollars
per unit of foreign currencyl’ andr denotes the continuously-compounded one-month yield.
Mean is the sample meanT St Dev the sample standard deviationI" Sdwness an estimate of
the skewness measure y;I" Kurtosis an estimate of the kurtosis measurey,I' and Autocorr
the first autocorrelation. The skewness and kurtosis measures are definedI’ specificallf’ in
terms of central moments p;: v1 = ,11,3/#2/2 and v, = pg/p2 — 3. Both are zero for normal
random variables. Our estimates replace population moments with sample moments.



Table 2

Forward Premium Regressions

Currency o sy Std Er R?

British Pound —0.0062 —1.840 0.0339 0.0213
(0.0027) (0.847)

Canadian Dollar —0.0036 —1.575 0.0120 0.0341
(0.0009) (0.460)

French Franc —0.0021 —-0.674 0.0328 0.0042
(0.0031) (0.827)

German Mark 0.0033 -0.743 0.0340 0.0041
(0.0025) (0.805)

Italian Lira —0.0042 —-0.073 0.0335 0.0001
(0.0039) (0.453)

Japanese Yen 0.0080 —1.711 0.0320 0.0230
(0.0024) (0.643)

Entries are statistics from regressions of the depreciation ratel's;y; — s¢I" on the forvard
premiuml f; — sy

St41 — St = ay + az(fi — s¢) + residual,
where s and f are logarithms of spot and forward exchange ratesl” respectielyl’ measured as
dollars per unit of foreign currency. The data are described in the notes to Table 1. Dates
¢t run from July 1974 to November 1994 (245 observations). Numbers in parentheses are
Newey-West standard errors and Std Er is the estimated standard deviation of the residual.
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Figure 1

Mean Depreciation Rates and Forward Premiums
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