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Abstract
After reviewing the simulation performance of generabpecific automatic regression-
model selection, as embodied RcGets we show how model selection can be non-
distortionary: approximately unbiased ‘selection estasaare derived, with reported stan-
dard errors close to the sampling standard deviations oégtimated DGP parameters,
and a near-unbiased goodness-of-fit measure. The handliitngary-based restrictions,
non-stationarity, and problems posed by collinear dataameidered. Finally, we consider
how PcGetscan handle three ‘intractable’ problems: more variables thbservations in
regression analysis; perfectly collinear regressors; raadelling simultaneous equations
without a priori restrictions.
JEL ClassificationC51, C22.
Keywords Econometric methodology; model selection; generalpeefic; automatic
modelling; encompassing; Monte Carlo experiments.

Model selection is an essential component of empiricalaresein all disciplines where
a priori theory does not pre-define a complete and correct speaticaEconomics is surely
such an empirical science, as macroeconomic processesmpdicated, high-dimensional and
non-stationary. Since any statistical test that leads tecgstbn involves selection, it is obvious
that selection is ubiquitous in empirical economic researc

Unfortunately, the methodology of empirical modelling,dan particular of methods of
model selection, are both subject to dispute. Even accasssgection procedure of being ‘data
mining’ can be sufficient to dismiss its conclusions as Valse Yet a careful reading of the
critical literature on that methodology reveals much agsgrbut few analyses.

In part, that lacuna occurs because model selection thesgspconsiderable technical dif-
ficulties: all statistics for selecting models and evalhgtheir specifications have interdepen-
dent distributions, which are different under null andrai&ive, and altered by every modelling
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decision. Fortunately, however, by enabling operationhadies of selection strategies, recent
advances in computer automation have allowed a fresh lothksapld problem.

Two central notions are sampling variability and searche fiihmer is manifest in the theory
of statistics: different outcomes result from differentngdes. The costs of inference are well
known to be falsely rejecting a true null hypothesis, antinfgito reject an incorrect null—
errors of type | and Il respectively. Such costs are detezthlvy the nature of the problem, in
that they apply even when a complete and correct model is ingély, but it is not known
to be the truth, so specification and mis-specification @®s@pplied. Thus, costs of inference
are inevitable if tests have non-zero null-rejection freeies and non-unit powers, even when
commencing from the data generation process (DGP).

Costs of search are additional to these costs of inferendeagse when the initial model is
more general than needed, perhaps in an attempt to chaadtex data and avoid the converse
costs of mis-specification. Search costs are under theaaftan investigator, partly through
the closeness of the initial model to the DGP, and partlyubhothe efficiency of the search
procedure. Despite initially disappointing results froomputer simulations of some selection
procedures (see e.g., Lovell, 1983), recent experimeplyiag automatic search algorithms to
both the correct specification and highly over-parameterinodels thereof have revealed that
search costs are surprisingly small in relation to the coktsference: se@nter alia Hoover
and Perez (1999, 2004), Hendry and Krolzig (1999, 2003) amdizi and Hendry (2001).

This transformation in success rates is due to many devedotsnof which the most im-
portant is searching all the feasible reduction paths wiraplgying the general model. Such
a thorough exploration avoids selecting a sub-optimaksgmtation, which might be located if
only a single search path is examined (such as successetodebf the least significant vari-
ables). Moreover, ‘path dependence’ of model selectiohesaby removed, and the selected
model becomes objectively reproducible. Conversely,glsmmuch search may be thought to
raise the probability of false selection by greatly increggshe number of tests conducted. A
technical explanation for why that does not occur is offereskction 1, but a medical analogy
would be that a sequence of procedures is often used to setba probability of correctly
diagnosing an iliness. However, if there a¥eregressors, there a2€’ sub-models, bul! pos-
sible paths, each of up t§¥ steps, so even for moderate computer search is an essential tool:
N = 10 induces more tham0°® paths. In practice, fewer paths need to be explored, as some
immediately lead to non-congruent models, and viable shtgtare feasible as we will show.
Many approaches to automatic selection are now being de®e]and this exciting area has
already delivered important general breakthroughs (sédR4&for selecting non-linear repre-
sentations by Perez-Amaral, Gallo and White, 2003, 200duated by Castle, 2004; Phillips,
1995, 1996, 2003, for selecting forecasting models; Om20g2, and Kurcewicz and Myciel-
ski, 2003, for selecting cointegrating relations; and thecgl issue on model selection edited
by Haldrup, van Dijk and Hendry, 2003).



Here, we focus on general-to-specific modelling, den@ets as embodied in the com-
puter progranPcGets(see Hendry and Krolzig, 2001), based on the theory of renlu¢see
e.g., Hendry, 1995, ch.9: Campos, Ericsson and Hendry,,28@tview the literature). The
settings ofPcGetswere calibrated by Monte Carlo in Hendry and Krolzig (20@8plement
two pre-programmed strategies, called Liberal and Coasigr; at approximately 5% and 1%
per test respectively. To summarize the known properti¢gsesfe two strategies in sifting rele-
vant from irrelevant variables in econometric modelling:

(a) PcGetsmodel selection is consistent (see Campos, Hendry andikr@@03);

(b) irrelevant variables are eliminated at roughly the sigaiime level chosen by the user (see
Hendry and Krolzig, 2003);

(c) relevant variables are retained with probabilities clasthé theory maximum achievable
when the DGP equation is known (see Hendry and Krolzig, 2003)

(d) automatic model selection is labour saving—and perhagn&at—when there are many
candidate variables;

(e) applications to some earlier empirical studies either mabdc even improve upon, their
authors’ findings (e.g., Davidson, Hendry, Srba and Yeo818#Ad Hendry and Ericsson,
1991); and

() PcGetssuggests ways of improving model selection by informatiaoteca (see e.g.,
Schwarz, 1978, denote&l O).

The structure of the paper is as follows. After outlining B@Getsselection algorithm in
section 1, its finite-sample behaviour is re-examined itige@ across a range of Monte Carlo
experiments from Hendry and Krolzig (1999, 2003) and Kigland Hendry (2001). Next,
section 3 investigates possible small-sample ‘pre-tesds’ and ‘model-selection effects’ for
both estimators and tests in the Krolzig and Hendry (200f¢ement. Section 4 discusses how
unbiased estimation can be obtained despite selectidmyepbrted standard errors close to the
sampling standard deviations of the corresponding coeffisiin the estimated DGP equation.
Section 5 briefly describes a ‘non-expert’ version, therk$oat the impact of near-collinearity
on selection probabilities. Section 6 comments on usingn@euc theory based restrictions
during modelling. Section 7 then considers three probldrasinhitially seem intractable, but
in fact can be tackled by @etsapproach. The first is model selection when confronting more
regressors than observations; the second is perfectipeatiregressors; and the third is the se-
lection of simultaneous equations models despite the absarprior identification information
(although none of these developments has been programrtje®getion 8 concludes.

IPcGetsis an Ox Package (see Doornik, 1999) implementing auton@eismodelling for linear regression
equations.



1 The selection algorithm

PcGetshas six basic stages in its approach to selecting a parstm@nndominated represen-
tation of an initial general unrestricted model, denoteel @UM. The first stage concerns the
formulation of the GUM,; the second, the settings of the salacalgorithm; the third deter-
mines the estimation and testing of the GUM,; the fourth iseag@arch process; the fifth is the
multi-path search procedure; and the sixth is post-seaaaion. The following description
sketches the main steps involved: see Hendry and Krolzigl(Rfr details.

(1) Formulate the GUM based on subject-matter theory, tutgihal knowledge, histori-
cal contingencies, data availability and measurementamétion, ensuring the resulting
model encompasses previous evidence, with a relativeypgdnal parameterization of
the N candidate regressors.

(2) Select the set of. mis-specification tests (e.g., residual autocorrelattor),gheir forms
(e.g.,r**-order), and significance levels (generically denatéeélow); choose the desired
information criterion (e.g.SIQ) for final selection between mutually encompassing con-
gruent models; and set the significance levels of all s@led#sts (generically denoted
« below) to ensure the desired rejection frequencies un@éentahl, perhaps by selecting
one of the pre-set Liberal or Conservative strategies.

(3) Estimate the GUM appropriately (least squares—OLS—asttumental variables—
IV—are presently available), and check by the mis-spedciGoaests that the GUM cap-
tures the essential characteristics of the data (denotegieence), perhaps with outlier
adjustments.

(4) Undertake pre-search reductions at a loose significkenweé(these include lag-order se-
lection, F-tests on successively shorter lag groups, Brigpe tests for sequentially in-
creasing blocks of omitted variables (a) adding from thelksizabsolute-values till the
critical value is reached from below, and (b) removing Valea with the largedtvalues
till the critical value of the remainder is reached from adp\eliminate the resulting in-
significant variables to reduce the search complexity, #stimate the new GUM as the
baseline for the remaining stages.

(5) Multiple-path reduction searches now commence fronm éaasible initial deletion; the
validity of each reduction is diagnostically checked towerghe congruence of the final
model; if all reductions and diagnostic tests are acceetabid all remaining variables
are significant (or further reductions induce mis-spedifce), that model becomes a
terminalselection, and the next path search commences (i.e., béiok start of 5); when
all paths have been explored and all distinct terminal nobael/e been found, they are
tested against their union to find an undominated enconmasentender; rejected mod-
els are removed, and the union of the ‘surviving’ terminaldels becomes the smaller
GUM of a repeated multi-path search iteration; then thigesearch process (i.e., from



the start of 5) continues till a unique choicefwfal model emerges with regressors, or
the search converges to a set of mutually encompassing almmimated contenders, in
which case all the selected models are reported, and a ufirg@iehoice made by the
pre-selected information criterion.

(6) The significance of every variable in the final model iseased in two over-lapping sub-
samples to check the reliability of the selection.

Stage 1 is crucial: a poor general framework is unlikely salléo a good final model choice.
The consistency properties BcGetshave been established in Campaisal. (2003) for the
setting where the DGP is nested in the GUM using the analgditannan and Quinn (1979):
as the sample siZE€ — oo anda — 0 at a suitable rate for a fixe®y, the DGP equation is
selected with probability unity. While such a situation rdikely to occur in empirical practice,
the GUM should at least be designed as a good approximattbe tocal DGP (i.e., the DGP in
the space of the variables under analysis, denoted LDGPMMesedry, 1995, and Bontemps and
Mizon, 2003). More generally, the results in White (199Gpbish that a consistent selection
can result usin@getswithin a progressive research strategy based on rigorosispacification
testing.

The mis-specification tests selected in stage 2 impliciéiyrek the measure of congruence
relevant to the empirical study. These are used once onlgstiothe GUM; thereafter, their
re-use as diagnostic tests is simply as a constraint on thectien paths, ensuring that only
congruent models are considered. Here, ‘repeated testingbst marginally affects the tests’
behaviour, though there are some finite-sample effects gbminating irrelevant variables
(see sub-section 3.3). The selection criterion for bregkias’, and the chosen search strategy,
should both be set as a function of the nature of the problehmat fequires appraising the
relative costs of retaining irrelevant, as against losilgwant, variables. Knowledge of the
likely number,k, of relevant effects and their importance in the DGP can etaal here,
although the absolute and relative numbers of candidatablas N and data point$’, and the
objectives of the analysis, also matter.

Stage 3 completes the definition of the approach, using OLY @stimators at present
(in principle, any maximum likelihood method could be implented), given the set of tests
selected. If the GUM is congruent, reduction can proceedptf re-thinking seems advisable.
PcGetscan also be used to select the relevant instrumental vasadhd check for the problem
of weak instruments (compare Hall, Rudebusch and Wilco®61@nd see e.g., Staiger and
Stock, 1997, and Mavroeidis, 2004).

Stage 4 is described in detail in Hendry and Krolzig (200%)pee-search reductions play
a useful role in simplifying many problems to a managealde.sPre-search block reductions
even at a significance level of 0.75 can eliminate many veelevariables, and are especially
useful when the null is true since 68%tefalues are less than unity in absolute value under the



null: whenN = 40, andk = 7 say, the number of feasible paths falls to aroufitt Campos
et al. (2003) show that pre-search tests can also improve moasdts®mi based on information
criteria (related to the argument in Hansen, 1999). Outlierections can be selected if desired
at any percentage of the equation standard error in the GUM.

The multi-path search procedure (stage 5), based on thegriog study by Hoover and
Perez (1999), is central tBcGetsand is evaluated in Hendry and Krolzig (2003). Section 6
notes a setting where the multi-path search procedure gatiehperfectly collinear specifica-
tions, so pre-search tests should not be used in that context

Finally, Hendry and Krolzig (2004b) show that the sub-sam@liability assessment is
dominated by choosing an appropriately smaller signifiedeegel for the full sample. This
matches the findings in Lynch and Vital-Ahuja (1998), whowlbat ‘selecting variables that
are significant on all three splits (the two sub-samples aedatl)’ delivers no gain over simply
using a smaller nominal size. The Lynch and Vital-Ahuja @P8rgument applies widely to
‘hold back observations’ approaches, and to (e.g.) HoovdrRerez (1999, 2004) who retain
variables at the selection stage only if they are significarttvo overlapping sub-samples.
However, the efficiency loss seems to be small, so a sub-sasefgction procedure is still
offered.

Several changes to this basic algorithm have been impletdeamce Hendry and Krolzig
(2001), so we briefly note these. Most only slightly altereel program’s behaviour, reflecting
how near the theoretical upper bound performance alreadyndsthe degree of ‘error correc-
tion’ manifest in the experiments used to calibrate the og(when one procedure performed
relatively poorly, another usually did well). Neverthedegmprovements potentially remain
feasible in several directions.

First, some formulations were not previously envisagedhsis a model with long lags of a
variable when only a few lags actually matter. When one, ema important effects are hidden
in a morass of irrelevance, the pre-search block tests nadaerappropriate. Consequently, as
a check on thé& test of all lagsPcGetsalso considers the significance of the largessst in the
group, and only deletes the block if both are insignificarbase significance levels. We now
also use less stringent significance levels for the blodk than in Hendry and Krolzig (1999),
where the overall procedure was notably under-sized uheendll.

Secondly, the calibration of the mis-specification heteedssticity tests was poor in early
experiments, but this transpired to be a problem with theekegof freedom assumed for the
reference distributioA. The corrected degrees of freedom lead to a substantial ireprent
in matching the reference distribution under the null adoh Hendry and Krolzig (2003).
Sub-section 3.3 below reports comparisons of the ARCH andé/Nh980) heteroskedasticity
tests applied to the DGP, GUM, and finally-selected model.

2We are indebted to Dorian Owen for noting this mistake.



Thirdly, lag-order determination uses the combined ‘top#d/bottom-up’ approach ex-
plainedin 4 (a), (b), complemented by an automatic Lagrangkiplier test for potential omit-
ted regressors.

Finally, we investigated the information in the ordetédtatistics in the GUM (denotet, )
to locate a cut-off between included and excluded varialAéier ordering,t?l) > t(22) >0 >
tf) =+ > tiy), SO if the critical value per test is,, letn correspond taf ) > co > t7, ).
Since such a procedure is only suitable for orthogonal prab| multi-path searches remain
necessary in general (section 5.1 briefly addresses thecoliaearity issue). Importantly,
however, the logic of this procedure helps explain idgGetsvorks well, since it reveals that
only a single ‘model-selection test’ is used to select/thacluded variables, namell;?n) >
Coa > t%n 1)1 SO ‘repeated testing’ does not occur (especiallyMbtests). The overall retention
of adventitiously significant variables depends only 8n- k, for k& variables in the DGP,
and the significance level per testso on averagd,N — k) « irrelevant variables are retained
by chance: it should not depend on how the sear@®esseare conducted, which instead
determine the efficiency of the algorithm in attaining th@@&pbound feasible in an orthogonal
problem. Thus, despite the appearance that large numbgstefare conducted on coefficients
and residuals, the probability of false rejection of a coegt GUM by the mis-specification
tests, under independence, is jpst= 1 — (1 — §)™. This is approximately.05 for m = 5
andy = 0.01. Further,(N —k)a ~ 1for N = 30, £ = 10 anda = 0.05—s0 19 out
of 20 irrelevant regressors will be eliminated on averaged-a just 0.2 fora = 0.01, so
all 20 are eliminated on 4 out of 5 occasions. The so-calle#"®f the search procedure is
Po = 1 — (1 —a)V " which is0.64 whena = 0.05 and0.18 whena = 0.01, revealing the
unhelpful nature of such a characterization (pre-seamsts tean improve performance relative
to these expository baselines). Retention ofitlcerrectly significant variables depends on their
individual non-centralitiesy;, andc, via P(|t;| > ¢,| ;) (for at-test), which also decreases
with «, necessitating a careful choice of strategy, as noted belowever, retention rates can
be improved if inclusion is known, or (e.g.) sign informatis provided by theory and found
acceptable for the available sample, since only one-sidédat values are then needed (see

section 6).

2 Small-sample behaviour ofPcGets

Table 1 summarizes the main features of the various Monté @aperiments conducted to
date, and referred to below (HP, JEDG5-S, and $—S; respectively denote Hoover and Perez,
1999, Krolzig and Hendry, 2001, and two variants of BeGetscalibration experiments in
Hendry and Krolzig, 2003). We now summarize the operatiragatteristics oPcGetsacross
the experiments in table 1.



Table 1 Monte Carlo designs.

‘ Design‘ regressors causal nuisance |t|-values avglt\—value‘

HPO 41 0 41

HP2 41 1 40 5.77 5.77
HP2 41 1 40 11.34 11.34
HP7 41 3 38 (10.9, 16.7, 8.2) 11.93
JEDC 22 5 17 (2,3,4,6,8) 4.6
S 34 0 34

S 34 8 26 (2,2,2,2,2,2,2,2) 2
S; 34 8 26 (3,3,3,3,3,3,3,3) 3
Sy 34 8 26 (4,4,4,4,4,4,4,4) 4
S 42 0 42

SY 42 8 34 (2,2,2,2,2,2,2,2) 2
SY 42 8 34 (3,3,3,3,3,3,3,3) 3
S, 42 8 34 (4,4,4,4,4,4,4,4) 4

Figure 1 graphically illustrates four main aspects of aalilon accuracy across all the
Monte Carlo experiments to date, for both Conservative abdrhl strategies. Panel (a) con-
cerns one sense of ‘overfitting’, namely potentially dowrdvaiased estimates of the equation
standard errorg, for the true values. This does not occur: the final averagias close too
in all settings. The Liberal strategy has a slight downwaes lfless than 5% of), whereas
the Conservative is upward biased by a similar amount. Sebhwour is easily explained: the
Conservative strategy is more likely to eliminate varighldich matter somewhat, so fits worse
than the GUM, which unbiasedly estimatesand the Liberal strategy is more likely to retain
some variables which only matter by chance, but therebht#igverfits. It must be stressed
that PcGetsmodel selection is not based on fit as a criterion at any stagea minimal con-
gruent encompassing model will necessarily have the beat fiite chosen significance level.
Equation (1) records the goodness-of-fit relationship betwmodels of size ands + 1 for
unbiased OLS estimators of(i.e., corrected for degrees of freedom):

AZS S I G M (1)
Us—i—l T —-$

The probability under the null that| > 2.5 is 0.014 (wheril” = 110 ands = 10), so larger
t2-values will occur less than once in 70 draws under the nell,eyen for such an unlikely
event, the left-hand ratio in (1) would only be abaui5, the upper bound shown in the graph.
Panel (b) shows the null rejection frequencies per testdtin btrategies across all experi-
ments, with their intended significance levels of 5% and 18%d case are deviations substan-
tial for the unweighted null rejection frequencies. Whea thliability statistics (see stage 6)
are taken into account, and translated into retention fmbbes in a linear fashion, the con-



trol of the null rejection frequency is improved further. ud if a 50% reliability is found, the
investigator is assumed to drop that variable on half th@asions. The resulting sub-sample
reliability-weighted outcomes are close to their targelsnpted ‘(rel)’ on the graphs). This
second sense of overfitting only occurs to the controlledrextf adventitious significance at
the rate( N — k) .

Panel (c) plots ‘power’, namely the average rejection fegmy of the null for relevant vari-
ables using the nominal critical valudsThe Conservative strategy naturally has no higher
power than the Liberal, so reveals that the cost of avoidmgisus variables can be high in
terms of missing variables that matter. The graphs also shewnpact of the sub-sample re-
liability weightings on the resulting power, confirming thhere is only a small effect, even at
quite low powers where it should have most impact. SiA¢cg| > 2| ¢ = 2) ~ 0.5, the ‘pow-
ers’in the S experiments are close to their theoretical upper boungbieselection (similarly
for the other ). Comparisons between neighbouring successjvan8l § experiments also
show that the impact on ‘power’ of eight additional irrelavaariables is small, especially for
the Liberal strategy.

(a) Equation standard error 0.07.(b) Size: original and reliability based
1.05!| == Lib: g/o
~— Con:0/o 0.06¢
f,,l-\/\\ ,&\-/A\A
0.05 /;)—’k LI y/// e oo
0.04t ¥, ¥ N [ Lib
1.00 VANWAN .. °' —~—Con
et IR VA N (N A 0.03 ~—e- Lib (rel)
) =% ooa ~aae Con (rel)
— N 0.01 /VH\'M/A
0.5+ 0.00 L :
HPO HP2HP2 HP7 JEDC SO S0S2 S2 S3 s3 s4 sS4 HPO HP2HP2 HP7 JEDC SO S0S2 S2 S3 s3 s4 sé
(c) Power: original and reliability based (d) DGP found
1.0F — 1.0F o——o—--—o—n—o\ r——? -=-n-Lib
i - 2 7
15-—.5 l I-[ \\ —-— Con
r 0.8 ; : -o—o- DGP: Lib
0.8 ~as DGP: Corp— o
oer AN 4 /lT 0.6
O [ §
Ar
0.4 -n-= Lib 2 -
—~— Con P ¢
0.2 o—e- Lib (rel) 0.2
- CoN (rel)
0.0 : : : : 0.0 o
HPZ HP2 HP7 JEDC S2 €2 s3 S3 sS4 s HPO HPZHP2 HP7 JEDC SO S0S2 s? s3 s3 s4 sé

Figure 1 Overview of accuracy, null rejection frequency, power, andcess.

Finally, figure 1(d) graphs the probabilities of locating tbGP, together with the corre-
sponding outcomes when the search commences with the D8Rtrigated as the GUM. The

3The simulation null rejection frequencies are sufficiesttyse to the nominal to use the latter, which matches
what an empirical investigator would do in practice.
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movements of the four lines are similar, and frequently thy@aaent problem for a search algo-
rithm transpires to be a cost of inference not a cost of seamncbe the DGP is sometimes never
retained even when it is the initial specification. The oetfprmance of commencing from the
DGP in the Hoover—Perez experiments is owing to the highedegf over-parameterization
and very larget-values on relevant variables, but even so, the Conseevatnategy does a
respectable job. When populatibralues are 2 or 3, the Liberal strategy does best, and some-
times outperforms commencing from the DGP with a 1% signiftedevel (§ and S). Notice
also that the two strategies cannot be ranked on this fout#rion: their relative performance
depends on the unknown state of nature. Nevertheless, afyHand Krolzig (2001, Ch. 5)
discuss, a user may be aware of the ‘type’ of problem beindrooted, in which case, figure
1(d) shows the advantages of an appropriate choice of gyratembined with a good initial
model specification.

These findings also confirm the closeness in practice of theegies to their desired oper-
ating characteristics.

3 ‘Pre-test’ and ‘selection’ effects in small samples

Statistical tests with non-degenerate null distributibage non-zero size, and (generally) non-
unit power. Consequently, even if the local DGP were colyesytecifieda priori from eco-
nomic theory, when an investigator did not know that theltespymodel was ‘true’ — so sought
to test hypotheses about its coefficients — then inferemtistakes can occur, the seriousness of
which depend on the characteristics of the local DGP anddimpke drawn. Should the selected
model thereby differ from the DGP (with parameteér} it will deliver biased coefficient esti-
mates@i: E[ﬁi # (3;]. This is called the ‘pre-test’ problem, since unbiasedestés could have
been obtained from the unrestricted model by conductingetexson tests (see e.g., Judge and
Bock, 1978). However, assuming that one both knows the,teunthi knows that one does, so no
testing is needed, is not a relevant benchmark in econorvioseover, granted the arguments
in Hendry and Krolzig (2003) against using alternativeshsas Stein—James ‘shrinkage’, or
even the general model, then some selection method is edsémthe following simulations,
we also record the outcomes when commencing from the DGP &asumne the additional costs
of selection due to commencing from the GUM.

3.1 Selection effects on coefficient estimates

To investigate the impact of selection, we re-ran the Kgpland Hendry (2001) experiments.
As shown in table 2 (columns 3, 4, 8 and 9), unconditionalhgficient estimates are down-
ward biased (being a mix qﬁ‘z and0 when a regressat; is and is not retained). In this section,
‘conditional’ denotes conditional on a variable being re¢a in the selected model; whereas



11

Table 2 Coefficient estimates, estimated standard errors andathaéviations.

DGP Reduction of DGP GUM Reduction of GUM
unconditional conditional unconditional conditional
(including zeros)| (excluding zeros (including zeros)| (excluding zeros
variable LIB | CON | LB | CON LIB | CON | LB | CON
Bias/SETh
Za (Y = 2) 0.041| -0.576| -1.076| 0.859 1.242| 0.042| -0.606| -1.072| 0.852 1.221
Zy (¢ =3) 0.013| -0.300| -0.701| 0.322 0.576| 0.002| -0.291| -0.757| 0.328 0.600
Z.(yp=4) |-0.008|-0.035| -0.216| 0.066 0.196| -0.006 | -0.071| -0.266| 0.093 0.215
Zq (¥ =6) 0.042| 0.009| 0.009| 0.015 0.021| 0.039| 0.037| 0.044| 0.037 0.050
Z. (v =28) 0.033| -0.042| -0.041| -0.042| -0.041| 0.005| 0.034| 0.026| 0.034 0.026
SE/SE7y,
Za (Y = 2) 1.025| 0.506| 0.289| 1.015 1.012| 1.130| 0.486| 0.290| 0.993 1.006
Zy (¢ = 3) 1.019| 0.832| 0.659| 1.023 1.024| 1.124| 0.811| 0.625| 0.996 1.004
Ze (v =4) 1.026| 1.000| 0.926| 1.025 1.026| 1.131| 0.966| 0.905| 1.007 1.021
Zq (Y = 6) 1.023| 1.029| 1.036| 1.030 1.038| 1.129| 1.007| 1.026| 1.007 1.027
Ze (1 =8) 1.027| 1.025| 1.033| 1.025 1.033| 1.133| 1.010| 1.031| 1.010 1.031
SD/SE1y,
Zy (b =2) 1.028| 1.503| 1.499| 0.659 0.611| 1.145| 1.508| 1.497| 0.702 0.624
Zy (¢ = 3) 1.023| 1.492| 1.815| 0.821 0.749| 1.126| 1.502| 1.842| 0.843 0.749
Z. (v =4) 1.034| 1.133| 1.509| 0.950 0.894| 1.146| 1.254| 1.584| 0.984 0.899
Zq (¥ =6) 1.031| 1.038| 1.074| 1.021 1.048| 1.160| 1.079| 1.080| 1.079 1.063
Z. (v =18) 1.057| 1.004| 1.020| 1.004 1.020| 1.187| 1.108| 1.099| 1.108 1.099
RMSE/SE ),
Za (Y = 2) 1.028| 1.610 1.846| 1.083 1.384| 1.145| 1.625 1.841| 1.104 1.371
Zy (¢ =3) 1.023| 1.522| 1.946| 0.882 0.945| 1.126| 1.530| 1.992| 0.905 0.960
Z. (¢ =4) 1.034| 1.133 1.524| 0.952 0.915| 1.146| 1.256 1.606| 0.988 0.924
Zq (¥ =6) 1.032| 1.038| 1.074| 1.021 1.041| 1.160| 1.079| 1.080| 1.079 1.064
Ze (1 = 8) 1.058| 1.005| 1.020| 1.005 1.020| 1.187| 1.109| 1.100| 1.109 1.100
residuals
o 0.998| 1.007| 1.017 0.998| 0.981| 1.008
% bias -0.2% | 0.7% 1.7% -0.2% | -1.9% 0.8%

Monte Carlo results for JEDC design (see table 1) Witk= 100 observations and/ = 1000 replications:
mean deviation (ﬁi in MC from true 8
root mean square error gfin MC

estimated standard deviation of error telm=€ 1)

Bias
RMSE

G

SErp,
SE
SD

true standard error @& (T—1/20 /o = 0.1)
mean of reported standard errors
standard deviation qﬁ in MC
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‘unconditional’ denotes also including the coefficientgosed at zero. Figure 2 shows the
unconditional distributions of the five relevant and 17lavant regressors for the Liberal strat-
egy? These unconditional distributions illustrate the quatifythe classification of variables
into DGP variables (top row) and nuisance variables (aleh The non-zero-mass distribu-
tion of the DGP variables is truncated normal, but truncatioes not affect variables with a
populationt-value greater tha# in absolute value.

Conditional on being retained, the bias, reported standands SE), standard deviations
(SD) and root mean-square erroRMISE) are shown in columns 5, 6, 10 and 11 of table 2,
all relative to the theoretical standard erro8&(;,). As expected, the coefficient estimates are
now upward biased for smallewalues (t| < 3), more so for the Conservative strategy, but are
close to the population values for largeralues. The Liberal strategy biases are under 10% for
t| > 3.

4 4 4 4 4
Za Zb ZC Zd Ze
2 2 2 2 2f
-1 0 14 0 1 0 1 4 0 1 4 0 1
4 4 4 4 4 5
Zaa Zy1 Ze1 Zy1 el
2 2 2f 2 2
ah, s alh A Ak, i b, A l M
-1 0 1 0 1 0 1 0 1 4 0 1
4 4 4 4 4
Z Zg Z, Z Zj
2 2 2f 2 2
A, A Al A, dh, Ah iy y dh dh,
-1 0 1 4 0 1 0 1 0 1 4 0 1
4 4 4 4 > 4
%, %91 Zha 1 gkl
2 2 2f 2 2
A e iy Ak, i~ 1 i
-1 0 1 - 0 1 - 0 1 4 0 14 0 1
4 n
Y, intercept
2 2}
k| dli Ah,
-1 0 14 0 1

Figure 2 Unconditional distributions from the Liberal strategy.

Figure 3 records the corresponding conditional distrimgi(i.e., of retained regressors).
Those for the non-DGP variables are bimodal and symmekuoe for the lagged endogenous
variable, where the impact of the famous Hurwicz (1950) Hadear.

The final important result is that these ‘pre-test’ effeats @ot, in any essential respects,
changed by search. The coefficient biases are closely siwiilen commencing from the DGP

4The results for the Conservative strategy are similar, betdistributions of irrelevant variables are almost
invisible, and so are not shown.
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or the GUM for each strategy, both conditionally and unctiadally as table 2 confirms.

7.5 7.5 75 75 7.5
5.0t 5.0t 5.0t 50t Z 50t Z
Za Zb ZC d e

2.5 2.5 2.5 . 2.5 m 2.5 mm

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
75 75 75 5 75 75
5.0} Za,l 5.ofzb,1 50 ©Cl 5_ofzd,l 5.0—Ze,l
2.5 ‘|| ‘|| 2.5 2.5¢ ‘| ‘|| 2.5¢ ‘i ‘II 2.5} '“ "

-1 0 1 -1 0 1 -1 0 1 0 1 -1 0 1
75 75 75 75 75

Zf Z Zh Z Z

5.0} 50 <9 5.0 50 | 50-
2.5 2.5 || ‘I 250 ‘|| Ii 2.5¢ 2.5¢ ‘Ii “

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
75 75 75 7.5 75

Z Z Z 7.

sol 41 50 ‘9.1 50 hl sof 1 500 3.1
2.5 ||| ‘m 2.5 || h 250 "I " 2.5} ‘| n 2.5} ‘ h

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
oy S intercept
50 1 5.0}
2.5 2.5

-1 0 1 -1 0 1

Figure 3 Conditional distributions (excluding zeros) from the Li@lestrategy.

3.2 Selection effects on estimated standard errors and stdard deviations

Table 2 shows that the estimated standard ern®Es( namely those reported for the selected
equation’s coefficients) are close to providing unbiaseuinedes of the actual sampling stan-
dard deviations§Ds) for the estimated DGP. At first sight, that is an astonighésult, since
the estimated uncertainty, despite having to select a D@&Rbla from a GUM, appears to re-
flect only the uncertainty due to estimating the DGP with@lgstion. However, the intuition is
simple: theSDs in the estimated DGP model are correctly estimated by fhartedSEs (col-
umn 2); the latter are based on the estimated equation sthadar ¢, which is close tar on
average as shown on the bottom row) times the associatecesopa element fronﬁX’X)_l;
and that in turn is approximately the same in the selectedeinelden the relevant variable is
retained. Thus, similg8Es are reported.

Because parameter estimates restricted to zero have aadastl errors, uncondition8Es
after selection are downwards biased, whereas the condsppunconditionaEDs are upward
biased (being that of a mix df and the variability in@). The probabilityp of retaining a
variable with a populatior’-value of 4 is approximately 0.5, so the effects are largestrall
populationt-values. Indeed, the mean unconditional estimates and3Esiare approximately
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p times the corresponding conditional estimates. Howekierrélevance of such unconditional
‘sampling properties’ is unclear in the context of modeksgbn when the DGP is unknown.
The elimination of insignificant variables is the objectfesimplification in small samples, and
the underlying state of nature is unknown (i.e., whetheiakées are relevant or irrelevant), so
the cost of the bimodality of the unconditional selectiostalbution for relevant variables is a
largerSD.

As noted earlier, in almost all cases, the estimated equatandard errorg are close to
o, So thatPcGetsdoes not ‘overfit’. Rather, the Conservative strategy ufitddsy eliminating
too many of the relevant regressors in its attempt to avordatitious significance, whereas the
Liberal strategy performance depends on the number otuaet variables in the GUM, and
can be either under or ovet Indeed, so can th®Es andSDs, both conditional on retaining a
variable, and unconditionally.

Overall, the results in this section seem to confirm usind-theral strategy as the default
option.

3.3 Selection effects on mis-specification tests

Another feature of interest is the impact of model selectiarthe outcomes of test statistics.
In Krolzig and Hendry (2001), we have shown that, even in ssaiples T = 100), the
empirical distributions of the test statistics for no awwelation, normality and no structural
break employed b¥PcGetsare largely unaffected by the strongly-exogenous nuisaeges-
sors. Here we consider selection effects on the two hetedasiicity tests, recalibrated as
noted. The graphs in figure 4 compare the ratios of actuat stzaominal in the DGP, GUM
and the selected model.

The operational rules adopted were as follows. If the GUMagftbno mis-specifications
at5%, then simplified models with diagnostic tests indicatingramalid reduction at % or less
were rejected. If a mis-specification test of the GUM wasisicant at1%, the test was dropped
from the test battery. If thp-value of the mis-specification test was betwaénhand5%, the
target significance level was reduced frafa to 0.5%.

As can be seen from the graphs, there is little change in jaeti@en frequencies for quan-
tiles above the nominal significance level, but an increagmpact as the quantile decreases.
The latter effect is essentially bound to occur, since nodéth significant heteroskedasticity
are selected against by construction. Nevertheless, ttuemes in these graphs do not rep-
resent a ‘distortion’ of the sampling properties: the kegisien is taken at the level of the
general model, and conditional on not rejecting there, ramglke should occur in that decision.
At most nominal significance levels in the GUM, the tests lthe@ anticipated operating char-

5The 1% level showed larger departures, but was imprecisgitpated given the rarity with which it occurred,
and has been omitted from the graphs.
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Figure 4 Ratios of test sizes to nominal in the DGP, GUM and selectedeio

acteristics. However, the ARCH test was oversized at smaitmificance levels in the HP
experiments due to the heteroskedastic nuisance regsesfecting the residuals of the GUM.

4 Bias correction after model selection

The selection biases discussed in section 3.1 can be stibbyacorrected by an operational
formula, which we now describe. Consequently, despitecb@#ay in a large model class,
across different (unknown) states of nature in an orthogeetéing, the finally selected model
can be modified to deliver nearly unbiased estimates andhigslbe unbiased standard errors
for retained variables, with few adventitiously-signiit&ffects—a performance close to that
achievable when commencing from the local DGP.

4.1 Truncated-distribution approximations to the bias

We use the convenient approximations that for a given saofdzeT
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whered; is the coefficienSE, ando; = E[o5] is the population value, so:
9B 9B
wheny = 6/03 is the non-centrality of thetest. Let:

6 (w) = \/LQ_W exp (_%uﬂ) and ® (w) — \/LQ_W /_ : exp (—%aﬁ) dr.

Whent > 0, for one-sided truncation in a normal distribution (see,elghnson and Kotz,
1970, ch. 13):

~

6|5 _ O(ca—t)
whenr (+) is the inverse Mills ratio:
¢ (w)
rw) 1—®(w)’
So:
E 3|82 o5ea] = B+ 037 (ca = ¥) = B (14077 (e = ). 3)

Table 3 shows the close correspondence between the meamatbeatcomes for the rele-
vant variables from the Monte Carlo experiments in Krolzigl #endry (2001) (denote@(&g)
and those implied by (3) using:

Bewd — (14 47 (ca — ¥)) (4)

for one-sided truncation withy, o5 = 2.0 andcy o = 2.625. In all cases, the predicted biag,f)
closely matches that obtained in the Monte Ca@lﬁg at both 1% and 5%.

Table 3 Conditional coefficient estimates and theory predictions.

| 8 | 0.200] 0.300] 0.400] 0.600| 0.800|
3597 1 0.286| 0.332] 0.407| 0.602| 0.796
35%) 1 0.280| 0.329| 0.405| 0.600 | 0.800
399 1 0.324| 0.358| 0.420| 0.602 | 0.796
35 1 0.324| 0.358| 0.417| 0.600| 0.800

In practice, since) = 0 for the irrelevant variables, a doubly-truncated Gausdersity is
required, where the central region is lost and only the tatigined. Again using; ~ ﬁ/ag ~
N [, 1], the expectation of the truncatedalue is:

¢(Ca—¢)—¢(—0a—¢)
_(I)(Ca_qu))"i_q)(_ca_zm

v =E [t |lt5] > caser] = v+ - —Ytr(e). 6
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For ¢ = 0, the truncated distribution is symmetric around zero assitated in figure 5, so
* = 0. However, even if (e.g.) = 1 and¢,, = 2, the lower tail contributes almost nothing to
the resulting mean, matching the closeness of (4) to thelatron outcomes for the non-central

t-statistics.

Y=0 Pr[t=0jp=0] = 0.9545

W=2 Prt=0=2] = 0.5000

1.25
0.75} \
\
1.00 | |
| | \
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0.2 / i
3\ :' ‘l
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Figure 5 Probability densities of the conditional and unconditicswefficient estimates.

To implement the equivalent of (4) based on (5) requires Eimatef/) of the non-centrality
¥ from the observed; statistic, which is then used in the correction formula fer estimated
parameters. When a variable is retained bec$t1§$e> ., the selection bias is shown in (5)
and hence:

v =E[ts]lt5] > cait] =7 (W1ca). ©)

This is a non-linear function of the unknown but could be solved by a step-wise iteratfon.
Figure 6 shows how non-linear the mapping isat= 2 as varies, so such a bias correction
cannot work perfectly because small variations in the esg®mfi in some regions will induce
large changes in the bias. Given an estiniatff 1, then the bias-corrected parameter estimate
is based on the inverse of (4) using (5), namely:

Y

;/) +7r <1~/), ca> 0

B=p

We now consider these two steps in more detail.

5We tried several approaches, including a Newton and twooFapproximations, shown in the simulation
outcomes below.
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Figure 6 Non-linearity of the bias function.

4.2 Estimating the non-centrality

The first step in the iterativg-estimation procedure replaces the unknown, c,) in (6) by
r(t3: ca), and the expectatioBt;| [t3] > ca; 1] by the observed valug (an unbiased estimate)
to deliver:
3= tg -7 (ta, Ca) , (8)
then:

Qﬁ:tﬁ—T(fﬁ,Co{) . (9)
The Monte Carlo results in figure 7 below show that most, batatipof the selection bias is
corrected. However, any closer match for the smallest rewo-zon-centrality considered here

(v» = 2) tends to induce over-correction at somewhat latgerlues. This would probably be
exacerbated by matching at yet smaller non-centralitigengigure 6.

4.3 Correcting biases in@

The second step involves solving (7). EverE[f/)] = ¢, [ could be biased due to being a
non-linear function on:

(10)
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An alternative formula for the denominator of (10) is:
7,7) +r (fa, Ca) = tB, (11

and this is used in the following derivation. Assuminghas been bias corrected such that
E[¢] = ¢, and asj ~ o3tg, then from (10):

— = Jﬁtﬁw ~
B=p—= = o031,
tB tB B
SO:
E[B]:E[ag }:%@z):ﬁ. (12)
However as:

E[ <ﬁ,Ca> ’ 5 >Ca] +E [r (:ﬁ,ca) ’tﬁzca} #r(,cq),

an additional bias may result from this step if other apprations to the denominator of (10)
are used.

Mean Bias Relative Bias
0075. | = original estimates 0.4 original estimates
: -+ Taylor: {J/t — Taylor: {/t
—~—= linear Taylor:(/ t —— linear Taylor:()/ t
0.050f | | -¢-~- 1-step: _(—r(t)]/[t r(O)+r (t—r ()] 1-step j—r(t) W[ t=r(t)+rt-r(t))]
—~—e 2-stepp 02l ——— 2-stepP/t
0.025*0\
0 0007(3 | i ﬂ
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Figure 7 Biases andRMSEs of the original and adjusted estimates.

Figure 7 shows various comparisons of the biasesRM&Es for the original and adjusted
estimates in the JEDC Monte Carlo experiments. We evaluzit#d1-step and 2-step iterates
and a Taylor approximation, in combination with the two mehoices for the denominator
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in (10). Figure 8 plots the comparative conditional digttibns for the 2-step approximation
using (11). Much of the bias for the retained relevant vdeisiis corrected without too great an
increase in theiRMSESs. The next section discusses the impact of the various brasations
on the retained irrelevant variables.
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Figure 8 Conditional distributions of the original and 2-step atiaisestimates.

4.4 Bias correction impact on retained irrelevant variables

A surprising effect of the bias correction is its impact o thistributions of the coefficients
of the retained irrelevant variables in the conditional glod/Vhile their unbiasedness is es-
sentially unaffected by construction, figures 7 and 8 shawctimsiderable reductions in their
RMSEs, both from the iterated correction and a ‘double correctitesigned to substantially
reduceRMSEs. As can be seen, reductions of around 25%—-40% result, dnabeorrection
is beneficial from that aspect as well.

4.5 Bias correction impact on unconditional coefficients ésnates

The analysis of the truncatedsalues in (5) also gives useful insights into the biasesabn-
ditionalt-values (i.e., including zeros). Since:
E [tg 1, ca} — Pr [\ta\ > e ¢] E [tB ‘|tB| > Ca; ¢]
= 1= (ca—¢)+P(—ca =)+ (ca —¢) = ¢ (—Ca — 1),
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the resulting bias has the opposite sign to the conditiored v, c¢,). The illustration in
figure 9 forc, = 2 confirms the simulation results reported in table 2. Comgdor the bias in
Eltsl |tz| > ca; 9] therefore slightly increases the downward bias in the uditiomal estimates
of the coefficients. This, however, is not a major practicadeern.

unconditional mean based on double trunctatinoonditional bias based on double truncation
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0.50F
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0 0.00
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Figure 9 Bias of the unconditional coefficient estimates (includzegos).

4.6 Policy analysis implications

An important distinction must be made between the estimatidgonalized congruent model,
which delivers@ with near unbiased estimatesa%f ando,, and the bias-corrected coefficients,
£ and their associated statistics. Re-calculating ressdgtédndard errors etc., usigghas no
theoretical foundation, and could introduce significang4gpecification diagnostics. However,
for some purposes, near unbiased parameter estimategsiiley be useful.

The main application for unbiased estimates is probablycpa@nalysis, particularly es-
timating policy derivatives. If a variable is incorrectlyauded because of chance insignifi-
cance in a given sample, then a policy avenue may be misshating opportunity costs: the
Liberal strategy again seems preferred on this criteridranlirrelevant variable is wrongly
included, incorrect decisions could result—but the smatleefficient induced by the bias-
correction formula will decrease the chance of an ‘ovectiea’ by policy makers. In other
words, wheny) = 0, although no bias arises, the bias correction reduces tiepated impact
of adventitiously-selected irrelevant variables, so theection seems uniformly beneficial. If
a variable is correctly included but with a biased coeffitiagain incorrect policy could result,
so unbiased coefficients seem valuable in this arena. Overatefore, given the bias correc-
tion procedure, the costs of missing relevant variablesigegher than those from adventitious
significance.
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5 Non-expert mode

To extend the practical realm of automatic selection, weslgeveloped a mode where a non-
expert user simply specifies the appropriate functionsefélgressand and the basic regressors,
thenPcGetscreates the GUM and selects a model. Thus, the input to ‘quakeller’ is just the

list of ‘basic variables’y;, x1,, . .., zn,. The maximum lag length is set from the data frequency
given the sample size; the levels equation is estimatedtriotedly; and the congruence of the
resulting GUM is checked (Wooldridge, 1999, establishesvlidity of the mis-specification
tests for integrated data). Next, tReGiveunit-root test is computed (see e.g., Banerjee and
Hendry, 1992, and Ericsson and MacKinnon, 2002), and thiahas transformed to differ-
ences and any cointegration combination. Finally, tf@trepresentation is re-estimated, and
the usual procedures for selecting a parsimonious unddedmaodel implemented.

On the data set from Hendry and Ericsson (1991), and justtinguthe UK M1 variables
m — p, ¥, Ap, R, With a maximum lag of 2 (as the data are seasonally adjusisidp
the Liberal strategy with outlier correction, ‘quick moldel selects an improvement on their
reported equation withh = 1.22% from 4 variables and an impulse dummy, as against their
1.31% from 5 variables (and in seconds as against a largelhmgdéne input!).

The maincaveatof the present implementation are that (a) the user has wsehtbe func-
tional form, which sits uneasily with the notion that they arot experts; and (b) the initial
levels representation of the regressor set potentiallpdgstrongly from orthogonality. Prob-
lem (a) can be addressed by an approach like Perez-Arizath(2003, 2004) in their program
RETINA, which automatically generates many non-lineansfarmations. We consider that a
productive avenue to explore, especially given their figdtmatPcGetsperforms well on their
empirical problem when the general GUM is used. The resnlGastle (2004) illustrate the
outcomes in some simulations, and perhaps suggest usingear-sonservative’ strategy for
selecting the non-linear components, with a Liberal forlihear.

Problem (b) is considered in the next section, where we amatifie effects of near-
collinearity on the selection propertiesitGets

5.1 Collinearity

Perfect collinearity denotes an exact linear dependenivecka variables; perfect orthogonal-
ity denotes no linear dependencies; but any intermediate gepends on which ‘version’ of
a model is inspected, as collinearity is not invariant undezar transforms. For example,
inter-variable correlations abowe9d9 can easily arise in systems with unit roots and drift, but
there is little difficulty determining the relevance of \ables as the DGP is isomorphic to an
equilibrium-correction model. Conversely, when a comxhi#il regression model is the DGP,
for regressors from a bivariate normal distribution withaarelation of0.99, there is almost
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no hope of determining which variables matter. Moreovehayonal representations then just
reveal that the variance of one transformed component gedo zero. The issue, therefore,
is not just one of the capabilities of any selection algonitfbut of the properties of the DGP
itself.

In empirical applications, the impact of collinearity wilsually be manifest in the number
of different terminal models located for encompassing canspns. Since highly correlated
variables may substitute for one another, the selectiongscan lead to set of final models
where none clearly dominates all the othefBhis information could still help guide selection
when subject-matter knowledge is available.

The effects of collinearity on the selection propertiesPofGetsare now illustrated by a
variation of the Monte Carlo experiments in Krolzig and Hen@001) (denoted as JEDC
design in table 1). The DGP is a Gaussian regression modelienthe strongly-exogenous
variables are independent Gaussian AR(1) processes:

v = S0 Bioziatu,  uw ~ IN[0,0,],

(13)
Zt = pPZi_1 + Vg, Vi o~ |N10 [0, (1 — p2> 0'3110] fort = 1,... ,T,

wherez; collects both the DGP and nuisance variables. The paramzeation of the DGP is
ﬂl,O == 02, 6270 = 03, ﬂ;g’o = 04, 6470 = 06, ﬂg,,o = 08, W|th ‘p‘ <1 andag = 0'12) = 1. The
populationt-value associated with regresgas given by:

ty = VT2 = ﬁjﬁl_ipggv = BVT. (14)
Ou ﬂau

The DGP is designed to ensure invariant populatimalues with increasing, even though
the entire second-moment matrix is becoming singular, bedlata increasingly close to non-
stationarity. Fofl’ = 100, the non-zero populationvalues are therefor 3, 4, 6, 8, indepen-
dently of p, although the approximation in (14) that = o, becomes increasingly poor as
increases i, = 0.

The GUM is anADL(1, ..., 1) model, which includes as non-DGP variables the strongly-
€X0genous regressotg,, . . ., 210, and the first lags of every variable, 86 = 22, althoughk
is only 5 from the first equation in (13):

10 1

Y = To,0 + To,1Yt—1 + Z Z Th,iZkt—i + Wy, we ~ IN [07 UIQU} . (15)
k=1 i=0

In an alternative experiment, we also consider the orthaly@presentation of (15) as a GUM:

10 10

Yt = To,0 + To,1Yt—1 + Z Tk2kt + Z Vi (PZkt — Zeg—1) +wy, wy ~ IN [0, U?U} . (16)
k=1 k=1

“An indirect cost of collinearity is that thevalues in the GUM are poor indicators of the importance of
variables, so the initial ordereg) cannot guide the selection of candidate variables for altidn.
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In (15) as in (16),17 of 22 regressors are ‘nuisance’. The sample gizis just 100, and the
number of replicationd/ is 1000. In a third experiment, using (16), the sample size is adjlust
for the time dependence of the regressors’§9 = 100(1 — p?)~'.
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The Monte Carlo results are summarized in figure 10 whichsploé null rejection fre-
quency (‘size’), the correct rejection frequency underahernative (‘power’), and the proba-
bility of finding the DGP withPcGetsvhen commencing from (i) GUM (15) with' = 100; (ii)
GUM (16) withT' = 100; (iii) GUM (16) with T'(p); and (iv) from the DGP (13) witl” = 100.
The first and fourth experiments illustrate the effects dlimearity, namely a loss of power and
(in (i), increasing size), as moves towards unity. Starting from an orthogonalized GUNp&e
stabilize size and power, but not completely. However, aizé power become-invariant if
the sample size is adjusted as in (iii), confirming that infation loss is the problem, not just
intercorrelations. The probability of locating the DGPdadharply as increases in all cases
except (iii), where again it is stabilized. Except for thé&ial strategy commencing from the
DGP for low collinearity, where there is a much higher prabigbof retaining the DGP, the
costs of search in the other experiments are low compardrtoadsts of inference.
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6 Theory restrictions

The general formulation of the model under analysis will @stralways be suggested by eco-
nomic theory (or, more generally, subject matter consittara), even if the specific imple-
mentation must also depend on institutions, historicatiogencies, data availability, its mea-
surement accuracy, and previous empirical evidence—hépeincompassed by the GUM of
the new specification. Parametric constraints that devgpecific numerical combination of
variables, such that the remainder ought then to be insognifj are easily imposed.

Sign restriction information must first by tested in the GUdihce if it is rejected there,
then no feasible congruent model satisfies that sign canstréhus, the researcher needs to
re-think the theory and/or re-specify the GUM itself. Howe\wf the sign restriction is ac-
cepted at the pre-assigned significance level, then it campesed during simplification as a
constraint, precisely like the diagnostic tests, whereo&ation simply terminates a search path
as inadmissible. Thus, the final model is guaranteed to laitkfg the constraints and be a
valid, congruent reduction, that will parsimoniously emgass the GUM. Even so, one should
always run the program unrestrictedly to check if the camsts hold anyway: if so, the best
model has been found. If not, then it is worth recording th&tof the constraints even if an
acceptable model satisfying them has been located. Thentadyes of such sign impositions
are coherence with the theory and improved selection tegepior a given size.

If there are competing theory models of a given variaBlEGetscould be used to select the
‘best representative’ of each, conditional on the spetiéioa of their information sets and their
entailed GUMs. Then encompassing tests could be used tordetethe relative performance
of the selected candidates. This would automate the typpmbach adopted by (e.g.) Bean
(1981) and Ahumada (1985), and ensure an objective anddegitde outcome.

7 Tackling apparently intractable problems

We briefly discuss three problems that at first sight seeradtdble, but in fact can be tackled by
a Getsapproach. The first is model selection when confronting negeessors than observa-
tions; the second is perfectly collinear regressors; aadkind is the selection of simultaneous
equations models despite the absence of any prior ideniticeformation.

7.1 Model selection confronting too many regressors

We have several times been asked about this ‘singular cgsavestigators who have had to
confront an ‘excess variables’ problem when modelling, elgnv > 7. Some researchers
seem to have tried many small blocks of variables in theirckefor significant regressors,
but we doubt such a procedure will be effective, and haveatsteveloped a variant Glets
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see Hendry and Krolzig (2004a) for details, who apply thatitb selecting non-linear repre-
sentations, and Hendry, Johansen and Santos (2004), whaorexeegressions with indicator
dummies for every observation.

To illustrate, lety; be an observed random variable where:

k
ye ~ IN [ p+ Zﬁil’i,t;Ug] ;
i=1
fort =1,...,T, where there aré << T parameters of intere$ts; }. However, an investigator
is uncertain about the specification, and wishes to regre®s {11, z;¢,i = 1,..., N > T}. A

perfect fit will result if such a regression is tried, so nathwill be learned.

Consider adding fewer than half the variables, randomlgcted (e.g., a third of the, , if
N/3 << T) together with the intercept. A first-stage model is selgédétem this GUM using
a relatively loose significance level (to compensate forahgcipated poor fit from omitted
relevant variables), and that terminal model is storedo@artelation and heteroskedastic con-
sistent estimated standard errors may be needed at theseadkiate stages: see e.g., Andrews,
1991). Now enter the next third (;,, ¢ = N/3 + 1,...,2N/3) and repeat, again storing
the result. Finally, search the third set. Repeat for adtiiva selections, in every case storing
which regressors are retained. Ugt < N denote the union of the variables in the terminal
models. IfM > T, repeat the process this far from partitions of flfevariables, but at a more
stringent significance level; and so on. Onde<< T', formulate a new GUM where all these
significant selected variables from the terminal modelscarabined, and re-select by a usual
PcGetsapproach. Clearly, the ‘perfect fit'" problem does not aris#reover,aN irrelevant
variables will be retained on average for a significancelleyeso at the final stages can be
set to trade off adventitious significance against omittelgvant regressors.

7.2 Perfect collinearity

Despite the problems with near collinearity discussed apperfect collinearity can be handled
through the multi-path search process. To illustrate theeg® principles, economic theory
is often unable to specify which lag transforms actuallyed®iney;: for example, when the
maximum lag is known to be unity, only a subset of the levg| {ts lag ;_1), difference (\z;),
distributed lag £;, z; 1), Or moving averagez = z;+z;_1) may be relevant. Despite the perfect
collinearity, all four variables just noted can be enteed] if only multi-path searches are used,
the correct combination can be selectedRmGets subject to the usual sampling fluctuations.
The following DGP is postulated:

Y = Bo+ Bilipze + Bl a1 + B3lzg 2 + Baliazy Az + vy (17)

wherev, ~ IN[0,02] and1y;, are indicator variables that take the value unity if the esgor
in question enters the DGP, and are zero otherwise, with st ta@ being non-zero. The
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investigator does not know whidh;, are unity, so formulates the GUM:
Ye = Yo + V12 + Vozi—1 + V3% + Va2 + Uy (18)

The regressors are perfectly collinear, and conventionalsion routines will arbitrarily assign
singularity to some subset, usually that with the smallesbed moments.

With multi-path searches, consider commencing a sequehahweletes each variable in
turn, then every next variable, and so on: e.g., first dsap which still leaves a collinear set;
thenz; which is now a non-collinear set, and search; next, stadingsh from (18), drop;
thenz,_;, and so on. Once a non-collinear set results, the usualitdgocan operate. If, for
example, onlylz,, = 1, then such a terminal model will be explored on some pathheald
be selected if the power is adequate, and will parsimonyalmiinate the other selections (e.qg.,
on the Schwarz criterion). There are 11 possible modelkjdimg the null, of which only 6 are
distinct. We conducted five one-off experiments on artifidetia where, in turrny; depended on:
(@)Z; (b) Az; (C) z; (d) z,_1; and (e)z; and Az, but in each case all of, z;_1, zZ; and Az, were
entered as regressors in the GUM (18cGetsis not yet programmed to follow all possible
paths, but as a partial implementation by hand (namely Besyonce a non-collinear set was
imposed, commencing from every path and ussh@to select between undominated choices)
gave the correct answers in (a)—(d), but in (e), it seledtedriore orthogonal representatiop,
andAz;, which is equivalent. Pre-search tests designed to redheceamputational burden of
path exploration would arbitrarily eliminate whateveriaates the inversion routine treated as
redundant, and possibly preclude finding a useful reprasent

7.3 Simultaneous equations selection

The properties oGetsderive from the theory of reduction (see Hendry, 1995), scapproach
is to embed the selection of linear simultaneous systentsaintheory, conditional on a prior
division into endogenous and non-modelled variables {altoch could be lagged endogenous,
as in a VAR): more details are provided in Hendry and KrolZ8@4a). What matters is the
identification of the DGP representation: if that is ideetfj it can be found as a reduction,
even if the identifying restrictions are not known; if it istndentified, then the program will
revert to the ‘reduced form’.

First, the linear conditional statistical system (alsdexzhthe ‘reduced form’) is formulated,
noting that such a system is always identified. That systehreis tested for congruence: once
the initial system is congruent, all later selections arast@ined to be congruent as well.
If congruence is accepted for the unrestricted representat parsimonious version of that
system is selected by the ustalGetsapproach, checking that congruence is maintained, such
that all right-hand side (regressor) variables are sigmtiat the desired level in their associated
equations. This step is to avoid later ‘spurious identiftodtby excluding what are actually
irrelevant regressors.
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The key step is that each endogenous variable is now axitetimto every other equation
concomitant with dropping any regressor that is also pitasethat added variable’s equation,
checking ‘just-identification’ by the rank condition as ilemented irPcGiveby Hendry, Neale
and Srba (1988). Then one checks what further reductionbeachieved in the regressor set
of the first equation. There are two main possibilities in agyation for reductions in the
regressor set:

(1) no additional reductions are found,

(2) one or more further reductions occur.

In the first case, the postulated equation is just-identifedhe choice just reverts to the system
(reduced-form) equation. In the second case, the propagestien must be over-identified,
since there are several eliminated right-hand side regressnd these must be a determinant of
the added left-hand side variable by occurring signifigaimtlits equation, thereby identifying
that endogenous effect. The resulting restrictions atalés(e.g., by the test in Sargan, 1964).

Each equation is considered in turn in this instrumentabbdes approach. Since the rank
condition is imposed as a constraint, the ‘same equatiamdisncluded twice, and the current
‘partial structure’ is always fully identified at every steldere we use ‘structure’ in quotation
marks to denote an equation with more than one endogenoiabhgrwithout any connota-
tions that it really is structural (namely, invariant to exsions of the information set for new
variables, over time, and across regimes).

Weak instruments show up as a poorly determined initialesgsbr requiring a loose sig-
nificance level for instruments to be retained. That stdiesdoes not resolve, the problem
which lies in available information, not the performanceaaf/ selection approach. As noted
above, the choice of instruments can be mad@bt@ets both to determine their relevance for
each endogenous variable, and to test for instrument neis{ggation as part of the congruence
check. Finally, while our approach is so far only worked aut#ero restrictions on linear sys-
tems using instrumental variables, generalizations terdtdrms of restriction, other estimators
such as maximum likelihood (or even quantile regressiomj, ta non-linear equationgter
alia seem feasible in principle.

These three previously ‘intractable’ cases illustrate laowew tool can yield new insights:
one might have suspected that regressions Witk 7, or perfect collinearity, or simultaneous
modelling in the absence of prior information, were all ilotde, but multi-path searches can
resolve the choice of model in each case.

8 Conclusion

Model selection is an important part of a progressive resesirategy, and itself is progressing
rapidly. The automatic selection algorithmmtGetsprovides a consistent selection lidC,
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but in finite samples, both ensures a congruent model and wiapeoform in important spe-
cial cases withouad hocadjustments. Recent improvements have stabilized theejatition
frequency relative to the desired nominal significancellevad the power relative to that fea-
sible when the DGP is the initial specification. The powefg@nance on recent Monte Carlo
experiments in orthogonal models is close to the upper baidradscalart-test at the given
non-centrality from a knowixdistribution.

Searchper sedoes not seem to impose serious additional costs over tHosdeoence
(nor does mis-specification testing, as that is needed ev®mwommencing from the DGP
specification). The results confirm that ‘pre-test’ biaseseafrom simplifying the DGP, not
from searching for it in an over-parameterized represematThe equation standard error is
found within 5% of the population value, depending on the strategy adogtelcGetshas
no substantive tendency to ‘overfit'. Depending on the svateature,PcGetscan even have
a higher probability of finding the DGP starting from the GUMing the Liberal strategy,
than a researcher commencing from the DGP but selectingeb@ dimservative strategy. Such
findings would have seemed astonishing in the aftermath @€lL¢1983), who reported that
‘data mining’ had a low probability of success, and both shitve progress achieved and serves
to emphasize the importance of the choice of strategy foutigerlying selection problem.
Obtaining nearly unbiased estimates of the DGP parametaedected models, with estimated
standard errors that are close to those that would be repfatesampling standard deviations
in the estimated DGP, might surprise even more. The key tb padformance seems to lie in
using a search algorithm that commences from a congrudrmagwhal representation that nests
the DGP, explores all feasible paths while retaining coagoe for a given ‘size’ per candidate
variable, and terminates with a dominant encompassingtsate

Non-orthogonal designs remain problematic, in that theyinduce higher costs of search
as well as of inference, and remain an area where expert kdgelwill continue to prove
valuable. Nevertheless, we have added a ‘quick modellgidbogor non-expert users, which
initial experience suggests is able to outperform all byteek econometricians in selecting
from an initial dynamic GUM that is possibly1). In models with many potential candidate
variables, automatic selection is invaluable.

So what lies ahead? Certainly, the theoretical contextrasdwabove of regression analy-
sis with orthogonal strongly-exogenous regressors isofastmple to characterize real-world
econometrics. Empirical researchers confront non-ngrmé-measured data, on evolving
non-stationary dynamic and high-dimensional economiéth, at best weakly exogenous, in-
tercorrelated, conditioning variables. At a practicaldleGetsis applicable to systems, such
as vector autoregressions (see Krolzig, 2001, 2003a, 20@8k to endogenous regressors
when sufficient valid instruments exist. Moreover, OmtZ0@2) and Kurcewicz and Myciel-
ski (2003) have proposed algorithms for automatic selaciiccointegration vectors; ar@ets
approaches seem just as powerful a tool on cross-sectibitepns, as demonstrated by Hoover
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and Perez (2004) and Hendry and Krolzig (2004c). Even thdugh corrections will be im-
perfect in many settings, simulation studies can reveal Wwell they do (or do not) perform.
While it is usually infeasible to analytically derive eitttbe conditional or unconditional distri-
butions of the finally-selected model's parameter estimatesome special cases under specific
assumptions, important advances have been achievethtsealia, Potscher (1991) and Leeb
and Potscher (2000).

As sketched above, selection with more candidate regre#isan observations\{ > 7)) is
feasible when the DGP is estimable (with< < 7' regressors). Simultaneous equations systems
also pose less than insurmountable problems using a tedPticets Developments like those
in RETINA for creating and selecting functional form bodellwas do the ideas in Phillips
(1995, 1996, 2003) for forecasting. Since applied reseascust often devote considerable
effort to developing empirical representations, such ledsaving devices have much to offer.
Automatic model selection could eventually replace ‘haodsempirical research, but seems
more likely to remain a complement to existing methods ferfireseeable future. Even in that
role, by truncating the lower tail of the quality distribomi, such procedures should improve the
average quality of published models and direct researadway from bad models that might
otherwise have been selected. We remain confident thatefudivelopments will continue
to improve the performance of, and widen the scope of apgpmicdor, automatic modelling
procedures.

Department of Economics, University of Oxford
Department of Economics, University of Kent
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