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Abstract

After reviewing the simulation performance of general-to-specific automatic regression-

model selection, as embodied inPcGets, we show how model selection can be non-

distortionary: approximately unbiased ‘selection estimates’ are derived, with reported stan-

dard errors close to the sampling standard deviations of theestimated DGP parameters,

and a near-unbiased goodness-of-fit measure. The handling of theory-based restrictions,

non-stationarity, and problems posed by collinear data areconsidered. Finally, we consider

how PcGetscan handle three ‘intractable’ problems: more variables than observations in

regression analysis; perfectly collinear regressors; andmodelling simultaneous equations

without a priori restrictions.

JEL Classification: C51, C22.

Keywords: Econometric methodology; model selection; general-to-specific; automatic

modelling; encompassing; Monte Carlo experiments.

Model selection is an essential component of empirical research in all disciplines where

a priori theory does not pre-define a complete and correct specification. Economics is surely

such an empirical science, as macroeconomic processes are complicated, high-dimensional and

non-stationary. Since any statistical test that leads to a decision involves selection, it is obvious

that selection is ubiquitous in empirical economic research.

Unfortunately, the methodology of empirical modelling, and in particular of methods of

model selection, are both subject to dispute. Even accusinga selection procedure of being ‘data

mining’ can be sufficient to dismiss its conclusions as valueless. Yet a careful reading of the

critical literature on that methodology reveals much assertion, but few analyses.

In part, that lacuna occurs because model selection theory poses considerable technical dif-

ficulties: all statistics for selecting models and evaluating their specifications have interdepen-

dent distributions, which are different under null and alternative, and altered by every modelling
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decision. Fortunately, however, by enabling operational studies of selection strategies, recent

advances in computer automation have allowed a fresh look atthis old problem.

Two central notions are sampling variability and search. The former is manifest in the theory

of statistics: different outcomes result from different samples. The costs of inference are well

known to be falsely rejecting a true null hypothesis, and failing to reject an incorrect null—

errors of type I and II respectively. Such costs are determined by the nature of the problem, in

that they apply even when a complete and correct model is usedinitially, but it is not known

to be the truth, so specification and mis-specification testsare applied. Thus, costs of inference

are inevitable if tests have non-zero null-rejection frequencies and non-unit powers, even when

commencing from the data generation process (DGP).

Costs of search are additional to these costs of inference, and arise when the initial model is

more general than needed, perhaps in an attempt to characterize the data and avoid the converse

costs of mis-specification. Search costs are under the control of an investigator, partly through

the closeness of the initial model to the DGP, and partly through the efficiency of the search

procedure. Despite initially disappointing results from computer simulations of some selection

procedures (see e.g., Lovell, 1983), recent experiments applying automatic search algorithms to

both the correct specification and highly over-parameterized models thereof have revealed that

search costs are surprisingly small in relation to the costsof inference: seeinter alia Hoover

and Perez (1999, 2004), Hendry and Krolzig (1999, 2003) and Krolzig and Hendry (2001).

This transformation in success rates is due to many developments, of which the most im-

portant is searching all the feasible reduction paths when simplifying the general model. Such

a thorough exploration avoids selecting a sub-optimal representation, which might be located if

only a single search path is examined (such as successive deletion of the least significant vari-

ables). Moreover, ‘path dependence’ of model selection is thereby removed, and the selected

model becomes objectively reproducible. Conversely, doing so much search may be thought to

raise the probability of false selection by greatly increasing the number of tests conducted. A

technical explanation for why that does not occur is offeredin section 1, but a medical analogy

would be that a sequence of procedures is often used to increase the probability of correctly

diagnosing an illness. However, if there areN regressors, there are2N sub-models, butN ! pos-

sible paths, each of up toN steps, so even for moderateN , computer search is an essential tool:

N = 10 induces more than106 paths. In practice, fewer paths need to be explored, as some

immediately lead to non-congruent models, and viable shortcuts are feasible as we will show.

Many approaches to automatic selection are now being developed, and this exciting area has

already delivered important general breakthroughs (see RETINA for selecting non-linear repre-

sentations by Perez-Amaral, Gallo and White, 2003, 2004, evaluated by Castle, 2004; Phillips,

1995, 1996, 2003, for selecting forecasting models; Omtzig, 2002, and Kurcewicz and Myciel-

ski, 2003, for selecting cointegrating relations; and the special issue on model selection edited

by Haldrup, van Dijk and Hendry, 2003).
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Here, we focus on general-to-specific modelling, denotedGets, as embodied in the com-

puter programPcGets(see Hendry and Krolzig, 2001), based on the theory of reduction (see

e.g., Hendry, 1995, ch.9: Campos, Ericsson and Hendry, 2004, overview the literature).1 The

settings ofPcGetswere calibrated by Monte Carlo in Hendry and Krolzig (2003) to implement

two pre-programmed strategies, called Liberal and Conservative, at approximately 5% and 1%

per test respectively. To summarize the known properties ofthese two strategies in sifting rele-

vant from irrelevant variables in econometric modelling:

(a) PcGetsmodel selection is consistent (see Campos, Hendry and Krolzig, 2003);

(b) irrelevant variables are eliminated at roughly the significance level chosen by the user (see

Hendry and Krolzig, 2003);

(c) relevant variables are retained with probabilities close to the theory maximum achievable

when the DGP equation is known (see Hendry and Krolzig, 2003);

(d) automatic model selection is labour saving—and perhaps essential—when there are many

candidate variables;

(e) applications to some earlier empirical studies either match, or even improve upon, their

authors’ findings (e.g., Davidson, Hendry, Srba and Yeo, 1978, and Hendry and Ericsson,

1991); and

(f) PcGetssuggests ways of improving model selection by information criteria (see e.g.,

Schwarz, 1978, denotedSIC).

The structure of the paper is as follows. After outlining thePcGetsselection algorithm in

section 1, its finite-sample behaviour is re-examined in section 2 across a range of Monte Carlo

experiments from Hendry and Krolzig (1999, 2003) and Krolzig and Hendry (2001). Next,

section 3 investigates possible small-sample ‘pre-test biases’ and ‘model-selection effects’ for

both estimators and tests in the Krolzig and Hendry (2001) experiment. Section 4 discusses how

unbiased estimation can be obtained despite selection, with reported standard errors close to the

sampling standard deviations of the corresponding coefficients in the estimated DGP equation.

Section 5 briefly describes a ‘non-expert’ version, then looks at the impact of near-collinearity

on selection probabilities. Section 6 comments on using economic theory based restrictions

during modelling. Section 7 then considers three problems that initially seem intractable, but

in fact can be tackled by aGetsapproach. The first is model selection when confronting more

regressors than observations; the second is perfectly collinear regressors; and the third is the se-

lection of simultaneous equations models despite the absence of prior identification information

(although none of these developments has been programmed yet). Section 8 concludes.

1PcGetsis an Ox Package (see Doornik, 1999) implementing automaticGetsmodelling for linear regression

equations.
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1 The selection algorithm

PcGetshas six basic stages in its approach to selecting a parsimonious undominated represen-

tation of an initial general unrestricted model, denoted the GUM. The first stage concerns the

formulation of the GUM; the second, the settings of the selection algorithm; the third deter-

mines the estimation and testing of the GUM; the fourth is a pre-search process; the fifth is the

multi-path search procedure; and the sixth is post-search evaluation. The following description

sketches the main steps involved: see Hendry and Krolzig (2001) for details.

(1) Formulate the GUM based on subject-matter theory, institutional knowledge, histori-

cal contingencies, data availability and measurement information, ensuring the resulting

model encompasses previous evidence, with a relatively orthogonal parameterization of

theN candidate regressors.

(2) Select the set ofm mis-specification tests (e.g., residual autocorrelation etc.), their forms

(e.g.,rth-order), and significance levels (generically denotedδ below); choose the desired

information criterion (e.g.,SIC) for final selection between mutually encompassing con-

gruent models; and set the significance levels of all selection tests (generically denoted

α below) to ensure the desired rejection frequencies under the null, perhaps by selecting

one of the pre-set Liberal or Conservative strategies.

(3) Estimate the GUM appropriately (least squares—OLS—andinstrumental variables—

IV—are presently available), and check by the mis-specification tests that the GUM cap-

tures the essential characteristics of the data (denoted congruence), perhaps with outlier

adjustments.

(4) Undertake pre-search reductions at a loose significancelevel (these include lag-order se-

lection,F-tests on successively shorter lag groups, andF-type tests for sequentially in-

creasing blocks of omitted variables (a) adding from the smallest absolutet-values till the

critical value is reached from below, and (b) removing variables with the largestt-values

till the critical value of the remainder is reached from above); eliminate the resulting in-

significant variables to reduce the search complexity, thenestimate the new GUM as the

baseline for the remaining stages.

(5) Multiple-path reduction searches now commence from each feasible initial deletion; the

validity of each reduction is diagnostically checked to ensure the congruence of the final

model; if all reductions and diagnostic tests are acceptable, and all remaining variables

are significant (or further reductions induce mis-specifications), that model becomes a

terminalselection, and the next path search commences (i.e., back tothe start of 5); when

all paths have been explored and all distinct terminal models have been found, they are

tested against their union to find an undominated encompassing contender; rejected mod-

els are removed, and the union of the ‘surviving’ terminal models becomes the smaller

GUM of a repeated multi-path search iteration; then this entire search process (i.e., from
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the start of 5) continues till a unique choice offinal model emerges withn regressors, or

the search converges to a set of mutually encompassing and undominated contenders, in

which case all the selected models are reported, and a uniquefinal choice made by the

pre-selected information criterion.

(6) The significance of every variable in the final model is assessed in two over-lapping sub-

samples to check the reliability of the selection.

Stage 1 is crucial: a poor general framework is unlikely to lead to a good final model choice.

The consistency properties ofPcGetshave been established in Camposet al. (2003) for the

setting where the DGP is nested in the GUM using the analysis in Hannan and Quinn (1979):

as the sample sizeT → ∞ andα → 0 at a suitable rate for a fixedN , the DGP equation is

selected with probability unity. While such a situation is unlikely to occur in empirical practice,

the GUM should at least be designed as a good approximation tothe local DGP (i.e., the DGP in

the space of the variables under analysis, denoted LDGP: seeHendry, 1995, and Bontemps and

Mizon, 2003). More generally, the results in White (1990) establish that a consistent selection

can result usingGetswithin a progressive research strategy based on rigorous mis-specification

testing.

The mis-specification tests selected in stage 2 implicitly define the measure of congruence

relevant to the empirical study. These are used once only to test the GUM; thereafter, their

re-use as diagnostic tests is simply as a constraint on the reduction paths, ensuring that only

congruent models are considered. Here, ‘repeated testing’at most marginally affects the tests’

behaviour, though there are some finite-sample effects fromeliminating irrelevant variables

(see sub-section 3.3). The selection criterion for breaking ‘ties’, and the chosen search strategy,

should both be set as a function of the nature of the problem. That requires appraising the

relative costs of retaining irrelevant, as against losing relevant, variables. Knowledge of the

likely number,k, of relevant effects and their importance in the DGP can be beneficial here,

although the absolute and relative numbers of candidate variablesN and data pointsT , and the

objectives of the analysis, also matter.

Stage 3 completes the definition of the approach, using OLS orIV estimators at present

(in principle, any maximum likelihood method could be implemented), given the set of tests

selected. If the GUM is congruent, reduction can proceed; ifnot, re-thinking seems advisable.

PcGetscan also be used to select the relevant instrumental variables, and check for the problem

of weak instruments (compare Hall, Rudebusch and Wilcox, 1996; and see e.g., Staiger and

Stock, 1997, and Mavroeidis, 2004).

Stage 4 is described in detail in Hendry and Krolzig (2001), as pre-search reductions play

a useful role in simplifying many problems to a manageable size. Pre-search block reductions

even at a significance level of 0.75 can eliminate many irrelevant variables, and are especially

useful when the null is true since 68% oft-values are less than unity in absolute value under the
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null: whenN = 40, andk = 7 say, the number of feasible paths falls to around105. Campos

et al. (2003) show that pre-search tests can also improve model selection based on information

criteria (related to the argument in Hansen, 1999). Outliercorrections can be selected if desired

at any percentage of the equation standard error in the GUM.

The multi-path search procedure (stage 5), based on the pioneering study by Hoover and

Perez (1999), is central toPcGetsand is evaluated in Hendry and Krolzig (2003). Section 6

notes a setting where the multi-path search procedure can handle perfectly collinear specifica-

tions, so pre-search tests should not be used in that context.

Finally, Hendry and Krolzig (2004b) show that the sub-sample reliability assessment is

dominated by choosing an appropriately smaller significance level for the full sample. This

matches the findings in Lynch and Vital-Ahuja (1998), who show that ‘selecting variables that

are significant on all three splits (the two sub-samples and overall)’ delivers no gain over simply

using a smaller nominal size. The Lynch and Vital-Ahuja (1998) argument applies widely to

‘hold back observations’ approaches, and to (e.g.) Hoover and Perez (1999, 2004) who retain

variables at the selection stage only if they are significantin two overlapping sub-samples.

However, the efficiency loss seems to be small, so a sub-sample selection procedure is still

offered.

Several changes to this basic algorithm have been implemented since Hendry and Krolzig

(2001), so we briefly note these. Most only slightly altered the program’s behaviour, reflecting

how near the theoretical upper bound performance already is, and the degree of ‘error correc-

tion’ manifest in the experiments used to calibrate the program (when one procedure performed

relatively poorly, another usually did well). Nevertheless, improvements potentially remain

feasible in several directions.

First, some formulations were not previously envisaged, such as a model with long lags of a

variable when only a few lags actually matter. When one, or a few, important effects are hidden

in a morass of irrelevance, the pre-search block tests need not be appropriate. Consequently, as

a check on theF test of all lags,PcGetsalso considers the significance of the largestt-test in the

group, and only deletes the block if both are insignificant atloose significance levels. We now

also use less stringent significance levels for the block tests than in Hendry and Krolzig (1999),

where the overall procedure was notably under-sized under the null.

Secondly, the calibration of the mis-specification heteroskedasticity tests was poor in early

experiments, but this transpired to be a problem with the degrees of freedom assumed for the

reference distribution.2 The corrected degrees of freedom lead to a substantial improvement

in matching the reference distribution under the null as noted in Hendry and Krolzig (2003).

Sub-section 3.3 below reports comparisons of the ARCH and White (1980) heteroskedasticity

tests applied to the DGP, GUM, and finally-selected model.

2We are indebted to Dorian Owen for noting this mistake.
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Thirdly, lag-order determination uses the combined ‘top-down/bottom-up’ approach ex-

plained in 4 (a), (b), complemented by an automatic Lagrange-multiplier test for potential omit-

ted regressors.

Finally, we investigated the information in the orderedt2-statistics in the GUM (denotedt2(i))

to locate a cut-off between included and excluded variables. After ordering,t2(1) ≥ t
2
(2) ≥ · · · ≥

t
2
(i) ≥ · · · ≥ t

2
(N), so if the critical value per test iscα, let n correspond tot2(n) ≥ cα ≥ t

2
(n+1).

Since such a procedure is only suitable for orthogonal problems, multi-path searches remain

necessary in general (section 5.1 briefly addresses the near-collinearity issue). Importantly,

however, the logic of this procedure helps explain whyPcGetsworks well, since it reveals that

only a single ‘model-selection test’ is used to select then included variables, namelyt2(n) ≥
cα ≥ t

2
(n+1), so ‘repeated testing’ does not occur (especially notN ! tests). The overall retention

of adventitiously significant variables depends only onN − k, for k variables in the DGP,

and the significance level per testα, so on average,(N − k)α irrelevant variables are retained

by chance: it should not depend on how the searchesper seare conducted, which instead

determine the efficiency of the algorithm in attaining the upper bound feasible in an orthogonal

problem. Thus, despite the appearance that large numbers oftests are conducted on coefficients

and residuals, the probability of false rejection of a congruent GUM by the mis-specification

tests, under independence, is justpδ = 1 − (1 − δ)m. This is approximately0.05 for m = 5

and δ = 0.01. Further,(N − k)α ' 1 for N = 30, k = 10 andα = 0.05—so 19 out

of 20 irrelevant regressors will be eliminated on average—and is just 0.2 forα = 0.01, so

all 20 are eliminated on 4 out of 5 occasions. The so-called ‘size’ of the search procedure is

pα = 1 − (1 − α)N−k which is0.64 whenα = 0.05 and0.18 whenα = 0.01, revealing the

unhelpful nature of such a characterization (pre-search tests can improve performance relative

to these expository baselines). Retention of thek correctly significant variables depends on their

individual non-centralities,ψi, andcα via P( |ti| > cα|ψi) (for a t-test), which also decreases

with α, necessitating a careful choice of strategy, as noted below. However, retention rates can

be improved if inclusion is known, or (e.g.) sign information is provided by theory and found

acceptable for the available sample, since only one-sided critical values are then needed (see

section 6).

2 Small-sample behaviour ofPcGets

Table 1 summarizes the main features of the various Monte Carlo experiments conducted to

date, and referred to below (HP, JEDC, S0–S4 and S∗0–S∗
4 respectively denote Hoover and Perez,

1999, Krolzig and Hendry, 2001, and two variants of thePcGetscalibration experiments in

Hendry and Krolzig, 2003). We now summarize the operating characteristics ofPcGetsacross

the experiments in table 1.
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Table 1 Monte Carlo designs.
Design regressors causal nuisance |t|-values avg.|t|-value

HP0 41 0 41

HP2∗ 41 1 40 5.77 5.77

HP2 41 1 40 11.34 11.34

HP7 41 3 38 (10.9, 16.7, 8.2) 11.93

JEDC 22 5 17 (2,3,4,6,8) 4.6

S0 34 0 34

S2 34 8 26 (2,2,2,2,2,2,2,2) 2

S3 34 8 26 (3,3,3,3,3,3,3,3) 3

S4 34 8 26 (4,4,4,4,4,4,4,4) 4

S∗
0 42 0 42

S∗
2 42 8 34 (2,2,2,2,2,2,2,2) 2

S∗
3 42 8 34 (3,3,3,3,3,3,3,3) 3

S∗
4 42 8 34 (4,4,4,4,4,4,4,4) 4

Figure 1 graphically illustrates four main aspects of calibration accuracy across all the

Monte Carlo experiments to date, for both Conservative and Liberal strategies. Panel (a) con-

cerns one sense of ‘overfitting’, namely potentially downward biased estimates of the equation

standard error,̂σ, for the true valueσ. This does not occur: the final averageσ̂ is close toσ

in all settings. The Liberal strategy has a slight downward bias (less than 5% ofσ), whereas

the Conservative is upward biased by a similar amount. Such behaviour is easily explained: the

Conservative strategy is more likely to eliminate variables which matter somewhat, so fits worse

than the GUM, which unbiasedly estimatesσ; and the Liberal strategy is more likely to retain

some variables which only matter by chance, but thereby slightly overfits. It must be stressed

thatPcGetsmodel selection is not based on fit as a criterion at any stage,but a minimal con-

gruent encompassing model will necessarily have the best fitat the chosen significance level.

Equation (1) records the goodness-of-fit relationship between models of sizes ands + 1 for

unbiased OLS estimators ofσ (i.e., corrected for degrees of freedom):

σ̂2
s

σ̂2
s+1

= 1 +
t
2
(s+1) − 1

T − s
. (1)

The probability under the null that|t| > 2.5 is 0.014 (whenT = 110 ands = 10), so larger

t
2-values will occur less than once in 70 draws under the null, yet even for such an unlikely

event, the left-hand ratio in (1) would only be about1.05, the upper bound shown in the graph.

Panel (b) shows the null rejection frequencies per test for both strategies across all experi-

ments, with their intended significance levels of 5% and 1%. In no case are deviations substan-

tial for the unweighted null rejection frequencies. When the reliability statistics (see stage 6)

are taken into account, and translated into retention probabilities in a linear fashion, the con-



9

trol of the null rejection frequency is improved further. Thus, if a 50% reliability is found, the

investigator is assumed to drop that variable on half the occasions. The resulting sub-sample

reliability-weighted outcomes are close to their targets (denoted ‘(rel)’ on the graphs). This

second sense of overfitting only occurs to the controlled extent of adventitious significance at

the rate(N − k)α.

Panel (c) plots ‘power’, namely the average rejection frequency of the null for relevant vari-

ables using the nominal critical values.3 The Conservative strategy naturally has no higher

power than the Liberal, so reveals that the cost of avoiding spurious variables can be high in

terms of missing variables that matter. The graphs also showthe impact of the sub-sample re-

liability weightings on the resulting power, confirming that there is only a small effect, even at

quite low powers where it should have most impact. SinceP( |t| > 2|ψ = 2) ' 0.5, the ‘pow-

ers’ in the S2 experiments are close to their theoretical upper bound, despite selection (similarly

for the other Sj). Comparisons between neighbouring successive Sj and S∗j experiments also

show that the impact on ‘power’ of eight additional irrelevant variables is small, especially for

the Liberal strategy.

0.95

1.00

1.05

(a) Equation standard error 

HP0 HP2* HP2 HP7 JEDC S0 S0* S2 S2* S3 S3* S4 S4*

Lib: σ̂/σ 
Con: ̂σ/σ 

0.00
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(c) Power: original and reliability based
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(d) DGP found

HP0 HP2* HP2 HP7 JEDC S0 S0* S2 S2* S3 S3* S4 S4*

Lib 
Con 
DGP: Lib 
DGP: Con 

Figure 1 Overview of accuracy, null rejection frequency, power, andsuccess.

Finally, figure 1(d) graphs the probabilities of locating the DGP, together with the corre-

sponding outcomes when the search commences with the DGP itself treated as the GUM. The

3The simulation null rejection frequencies are sufficientlyclose to the nominal to use the latter, which matches

what an empirical investigator would do in practice.
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movements of the four lines are similar, and frequently the apparent problem for a search algo-

rithm transpires to be a cost of inference not a cost of search, since the DGP is sometimes never

retained even when it is the initial specification. The out-performance of commencing from the

DGP in the Hoover–Perez experiments is owing to the high degree of over-parameterization

and very larget-values on relevant variables, but even so, the Conservative strategy does a

respectable job. When populationt-values are 2 or 3, the Liberal strategy does best, and some-

times outperforms commencing from the DGP with a 1% significance level (S3 and S4). Notice

also that the two strategies cannot be ranked on this fourth criterion: their relative performance

depends on the unknown state of nature. Nevertheless, as Hendry and Krolzig (2001, Ch. 5)

discuss, a user may be aware of the ‘type’ of problem being confronted, in which case, figure

1(d) shows the advantages of an appropriate choice of strategy combined with a good initial

model specification.

These findings also confirm the closeness in practice of the strategies to their desired oper-

ating characteristics.

3 ‘Pre-test’ and ‘selection’ effects in small samples

Statistical tests with non-degenerate null distributionshave non-zero size, and (generally) non-

unit power. Consequently, even if the local DGP were correctly specifieda priori from eco-

nomic theory, when an investigator did not know that the resulting model was ‘true’ – so sought

to test hypotheses about its coefficients – then inferentialmistakes can occur, the seriousness of

which depend on the characteristics of the local DGP and the sample drawn. Should the selected

model thereby differ from the DGP (with parametersβi), it will deliver biased coefficient esti-

mateŝβi: E[β̂i 6= βi]. This is called the ‘pre-test’ problem, since unbiased estimates could have

been obtained from the unrestricted model by conducting no selection tests (see e.g., Judge and

Bock, 1978). However, assuming that one both knows the truth, and knows that one does, so no

testing is needed, is not a relevant benchmark in economics.Moreover, granted the arguments

in Hendry and Krolzig (2003) against using alternatives such as Stein–James ‘shrinkage’, or

even the general model, then some selection method is essential. In the following simulations,

we also record the outcomes when commencing from the DGP to measure the additional costs

of selection due to commencing from the GUM.

3.1 Selection effects on coefficient estimates

To investigate the impact of selection, we re-ran the Krolzig and Hendry (2001) experiments.

As shown in table 2 (columns 3, 4, 8 and 9), unconditionally, coefficient estimates are down-

ward biased (being a mix of̂βi and0 when a regressorxi is and is not retained). In this section,

‘conditional’ denotes conditional on a variable being retained in the selected model; whereas
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Table 2 Coefficient estimates, estimated standard errors and standard deviations.

DGP Reduction of DGP GUM Reduction of GUM

unconditional conditional unconditional conditional

(including zeros) (excluding zeros) (including zeros) (excluding zeros)

variable LIB CON LIB CON LIB CON LIB CON

Bias/SETh

Za (ψ = 2) 0.041 -0.576 -1.076 0.859 1.242 0.042 -0.606 -1.072 0.852 1.221

Zb (ψ = 3) 0.013 -0.300 -0.701 0.322 0.576 0.002 -0.291 -0.757 0.328 0.600

Zc (ψ = 4) -0.008 -0.035 -0.216 0.066 0.196 -0.006 -0.071 -0.266 0.093 0.215

Zd (ψ = 6) 0.042 0.009 0.009 0.015 0.021 0.039 0.037 0.044 0.037 0.050

Ze (ψ = 8) 0.033 -0.042 -0.041 -0.042 -0.041 0.005 0.034 0.026 0.034 0.026

SE/SETh

Za (ψ = 2) 1.025 0.506 0.289 1.015 1.012 1.130 0.486 0.290 0.993 1.006

Zb (ψ = 3) 1.019 0.832 0.659 1.023 1.024 1.124 0.811 0.625 0.996 1.004

Zc (ψ = 4) 1.026 1.000 0.926 1.025 1.026 1.131 0.966 0.905 1.007 1.021

Zd (ψ = 6) 1.023 1.029 1.036 1.030 1.038 1.129 1.007 1.026 1.007 1.027

Ze (ψ = 8) 1.027 1.025 1.033 1.025 1.033 1.133 1.010 1.031 1.010 1.031

SD/SETh

Za (ψ = 2) 1.028 1.503 1.499 0.659 0.611 1.145 1.508 1.497 0.702 0.624

Zb (ψ = 3) 1.023 1.492 1.815 0.821 0.749 1.126 1.502 1.842 0.843 0.749

Zc (ψ = 4) 1.034 1.133 1.509 0.950 0.894 1.146 1.254 1.584 0.984 0.899

Zd (ψ = 6) 1.031 1.038 1.074 1.021 1.048 1.160 1.079 1.080 1.079 1.063

Ze (ψ = 8) 1.057 1.004 1.020 1.004 1.020 1.187 1.108 1.099 1.108 1.099

RMSE/SETh

Za (ψ = 2) 1.028 1.610 1.846 1.083 1.384 1.145 1.625 1.841 1.104 1.371

Zb (ψ = 3) 1.023 1.522 1.946 0.882 0.945 1.126 1.530 1.992 0.905 0.960

Zc (ψ = 4) 1.034 1.133 1.524 0.952 0.915 1.146 1.256 1.606 0.988 0.924

Zd (ψ = 6) 1.032 1.038 1.074 1.021 1.041 1.160 1.079 1.080 1.079 1.064

Ze (ψ = 8) 1.058 1.005 1.020 1.005 1.020 1.187 1.109 1.100 1.109 1.100

residuals

σ̂ 0.998 1.007 1.017 0.998 0.981 1.008

% bias -0.2% 0.7% 1.7% -0.2% -1.9% 0.8%

Monte Carlo results for JEDC design (see table 1) withT = 100 observations andM = 1000 replications:

Bias mean deviation of
�

β in MC from trueβ SETh true standard error of
�

β (T−1/2σ/σZ = 0.1)

RMSE root mean square error of
�

β in MC SE mean of reported standard errors
�

σ estimated standard deviation of error term (σ = 1) SD standard deviation of
�

β in MC
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‘unconditional’ denotes also including the coefficients imposed at zero. Figure 2 shows the

unconditional distributions of the five relevant and 17 irrelevant regressors for the Liberal strat-

egy.4 These unconditional distributions illustrate the qualityof the classification of variables

into DGP variables (top row) and nuisance variables (all others). The non-zero-mass distribu-

tion of the DGP variables is truncated normal, but truncation does not affect variables with a

populationt-value greater than4 in absolute value.

Conditional on being retained, the bias, reported standarderrors (SE), standard deviations

(SD) and root mean-square errors (RMSE) are shown in columns 5, 6, 10 and 11 of table 2,

all relative to the theoretical standard errors (SETh). As expected, the coefficient estimates are

now upward biased for smallert-values (|t| ≤ 3), more so for the Conservative strategy, but are

close to the population values for largert-values. The Liberal strategy biases are under 10% for

|t| > 3.
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Figure 2 Unconditional distributions from the Liberal strategy.

Figure 3 records the corresponding conditional distributions (i.e., of retained regressors).

Those for the non-DGP variables are bimodal and symmetric, except for the lagged endogenous

variable, where the impact of the famous Hurwicz (1950) biasis clear.

The final important result is that these ‘pre-test’ effects are not, in any essential respects,

changed by search. The coefficient biases are closely similar when commencing from the DGP

4The results for the Conservative strategy are similar, but the distributions of irrelevant variables are almost

invisible, and so are not shown.
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or the GUM for each strategy, both conditionally and unconditionally as table 2 confirms.
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Figure 3 Conditional distributions (excluding zeros) from the Liberal strategy.

3.2 Selection effects on estimated standard errors and standard deviations

Table 2 shows that the estimated standard errors (SEs, namely those reported for the selected

equation’s coefficients) are close to providing unbiased estimates of the actual sampling stan-

dard deviations (SDs) for the estimated DGP. At first sight, that is an astonishing result, since

the estimated uncertainty, despite having to select a DGP variable from a GUM, appears to re-

flect only the uncertainty due to estimating the DGP without selection. However, the intuition is

simple: theSDs in the estimated DGP model are correctly estimated by the reportedSEs (col-

umn 2); the latter are based on the estimated equation standard error (̂σ, which is close toσ on

average as shown on the bottom row) times the associated square-root element from(X′
X)−1;

and that in turn is approximately the same in the selected model when the relevant variable is

retained. Thus, similarSEs are reported.

Because parameter estimates restricted to zero have zero standard errors, unconditionalSEs

after selection are downwards biased, whereas the corresponding unconditionalSDs are upward

biased (being that of a mix of0 and the variability inβ̂i). The probabilityp of retaining a

variable with a populationt2-value of 4 is approximately 0.5, so the effects are largest at small

populationt-values. Indeed, the mean unconditional estimates and their SEs are approximately
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p times the corresponding conditional estimates. However, the relevance of such unconditional

‘sampling properties’ is unclear in the context of model selection when the DGP is unknown.

The elimination of insignificant variables is the objectiveof simplification in small samples, and

the underlying state of nature is unknown (i.e., whether variables are relevant or irrelevant), so

the cost of the bimodality of the unconditional selection distribution for relevant variables is a

largerSD.

As noted earlier, in almost all cases, the estimated equation standard errorŝσ are close to

σ, so thatPcGetsdoes not ‘overfit’. Rather, the Conservative strategy underfits by eliminating

too many of the relevant regressors in its attempt to avoid adventitious significance, whereas the

Liberal strategy performance depends on the number of irrelevant variables in the GUM, and

can be either under or overσ. Indeed, so can theSEs andSDs, both conditional on retaining a

variable, and unconditionally.

Overall, the results in this section seem to confirm using theLiberal strategy as the default

option.

3.3 Selection effects on mis-specification tests

Another feature of interest is the impact of model selectionon the outcomes of test statistics.

In Krolzig and Hendry (2001), we have shown that, even in small samples (T = 100), the

empirical distributions of the test statistics for no autocorrelation, normality and no structural

break employed byPcGetsare largely unaffected by the strongly-exogenous nuisanceregres-

sors. Here we consider selection effects on the two heteroskedasticity tests, recalibrated as

noted. The graphs in figure 4 compare the ratios of actual sizes to nominal in the DGP, GUM

and the selected model.5

The operational rules adopted were as follows. If the GUM showed no mis-specifications

at5%, then simplified models with diagnostic tests indicating aninvalid reduction at1% or less

were rejected. If a mis-specification test of the GUM was significant at1%, the test was dropped

from the test battery. If thep-value of the mis-specification test was between1% and5%, the

target significance level was reduced from1% to 0.5%.

As can be seen from the graphs, there is little change in the rejection frequencies for quan-

tiles above the nominal significance level, but an increasing impact as the quantile decreases.

The latter effect is essentially bound to occur, since models with significant heteroskedasticity

are selected against by construction. Nevertheless, the outcomes in these graphs do not rep-

resent a ‘distortion’ of the sampling properties: the key decision is taken at the level of the

general model, and conditional on not rejecting there, no change should occur in that decision.

At most nominal significance levels in the GUM, the tests havetheir anticipated operating char-

5The 1% level showed larger departures, but was imprecisely estimated given the rarity with which it occurred,

and has been omitted from the graphs.
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Figure 4 Ratios of test sizes to nominal in the DGP, GUM and selected model.

acteristics. However, the ARCH test was oversized at smaller significance levels in the HP

experiments due to the heteroskedastic nuisance regressors affecting the residuals of the GUM.

4 Bias correction after model selection

The selection biases discussed in section 3.1 can be substantially corrected by an operational

formula, which we now describe. Consequently, despite searching in a large model class,

across different (unknown) states of nature in an orthogonal setting, the finally selected model

can be modified to deliver nearly unbiased estimates and essentially unbiased standard errors

for retained variables, with few adventitiously-significant effects—a performance close to that

achievable when commencing from the local DGP.

4.1 Truncated-distribution approximations to the bias

We use the convenient approximations that for a given sampleof sizeT :

t
�

β =
β̂

σ̂�

β

' β̂

σ�

β

,
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whereσ̂�

β is the coefficientSE, andσ�

β = E[σ̂�

β] is the population value, so:

β̂

σ�

β

∼ N

[
β

σ�

β

, 1

]
= N [ψ, 1] ,

whenψ = β/σ�

β is the non-centrality of thet-test. Let:

φ (w) =
1√
2π

exp

(
−1

2
w2

)
and Φ (w) =

1√
2π

∫ w

−∞

exp

(
−1

2
x2

)
dx.

Whenψ > 0, for one-sided truncation in a normal distribution (see e.g., Johnson and Kotz,

1970, ch. 13):

E

[
β̂

σ�

β

∣∣∣∣∣
β̂

σ�

β

≥ cα

]
= ψ +

φ (cα − ψ)

1 − Φ (cα − ψ)
= ψ + r (cα − ψ) , (2)

whenr (·) is the inverse Mills ratio:

r (w) =
φ (w)

1 − Φ (w)
,

so:

E

[
β̂

∣∣∣β̂ ≥ σ�

βcα

]
= β + σ�

βr (cα − ψ) = β
(
1 + ψ−1r (cα − ψ)

)
. (3)

Table 3 shows the close correspondence between the mean observed outcomes for the rele-

vant variables from the Monte Carlo experiments in Krolzig and Hendry (2001) (denoted̂β
(cα)

MC)

and those implied by (3) using:

β̂
(cα)

Th = β
(
1 + ψ−1r (cα − ψ)

)
, (4)

for one-sided truncation withc0.05 = 2.0 andc0.01 = 2.625. In all cases, the predicted biasβ̂
(cα)

Th

closely matches that obtained in the Monte Carlo,β̂
(cα)

MC, at both 1% and 5%.

Table 3 Conditional coefficient estimates and theory predictions.
β 0.200 0.300 0.400 0.600 0.800

β̂
(.05)

MC 0.286 0.332 0.407 0.602 0.796

β̂
(.05)

Th 0.280 0.329 0.405 0.600 0.800

β̂
(.01)

MC 0.324 0.358 0.420 0.602 0.796

β̂
(.01)

Th 0.324 0.358 0.417 0.600 0.800

In practice, sinceψ = 0 for the irrelevant variables, a doubly-truncated Gaussiandensity is

required, where the central region is lost and only the tailsretained. Again usingt�β ' β̂/σ�

β ∼
N [ψ, 1], the expectation of the truncatedt-value is:

ψ∗ = E

[
t�β

∣∣∣|t�β| > cα;ψ
]

= ψ +
φ (cα − ψ) − φ (−cα − ψ)

1 − Φ (cα − ψ) + Φ (−cα − ψ)
= ψ + r (ψ, cα) . (5)
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For ψ = 0, the truncated distribution is symmetric around zero as illustrated in figure 5, so

ψ∗ = 0. However, even if (e.g.)ψ = 1 andcα = 2, the lower tail contributes almost nothing to

the resulting mean, matching the closeness of (4) to the simulation outcomes for the non-central

t-statistics.
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Figure 5 Probability densities of the conditional and unconditional coefficient estimates.

To implement the equivalent of (4) based on (5) requires an estimateψ̃ of the non-centrality

ψ from the observedt�β statistic, which is then used in the correction formula for the estimated

parameters. When a variable is retained because|t�β | > cα, the selection bias is shown in (5)

and hence:

ψ = E

[
t�β

∣∣∣|t�β| > cα;ψ
]
− r (ψ, cα) . (6)

This is a non-linear function of the unknownψ, but could be solved by a step-wise iteration.6

Figure 6 shows how non-linear the mapping is atcα = 2 asψ varies, so such a bias correction

cannot work perfectly because small variations in the estimate ofψ in some regions will induce

large changes in the bias. Given an estimateψ̃ of ψ, then the bias-corrected parameter estimate

is based on the inverse of (4) using (5), namely:

β = β̂


 ψ̃

ψ̃ + r
(
ψ̃, cα

)


 . (7)

We now consider these two steps in more detail.

6We tried several approaches, including a Newton and two Taylor approximations, shown in the simulation

outcomes below.
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Figure 6 Non-linearity of the bias function.

4.2 Estimating the non-centrality

The first step in the iterativeψ-estimation procedure replaces the unknownr(ψ, cα) in (6) by

r(t�β, cα), and the expectationE[t�β | |t�β| > cα;ψ] by the observed valuet�β (an unbiased estimate)

to deliver:

t
�

β = t
�

β − r
(
t
�

β , cα

)
, (8)

then:

ψ̃ = t
�

β − r
(
t
�

β, cα

)
. (9)

The Monte Carlo results in figure 7 below show that most, but not all, of the selection bias is

corrected. However, any closer match for the smallest non-zero non-centrality considered here

(ψ = 2) tends to induce over-correction at somewhat largert-values. This would probably be

exacerbated by matching at yet smaller non-centralities, given figure 6.

4.3 Correcting biases in̂β

The second step involves solving (7). Even ifE[ψ̃] = ψ, β could be biased due to being a

non-linear function of̃ψ:

β = β̂


 ψ̃

ψ̃ + r
(
ψ̃, cα

)


 . (10)
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An alternative formula for the denominator of (10) is:

ψ̃ + r
(
t�β, cα

)
= t�β, (11)

and this is used in the following derivation. Assumingψ̃ has been bias corrected such that

E[ψ̃] = ψ, and aŝβ ' σ�

βt
�

β, then from (10):

β = β̂
ψ̃

t�β

'
σ�

βt
�

βψ̃

t�β

= σ�

βψ̃,

so:

E
[
β

]
' E

[
σ�

βψ̃
]

= σ�

βψ = β. (12)

However as:

E

[
r
(
t
�

β, cα

) ∣∣∣t�β ≥ cα

]
6= E

[
r
(
ψ̃, cα

) ∣∣∣t�β ≥ cα

]
6= r (ψ, cα) ,

an additional bias may result from this step if other approximations to the denominator of (10)

are used.
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Figure 7 Biases andRMSEs of the original and adjusted estimates.

Figure 7 shows various comparisons of the biases andRMSEs for the original and adjusted

estimates in the JEDC Monte Carlo experiments. We evaluatedboth 1-step and 2-step iterates

and a Taylor approximation, in combination with the two mainchoices for the denominator
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in (10). Figure 8 plots the comparative conditional distributions for the 2-step approximation

using (11). Much of the bias for the retained relevant variables is corrected without too great an

increase in theirRMSEs. The next section discusses the impact of the various bias corrections

on the retained irrelevant variables.
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Figure 8 Conditional distributions of the original and 2-step adjusted estimates.

4.4 Bias correction impact on retained irrelevant variables

A surprising effect of the bias correction is its impact on the distributions of the coefficients

of the retained irrelevant variables in the conditional model. While their unbiasedness is es-

sentially unaffected by construction, figures 7 and 8 show the considerable reductions in their

RMSEs, both from the iterated correction and a ‘double correction’ designed to substantially

reduceRMSEs. As can be seen, reductions of around 25%–40% result, so thebias correction

is beneficial from that aspect as well.

4.5 Bias correction impact on unconditional coefficients estimates

The analysis of the truncatedt-values in (5) also gives useful insights into the biases of uncon-

ditional t-values (i.e., including zeros). Since:

E

[
t
�

β |ψ, cα
]

= Pr

[
|t�β| > cα

∣∣∣ψ
]
E

[
t
�

β

∣∣∣|t�β| > cα;ψ
]

= [1 − Φ (cα − ψ) + Φ (−cα − ψ)]ψ + φ (cα − ψ) − φ (−cα − ψ) ,
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the resulting bias has the opposite sign to the conditional bias r(ψ, cα). The illustration in

figure 9 forcα = 2 confirms the simulation results reported in table 2. Correcting for the bias in

E[t�β| |t�β| > cα;ψ] therefore slightly increases the downward bias in the unconditional estimates

of the coefficients. This, however, is not a major practical concern.
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Figure 9 Bias of the unconditional coefficient estimates (includingzeros).

4.6 Policy analysis implications

An important distinction must be made between the estimatedorthogonalized congruent model,

which deliverŝβ with near unbiased estimates ofσ�

β andσε, and the bias-corrected coefficients,

β and their associated statistics. Re-calculating residuals, standard errors etc., usingβ has no

theoretical foundation, and could introduce significant mis-specification diagnostics. However,

for some purposes, near unbiased parameter estimates likeβ may be useful.

The main application for unbiased estimates is probably policy analysis, particularly es-

timating policy derivatives. If a variable is incorrectly excluded because of chance insignifi-

cance in a given sample, then a policy avenue may be missed, inducing opportunity costs: the

Liberal strategy again seems preferred on this criterion. If an irrelevant variable is wrongly

included, incorrect decisions could result—but the smaller coefficient induced by the bias-

correction formula will decrease the chance of an ‘over-reaction’ by policy makers. In other

words, whenψ = 0, although no bias arises, the bias correction reduces the anticipated impact

of adventitiously-selected irrelevant variables, so the correction seems uniformly beneficial. If

a variable is correctly included but with a biased coefficient, again incorrect policy could result,

so unbiased coefficients seem valuable in this arena. Overall, therefore, given the bias correc-

tion procedure, the costs of missing relevant variables seem higher than those from adventitious

significance.
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5 Non-expert mode

To extend the practical realm of automatic selection, we have developed a mode where a non-

expert user simply specifies the appropriate functions of the regressand and the basic regressors,

thenPcGetscreates the GUM and selects a model. Thus, the input to ‘quickmodeller’ is just the

list of ‘basic variables’,yt, x1,t, . . ., xN,t. The maximum lag length is set from the data frequency

given the sample size; the levels equation is estimated unrestrictedly; and the congruence of the

resulting GUM is checked (Wooldridge, 1999, establishes the validity of the mis-specification

tests for integrated data). Next, thePcGiveunit-root test is computed (see e.g., Banerjee and

Hendry, 1992, and Ericsson and MacKinnon, 2002), and the variables transformed to differ-

ences and any cointegration combination. Finally, thatI(0) representation is re-estimated, and

the usual procedures for selecting a parsimonious undominated model implemented.

On the data set from Hendry and Ericsson (1991), and just inputting the UK M1 variables

m − p, y, ∆p, Rnet, with a maximum lag of 2 (as the data are seasonally adjusted)using

the Liberal strategy with outlier correction, ‘quick modeller’ selects an improvement on their

reported equation witĥσ = 1.22% from 4 variables and an impulse dummy, as against their

1.31% from 5 variables (and in seconds as against a large modelling time input!).

The maincaveatsof the present implementation are that (a) the user has to choose the func-

tional form, which sits uneasily with the notion that they are not experts; and (b) the initial

levels representation of the regressor set potentially departs strongly from orthogonality. Prob-

lem (a) can be addressed by an approach like Perez-Amaralet al.(2003, 2004) in their program

RETINA, which automatically generates many non-linear transformations. We consider that a

productive avenue to explore, especially given their finding thatPcGetsperforms well on their

empirical problem when the general GUM is used. The results in Castle (2004) illustrate the

outcomes in some simulations, and perhaps suggest using a ‘super-conservative’ strategy for

selecting the non-linear components, with a Liberal for thelinear.

Problem (b) is considered in the next section, where we analyze the effects of near-

collinearity on the selection properties ofPcGets.

5.1 Collinearity

Perfect collinearity denotes an exact linear dependence between variables; perfect orthogonal-

ity denotes no linear dependencies; but any intermediate state depends on which ‘version’ of

a model is inspected, as collinearity is not invariant underlinear transforms. For example,

inter-variable correlations above0.99 can easily arise in systems with unit roots and drift, but

there is little difficulty determining the relevance of variables as the DGP is isomorphic to an

equilibrium-correction model. Conversely, when a conditional regression model is the DGP,

for regressors from a bivariate normal distribution with a correlation of0.99, there is almost
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no hope of determining which variables matter. Moreover, orthogonal representations then just

reveal that the variance of one transformed component is close to zero. The issue, therefore,

is not just one of the capabilities of any selection algorithm, but of the properties of the DGP

itself.

In empirical applications, the impact of collinearity willusually be manifest in the number

of different terminal models located for encompassing comparisons. Since highly correlated

variables may substitute for one another, the selection process can lead to set of final models

where none clearly dominates all the others.7 This information could still help guide selection

when subject-matter knowledge is available.

The effects of collinearity on the selection properties ofPcGetsare now illustrated by a

variation of the Monte Carlo experiments in Krolzig and Hendry (2001) (denoted as JEDC

design in table 1). The DGP is a Gaussian regression model, where the strongly-exogenous

variables are independent Gaussian AR(1) processes:

yt =
∑5

j=1 βj,0zj,t + ut, ut ∼ IN [0, σu] ,

zt = ρzt−1 + vt, vt ∼ IN10 [0, (1 − ρ2)σ2
vI10] for t = 1, . . . , T,

(13)

wherezt collects both the DGP and nuisance variables. The parameterization of the DGP is

β1,0 = 0.2, β2,0 = 0.3, β3,0 = 0.4, β4,0 = 0.6, β5,0 = 0.8, with |ρ| < 1 andσ2
u = σ2

v = 1. The

populationt-value associated with regressorj is given by:

tj = βj

√
T
σz

σu

= βj

√
T

√
1 − ρ2σv√
1 − ρ2σu

= βj

√
T . (14)

The DGP is designed to ensure invariant populationt-values with increasingρ, even though

the entire second-moment matrix is becoming singular, and the data increasingly close to non-

stationarity. ForT = 100, the non-zero populationt-values are therefore2, 3, 4, 6, 8, indepen-

dently ofρ, although the approximation in (14) thatσz = σv becomes increasingly poor asρ

increases ifz0 = 0.

The GUM is anADL(1, . . . , 1) model, which includes as non-DGP variables the strongly-

exogenous regressorsz6,t, . . . , z10,t and the first lags of every variable, soN = 22, althoughk

is only 5 from the first equation in (13):

yt = π0,0 + π0,1yt−1 +

10∑

k=1

1∑

i=0

πk,izk,t−i + wt, wt ∼ IN
[
0, σ2

w

]
. (15)

In an alternative experiment, we also consider the orthogonal representation of (15) as a GUM:

yt = π0,0 + π0,1yt−1 +
10∑

k=1

πkzk,t +
10∑

k=1

γk (ρzk,t − zk,t−1) + wt, wt ∼ IN
[
0, σ2

w

]
. (16)

7An indirect cost of collinearity is that thet-values in the GUM are poor indicators of the importance of

variables, so the initial orderedt2(i) cannot guide the selection of candidate variables for elimination.
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In (15) as in (16),17 of 22 regressors are ‘nuisance’. The sample sizeT is just 100, and the

number of replicationsM is 1000. In a third experiment, using (16), the sample size is adjusted

for the time dependence of the regressors, soT (ρ) = 100(1 − ρ2)−1.
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Figure 10 Selection properties ofPcGetsfor varyingρ.

The Monte Carlo results are summarized in figure 10 which plots the null rejection fre-

quency (‘size’), the correct rejection frequency under thealternative (‘power’), and the proba-

bility of finding the DGP withPcGetswhen commencing from (i) GUM (15) withT = 100; (ii)

GUM (16) withT = 100; (iii) GUM (16) with T (ρ); and (iv) from the DGP (13) withT = 100.

The first and fourth experiments illustrate the effects of collinearity, namely a loss of power and

(in (i), increasing size), asρ moves towards unity. Starting from an orthogonalized GUM helps

stabilize size and power, but not completely. However, sizeand power becomeρ-invariant if

the sample size is adjusted as in (iii), confirming that information loss is the problem, not just

intercorrelations. The probability of locating the DGP falls sharply asρ increases in all cases

except (iii), where again it is stabilized. Except for the Liberal strategy commencing from the

DGP for low collinearity, where there is a much higher probability of retaining the DGP, the

costs of search in the other experiments are low compared to the costs of inference.
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6 Theory restrictions

The general formulation of the model under analysis will almost always be suggested by eco-

nomic theory (or, more generally, subject matter considerations), even if the specific imple-

mentation must also depend on institutions, historical contingencies, data availability, its mea-

surement accuracy, and previous empirical evidence—hopefully encompassed by the GUM of

the new specification. Parametric constraints that delivera specific numerical combination of

variables, such that the remainder ought then to be insignificant, are easily imposed.

Sign restriction information must first by tested in the GUM,since if it is rejected there,

then no feasible congruent model satisfies that sign constraint. Thus, the researcher needs to

re-think the theory and/or re-specify the GUM itself. However, if the sign restriction is ac-

cepted at the pre-assigned significance level, then it can beimposed during simplification as a

constraint, precisely like the diagnostic tests, where a violation simply terminates a search path

as inadmissible. Thus, the final model is guaranteed to both satisfy the constraints and be a

valid, congruent reduction, that will parsimoniously encompass the GUM. Even so, one should

always run the program unrestrictedly to check if the constraints hold anyway: if so, the best

model has been found. If not, then it is worth recording the costs of the constraints even if an

acceptable model satisfying them has been located. The advantages of such sign impositions

are coherence with the theory and improved selection test power for a given size.

If there are competing theory models of a given variable,PcGetscould be used to select the

‘best representative’ of each, conditional on the specifications of their information sets and their

entailed GUMs. Then encompassing tests could be used to determine the relative performance

of the selected candidates. This would automate the type of approach adopted by (e.g.) Bean

(1981) and Ahumada (1985), and ensure an objective and reproducible outcome.

7 Tackling apparently intractable problems

We briefly discuss three problems that at first sight seem intractable, but in fact can be tackled by

a Getsapproach. The first is model selection when confronting moreregressors than observa-

tions; the second is perfectly collinear regressors; and the third is the selection of simultaneous

equations models despite the absence of any prior identification information.

7.1 Model selection confronting too many regressors

We have several times been asked about this ‘singular case’ by investigators who have had to

confront an ‘excess variables’ problem when modelling, namely N > T . Some researchers

seem to have tried many small blocks of variables in their search for significant regressors,

but we doubt such a procedure will be effective, and have instead developed a variant ofGets:
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see Hendry and Krolzig (2004a) for details, who apply that idea to selecting non-linear repre-

sentations, and Hendry, Johansen and Santos (2004), who examine regressions with indicator

dummies for every observation.

To illustrate, letyt be an observed random variable where:

yt ∼ IN

[
µ+

k∑

i=1

βixi,t, σ
2
v

]
,

for t = 1, . . . , T , where there arek << T parameters of interest{βi}. However, an investigator

is uncertain about the specification, and wishes to regressyt on {µ, xi,t, i = 1, . . . , N > T}. A

perfect fit will result if such a regression is tried, so nothing will be learned.

Consider adding fewer than half the variables, randomly selected (e.g., a third of thexi,t if

N/3 << T ) together with the intercept. A first-stage model is selected from this GUM using

a relatively loose significance level (to compensate for theanticipated poor fit from omitted

relevant variables), and that terminal model is stored (autocorrelation and heteroskedastic con-

sistent estimated standard errors may be needed at these intermediate stages: see e.g., Andrews,

1991). Now enter the next third (1,xi,t, i = N/3 + 1, . . . , 2N/3) and repeat, again storing

the result. Finally, search the third set. Repeat for alternative selections, in every case storing

which regressors are retained. LetM < N denote the union of the variables in the terminal

models. IfM > T , repeat the process this far from partitions of theM variables, but at a more

stringent significance level; and so on. OnceM << T , formulate a new GUM where all these

significant selected variables from the terminal models arecombined, and re-select by a usual

PcGetsapproach. Clearly, the ‘perfect fit’ problem does not arise.Moreover,αN irrelevant

variables will be retained on average for a significance level α, so at the final stagesα can be

set to trade off adventitious significance against omittingrelevant regressors.

7.2 Perfect collinearity

Despite the problems with near collinearity discussed above, perfect collinearity can be handled

through the multi-path search process. To illustrate the general principles, economic theory

is often unable to specify which lag transforms actually determineyt: for example, when the

maximum lag is known to be unity, only a subset of the level (zt), its lag (zt−1), difference (∆zt),

distributed lag (zt, zt−1), or moving average (zt = zt+zt−1) may be relevant. Despite the perfect

collinearity, all four variables just noted can be entered,and if only multi-path searches are used,

the correct combination can be selected byPcGets, subject to the usual sampling fluctuations.

The following DGP is postulated:

yt = β0 + β11{zt}zt + β21{zt−1}zt−1 + β31{zt}zt + β41{∆zt}∆zt + vt (17)

wherevt ∼ IN [0, σ2
v ] and1{j} are indicator variables that take the value unity if the regressor

in question enters the DGP, and are zero otherwise, with at most two being non-zero. The
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investigator does not know which1{j} are unity, so formulates the GUM:

yt = γ0 + γ1zt + γ2zt−1 + γ3zt + γ4∆zt + ut. (18)

The regressors are perfectly collinear, and conventional inversion routines will arbitrarily assign

singularity to some subset, usually that with the smallest second moments.

With multi-path searches, consider commencing a sequence which deletes each variable in

turn, then every next variable, and so on: e.g., first drop∆zt, which still leaves a collinear set;

thenzt which is now a non-collinear set, and search; next, startingafresh from (18), dropzt

thenzt−1, and so on. Once a non-collinear set results, the usual algorithm can operate. If, for

example, only1{zt} = 1, then such a terminal model will be explored on some path, so should

be selected if the power is adequate, and will parsimoniously dominate the other selections (e.g.,

on the Schwarz criterion). There are 11 possible models, including the null, of which only 6 are

distinct. We conducted five one-off experiments on artificial data where, in turn,yt depended on:

(a)zt; (b) ∆zt; (c) zt; (d) zt−1; and (e)zt and∆zt but in each case all ofzt, zt−1, zt and∆zt were

entered as regressors in the GUM (18).PcGetsis not yet programmed to follow all possible

paths, but as a partial implementation by hand (namely searching once a non-collinear set was

imposed, commencing from every path and usingSIC to select between undominated choices)

gave the correct answers in (a)–(d), but in (e), it selected the more orthogonal representation,zt

and∆zt, which is equivalent. Pre-search tests designed to reduce the computational burden of

path exploration would arbitrarily eliminate whatever variables the inversion routine treated as

redundant, and possibly preclude finding a useful representation.

7.3 Simultaneous equations selection

The properties ofGetsderive from the theory of reduction (see Hendry, 1995), so our approach

is to embed the selection of linear simultaneous systems in that theory, conditional on a prior

division into endogenous and non-modelled variables (all of which could be lagged endogenous,

as in a VAR): more details are provided in Hendry and Krolzig (2004a). What matters is the

identification of the DGP representation: if that is identified, it can be found as a reduction,

even if the identifying restrictions are not known; if it is not identified, then the program will

revert to the ‘reduced form’.

First, the linear conditional statistical system (also called the ‘reduced form’) is formulated,

noting that such a system is always identified. That system isthen tested for congruence: once

the initial system is congruent, all later selections are constrained to be congruent as well.

If congruence is accepted for the unrestricted representation, a parsimonious version of that

system is selected by the usualPcGetsapproach, checking that congruence is maintained, such

that all right-hand side (regressor) variables are significant at the desired level in their associated

equations. This step is to avoid later ‘spurious identification’ by excluding what are actually

irrelevant regressors.
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The key step is that each endogenous variable is now addedseriatimto every other equation

concomitant with dropping any regressor that is also present in that added variable’s equation,

checking ‘just-identification’ by the rank condition as implemented inPcGiveby Hendry, Neale

and Srba (1988). Then one checks what further reductions canbe achieved in the regressor set

of the first equation. There are two main possibilities in anyequation for reductions in the

regressor set:

(1) no additional reductions are found;

(2) one or more further reductions occur.

In the first case, the postulated equation is just-identified, so the choice just reverts to the system

(reduced-form) equation. In the second case, the proposed equation must be over-identified,

since there are several eliminated right-hand side regressors, and these must be a determinant of

the added left-hand side variable by occurring significantly in its equation, thereby identifying

that endogenous effect. The resulting restrictions are testable (e.g., by the test in Sargan, 1964).

Each equation is considered in turn in this instrumental variables approach. Since the rank

condition is imposed as a constraint, the ‘same equation’ isnot included twice, and the current

‘partial structure’ is always fully identified at every step. Here we use ‘structure’ in quotation

marks to denote an equation with more than one endogenous variable, without any connota-

tions that it really is structural (namely, invariant to extensions of the information set for new

variables, over time, and across regimes).

Weak instruments show up as a poorly determined initial system, or requiring a loose sig-

nificance level for instruments to be retained. That states,but does not resolve, the problem

which lies in available information, not the performance ofany selection approach. As noted

above, the choice of instruments can be made byPcGets, both to determine their relevance for

each endogenous variable, and to test for instrument mis-specification as part of the congruence

check. Finally, while our approach is so far only worked out for zero restrictions on linear sys-

tems using instrumental variables, generalizations to other forms of restriction, other estimators

such as maximum likelihood (or even quantile regression), and to non-linear equationsinter

alia seem feasible in principle.

These three previously ‘intractable’ cases illustrate howa new tool can yield new insights:

one might have suspected that regressions withN > T , or perfect collinearity, or simultaneous

modelling in the absence of prior information, were all insoluble, but multi-path searches can

resolve the choice of model in each case.

8 Conclusion

Model selection is an important part of a progressive research strategy, and itself is progressing

rapidly. The automatic selection algorithm inPcGetsprovides a consistent selection likeSIC,
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but in finite samples, both ensures a congruent model and can out-perform in important spe-

cial cases withoutad hocadjustments. Recent improvements have stabilized the nullrejection

frequency relative to the desired nominal significance level, and the power relative to that fea-

sible when the DGP is the initial specification. The power performance on recent Monte Carlo

experiments in orthogonal models is close to the upper boundof a scalart-test at the given

non-centrality from a knownt-distribution.

Searchper sedoes not seem to impose serious additional costs over those of inference

(nor does mis-specification testing, as that is needed even when commencing from the DGP

specification). The results confirm that ‘pre-test’ biases arise from simplifying the DGP, not

from searching for it in an over-parameterized representation. The equation standard error is

found within±5% of the population value, depending on the strategy adopted, soPcGetshas

no substantive tendency to ‘overfit’. Depending on the stateof nature,PcGetscan even have

a higher probability of finding the DGP starting from the GUM using the Liberal strategy,

than a researcher commencing from the DGP but selecting by the Conservative strategy. Such

findings would have seemed astonishing in the aftermath of Lovell (1983), who reported that

‘data mining’ had a low probability of success, and both shows the progress achieved and serves

to emphasize the importance of the choice of strategy for theunderlying selection problem.

Obtaining nearly unbiased estimates of the DGP parameters in selected models, with estimated

standard errors that are close to those that would be reported for sampling standard deviations

in the estimated DGP, might surprise even more. The key to such performance seems to lie in

using a search algorithm that commences from a congruent orthogonal representation that nests

the DGP, explores all feasible paths while retaining congruence for a given ‘size’ per candidate

variable, and terminates with a dominant encompassing selection.

Non-orthogonal designs remain problematic, in that they can induce higher costs of search

as well as of inference, and remain an area where expert knowledge will continue to prove

valuable. Nevertheless, we have added a ‘quick modeller’ option for non-expert users, which

initial experience suggests is able to outperform all but expert econometricians in selecting

from an initial dynamic GUM that is possiblyI(1). In models with many potential candidate

variables, automatic selection is invaluable.

So what lies ahead? Certainly, the theoretical context assumed above of regression analy-

sis with orthogonal strongly-exogenous regressors is far too simple to characterize real-world

econometrics. Empirical researchers confront non-normal, mis-measured data, on evolving

non-stationary dynamic and high-dimensional economies, with at best weakly exogenous, in-

tercorrelated, conditioning variables. At a practical level, Getsis applicable to systems, such

as vector autoregressions (see Krolzig, 2001, 2003a, 2003b), and to endogenous regressors

when sufficient valid instruments exist. Moreover, Omtzig (2002) and Kurcewicz and Myciel-

ski (2003) have proposed algorithms for automatic selection of cointegration vectors; andGets

approaches seem just as powerful a tool on cross-section problems, as demonstrated by Hoover
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and Perez (2004) and Hendry and Krolzig (2004c). Even thoughbias corrections will be im-

perfect in many settings, simulation studies can reveal howwell they do (or do not) perform.

While it is usually infeasible to analytically derive either the conditional or unconditional distri-

butions of the finally-selected model’s parameter estimates, in some special cases under specific

assumptions, important advances have been achieved: seeinter alia, Pötscher (1991) and Leeb

and Pötscher (2000).

As sketched above, selection with more candidate regressors than observations (N > T ) is

feasible when the DGP is estimable (withk << T regressors). Simultaneous equations systems

also pose less than insurmountable problems using a tool likePcGets. Developments like those

in RETINA for creating and selecting functional form bode well, as do the ideas in Phillips

(1995, 1996, 2003) for forecasting. Since applied researchers must often devote considerable

effort to developing empirical representations, such labour-saving devices have much to offer.

Automatic model selection could eventually replace ‘hands-on’ empirical research, but seems

more likely to remain a complement to existing methods for the foreseeable future. Even in that

role, by truncating the lower tail of the quality distribution, such procedures should improve the

average quality of published models and direct researchersaway from bad models that might

otherwise have been selected. We remain confident that further developments will continue

to improve the performance of, and widen the scope of application for, automatic modelling

procedures.

Department of Economics, University of Oxford

Department of Economics, University of Kent
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