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ABSTRACT 
 

25 years of volatility research has left the macroeconomic environment 
playing a minor role.  This paper proposes modeling equity volatilities as a 
combination of macroeconomic effects and time series dynamics.  High frequency 
return volatility is specified to be the product of a slow moving deterministic 
component, represented by an exponential spline, and a unit GARCH.  This 
deterministic component is the unconditional volatility, which is then estimated 
for nearly 50 countries over various sample periods of daily data. 

Unconditional volatility is then modeled as an unbalanced panel with a 
variety of dependence structures.  It is found to vary over time and across 
countries with high unconditional volatility resulting from high volatility in the 
macroeconomic factors GDP, inflation and short term interest rate, and with high 
inflation and slow growth of output. Volatility is higher for emerging markets and 
for markets with small numbers of listed companies and market capitalization, but 
also for large economies.  

The model allows long horizon forecasts of volatility to depend on 
macroeconomic developments, and delivers estimates of the volatility to be 
anticipated in a newly opened market. 
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1.  Introduction 

 

After more than 25 years of research on volatility, the central unsolved problem is the 

relation between the state of the economy and aggregate financial volatility.  The number 

of models that have been developed to predict volatility based on time series information 

is astronomical, but the models that incorporate economic variables are hard to find.  

Using various methodologies, links are found but they are generally much weaker than 

seems reasonable.  For example, it is widely recognized that volatility is higher during 

recessions and following announcements but these effects turn out to be a small part of 

measured volatility.  

 

Officer(1973) tried to explain the high volatility during the 30’s based on leverage and 

the volatility of industrial production. Schwert(1989) sought linkages between financial 

volatility and macro volatility but concluded that “The puzzle highlighted by the results 

in this paper is that stock volatility is not more closely related to other measures of 

economic volatility.”  

 

An alternative approach examines the effects of news or announcements on returns.  With 

simple or elaborate regression models, contemporaneous news events are included in 

return regressions.  Roll(1988), and Cutler Poterba and Summers(1990) for example 

developed such models which are found to explain only a fraction of volatility ex post, 

and more recent versions such as Andersen and Bollerslev(1998a), Fleming and 
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Remolona(1999), Balduzzi, Elton and Green(2001), or Andersen Bollerslev Diebold and 

Varga(2005) use intraday data but with more or less similar results. 

 

This paper will introduce a simple model of the relation between macroeconomics and 

volatility and then apply this to the problem of explaining the financial volatility of 50 

markets over time.  Along the way a new volatility model, the SPLINE GARCH, will be 

introduced to allow the high frequency financial data to be linked with the low frequency 

macro data.  As a result it will be possible to forecast the effect of potential 

macroeconomic events on equity volatility and to forecast the volatility that could be 

expected in a new market.  Moreover, the assumption that volatility is mean reverting to a 

constant level, which underlies almost all GARCH and SV models estimated over the last 

25 years, will be relaxed by the SPLINE GARCH model. 

 

This paper is organized as follows. In section 2, we describe a model of financial 

volatility in a macroeconomic environment. In section 3, we introduce the Spline-

GARCH model for unconditional volatility. Section 4 presents a description of the data 

followed by a discussion on the definition and construction of the variables involved in 

the cross-sectional analysis. In section 5, we motivate the econometric approach for the 

cross-sectional analysis and discuss the estimation results of the determinants of long run 

volatilities. In section 6, we analyze the effects of country heterogeneity in our results. 

Section 7 presents a further robustness analysis with estimation of alternative models 

using other proxies for unconditional volatilities. Section 8 provides concluding remarks. 
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2.  A Model of Financial Volatility in a Macroeconomic Environment 

 

The now highly familiar log linearization of Campbell(1991) and Campbell and 

Shiller(1988)  delivers an easy expression for the surprise in the return to a financial 

asset.  Let r be the log return and d be the log dividend from owning the asset from time 

t-1 through t.   Then 

(1)   ( ) ( ) ( )( ) ( )(1 1 1
0 0

1 j j
t t t t t t j t t t j

j j

r E r E E d E E rρ ρ ρ
∞ ∞

− − + +
= =

− = − − − −∑ ∑ )1 1− + +

r
t

which can be written as 

(2) 1
d

t t t tr E r η η−− = −   

Unexpected returns can be decomposed into shocks to future cash flows or shocks to 

future expected returns.  Shocks to dividends have a positive effect on returns while 

shocks to interest rates or risk premiums have a negative effect.  Different news events 

may have very different impacts on returns depending on whether they have only a short 

horizon effect or a long horizon effect.  

 

In order to explain the size of these shocks, much research has decomposed unexpected 

returns into its news components.  Equation (2) can be written as 

(3)   1
1

K

t t t i t i t i
i

r E r z eβ−
=

− =∑ , ,

where there are K news sources.  The magnitude of the news event is indicated by e 

which could be the difference between prior expected values and the announced value.  It 

is clear that announcements cannot be the only source of news since the gradual 

accumulation of evidence prior to the actual announcement, must also affect prices.  The 
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effect of this news on stock prices may depend upon the state of the economy as given by 

zi,t .  For example, bad news about a firm may be more influential in a recession than in a 

growth period as the firm may be closer to bankruptcy.   

 

This model is only useable if the news is observable.  If it is not, then equation (3) has 

only one innovation that represents all the news.  The multiplicative factor ( )1 tzτ  

aggregates all the relevant macroeconomic inputs. 

(4) ( )1 1t t t tr E r z uτ−− = t  

The variance of this innovation will again depend upon macro factors, partly because the 

size of the news will depend upon these variables and partly because the intensity of 

news arrivals will also depend upon macroeconomics.   This can be written as 

(5) ( ) ( )2t tV u zτ=  

where either the macroeconomic variables z are treated as deterministic or the variance is 

calculated conditional on the macroeconomy.  The innovation u, may however have 

temporal dependence that is not due to macroeconomics.  Suppose the remaining 

heteroskedasticity is modeled by a GARCH process with unit unconditional variance.  

Then 

(6) ( )2t t tu z g tτ ε=  

where both g and ε2 have unit unconditional expectation.  Substituting (6) into (4) gives 

(7) ( ) ( )1 1 2t t t t t t tr E r z z gτ τ ε−− =  
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Clearly the macroeconomic effects on volatility derive from both the variance of the 

news and the multiplier of the news, however these cannot be separately identified unless 

the news is observable.    

 

One approach is to estimate (7) directly by specifying a relationship for the unconditional 

variance.   This is the approach to be introduced in this paper.  A second approach is to 

calculate the realized variance over a time period and then model the relation between 

this value and the macro variables.  The realized variance is given by its expected value 

plus a mean zero error term with unspecified properties.  This gives 

(8) ( ) ( ) ( )22
1 1 2

1 1

σ̂ τ−
= =

= − = +∑ ∑ τ
T T

T t t t t t
t t

r E r z z wT   

It is clear that there is an error term in (8) that will make estimation less precise but still 

unbiased. 

 

In practice, direct estimation of (7) is not convenient as the macro variables are not 

defined for each high frequency date.  Use of quarterly values will lead to breaks at the 

end of quarters that will have no economic meaning.  Instead, we introduce a partially 

non-parametric approximation to the macro variables.   It reflects the fact that they are 

slowly changing.  This has the great advantage that it can be used for any series without 

requiring specification of the economic structure.  The estimated unconditional variances 

can then be fitted on a low frequency basis to the macro determinants just as in (8).  This 

SPLINE GARCH model is introduced in the next section. 
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3.  A New Time Series Model for Conditional and Unconditional Volatility 

 

Our time series model extends the GARCH(1,1) model introduced (in a generalized 

form) by Bollerslev (1986) offering a more flexible specification of unconditional 

volatility using a semi-parametric framework. Despite the success of the standard 

GARCH(1,1) model in describing the dynamics of conditional volatility in financial 

markets (particularly in the short run), its implications for long run volatilities are 

restrictive, in the sense that this model implies a constant expected volatility in the long 

run (i.e., the long run volatility forecast is constant). This feature does not seem to be 

consistent with the time series behavior of realized (and implied) volatilities of stock 

market returns. Consequently, we need a model flexible enough to generate an expected 

volatility that captures the long run patterns observed in the data. To accomplish this 

goal, we modify the standard GARCH(1,1) model by introducing a trend in the volatility 

process of returns. Specifically, this trend is modeled non-parametrically using an 

exponential quadratic spline, which generates a smooth curve describing the long run 

volatility component based exclusively on data evidence. Our Spline-GARCH model for 

stock returns can be expressed as follows: 

  

(9) 1,  where | ~ (0,1)t t t t t tr g Nµ τ ε ε −= + Φ  

 

(10) ( )2
1

1
1

(1 ) t
t t

t

r
g g

µ
α β α β

τ
−

−
−

⎛ ⎞−
= − − + +⎜ ⎟⎜ ⎟

⎝ ⎠
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(11) ( )2
0 1

1

exp ( )
k

t i i
i

c w t w t t ztτ γ− +
=

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

∑  

 

where, 

 

tΦ denotes the information set including the history of returns up to time t and weakly 

exogenous or deterministic variables zt, 

 

( ) if 
( )

    0      otherwise
i i

i

t t t t
t t +

− >⎧
− = ⎨

⎩
 

 

and { }0 1 20, , ,..., kt t t t T= =  denotes a partition of the time horizon T in k equally-spaced 

intervals.   { }0 1, , , , , ,..., kc w w wµ α βΘ =  includes the parameters estimated in the model. 

Since k, the number of knots in the spline model, is unspecified, we can use an 

information criterion to determine an “optimal” choice for this number, which in fact 

governs the cyclical pattern in the long run trend of volatility. Large values of k imply 

more frequent cycles. The “sharpness” of each cycle is governed by the coefficient, {wi}. 

Notice that the normalization of the constant term in the GARCH equation implies that 

the unconditional volatility depends exclusively on the coefficients of the exponential 

spline. In fact, the unconditional volatility is: 

 

(12) 2( ) ( )t t tE r E g tµ τ τ⎡ ⎤− = =⎣ ⎦  
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Our semi-parametric approach has the potential to capture both short and long term 

dynamic behavior of market volatility. Equation (2) characterizes the short term 

dynamics keeping the nice properties of GARCH models in fitting and forecasting 

volatility processes at high and low frequencies1. Equation (11) describes, non-

parametrically, the long term dynamics of volatility with a smooth differentiable curve 

including k-1 inflexion points that (naturally) capture cyclical patterns. Figure 1 

illustrates the model for the US, based on the S&P500. The graph shows how the Spline-

GARCH model fits short and long run patterns of volatility during the period 1955-2003. 

The volatility trend suggested by the data reveals a cyclical behavior that may be 

associated with the business cycle. In addition, the graph shows that the assumption that 

volatility reverts towards a constant is not appealing to describe long run volatility 

behavior.  In figure 2, similar pictures are presented for another six countries.  In the 

following sections, we use evidence of international markets to explore the determinants 

of the unconditional volatility presented in equation (12).  

 

 

4.  Data Sources 

 

Our empirical analysis considers stock market returns, stock exchange features, and 

macroeconomic variables from different economies. Using the index associated with the 

main stock exchange, we collect daily data of several countries on stock market returns 

from Datastream and Global Financial Data. Our sample includes all developed countries 

                                                 
1 See Andersen and Bollerslev (1998b). 
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and most emerging markets that experienced significant liberalization during the 1980’s 

and 1990’s, as described in Bekaert and Harvey (2000).  

 

We also collect information for different years on the size and diversification of each 

market, such as market capitalization and the number of listed companies. The former is 

obtained from Global Financial Data and the official web pages of the exchanges. The 

sources for the latter are: the World Federation of Exchanges, the Ibero-American 

Federation of Exchanges (FIAB), and official web pages of the exchanges.  

 

The sources for our macroeconomic variables are Global Insight/WRDS, Global 

Financial Data, and the Penn World Tables. These variables include: GDP, inflation 

indices (Consumer Price Indices are used to measure inflation), exchange rates, and short 

term interest rates. The set of countries with available macroeconomic data is smaller 

than the set with available financial time series data. Thus, we are left with a reduced 

sample of 48 countries. Table (1) lists these countries, the names of the exchanges and 

market indices, their IFC country classification as developed or emerging markets, as 

well as general exchange features, such as average values for the number of listed 

companies and market capitalization. 

 

4.1  Variables Discussion 

 

We start with a description of the dependent variable.  In this regard, given that 

volatilities are not directly observed, we need to define a measure of unconditional 
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volatilities to construct our dependent variable.2 For each country, we use the Spline-

GARCH model introduced in section (2) to fit its daily time series of market returns. We 

use the BIC to select the optimal number of knots associated with the spline component. 

In each case, we obtain the unconditional expected volatility described in equation (12). 

Thus, a measure of the unconditional volatility can be defined as the average of the 

unconditional volatilities over a long term horizon, namely one year. It is important to 

mention that we tried to maximize the number of daily observations used in the 

estimation for each country; however, either data availability constraints or age of the 

exchanges lead to different sample windows. 

 

We appeal to economic theory and previous empirical evidence to select the potential 

determinants of unconditional volatilities. Levels as well as fluctuations of fundamental 

variables are the natural candidates. Previous research has pointed out the relation 

between volatilities and the business cycle; for example, Schwert (1989) and Hamilton 

and Lee (1996) find economic recessions as the most important factor influencing the US 

stock return volatility. We consider the growth rate of real GDP as a variable accounting 

for changes in real economic activity. 

 

Volatility and uncertainty about fundamentals are also potential factors affecting market 

volatility. For example, Gennotte and Marsh (1993) derive returns volatility and risk 

premia based on stochastic volatility models of fundamentals; David and Veronesi (2004) 

identify inflation and earnings uncertainty as sources of stock market volatility and 

                                                 
2 Andersen et. al (2003) argue that under suitable conditions, realized volatilities can be thought as the 
observed realizations of volatility. We present estimation results for this alternative measure of long term 
volatilities in section (5). 
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persistence. We consider measures of macroeconomic volatility to account for this 

uncertainty. Specifically, we construct a proxy for inflation volatility based on our CPI 

quarterly time series. We obtain the absolute values of the residuals from an AR(1) 

model, and then we compute their yearly average.  

  

(13) 
( ) 1

1
2
,

2

log ,

1
4

t t t t

t

y t j
j t

y c u u u e

e

ρ

σ

−

+

= −

∆ = + =

= ∑
t+
 

 

Following the same setup, we construct proxies for country economic uncertainty linked 

to fundamentals. In particular, we estimate volatilities of real GDP, interest rates (without 

logs) and exchange rates based on the residuals of fitted autoregressive models. Exchange 

rates are measured as US$ per unit, and interest rates are based on short term government 

bonds. 

 

Some country-based empirical studies have suggested that market development is an 

important element in explaining differences in market volatilities across countries. For 

example, De Santis and Imrohoroglu (1997) find higher conditional volatilities, as well as 

larger probabilities of extreme events, in emerging markets relative to developed markets. 

Moreover; Bekaert and Harvey (1997) find that market liberalizations increase the 

correlation between the local market and the world market, but they do not find 

significant effects on market volatilities. In order to capture the effect of market 

development in our analysis we construct two dummy variables for emerging markets 

and transition economies. The emerging market classification comes from the IFC; we 
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define transition economies as the former socialist economies, such as the Central 

European and Baltic countries in our sample. 

 

To explain further variations in the cross-sectional stock market volatilities it is important 

to account for other factors associated with market liberalizations, for example 

macroeconomic reforms relevant for both increasing efficiency in risk sharing and 

increasing market liquidity. In emerging economies many macroeconomic reforms are 

intended to open the economies to international trade and to improve institutional control 

of inflation. Bekaert, Harvey, and Lundblad (2004) find that a larger external sector, as 

well as a larger inflation rate, is positively related to consumption and GDP growth 

volatility. Since we are interested in variables explaining volatility of fundamentals, we 

account for the size of each country external sector and inflation rates. Specifically, we 

measure the external sector as the sum of imports and exports divided by real GDP (i.e., 

total trade as a percentage of GDP). In addition, we measure inflation rates as the growth 

rate of the CPI. 

 

Cross-sectional variation in market volatilities may also be related to the size of the 

markets. We would expect that larger markets have advantages in terms of offering 

broader diversification opportunities and probably lower trading costs. We consider two 

different variables to account for the market size. The first one is the log of the annual 

market capitalization of each exchange. The second one is the log of nominal GDP in US 

dollars. Having these variables in logs allows for testing the effect of the stock market 

size as a proportion of the overall value of the economy (ratio of market capitalization to 
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GDP). This ratio can be used as a measure of how developed is the stock market and as a 

proxy for the degree of integration in terms of foreign investment.3 All of these variables 

are converted to US dollars using annual exchange rates. Finally, we consider the number 

of listed companies on each exchange as a variable proxying the market size and the span 

of market diversification opportunities. Table (2) summarizes the variables of our 

analysis. 

 

 

5.  Cross-Sectional Analysis of Unconditional Volatilities 

 

In this section, we describe our cross-sectional analysis of expected market volatilities in 

the long run. Before describing the general setup, it is important to point out some data 

issues and conventions. First, we relate long run periods with annual intervals.4 Thus, for 

each of the variables introduced above, we construct annual averages. Next, for each 

country, we have to match the annual long run volatility time series with several 

macroeconomic time series. This process leads to country-specific sample windows, and 

therefore to an unbalanced panel of countries. Moreover, the number of countries 

increases with time, since recent data is available for most of the countries, and also 

because many markets started operations during the 1990’s (e.g. transition economies). 

Therefore, in order to keep a relatively large number of countries in the cross-sectional 

dimension, we consider a panel that covers from 1990-2003. This data structure can be 

                                                 
3 Bekaert and Harvey (1997) consider the ratio market capitalization to GDP and the size of the trade sector 
as measures of the country’s degree of financial and economic integration that affect the inter-temporal 
relation between domestic market volatilities and world factors. 
4 This convention has no effect in our framework. We could have taken a different horizon and followed 
the same process. 
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summarized in a system of linear equations projecting, for each year, the unconditional 

volatility on the explanatory variables described in table (2),  

 

(14) , , ,' ,  1,2,..., ,  1,2,...,i t i t t i t tUvol x u t T i Nβ= + = =  

 

where ,i tx  is a  vector of explanatory variables, and  is the error term assumed to 

be contemporaneously uncorrelated with 

1k × ,i tu

,i tx .5

 

The next task is to find an econometric approach that efficiently accounts for the features 

observed in the structure of our data. We start by looking at the correlation structure of 

the data across time. In particular, we select a sub-panel from 1997-2003 to have an 

almost balanced structure. We look at the correlation across years of long run volatilities, 

regressors, and residuals coming from individual regressions for each year. Tables (3) 

and (4) present such correlations for unconditional volatilities and residuals, respectively. 

These tables show high correlation of the residuals, suggesting that unobservable factors 

affecting expected volatilities are likely to be serially correlated across time. In addition, 

even higher correlation is observed on the dependent variable suggesting little variation 

across time. Similarly, it is observed that many of the explanatory variables are also 

highly correlated across time, showing again little time variability. Some exceptions that 

                                                 
5 The assumption   does not rule out non 
contemporaneous correlation; so, the error term at time t may be correlated with the regressors at time t+1. 
Therefore, in this setup financial volatility can cause macroeconomic volatility, as is suggested in Schwert 
(1989).  However when SUR estimation is used, the assumption of exogeneity will be maintained  

, ,( ' ) 0,  1, 2,..., ,  1, 2,...,i t i t tE x u t T i N= = =
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show lower correlation across time are the real GDP growth rate and the exchange rate 

volatility. 

 

The observation of these features motivates our econometric approach. As usual in cross 

sectional studies, we assume that the errors are uncorrelated in the cross-section.6  

However there is clear autocorrelation.  A method that efficiently handles autocorrelation 

in the unobserved errors is appealing.  The Seemingly Unrelated Regressions (SUR) 

model developed by Zellner (1962) provides a framework that imposes no assumptions 

on the correlation structure of the errors and easily incorporates restrictions on the 

coefficients. The presence of large autocorrelations across the disturbances, as suggested 

in table (4), implies important gains in efficiency from using FGLS in a SUR system as 

well as improved standard errors. Standard panel data approaches that impose further 

restrictions could be considered; however, their underlying assumptions and estimation 

features seem to be less attractive based on the features of our data. For example, the low 

variation over time observed in many of the explanatory variables indicates that fixed 

effects models can lead to imprecise estimates (see Wooldridge, 2002). On the other 

hand, even though the standard random effects model allows for some time correlation, 

the structure of the covariances is restrictive in the sense that it comes exclusively from 

the variance of the individual effects, which is assumed to be constant across time. This 

feature does not seem appealing based on the evidence in table (2). Therefore, more 

general panel data approaches that deal more efficiently with serial correlation would be 

desirable. We will explore one possibility in the robustness section. Nevertheless, given 

                                                 
6 Cross sectional dependence will generally not give inconsistency in our model, but inference and 
efficiency could be improved if a factor structure is assumed as in Pesaran(2005).  
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that the SUR method allows for time fixed effects and flexible autocorrelation structure, 

we take this approach as our main specification for the cross sectional analysis. We 

assume that the coefficients, other than the intercept, remain constant over time. This is a 

testable restriction on the general SUR setup.   

 

Using this SUR modeling strategy, we start our cross sectional analysis by exploring the 

relationship between unconditional volatilities and each of the explanatory variables, one 

at a time. Table (5) presents the estimation results of the system of cross sectional 

regressions on single explanatory variables.7 From this preliminary analysis, we observe 

positive relations among unconditional market volatilities and each of the following 

variables: emerging markets, log nominal GDP, inflation rate, and macroeconomic 

volatilities (associated with interest rates, exchange rates, GDP, and inflation). In 

contrast, the following variables show a negative relation with long run market volatility: 

transition economies, growth rate of GDP and market size variables, such as log market 

capitalization, and number of listed companies. The results are significant for most 

variables except for transition economies and log nominal GDP in current US dollars.  

 

Next, we estimate the full system of equations described in (14), which includes all the 

explanatory variables. The corresponding results are presented in the first column of table 

(6). From this analysis, we observe that emerging markets show larger expected volatility 

compared to developed markets. The effect is significant and consistent with the 

empirical evidence about volatility of emerging markets (see Bekaert and Harvey, 1997).  

It is however much smaller than in the univariate regressions. Transition economies have  
                                                 
7 The constant term is allowed to vary across years. 
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only slightly larger volatility than developed economies.  Market size variables show 

different results. Whereas log market capitalization has a significant negative effect (at 

the 10% level), log nominal GDP in current US dollars is positive and significant (at the 

5% level). The positive effect dominates, suggesting that larger market sizes are 

associated with larger expected volatilities. In contrast, the number of listed companies in 

the exchange has a negative effect on volatility. This suggests that markets with more 

listed companies may offer more diversification opportunities, reducing the overall 

expected volatility.  

 

In regard to real economic activity variables, the results show that economic recessions 

increase unconditional volatility, and inflation rates also affect it positively. These results 

indicate that countries experiencing low or negative economic growth observe larger 

expected volatilities than countries with superior economic growth. Similarly, countries 

with high inflation rates experience larger expected volatilities than those with more 

stable prices. Although the effect is not significant for real GDP growth, the effect is 

larger and highly significant for inflation rates.  

 

In relation to volatility of macroeconomic fundamentals, the results suggest that volatility 

of inflation, as well as volatility of real GDP, are strong determinants of unconditional 

market volatility. Both variables are associated with significant positive effects. The 

coefficient on interest rate volatility is also positive and significant but small in 

magnitude. The effect of exchange rate volatility is negative, small and quite 
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insignificant. This evidence encourages theoretical work relating volatility of 

fundamentals to causes of fluctuations in unconditional market volatility. 

 

We also consider plausible dimension reductions based on the significance of the 

explanatory variables. We estimate different model specifications based on a reduction 

process that drops the least significant variable one at a time. In this process, the 

goodness of fit in each model is given by the concentrated likelihood, and therefore by 

the determinant of the residual covariance. In addition, to select an optimal reduction, we 

take an information criterion approach; in particular, we select a BIC type of penalization 

for increasing the number of parameters. In column 2 of table (7), we present the “best” 

reduction in which the BIC favors a specification for which volatility of exchange rates 

(first) and real GDP growth (second) are omitted. Therefore, the reduction process leads 

to a model with nine explanatory variables. 

 

 

6.  Country Heterogeneity 

 

We start this section with a diagnostic analysis estimating the benchmark SUR model 

excluding from the sample one country at a time. Figures 3 and 4 show the coefficients 

associated with each regressor and the t-statistics respectively. Each point in the 

horizontal axis represents the country that is dropped from the sample following the order 

presented in table (1). For instance, the first point corresponds to the estimation without 

Argentina, and the last point corresponds to the estimation without Venezuela. From 
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figure 4, we observe that the significance of some explanatory variables remains strong 

no matter which country is taken out of the sample. Indeed, this is the case for emerging, 

number of listings, log nominal GDP, and volatility of real GDP, which also preserve the 

same sign (see panels 1, 4, 5, and 10, figures 3 and 4). In contrast, a surprising result 

arises with respect to real GDP growth and volatility of inflation. When we remove 

Argentina from the sample, volatility of inflation is no longer significant and changes 

sign (see panel 11, figures 3 and 4); at the same time, real GDP growth becomes 

significant with a considerably larger negative sign (see panel 6, figures 3 and 4). 

 

Argentina seems to be an influential observation for other variables as well. For instance, 

volatility of interest rates becomes highly significant when this country is dropped from 

the sample. Moreover, although other observations such as Czech Republic and Russia 

seem to be influential for the significance of this variable (see panel 8, figure 4), the 

effect of these countries is no longer influential once Argentina is taken out of the 

sample. Thus, without Argentina, volatility of interest rate is significant at 5% level no 

matter which other country is omitted. Something similar occurs with inflation; indeed, 

the apparent influential effects on the significance of inflation of countries such as 

Lithuania, Peru, and Turkey are drastically diminished once Argentina is out of the 

sample.8

 

Column 4 of table (6) presents estimation results of the SUR model when Argentina is 

removed from the sample. As shown in figures 3 and 4, the main differences with respect 

                                                 
8 Inflation remains significant at 5% when either Lithuania or Turkey is dropped from the sample without 
Argentina. For Peru, the variable is significant only at 13%. 
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to column 1 include the loss of log market capitalization and volatility of inflation as 

significant explanatory variables, and the gain of real GDP growth as a significant 

variable. From these diagnostics we find that the results for six variables, namely 

emerging, log nominal GDP, number of listings, inflation, volatility of interest rates, and 

volatility of real GDP growth, are quite robust. Regarding real GDP growth and volatility 

of inflation, the results presented in the previous section should be taken with caution 

given the sensitivity of the corresponding estimates to the inclusion of Argentina in the 

sample. 

 

However, dropping Argentina from the sample might be unsatisfactory not only because 

this country is an important emerging market in which the relation between 

macroeconomic environment and financial volatility might be of particular interest 

(especially during the period surrounding the recent Argentine crisis, 2001-2002), but 

also because looking at the macroeconomic time series of Argentina, we did not find a 

conclusive argument to support the deletion of this country.  

 

Therefore, we explore the possibility of giving more structure to the unobserved 

individual country effects in order to evaluate their possible impacts in our results. 

Specifically, we estimate an alternative panel data model that accounts for individual 

country random effects, keeping the time fixed effects, and allows for serial correlation in 

the remainder error term using a simple first order autoregressive process.9 In fact, this 

                                                 
9 References for panel data models with serial correlation include Lillard and Willis (1978), Baltagi and Li 
(1991), and Chamberlain (1984). 
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reflects the effect of unobserved variables that are serially correlated across time. Thus, 

the error term in equation (14) is modeled as follows: 

 

(15) , ,i t t i i tu λ µ ν= + +  

 

where 

       , , 1 ,

,

,

time fixed effects
~ (0, )

~ (0, )

t

i

i t i t i t

i t

i t i

iid

iid

µ

ε

λ
µ σ

ν ρν ε

ε σ
ε µ

−

=

= +

⊥

 

 

Estimation results for this model are shown in the last column of table (6). We confirm 

the robustness of our results with respect to the six variables mentioned above. Moreover, 

in this case neither real GDP growth nor volatility of inflation is significant. Interestingly, 

even though all countries were included in the sample, these results look quite similar to 

those in column 4, corresponding to the SUR model without Argentina. Therefore, 

modeling random country effects seems to account for the effect of unobservables 

associated with influential observations.10

 

                                                 
10 Specifications with fixed country effects were also considered; however, as we expected from our earlier 
discussion about the little time variability observed in most of our explanatory variables, the Hausman 
(1978) test rejected in general fixed effects specifications in favor of random effects models. 
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7. Realized Volatility 

 

We continue our robustness analysis by comparing the estimation results of the cross-

sectional expected volatility model with alternative measures of long term volatilities. 

First, we estimate a system of equations using the annual realized volatility instead of the 

Spline-GARCH unconditional volatility. This leads to the following system: 

 

(16) , , ,_ ' ,  1, 2,..., ,  1, 2,...,i t i t t i t trealized volatility x v t T i Nβ= + = =  

 

where the same explanatory variables are included, and  satisfies the same conditions 

mentioned in section 5. The estimation results for realized volatilities are presented in 

column 1 of table (7). We observe the same signs for most of the variables with exception 

of volatility of inflation. Specifically, volatility of inflation shows a negative and 

insignificant effect on realized volatilities, contrasting with the unconditional volatility 

case, in which the effect was positive and highly significant. 

,i tv

 

Column 2 of table (7) shows estimation results for the “best” reduction based on the same 

criterion described in the previous section. Specifically, for realized volatilities, the least 

significant variable is the indicator of transition, followed by volatility of inflation, and 

inflation rate. In this case, our information criterion suggests that omitting these three 

variables is optimal. Hence, in contrast with the unconditional volatility from the Spline-

GARCH model, the realized volatility shows almost no responsiveness to inflation 

variables but is significantly negatively affected by the real GDP growth, a variable that 
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is characterized by its low correlation across time with respect to other explanatory 

variables. 

 

As in the case of unconditional volatilities, we perform a diagnostic analysis by 

reestimating the SUR model dropping from the sample one country at a time. Figures 6 

and 7 present the estimates and t-statistics respectively. In this case, Argentina also seems 

to be an influential observation for volatility of inflation and real GDP growth (see panels 

6 and 11, figures 5 and 6). Nevertheless, volatility of inflation is never significant and 

real GDP growth is always significant. Figure 6 suggests that five variables, namely 

emerging, log nominal GDP, real GDP growth, volatility of interest rates, and volatility 

of real GDP growth, are always significant at 5% level no matter which country is deleted 

from the sample. On the other hand, number of listings is sensitive to the inclusion of the 

UK, and log market capitalization is sensitive to the inclusion of Chile, India, Poland, and 

South Africa. The last two columns of table 7 confirm this description. The results from a 

SUR model without Argentina do not change too much with respect to the results in 

column 1 (including all countries). However, when random country effects are 

introduced, number of listings and log market capitalization are no longer significant. Just 

the five variables named above remain significant. Note that four of them, namely 

emerging, log nominal GDP, volatility of interest rates, and volatility of real GDP 

growth, coincide with the “robust” variables in the unconditional volatility case. 

Nevertheless, the main difference with respect to this case is maintained. Real GDP 

growth is always relevant for realized volatility but not for unconditional volatility; and 

inflation is always significant for unconditional volatility but never for realized volatility. 
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Moreover, number of listings is also always significant for unconditional volatility, but it 

is not for realized volatility in the random effects model. 

 

Furthermore, we observe that among the SUR specifications, the determinant of the 

residual covariance is smaller for the models with unconditional volatility as dependent 

variable. This may suggest that unconditional volatility fits better in terms of the 

concentrated likelihood. In addition, table 8 shows the R-squares for each equation in the 

SUR system for both unconditional and realized volatility. The results point to the same 

direction that the model using unconditional volatility shows better fit than that using 

realized volatility. In summary, as is illustrated in figure 2, discrepancies in the results 

between unconditional and realized volatility might be due to the fact that the latter is a 

noisier measure of long run volatility. 

 

We also compare the results in levels from the previous sections with the results from a 

model in logs. Specifically, we estimate two systems of equations, in which the log of 

both the unconditional volatility from the Spline-model and the annual realized volatility 

are the dependent variables for each year, respectively. Column 3 in Tables (6) and (7) 

presents estimation results for these cases. Note that for most of the variables the signs do 

not change with respect to the models in levels. The only exception is the real GDP 

growth rate for unconditional volatility, whose coefficient turns positive, albeit it is the 

least significant variable. In fact, our reduction process suggests that omitting only this 

variable leads to the “best” specification.  
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8.  Concluding Remarks 

 

We introduce a new model to characterize the long run pattern of market volatility in 

terms of its unconditional expectation. Keeping the attractiveness of a GARCH 

framework, we model the long run trend of volatility taking a non-parametric approach 

that leads to a smooth curve that describes the unconditional volatility.  

 

After proposing a method to estimate the long term volatility component, a deeper 

question arises: what causes this unconditional volatility? We answer this question 

empirically. We perform a cross-sectional analysis of unconditional volatility to explore 

its macroeconomic determinants by considering evidence from international markets.  

 

Our empirical evidence suggests that long term volatility of macroeconomic 

fundamentals, such as GDP and interest rates, are primary causes of unconditional market 

volatility. These variables show a strong positive effect in the cross sectional analysis. In 

addition, volatility of inflation also presents a positive effect, but in this case, the result is 

sensitive to the inclusion of one country, Argentina. Countries with high inflation and 

countries with low real growth rate have higher volatility although the importance of real 

growth also depends on Argentina. 

 

In line with other empirical studies, we find that market development is also a significant 

determinant. Emerging markets show higher levels of unconditional market volatilities. 
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An explanation may be that emerging markets are typically associated with larger 

inflation rates. 

 

Market size variables are also important. The number of listed companies, as an indicator 

of the span of local diversification opportunities, reduces unconditional market volatility. 

In addition, the size of the economies measured by the log of GDP in US dollars 

increases unconditional volatilities; bigger countries have more volatility. 

 

After performing some diagnostic analyses, we conclude that the results are robust for all 

variables except volatility of inflation and real GDP growth for which statistical 

significance is sensitive to influential observations.  

 

We compare our results with the results of annual realized volatility as an alternative 

measure of unconditional volatility. We find changes in significance due to the fact that 

realized volatility is a noisier measure of unconditional volatility. Inflation variables are 

no longer good predictors of annual realized volatilities. 
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Figure 1 
 

Conditional and Unconditional Volatility S&P500 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

60 65 70 75 80 85 90 95 00

UVOL CVOL
 

 31



Figure 2 
Conditional, Unconditional, and Annual Realized Volatilities of Selected Countries 
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Country
Market 

Clasification Exchange Name of the Index
Average 

No. of Listings
Average Market 
Capitalization

Argentina emerging Buenos Aires IVBNG 143 35352.96
Australia developed Australian ASX 1236 295354.2
Austria developed Wiener Börse ATX 137 31104.35
Belgium developed Euronext CBB 1229 128803.2
Brazil emerging Sao Paulo BOVESPA 513 155037
Canada developed TSX Group S&P/TXS 300 1633 501122.3
Chile emerging Santiago IGPAD 261 54529.27
China emerging Shanghai Stock Exchange SSE-180 370 216199.3
Colombia emerging Bogota IGBC 109 11480.09
Croatia emerging Zagreb CROBEX 57 2406
Czech Republic emerging PSE SE PX-50 Index 563 13319.22
Denmark developed Copenhagen KAX All-Share Index 241 72720.3
Ecuador emerging Guayaquil Bolsa de Valores de Guayaquil Index 34 1746.738
Finland developed Helsinki HEX 106 113409
France developed Euronext CAC-40* 1229 752041.9
Germany developed Deutsche Börse DAX 880 759628.3
Greece developed Athens Athens SE General Index 224 56050.52
Honk Kong developed Hong Kong Hang Seng Composite Index 637 389810
Hungary emerging Budapest Budapest SE Index* 53 9728.453
India emerging Mumbai Mumbay SE-200 Index 5696 128732.4
Indonesia emerging Jakarta Jakarta SE Composite Index 243 36744.79
Ireland developed Irish ISEQ Overall Price Index 89 69934.38
Israel emerging Tel-Aviv TA SE All-Security Index 563 41720.75
Italy developed Borsa Italiana Milan MIB General Index 263 374715.4
Japan developed Tokyo Nikkei 225 1911 2930639
Korea emerging Korea KOSPI 708 163264.7
Lithuania emerging National SE of Lithuania Lithuania Litin-G Stock Index 174 3190.185
Malaysia emerging Bursa Malaysia KLSE Composite 610 141464.6
Mexico emerging Mexico IPC 208 119904.7
Netherlands developed Euronext AEX 1229 366983.1
New Zealand developed New Zealand New Zealand SE All-Share Capital Index 190 23119.93
Norway developed Oslo Oslo SE All-Share Index 175 50232.67
Peru emerging Lima Lima SE General Index 235 8892.879
Philippines emerging Philippine Manila SE Composite Index 205 33072.59
Poland emerging Warsaw Poland SE Index (Zloty) 129 15687.93
Portugal developed Euronext Portugal PSI General Index* 1229 32279.57
Russia emerging Russian Exchange Russia AKM Composite 169 52182.45
Singapore developed Singapore SES All-Share Index 336 114633.9
Slovak Republic emerging Bratislava SAX Index 764 3909.196
South Africa emerging JSE South Africa FTSE/JSE All-Share Index 618 200916.7
Spain developed Spanish Exchanges (BME) Madrid SE General Index 3119 315363.5
Sweden developed Stockholmsbörsen SAX All-Share index 242 206177.8
Switzerland developed Swiss Exchange Switzerland Price Index 431 463321.4
Taiwan emerging Taiwan Taiwan SE Capitalization Weighted Index 410 237885.5
Thailand emerging Thailand SET General Index 369 68325.18
Turkey emerging Istanbul Istanbul SE IMKB-100 Price Index 227 41548.86
United Kingdom developed London FTSE-250* 2497 1739880
United States developed NYSE S&P500 2298 6805999
Venezuela emerging Caracas Caracas SE General Index 71 7718.482
Source: Global Financial Data and Datastream*
Yearly Averages over the period 1990-2003
Units market capitalization: USD millions 

Table (1)
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Name Description
emerging Indicator of Market Development (1=Emerging, 0=Developed)
Transition Indicator of Transition Economies (Central European and Baltic Countries)
log(mc) log Market Capitalization ($US)

log(gdp_dll) Log Nominal GDP in Current $US
nlc Number of Listed Companies in the Exchange

grgdp GDP Growth Rate
gcpi Inflation Growth Rate

vol_irate Volatility of Short Term Interest Rate*
vol_forex Volatility of Exchange Rates*
vol_grgdp Volatility of GDP*
vol_gcpi Volatility of Inflation*

*Volatilities are obtained from the residuals of AR(1) models

Explanatory Variables
Table (2)

 
 
 

UVOL1997 UVOL1998 UVOL1999 UVOL2000 UVOL2001 UVOL2002 UVOL2003
UVOL1997 1 0.76800 0.79614 0.71752 0.64246 0.66100 0.74651
UVOL1998 0.76800 1 0.91144 0.71398 0.52270 0.49749 0.58763
UVOL1999 0.79614 0.91144 1 0.88333 0.72605 0.68825 0.70021
UVOL2000 0.71752 0.71398 0.88333 1 0.93833 0.87955 0.84312
UVOL2001 0.64246 0.52270 0.72605 0.93833 1 0.94249 0.87678
UVOL2002 0.66100 0.49749 0.68825 0.87955 0.94249 1 0.91471
UVOL2003 0.74651 0.58763 0.70021 0.84312 0.87678 0.91471 1

Correlation Long-Run Volatilities Across Years
Table (3)

 
 
 

RES97 RES98 RES99 RES00 RES01 RES02 RES03
RES97 1 0.72148 0.58690 0.63573 0.52845 0.51425 0.66501
RES98 0.72148 1 0.76567 0.70793 0.50636 0.46868 0.49255
RES99 0.58690 0.76567 1 0.76222 0.49994 0.54647 0.47898
RES00 0.63573 0.70793 0.76222 1 0.90622 0.82757 0.78706
RES01 0.52845 0.50636 0.49994 0.90622 1 0.89690 0.82175
RES02 0.51425 0.46868 0.54647 0.82757 0.89690 1 0.85353
RES03 0.66501 0.49255 0.47898 0.78706 0.82175 0.85353 1

Correlation of Residuals from Yearly Regressions (1997-2003)
Table (4)

 
 
 

Coefficient Std. Error t-Statistic Prob.  
Det Residual 
Covariance

emerging 0.0957 0.0176 5.4528 0.0000 6.45E-39
transition -0.0077 0.0180 -0.4284 0.6685 1.53E-38
log(mc) -0.0093 0.0032 -2.9345 0.0035 3.76E-38

log(gdp_dll) 0.0015 0.0055 0.2740 0.7842 2.18E-37
nlc -1.29E-05 0.0000 -2.3706 0.0181 1.23E-37

grgdp -0.6645 0.1255 -5.2945 0.0000 3.89E-38
gcpi 0.6022 0.0418 14.4181 0.0000 1.64E-38

vol_irate 0.0089 0.0006 14.4896 0.0000 8.59E-39
vol_forex 0.5963 0.0399 14.9468 0.0000 2.47E-38
vol_grgdp 1.1192 0.1008 11.1056 0.0000 8.71E-39
vol_gcpi 0.9364 0.0848 11.0375 0.0000 2.84E-38

Individual SUR Regressions
Table (5)
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Panel Specification
All Countries Opt. Reduction Logs Without Arg Random Country Effects

emerging 0.0376 0.0387 0.2079 0.0322 0.0478
( 0.0131 )** ( 0.0128 )** ( 0.0592 )** ( 0.0128 )** ( 0.0212 )**

transition -0.0178 -0.0164 -0.0332 -0.0147 -0.0258
( 0.0171 ) ( 0.0167 ) ( 0.0741 ) ( 0.0163 ) ( 0.0304 )

log(mc) -0.0092 -0.0085 -0.0345 -0.0083 -0.0046
( 0.0055 )* ( 0.0053 ) ( 0.0235 ) ( 0.0054 ) ( 0.0067 )

log(gdpus) 0.0273 0.0271 0.1156 0.0245 0.0175
( 0.0068 )** ( 0.0066 )** ( 0.0302 )** ( 0.0067 )** ( 0.0099 )*

nlc -1.8E-05 -1.8E-05 -8.1E-05 -1.4E-05 -1.7E-05
( 5.4E-06 )** ( 5.3E-06 )** ( 2.3E-05 )** ( 5.2E-06 )** ( 8.6E-06 )**

grgdp -0.1603 0.0962 -0.4046 -0.2094
( 0.1930 ) ( 0.7474 ) ( 0.1984 )** ( 0.2258 )

gcpi 0.3976 0.3915 1.1459 0.5985 0.6114
( 0.1865 )** ( 0.1641 )** ( 0.7755 ) ( 0.1939 )** ( 0.2229 )**

vol_irate 0.0020 0.0022 0.0061 0.0032 0.0034
( 0.0008 )** ( 0.0008 )** ( 0.0031 )* ( 0.0008 )** ( 0.0009 )**

vol_gforex 0.0222 0.0185 0.0068 -0.0221
( 0.0844 ) ( 0.3383 ) ( 0.0878 ) ( 0.0959 )

vol_grgdp 0.8635 0.8373 2.5808 0.9392 0.9019
( 0.1399 )** ( 0.1352 )** ( 0.6138 )** ( 0.1371 )** ( 0.1862 )**

vol_gcpi 0.9981 1.0983 3.1467 -0.2243 -0.0849
( 0.3356 )** ( 0.3208 )** ( 1.3431 )** ( 0.3627 ) ( 0.3917 )

d1990 0.1532 0.1471 -1.8546 0.1638 0.0252
( 0.04835 )** ( 0.0472 )** ( 0.2068 )** ( 0.0470 )** ( 0.0185 )

d1991 0.1488 0.1427 -1.8687 0.1569 0.0160
( 0.0480 )** ( 0.0468 )** ( 0.2058 )** ( 0.0465 )** ( 0.0173 )

d1992 0.1314 0.1245 -1.9539 0.1407 0.0004
( 0.0472 )** ( 0.0459 )** ( 0.2037 )** ( 0.0457 )** ( 0.0170 )

d1993 0.1435 0.1362 -1.9398 0.1447 0.0000
( 0.0498 )** ( 0.0485 )** ( 0.2118 )** ( 0.0480 )** ( 0.0159 )

d1994 0.1244 0.1169 -2.0181 0.1314 -0.0138
( 0.0498 )** ( 0.0484 )** ( 0.2144 )** ( 0.0481 )** ( 0.0152 )

d1995 0.1230 0.1150 -2.0304 0.1320 -0.0236
( 0.0490 )** ( 0.0477 )** ( 0.2115 )** ( 0.0476 )** ( 0.0141 )*

d1996 0.1177 0.1087 -2.0580 0.1274 -0.0276
( 0.0491 )** ( 0.0479 )** ( 0.2120 )** ( 0.0476 )** ( 0.0134 )**

d1997 0.1371 0.1284 -1.9570 0.1483 -0.0068
( 0.0495 )** ( 0.0482 )** ( 0.2124 )** ( 0.0479 )** ( 0.0124 )

d1998 0.1831 0.1763 -1.7804 0.1951 0.0455
( 0.0506 )** ( 0.0493 )** ( 0.2150 )** ( 0.0490 )** ( 0.0121 )**

d1999 0.2028 0.1938 -1.7047 0.2164 0.0648
( 0.0517 )** ( 0.0503 )** ( 0.2197 )** ( 0.0502 )** ( 0.0114 )**

d2000 0.1941 0.1851 -1.7241 0.2049 0.0562
( 0.0499 )** ( 0.0486 )** ( 0.2135 )** ( 0.0484 )** ( 0.0104 )**

d2001 0.1762 0.1683 -1.7837 0.1866 0.0406
( 0.0493 )** ( 0.0479 )** ( 0.2110 )** ( 0.0477 )** ( 0.0094 )**

d2002 0.1619 0.1540 -1.8487 0.1701 0.0242
( 0.0487 )** ( 0.0473 )** ( 0.2090 )** ( 0.0471 )** ( 0.0076 )**

d2003 0.1358 0.1272 -1.9588 0.1456 0.0213
( 0.0505 )** ( 0.0490 )** ( 0.2167 )** ( 0.0487 )** ( 0.1032 )

Det residual 
covariance 2.3E-38 3.8E-39 4.2E-22 1.6E-39
BIC -88.067 -88.15 -48.89 -89.00
Standard errors reported in parentheses
* Denotes significance at 10%
**Denotes significance at 5%

Table (6)
Estimation Results for Unconditional Volatilities

SUR Models
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Panel Specification
All Countries Opt. Reduction Logs Without Arg Random Country Effects

emerging 0.0434 0.0408 0.0964 0.0413 0.0373
( 0.0134 )** ( 0.0124 )** ( 0.0317 )** ( 0.0136 )** ( 0.0199 )*

transition -0.0013 -0.0084 -0.0007 0.0018
( 0.0182 ) ( 0.0417 ) ( 0.0183 ) ( 0.0282 )

log(mc) -0.0116 -0.0112 -0.0256 -0.0107 -0.0042
( 0.0055 )** ( 0.0052 )** ( 0.0130 )** ( 0.0056 )* ( 0.0074 )

log(gdpus) 0.0314 0.0309 0.0730 0.0292 0.0245
( 0.0068 )** ( 0.0066 )** ( 0.0162 )** ( 0.0069 )** ( 0.0101 )**

nlc -1.5E-05 -1.4E-05 -3.8E-05 -1.3E-05 -1.3E-05
( 6.4E-06 )** ( 6.2E-06 )** ( 1.5E-05 )** ( 6.2E-06 )** ( 8.8E-06 )

grgdp -0.6222 -0.6568 -0.9639 -0.5400 -1.0773
( 0.2442 )** ( 0.2322 )** ( 0.5277 )* ( 0.2517 )** ( 0.2939 )**

gcpi 0.1598 0.2366 0.2286 0.4299
( 0.2159 ) ( 0.4840 ) ( 0.2312 ) ( 0.2630 )

vol_irate 0.0040 0.0043 0.0059 0.0048 0.0056
( 0.0010 )** ( 0.0008 )** ( 0.0021 )** ( 0.0010 )** ( 0.0011 )**

vol_gforex 0.1329 0.1649 0.2807 0.1120 0.1040
( 0.1057 ) ( 0.0894 )* ( 0.2247 ) ( 0.1105 ) ( 0.1203 )

vol_grgdp 0.6500 0.7002 1.3278 0.6414 0.6728
( 0.1437 )** ( 0.1277 )** ( 0.3378 )** ( 0.1463 )** ( 0.1989 )**

vol_gcpi -0.0432 -0.1124 -0.4683 -0.5073
( 0.3978 ) ( 0.9042 ) ( 0.4700 ) ( 0.4799 )

d1990 0.4158 0.4133 -0.9029 0.4187 0.0640
( 0.0512 )** ( 0.0471 )** ( 0.1172 )** ( 0.0515 )** ( 0.0193 )**

d1991 0.3726 0.3702 -0.9944 0.3751 0.0189
( 0.0489 )** ( 0.0447 )** ( 0.1142 )** ( 0.0491 )** ( 0.0180 )

d1992 0.3583 0.3551 -1.0306 0.3610 0.0045
( 0.0493 )** ( 0.0451 )** ( 0.1156 )** ( 0.0494 )** ( 0.0179 )

d1993 0.3492 0.3457 -1.0560 0.3492 0.0008
( 0.0500 )** ( 0.0455 )** ( 0.1172 )** ( 0.0501 )** ( 0.0168 )

d1994 0.3616 0.3570 -1.0243 0.3584 0.0187
( 0.0502 )** ( 0.0454 )** ( 0.1173 )** ( 0.0504 )** ( 0.0163 )

d1995 0.3439 0.3403 -1.0681 0.3406 -0.0083
( 0.0513 )** ( 0.0464 )** ( 0.1193 )** ( 0.0514 )** ( 0.0151 )

d1996 0.3194 0.3186 -1.1212 0.3202 -0.0368
( 0.0502 )** ( 0.0452 )** ( 0.1176 )** ( 0.0504 )** ( 0.0145 )**

d1997 0.4102 0.4090 -0.9139 0.4127 0.0503
( 0.0509 )** ( 0.0458 )** ( 0.1184 )** ( 0.0511 )** ( 0.0135 )**

d1998 0.4656 0.4630 -0.8042 0.4693 0.1095
( 0.0515 )** ( 0.0464 )** ( 0.1190 )** ( 0.0517 )** ( 0.0134 )**

d1999 0.4136 0.4117 -0.9067 0.4168 0.0527
( 0.0524 )** ( 0.0471 )** ( 0.1218 )** ( 0.0526 )** ( 0.0128 )**

d2000 0.4276 0.4259 -0.8772 0.4330 0.0630
( 0.0512 )** ( 0.0460 )** ( 0.1191 )** ( 0.0513 )** ( 0.0121 )**

d2001 0.4157 0.4131 -0.8969 0.4193 0.0481
( 0.0505 )** ( 0.0454 )** ( 0.1177 )** ( 0.0507 )** ( 0.0114 )**

d2002 0.4068 0.4048 -0.9206 0.4088 0.0415
( 0.0504 )** ( 0.0456 )** ( 0.1173 )** ( 0.0506 )** ( 0.0097 )**

d2003 0.3616 0.3589 -1.0160 0.3657 -0.0904
( 0.0518 )** ( 0.0467 )** ( 0.1209 )** ( 0.0521 )** ( 0.0978 )

Det residual 
covariance 3.6E-37 3.6E-37 1.8E-27 3.0E-37
BIC -83.58 -83.63 -61.25 -83.75
Standard errors reported in parentheses
* Denotes significance at 10%
**Denotes significance at 5%

Estimation Results for Realized Volatilities
SUR Models

Table (7)
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Unconditional Vol Realized Vol
1990 0.5816 0.4019
1991 0.6435 0.5786
1992 0.7293 0.3640
1993 0.6463 0.5102
1994 0.5798 0.5577
1995 0.6689 0.4982
1996 0.7040 0.7218
1997 0.5700 0.4172
1998 0.5608 0.4835
1999 0.4481 0.3878
2000 0.3908 0.2442
2001 0.3477 0.2556
2002 0.3636 0.0985
2003 0.3968 0.2026

Average 0.5451 0.4087

R-Squared Statistics for Each Equation in the SUR
Table 8

System Including All Countries
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