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Abstract

This paper proposes and implements a consumption-based pricing kernd (stochastic discount factor) testing
methodology that focuses on the covariance between the pricing kernel and asset squared excessreturns. This
covariance has an intuitive economic interpretation as a risk-neutra variance risk-premium, i.e. the difference
between the risk-neutral return variance and the objective return variance. In the same way that an asset risk-
premium puzzle is due to afallure of the pricing kerndl to adequately covary with asset excess returns, arisk-
neutral variance puzzle is dueto afailure of the pricing kernd to adequately covary with asset squared excess
returns.

This paper tests a consumption-based pricing kernel specification that is compatible with habit formation,
consumption durability, and congtant relative risk-aversion over arange of plausible preference parameter
vaues. The difference between consumption-based and semi- parametric optionbased estimates of
unconditiona risk-neutral S& P500 return variance is used as a pricing kernel specification test satistic.

Evidenceisfound of arisk-neutral S&P500 return variance puzzle if congtant relative risk-aversonis
assumed. The puzzle is resolved when the pricing kernel is dlowed to exhibit habit formation. The acceptable
habit pricing kernels exhibit higher habit levels, higher utility function concavity, and lower rates of time-
preference than estimates in related papers. When the full history of consumption data is used, the preference

parameter estimates are more Smilar to those of related papers.
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referee at the Journal of Finance, seminar participants at the 10" Annual Derivative Securities Conference, and seminar
participants the Federal Reserve Bank of New Y ork. The most recent version of this paper is available at
http://www.stern.nyu.edu/~jrosenb0/J_wpaper.htm. ©2000.



. Introduction

Is there an aggregate consumption-based pricing kernel that can rationdize the characteristics of financid market
data? This question is the focus of a substantid body of asset pricing literature; see, for example, Hansen and
Singleton (1982, 1983), Ferson (1983), Cochrane and Hansen (1992), Galant, Hansen, and Tauchen (1990),
Ferson and Constantinides (1991), Hansen and Jagannathan (1991), Cecchetti, Lam, and Mark (1994), Dunn
and Singleton (1995), Heaton (1995), Chapman (1997), Campbell and Cochrane (1999), and many others.

The standard stting to address this question begins with atime-series of aggregate consumption data, a
postulated utility function specification (or a nonparametric estimation procedure), atime-series of asset returns
(equities, bonds, currencies), and a set of orthogondity conditions implied by the Euler equation. Various
specification tests are used to measure the adequacy of the modd fit to the data.

Thefinding that consumptionbased pricing kernd specifications at economically plausible preference
parameter values provide a poor fit to financid market detais referred to as an “asset pricing puzzle” The
equity premium puzzle of Mehra and Prescott (1985) refers to result that a consumption-based constant relative
risk-averson (CRRA) pricing kernd must have a high coefficient of relative risk-aversion (g) to characterize
average equity returns. The risk-free rate puzzle of Weil (1989) refers to the result that a consumption-based
CRRA pricing kernel must have arate of time-preference (r ) greater than one to accurately predict the average
riskless interest rate level, when the coefficient of relative risk-aversion is high enough to replicate average equity
returns.

This paper proposes and implements a consumption-based pricing kernd (stochastic discount factor) testing
methodology that focuses on the covariance between the pricing kernel and asset squared excessreturns. This
covariance has an intuitive economic interpretation as a risk-neutra variance risk-premium, i.e. the difference
between the risk-neutral return variance and the objective return variance. * In the same way that an asset risk-
premium puzzle is due to afailure of the pricing kernd to adequately covary with asset excessreturns, arisk-
neutral variance puzzle is due to afalure of the pricing kernd to adequately covary with asset squared excess

returns.

! Therisk-neutral variance isthe variance of the risk-neutral return density, i.e. B (R.1 — RR)?, where R.,, is the asset return
and RF, istherisklessinterest rate. The risk-neutral return density is also referred to as the equivalent martingale measure. The
objective density is sometimes also referred to as the subjective density. Note that the risk-neutral varianceis only equal to
the Black-Scholes (1973) implied variance when the risk-neutral density islognormal.



The expected vaue of the product of the pricing kernd and asset squared excess return is proportional to
the risk-neutral asset return variance; so different consumption-based pricing kernel specifications etimate
different levels of unconditional risk-neutral asset return variance. The difference between the estimated
unconditiona risk-neutral asset return variance using a particular consumptionbased pricing kernel and the
“true’ level provides ameasure of the pricing kernd adequecy.

In practice, the “true’ risk-neutral asset return variance cannot be directly observed, but it may be estimated
using option data. Option datais helpful in this context, because it is possible to develop a*“model-freg” optiont
based estimator that does not depend on a particular specification of consumer preferences or asset price
stochastics. Since risk-neutrd return variance is often measured using option data, this paper links the literature
focusng on esimation of risk-neutrd dengities using option data— e.g. Shimko (1993), Rubinstein (1994),
Longstaff (1995), and Ait-Sahdiaand Lo (1998) — with the consumptionbased asset pricing literature.

Optionbased risk-neutrd return variance is dso asummary satigtic that captures an important
characterigtic of historica option prices. Thus, this paper provides a technique to incorporate data from options
marketsin tests of consumption-based pricing kernds. Previous papers have analyzed consumptionbased
pricing kernels using equity, bond, and currency data, but not option data.

This paper 0 extends the exigting literature that characterizes necessary properties of a consumption-
based pricing kernd. For example, Hansen and Singleton (1982) utilize expectations of the product of the
pricing kernel, asset returns, and instrumental variables to estimate pricing kernel preference parameters. Hansen
and Jagannathan (1991) characterize the minimum acceptable ratio of the pricing kernd standard deviation and
mean, while Cochrane and Hansen (1992) show that low correlation between the pricing kernel and asset
returns is often the source of asset pricing puzzles.

Severd exigting papers — Ait-Sahdiaand Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2000)
— edimate apricing kernd defined over equity return states using option data. However, these papers do not
propose amethodology to link the pricing kernd defined over equity return states to a consumption-based
pricing kernel. So, these papers cannot directly analyze consumptionbased specifications.

This paper tests a consumption-based pricing kernd specification that is competible with habit formetion,
consumption durability, and congtant relative risk-aversion over arange of plausible preference parameter
vaues. The pricing kernels are evaluated using aggregate monthly consumption data from the Nationa Income

and Product Accounts, and the consumptionbased unconditiona risk-neutra S& P500 return variance is



edimated using the time-series of one-month pricing kernd redlizations and squared S& PS00 one-month excess
returns over the period from 1988:01 to 1997:12.

The optionbased unconditional risk-neutral S& PS00 return variance is estimated using S& P500 futures
option data over the same period. On the first trading day of each month, the conditiona risk-neutral S& P500
one-month return variance is estimated semi- parametricaly. The average of these conditiond risk-neutral
S& P500 return variances provides an estimate of the optionbased unconditiona risk-neutral S& P500 return
vaiance. The datistical sgnificance of the difference in the consumptionbased and option-based unconditiona
risk-neutral variance estimates is measured using the bootstrap percentile technique of Efron and Tibshirani
(1993).

This paper presents severa important empirical results. Evidenceisfound of arisk-neutral S&P500
return variance puzzle if congtant relative risk-averson is assumed. The puzzle is resolved when the pricing
kernd is dlowed to exhibit habit formation. The acceptable habit pricing kernels exhibit higher habit levels,
higher utility function concavity, and lower rates of time- preference than estimates in related papers. When the
full history of consumption data is used, the preference parameter estimates are more smilar to those of related
papers.

The remainder of the paper is organized as follows. Section 11 develops the theory of risk-neutral variancein
consumption-based asset pricing models and its relationship to option vauation. Section 111 presents estimation
techniques for consumption-based and option-based unconditiond risk-neutra variance as well as atechnique
to evauate the satistical significance of the difference in the variance estimates. Section |V describes the data
used in estimation of consumption-based and option-based unconditiona risk-neutral S& PS00 variance and the
estimation reaults. Section V evauates the consumption-based pricing kernel specifications using the
unconditiona risk-neutra variance criterion, and Section V1 concludes the paper.

. Risk-neutral variance: Theory

Il.a. Risk-neutral variance and consumption-based asset pricing models

Consumptionbased asset pricing models typicaly assume the existence of a representative consumer with time-
separable preferences who chooses to maximize lifetime expected utility subject to a budget congtraint (e.g.



Lucas, 1978). In this setting, the equilibrium red price of atraded asset isits expected pricing-kernd-weighted
payoff. The pricing kernd acts as aweighting function that increases (decreases) the subjective vaue of a payoff
in states where the margind utility of consumption is high (low).

Congder agenerd asset, which might be a derivative security, with a payoff that depends on afuture
“underlying asset” price. Let d; be the price of the asset in units of consumption, let g(p.+1) be the asset’ s payoff
asafunction of afuture realized “underlying asset” price (pi+1), and let m.; = €' U’ (Cy.1)/U’ (C,) bethepricing
kernel or stochastic discount factor which depends on current consumption (C) and next period consumption
(Ci+1). Then, the consumption-based asset pricing equation is?

@  d, =E[g(p.)m..]

The pricing kernedl may be generdized to incorporate habit formation or consumption durability by adding a
second Stete variable to the utility function to measure the impact of habit on utility, i.e. U, = U(C,, X;) where X;
represents the habit. Then, M.y = [TU(Ci1, Xer1)/ICera]/[TU(Ct, X)/CY]. See, for example, the survey of habit
modelsin Campbell, Lo, and MacKinlay (1997, section 8.4).

Now, consider the nomind pricing equation for an asset with a payoff function that depends on a future
nomind asset vaue. Following the andyss of Boudoukh (1993), inflation enters the pricing equation
exogenoudy as anumeraire. Letting D represent the nominal asset price, Iv.; represent the gross inflation rete,
and M= |11 'm represent the nomind pricing kernd: 2

@ D =ElgP)ma.lil]|=Elo(RoM..]
The nomind riskless one-period bond price (B;), nomina riskless one-period interest rate (RF;), and

unconditiona nomind riskless one-period interest rate (E[RF]) are obtained by evaluating equetion (2) with a
payoff function of unity.

% The familiar Euler equation of Hansen and Singleton (1982, equation 2.6) — that the expected pricing-kernel-weighted net
return is zero— is obtained by dividing both sides of equation (1) by the current asset price and subtracting one, so that
E[M1ra] =0, wherer..,= g(pw1)/d; — 1 isthe asset net return. If the asset to be priced is the underlying asset, then r.; = pua/py
—1, sinced; = p;and g(Pi+1)=Pr+1-



® B=E[M.] RE =EM.]" -1 E[RF]=EM..]"-1

If Ri1=Py1/P; — 1 represents the nomind one-period net return for the underlying asset with a current price
of P, then the underlying asset’s nominal expected return and unconditional nominal expected return are*

@  E[R,l=-E[M,] Cov[R, . M,,] E[R..] =- EM,..] "COMR,,,M,,,]

Equation (4) isaversion of the consumption capital asset pricing modd (e.g. Merton, 1973 or Breeden,
1979), since an asset’ s expected return depends linearly on its covariance with the pricing kerndl. Assetswith
large negative covariance with the pricing kernd are more risky (less desirable) and require higher expected
returns, because they have the highest payoffs when the margind utility of aunit payoff islowes.

Equation (2) may aso be rewritten in “risk-neutral dengity” form, in which the risk-weighting of the pricing
kernd isincorporated into the dengity function. In particular, the conditiona risk-neutrd density isthe bivariate
conditiona dengty function of the pricing kernd and the asset price scaed by the pricing kernd and then

renormalized.’

(5) Dt = Et[ M t+1]d g (Pt+1) ft* (M t+1? Pt+1)d|vI t+1dPt+1

ft* (M1, P.y) = E[M t+1]_1 M. f. (M, R.)

¥ Suppose the priceindex is given by i.. Then, the real price of the asset is the expected pricing-kernel-weighted real payoff.
Di; = E[(9(Pu1)/i1)my]. So, the nominal price of the asset is given by multiplying through by the current price index: D, =
EL9(Pu)Mua(i/ite1)] = BIO(Ped)Mutlies ] = BO(Pe)M a].

* Using the identity Cov(X,Y) =E[XY]- E[X]E[Y], CoV{Ri:1,M+1] = E[R:1M+1] — E[R.1]E[M.4]. Equation (2) implies that
E[M1R1] =0, 50 COV[Ri1 M 1] = — E[R.1]E[M ] OF E[R(.] = —E[Myg] "COV{Ri1,M ]

’ Sinced M t+1 ft (M t+12 Pt+1)dM t+1dPt+1 = Et[ M t+1] ! ft* (M t+1 I:¥+l) = EI[M t+1]_ lM t+1ft (M t+1 I:¥+1) isavalid

density function, sinceit is continuous and integrates to unity. Using equation (2),

D, = E[9(R.)M]= G9(R.IM .y Fi (M y, B )M, AP, =
G 9(P.DEIM L IEIM T M, f (M1, R, )dM, ,dP,,, so
D, = E[M .l G9(P.0) f, (My,p, P.)dM P,



The bivariate conditiond risk-neutral density defined in equation (5) may be amplified to aunivariate
conditiona dengty that contains sufficient information to price any asset whose payoff depends only on P.4.
First, define the conditiona pricing kernel as M’ 111 = E[Mw1|P+1]. Then, rewriting equation (2) by factoring the
joint density into the product of the conditional and margina densities®

(6) (g( +1)Mt+1 t( +1)d t+1 T El[g( +1)Mt+1]

And, the univariate risk-neutra pricing equation and univariate conditiona risk-neutra density are:’

(7) D E[Mt+1](g( +1)f ( +1)d t+1

f (Pu) =EIM ] "M, i (PL)

The univariate conditiond risk-neutrd dendty defined in equation (7) may be used for vauation of al assets
whose payoff function depends on the underlying price P..;. Assets with payoffs that depend on another
underlying price (e.g. Q1) will require the conditional risk-neutral density of this price (e.g. f; (Qu.1)) for
vauation. Notice that equation (7) does not require the underlying asset price (P.1) to be a proxy for aggregate
consumption or aggregate wedth. If the asset to be priced has a payoff function that depends on aggregate
consumption, then the appropriate conditiona risk-neutral density to use for pricing would be the conditiona
risk-neutral dengity of aggregate consumption.

The consumption-based conditional risk-neutra variance (s %) isthe variance of the conditiond risk-neutral
dengty of the one-period-ahead underlying asset return. Evauation of this variance requires the conditional risk-

® Noticethat f(M .1,Pos) = fiMesPun)f(Pe), s0 D, = E [9(Pu)M 1] = @ 9(Pa)M o Fi(M oy, Py)AM 0P, =
@I(R.LIM f (M, [R)AM ] (PLy) AR, = (9(RL)EIM oy [RIT (R )dR,, =

(9(P.IM , fi(R,)AR,,

"since (M, f (R, AR, =E([M ] = E[E[M,,; R =E[M,.],

f.(P,) =E[M, .1 *M,,, f,(P.,) isavalid density function, becauseit is continuous and integrates to unity.

Then D E([g( +1)Mt+1] (g( +1)Mt+1f( +1)d t+1 (g( +1)E[Mt+1]El[Mt+1] MI+1 t( +1)d t+1
so D, = Et[Mt+1]( 9(R..) ft (R.)dR.,.



neutral dengity of the underlying asset return ;' (R:.1), instead of the conditional risk-neutra density of the
underlying price, ;" (P.+1). However, there is a one-to-one mapping between these two densities. The probability
of the outcome P isidenticd to the probability of the outcome R.; = P1/P; — 1 since P; isknown at datet.

Two additiond facts are required for evauation of the conditiona risk-neutrd variance. Fird, given a
particular return (Re.1), the corresponding underlying price that would generate that return is Pty = P(1+Ri1).
Second, the mean of the conditional risk-neutral return density is RF.2 Hence, the consumption-based
conditiond risk-neutra varianceis given by:

®  s:2=((Ru- R (RLIR,, =E[(R. - RF)’]

f (R = f(Ra)

R @+Rua)

And, the consumptionbased unconditiond risk-neutra variance is defined as the unconditiona expectation

of the conditiond risk-neutral variance.

© s.S=E[s.]

The conditiona risk-neutral variance (s %) is related to the conditiona objective return variance (s * =

E[(Rw1 — RFy)?) and the conditional risk-neutral variance risk-premium (I .,).° Rewriting equation (8):°

(10) s=si+l, ot = EIM,,. ] *Cov[(R,, - RF)% M,

8 Using equation (7), the underlying asset priceis given by P, = E[M 1] 'E [P..1], i.€. the payoff function is g(P.1) = Pu.. S0, it
isthe case that E, [Pu1] = E[M.4]P, i.e. the mean of the conditional risk-neutral price density is E[M,,.]*P.. Then, the mean of
the conditional risk-neutral return density is E[M ] 'P/P,.— 1= RF.

° The definition of the conditional objective variance ass = E{(R.. — RF)?] is nonstandard in that the returns are centered
around theriskless rate rather than the expected return. However, for convenience, this quantity isreferred to asthe
“conditional objective variance,” i.e. return variance under the conditional objective probability measure. This may also be
interpreted as the conditional expected squared excess return.

" Substituting f  (Pi1) = E[M ] "M’ caf(Pr.s) into equation (8), 572 = B[Ry — RR]* = B[M 1] "E[(Rus — RR)*M 1.4 Using the
identity E[XY] = Cov(X,Y) + E[X]E[Y], E[M 1] "E[(Rus — RR)*M’ 1] = E[M .t TCOV{ (R — RR)?, M’1a] + E[M ] E[Ress —
RF]% 505"%; =5 + B[Mua] [COV{(Rivs — RR)’,M’y,], With s = E[(Res — RR)]. S0, | ¢ = B[M 1] {COV{(Ress — RR)" M ).



Or, in unconditiond terms:

1) s?=s’+l, s?=E[s?] I.=E[l_ ]J=s>-s"°

Equation (10) states that the consumptionbased conditiona risk-neutrd varianceis equd to the conditiona
objective return variance plus a conditiond risk-neutra variance risk-premium. The conditiona risk-neutra
variance risk-premium is equd to the scaled covariance of the squared excess return and the pricing kernd. So,
an ast with a positive (negative) conditiona covariance of squared excess returns with the pricing kernel has a
conditiond risk-neutra variance thet islarger (smdler) than its conditional objective variance. In equation (11),
the unconditiond risk-neutrd variance is equd to the sum of the unconditiona objective variance and the
unconditiona risk-neutral variance risk-premium.

The consumption-based risk-neutrd variance provides ingght into consumptionbased pricing kernel
specifications by measuring the predicted covariance between squared excess returns and the pricing kernd.
This provides an extension of standard analyses of consumption-based pricing kernels that focus on the
predicted asset return risk-premium, which is related to the covariance of the asset excess return and the pricing
kernd or on analyses based on the mean and standard deviation of the pricing kerndl.

The risk-neutrd variance risk-premium often arises in the context of option pricing under sochastic
volatility. Since options are priced as their expected payoff under the risk-neutra dengty of the underlying price,
therisk-neutra variance isrlevant (rather than the objective variance) for valuation. The objective and risk-
neutral variance are not identical when the squared excess returns are correlated with the pricing kernd, i.e. the
risk-neutrd volatility risk-premium is nonzero. Hull and White (1987) require that volatility changes have abeta
of zero (i.e. squared-returns are uncorrelated with the pricing kernel) in order for the risk-neutra variance risk-
premium to be zero and their pricing results to hold. Amin and Ng (1993) show how the option pricing formula
Is affected when the underlying asset return volatility is corrdated with consumption growth volatility, so that the

risk-neutral variance risk-premium is non-zero.

[I.b. Risk-neutral variance and option valuation

Notice that the risk-neutral variance may be equivalently written in terms of the original pricing kernel (M .,) rather than the
conditional expectation of the pricing kernel (M’..1), so that s'%; = E [Ris1 — RF]? = E[M 1] "E[(Ris1 — RF)°M 4. Then, s, =
s¢ + E[M ] "[Cov(Riss — RF) My], with s = E[(Rus — RR)]. S0, | ¢ = B[M 1] [COV(Ruy — RR)Y Mia].

10



Equation (7) shows that the conditiona risk-neutral dengity of the underlying asset price may be used to vaue
any other asset whose payoff depends on the underlying asset price. Consider the vauation of a one-period call
option with an exercise price of K. The payoff function is g(P.+1) = Max[0, P.1 — K], so the current cal price

(Cy) isgiven by:

(12) C =E [Mt+1]( MaX[O t+ K]f ( +1)d t+1

f (Ra) = E[Mua] "M, f (Ry)

The dope and curvature of the cal option pricing formula as afunction of the exercise price are closdly
related to the conditional risk-neutral density of the underlying asset price. Let Fy; (Pi1) be the option-based
conditiona cumulative risk-neutral density, and let f,,; (Pi+1) be the option-based conditional risk-neutral density,
where both dengties are expressed in terms of derivatives of the cal price function. Breeden and Litzenberger

(1978) show that:™

+1

K=R,y

(13) Fu(Ra) =

And,*?

" Thisrelationship is derived by differentiating the consumption-based call option pricing formulain equation (12) and
solving for the conditional cumulative risk-neutral density function.

C. = EIMl(MaX0,P,, - KIf (P.;)dR., E[Mt+1]d - K1 (R,)AR,, s

ﬂc ¥\ * * *
ﬂKt =- Et[Mt+1]Oft (Pt+l)dPt+l =- El[Mt+1]Ft (Pt+l 3 K) =- Et[Mt+1](1' Ft (K)) .
K
Ths, Fy (R) = EIM 1" 02 1= @ RE)I 41, snce (14 RF) = E[M, ]
K=R., ﬂK K=R,,
'2 The second derivative of the call pricing formulain equation (12) is:
1°C, _ T éIcu_ 1 ¢ i
=—a—u= EIM ] 0Of (Ry)dR,=E [M,,, 11, (K).
ﬂKz ﬂKeﬂKu ﬂKe [ tl]o (tl) tlﬂ t+1

11



1°C
K2

K=R.1

14) £, (R.)=1+RF)

Also, notice that conditional risk-neutral underlying asset return density f; (R..) isidentical to the conditional
risk-neutral underlying price density ;" (P..1) with Ri1 = Pr.a/P; — 1, since the probability of P, isequa to the
probability of P.,/P — 1. So:*®

1°C,
1K?

(15)  f,(R.,)=(1+RF)

K=R(+Rix1)

Breeden and Litzenberger (1978) develop an example where the underlying asset price corresponds to the
level of aggregate consumption, and they derive the prices of consumptionstate securities. This assumption and
severa others are necessary in order to value all securities using asingle conditiond risk-neutral density.
However, asis shown in the derivations of equations (13)-(15), no particular correspondence between
consumption and the underlying asset priceis required to derive f; (P..1) from the function that defines the prices
of cal options on the underlying asset. In this paper, it is not assumed that the underlying asset corresponds to
aggregate wedth, aggregate consumption, or the vaue of a market portfolio, because there is no need to derive
risk-neutral dengity of future consumption. Instead, this paper is concerned with the underlying risk-neutra
dengty of future underlying asset prices.

There are now two equations that define the underlying asset conditiond risk-neutra density. First, equation
(7) expresses the conditiond risk-neutral dengity in terms of the consumptionbased pricing kernd and the
objective dengity function. Thisis referred to as the consumptionbased conditiona risk-neutral dengty and is
used to obtain the consumption-based conditiona risk-neutral variance. Second, equation (14) expressesthe
conditiond risk-neutral dengity in terms of the call price function and the riskless discount rate. Thisisreferred to

1 ﬂth
2
ﬂK K=Pry
3 To evaluate the probability at agiven return (R..), notice that the underlying price (P..,) that would generate thisreturn is
P.1=P(1+ R1). Then, substituting into equation (14), K = P(1 + R.,).

Thus, ft* (Pt+1) = Et[Mt+1]_

12



as the option-based conditional risk-neutra density, and is used to obtain the option-based conditiond risk-
neutral variance,

Using the equation (15) definition of the option-based conditiona risk-neutra return density and the fact that
the mean of the conditional risk-neutral return density is E[M.1]™ — 1 = RF;, the option-based conditional risk-

neutrd variance is given by:
(16)  $.2= (R~ RR) . (Ru)IR,, = E) [(Ry - RF)Y

And, the optionbased unconditiond risk-neutral variance is defined as the unconditiona expectation of the
conditiond risk-neutrd variance.

(17) s, =Els,]

From equation (11), it is clear that the unconditiona risk-neutrd variance risk-premium is equd to the
difference between the unconditiond risk-neutra variance and unconditiona asset return variance. Hence, an
option-based expression for the unconditiona risk-neutral variance risk-premium is given by:

(18) 1 =s?-s?

[11.  Unconditional risk-neutral variance: estimation and testing

[Il.a. Estimation of consumption-based unconditional risk-neutral variance

The population estimator of consumption-based unconditiond risk-neutrd variance is given in equation (9) as

the unconditional expectation of the consumptionbased conditiona risk-neutrd variance. A sample estimator is

obtained from the population estimator by replacing each variable with its redization and by replacing integration

13



with the sample average. Applying a suitable law of large numbers, the average will converge to the
unconditional expected vaue, providing a consstent estimate.**

AK 1 T
S =24 @+ RR)(Ru - RR) My,

t=1

o

~2 1
199 s.72==
(19) =

_|

—
Il

1

Using equation (11), a sample estimator for the consumption-based unconditiond risk-neutra variance risk-

premium is given by:*°

-
a (1+ RFt)(Rﬂ - I:2|:t)2Mt+1

A~

~ . g
(20) |c:Sc2's2— a(Rﬂ‘RFt)Z

1 1

T, T,
The population estimator for the consumption-based unconditiona consumption based risklessrate is given

in equation (3). A sample estimator of the consumption-based unconditional consumption-based riskless rate

i S16

-1
" éld
(21) RF, = éFthHlu -1

Implementation of these estimators requires a specification for the pricing kernd. Suppose that the utility
function is a power function and that the representative consumer derives utility from the amount that

¥ White (1984, Ch. 111.4) and Hamilton (1994, Ch. 7) present laws of large numbers that apply to non-11D stochastic processes.
Using the equation 5 definition of the risk-neutral density and noticing that E[R.,]™ =

(1+RF),S c2t = ((1+ RE)(R.. - H:t)ZMHlf (M1, R+1)th+ldR+1 So,

S =(1+RF)(R.; - RF)’M,,and S ——asci =—a @+RF)(R.i- RR) M.,

t=1 t =1
' From equation (11), | c—S ;2 - S 2. A consistent estimator of the unconditional risk-neutral return variance is givenin
equation (19), and aconsi stent estimator of the unconditional squared excess return isthe average square excess return. So,
T
A*D ~2 2 1o 2
Ic=S -S __a (1+H:)(Rt+1 H:t) Mt+1'?a (R+1' H:t) :

t=1 t=1
-1

N Z T
® E[RF,] =E[M,.,]* - 1,50 RFc = UT)§ My - 1.
e t=1 u

14



consumption (C;) exceedsthe level of habit (X,)."” Examples of such “difference models’ include Sundaresan
(1989), Constantinides (1990), and Campbell and Cochrane (1999). Then, the representative consumer
maximizes the following expected utility function:*®

- é i (Ct+i - Xt+i)l-g -1
22) U, =
#) mar T )

Habit istypicaly defined as afunction of previous consumption levels. For example, in Congtantinides
(1990), habit is an exponentidly-weighted sum of past consumption. In Ferson and Congtantinides (1991), habit
isaweighted average of past consumption services, where consumption services are aweighted average of past
consumption levels.

Let d be aparameter that scaes the impact of the habit on current utility, and let the habit level be a

weighted sum of past consumption levels. Then:
3

(23) X, =daaC,
e

When d is pogtive, the utility function exhibits habit formation, since tility is obtained from the difference
between current and past consumption. When d is negative, the utility function exhibits consumption durability,
since past consumption increases current utility. When d is zero, the utility function exhibits congtant reletive
risk-averson. With J=1 and & = 1, this habit specification is the same as the one-lag habit modd of Hansen
and Jagannathan (1991, equations 30-31).

The pricing kernd dso depends on whether the habit isinterna or externa. An internd habit modd dlows
the current consumption decision to affect future levels of the habit. An externa habit modd treats the habit as

7 For utility to be well defined in a difference model, consumption must always remain above the level of habit. For this
reason, habit may be interpreted as the subsistence level of consumption.

' In thismodel, gis no longer equal to the coefficient of relative risk-aversion. Campbell and Cochrane (1999) utilize ameasure
of risk-aversion based on the local curvature of the utility function. In this case, the local curvatureis defined asg[(C;—
Xy/C], where the denominator is the ratio of current surplus consumption to current consumption. An estimate of average

local curvatureis given by g/ [(Ct - X))/ C, |, where the denominator is the average surplus consumption ratio.
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exogenaous, i.e. habit is determined by aggregate consumption, rather than individua consumption. In the case of
an externd habit (with ., equd to the grossinflation rate), the nomind pricing kerndl is:

ac,, - X

..~ g

(0]
24) M =r§7t+li I
( ) t+1 Ct' Xt Q t+1

Givenfixed vaduesof r and g, it is possble to esimate the habit leve (d) that is condstent with a pre-
soecified level of unconditiond risk-neutral variance (s ") or a pre-specified unconditiona risk-neutral variance

risk-premium (1 ). Thislevd of habit will be referred to as the “implied d.” Estimation requires the solution of the
univariate nonlinear equation s ;°(d)- s * =0 or IAC(d) - | =0 Tofind the delta that solves this equation, the

IMSL optimization routine DUVMIF is used to minimize the squared deviation of the fitted and pre-pecified
risk-neutral variance or of the fitted and pre-specified risk-neutra variance risk-premium.

[11.b. Estimation of option-based unconditional risk-neutral variance

Suppose that the pricing function for cal options on particular underlying asset with price P; depends on N state
variables and the option exercise price (K). Congider an gpproximation to the true cdl pricing function that is
estimated by minimizing a distance criterion between observed one-period option prices and fitted option prices.
(25)  Co(Xypron Xy K) @C (X X 15 K)

Using numericd differentiation of the estimated call price function:

1°C, _C(K+e)- 2C(K) +C(K - e) IC,

(26) K? e’ K?

Then, using equation (15):
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1°C,
TK?

27) o (Ra)=(1+RF)

K=R (1+R1)

And, the estimated option-based conditiond risk-neutra variance may be obtained by numericaly
integrating the squared excess return with respect to the estimated optionbased conditional risk-neutrd return
dengty. This paper usesthe IMSL routine DQDAG for numericd integration.

(28 $72=((R,- RR) I (RLAR,,

If an option-based conditiona risk-neutra dengity is estimated on a sequence of dates (t = 1...T) usng a
contemporaneous et of one-period cal prices on each date, then a sequence of optionbased conditional risk-
neutra variances may be obtained using equation (28). The sample estimator that corresponds to the population
edimator in equation (17) uses the sample average of the time-series of conditiond risk-neutra variancesto

estimate the option-based unconditional risk-neutra variance.
(29) .=

Equation (18) expresses the option-based unconditiona risk-neutral variance risk-premium as the difference
between the option-based unconditional risk-neutral variance (s, 2) and the unconditional asset return variance
(s?). Recall that the unconditional asset return variance is estimated as the average of souared excess returns.

Hence, a sample esimator is given by:

30 I,=s2-5°

Implementation of the option-based estimators requires atechnique to obtain the cal price function, given a
sample of observed option prices. Ait-Sahalia and Lo (1998) suggest a nonparametric technique for estimation
of the call price function and its derivatives using kerndl regression of observed cal prices on observable sate
variables. This technique has the advantage of imposing minima assumptions on the characteristics of the risk-
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neutral dengity, so that the estimated risk-neutrd dengty reflects the expectations and preferences of market
participants as revealed through observed prices. Using this technique, no specific redtrictions are placed on the
underlying asset price process or the preferences of a representative consume.

In their empirical work, Ait-Sahaliaand Lo (1998) adopt a semi-parametric techniquein which “... the call-
pricing function is given by the parametric Black- Scholesformula ... except that the implied voldtility parameter
for that option is a nonparametric function ...” (p. 510). This technique has the advantage of dimensondity
reduction (i.e. there are fewer regressors than in afully nonparametric technique), and it imposes additiona
smoothness on the cdl pricing function, which improves the behavior of the derivatives of the cdl pricing
function.*

Following Ait-Sahaliaand Lo (1998, equations 9, 13). Let BS(¢) be the Black-Scholes (1973) formula
using the Merton (1973) dividend adjustment. In addition, let s; ; be the Black- Scholes implied volatility for a
particular option, let K be the option exercise price, let T-t be the time until expiration, and let i be the price of
afutures contract with identical expiration and underlying asset as the option contract.® Also, let k(-) be the
Nadaraya-Watson kernd estimator with a bandwidth of h. Then:

(3l C =BS(F,KT-ts,(F.KT-1)

Ak ((F - )R K (K - K)Ih ke (T - 1= (T- 1) /h s 1,
(32) S(F.KT-t)==

8k ((F - FO/h ke (K - K)o ke (T - )= (T- 1),)/he )

i=1

9 1n empirical option research, it is common to convert option prices to implied volatilities (usually using the Black-Scholes
formula) prior to analysis. Performing estimation using implied volatilities rather than the original option prices amountsto a
non-linear transformation of the original data, but does not impose the assumptions of the particular pricing formulaon the
data.

When the Black-Scholes assumptions are valid for options on a particular asset, identical Black-Scholes implied volatilities
are obtained for optionsof all exercise prices and maturities. When the Black-Schol es assumptions are not valid, Black-
Scholesimplied volatilities for options on a particular asset exhibit different implied volatilities across exercise prices and
maturities. The pattern of implied volatilities as a function of exercise price and maturity defines the deviation of the empirical
risk-neutral density from the lognormal risk-neutral density of the Black-Scholes model.

% When the cost-of-carry model holds, F, = Pe" %" so that the futures price (F;) combines the effects of the spot price (P),
riskless rate (r), and payout rate (d) on the call option price. Using the futures price in the kernel regression instead separately
using the underlying price, dividend yield, and risklessrate reduces the dimensionality of the problem with little loss of
generality.
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The fitted one-period option price function is given by evauating equations (31) and (32) with T-t set equd
to thetime interva defined by one period. In this paper, a Gaussan kernd is used for estimation with bandwidth
selection as given by Silverman (1996, equation 3.31). The “Silverman” bandwidth is equa to .9N°
YSMin(standard deviation, interquartile range/1.34). N represents the number of observations, and the standard
deviation and interquartile range are calculated as sample statistics of the regressor. The sengtivity to bandwidth
selection ismeasured by performing the same estimation procedure with bandwidth equal to 75% or 125% of
the Silverman bandwidth.

A difficulty in implementation of the Ait- Sahdiaand Lo (1998) technique isthat it is often not effective for
esimation of the tails of the conditiond risk-neutrd dengty. Thisis because the kernel estimator is not
informative outside of the range of prices (P..;) bounded below by K,in and bounded above by K ma, Where
Kmin @nd Kma are the lowest and highest exercise prices of traded options on date t. Shimko (1993) proposes
atechnique for estimation of the tails of the conditiond risk-neutral density beyond the range of traded exercise
prices, which involves salecting alognorma dengity function that matches the estimated cumulative conditiona
risk-neutral dengity and the estimated conditiona risk-neutral density at the exercise price boundaries. This
paper adopts the Shimko (1993) technique.

In particular, one lognorma dengty is selected to maich the kernd-estimated conditiona cumulative densty
and dengity at the lowest exercise price and another lognormal dengty is selected to match the kernd-estimated
conditiond cumuletive dengty and dengty at the highest exercise price. The fina estimated conditional density
function uses the kernd-estimated conditiona risk-neutral density for Kyin £ P £ Kiax, the lower bound
lognormd dengity for P < Kin, and the upper bound lognorma dengity for Py > K. The IMSL routine
DUMINF to identify the lognorma dendity parameters that minimize the sum of squared deviations of the actua
and fitted vaues of the dendty and cumulative dengity functions.

[ll.c. Testing differencesin option-based and consumption-based unconditional risk-neutral

variance
The unconditiond option-based risk- neutra variance is a summary satistic that measures a sationary

characteridic of the historical option prices, in the same way that the unconditional equity index return or
unconditiona equity index return standard deviation measures a Sationary characteristic of equity returns. While
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estimation of option-based unconditiond risk-neutrd variance is more involved than estimation of the
unconditiona equity index return, minimal assumptions are used in the optionbased risk-neutra variance

cd culation. Option-based unconditiona risk-neutral variance is obtained without imposing significant redrictions
on the utility function of the representative consumer or the time-series process of the underlying asset price.

Since option-based unconditiond risk-neutra variance is an important summary statigtic for option prices, it
is natura to evauate the performance of a consumptionbased pricing kernels based on success in fitting this
gatistic. Both consumption-based and option-based unconditiona risk-neutral variances are estimated with
error, S0 it is necessary to test whether the difference between the two estimatesis Satisticaly significant. In this
paper, the bootstrap percentile technique (Efron and Tibshirani, 1993, Chapter 13) is used to caculate
confidence intervals for the difference between the unconditiona risk-neutral variance estimates. If the
confidence interval (at a given significance level) includes zero, then the null hypothesis that the consumption-
based and option-based unconditiond risk-neutra variance are equal cannot be rgjected at that sgnificance
leve.

The bootstrap percentile technique involves the smulation of the digtribution of unconditiond risk-neutral
variance differences. A sngle smulation replication is obtained using the following procedure. A vector of N
dates is congtructed by randomly sampling with replacement from the vector of N dates in the estimation period.
Then, the option-based and consumption-based unconditiona risk-neutra variances are estimated using data on
the dates given by the smulated date vector. The smulated unconditiond risk-neutra variance difference isthe
difference between the two smulated risk-neutral unconditiona variance estimates.

This procedure is repeated B times to consiruct a smulated distribution of unconditiona risk-neutral
variance differences. In this paper, B is set equd to 10,000. The empirica .5%, 2.5%, 5%, 95%, 97.5%, and
99.5% percentiles are calculated using this distribution. Then, the 1%, 5%, and 10% confidence intervals are
condructed using the appropriate percentiles. The sgnificance leve of the unconditiona variance differenceis
obtained by sdecting the smalest confidence interva (greatest Sgnificance level) than includes zero. For
example, if the 1% and 5% confidence levels include zero, then the null hypothesisis rgected at the 5% levd. In
addition, the sgnificance levd for the difference between the estimated consumptionbased unconditiona
consumption-based riskless interest rate and the estimated unconditiona riskless interest rate is obtained using
an analogous procedure.
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IV.  Testsof consumption-based and option-based unconditional risk-neutral S& P500 variance

For any “underlying asset,” a correctly specified consumptionbased modd should estimate an unconditiona
risk-neutra variance that is close to the measured option-based unconditiond risk-neutral variance. So, there
are many possible risk-neutra variances that could be compared, e.g. the risk-neutrd variance of foregn
currency returns, bond returns, or equity returns. Since traded options are required to estimate the option-based
risk-neutra variance for a particular underlying asst, the universe of possible candidates is somewhat

narrowed. In addition, it may be most interesting to focus on an asset that exhibits alarge risk-premium (high
negeative covariance of returns with the pricing kernd), since this asset may dso exhibit alarge risk-neutra
variance risk- premium (high covariance of squared excess returns with the pricing kernd).

In this paper, the S& P500 portfolio is sdlected as the underlying asset, and risk-neutral S& P500 one-month
return variance is analyzed. S& P500 returns and other diversified equity portfolio returns have been subjects of
research related to the equity premium puzzle® This paper determines whether there is arisk-neutral S8 P500
variance puzzle by comparing the estimated unconditiond risk-neutral S& PS00 variance from a consumption-
based modd with the unconditiond risk-neutral S& PS00 variance estimated semi-parametricaly usng S& P500
futures option data.

The S&PS00 isdso a particularly appropriate underlying asset to andyze because of the liquidity and active
trading of S& P500 options across a range of exercise prices and maturities. This facilitates accurate estimation
of option-based unconditiona risk-neutra S& P500 variance. Empirica resultsin this paper provide additiona
ingght into characteristics of risk-neutra S& PS00 variance, building on the literature that analyzes the option
based S& P500 risk-neutra dendty, eg. Bates (1991), Jackwerth and Rubingtein (1996), and Ait-Sahdiaand
Lo (1998).

IV.a. Dataused in estimation of consumption-based risk-neutral S& P500 return variance
Following the exigting literature, this paper uses monthly real, seasondly adjusted nondurable goods and

services consumption data from the National Income and Product Accounts to estimate aggregate consumption.

Then, dividing aggregate consumption by the U.S. population provides an estimate of the consumption (C;) of
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the representative consumer. Consumption data is obtained from the Federal Reserve Bank’s FRED database.
2 The sample period chosen is 1988:01 — 1997:12.

Thefirg, second, and fifth rows of Pand A of Table 1 describe the consumption data. Over this period,
monthly consumption in annua terms averages $14,879. Consumption generaly increases over the period with
an average monthly consumption change in annud terms of $17, and the volatility of monthly consumption
changesin annud termsis $47. Figure 1 graphs the time- series of monthly consumption over the full
consumption history and shows that the only sustained decline in consumption during the sample period is during
the 1990 — 1991 recession.

In this paper, the habit (X.) is defined as the five-year moving average of historical consumption scaed by d
(equation 23, J= 60 months, 8 = 1/60, j = 1...60). This definition of the habit provides smilar resultsto the
dow-moving externd habit estimated in Campbell and Cochrane (1999, Figure 8), and it guarantees that
consumption is greater than habit with d £ 1 over the period from 1964:01 — 1997:12. Asillustrated in Figure 1,
consumption approaches habit during the 1990-1991 recession, but dways remains above habit. The results of
Table 1 dso0 show that changesin habit with d=1 are less volatile than changes in consumption.

Theinflation rate () is estimated using the monthly percentage change in the Consumer Price Index.?
During the sample period, monthly inflation averages .28% with a standard deviation of .20%. These Satidtics
correspond to an annualized mean of 3.40% and an annualized standard deviation of .69%. Since theinflation
rate isrelatively low and stable, the difference between the red pricing kernel (m) and the nomind pricing kernd
(M,) isrddivedy smdl.

%! For example, Hansen and Jagannathan (1991) investigate the equity premium puzzle using S& P500 index returns and New
York Stock Exchange index returns.

2 The variables as given in the FRED database are real, seasonal ly -adjusted nondurabl e goods consumption (pcendc92), real,
seasonally -adjusted services consumption (pcesc92), and total U.S. population (pop). M easured consumption over the month
(yymm) istaken to represent beginning of month consumption. See, e.g., Campbell, Lo, and MacKinlay, (1997), p. 308.

% 3& P500 futures options begin trading in February of 1983, so thisisthe first month that the option-based risk-neutral
variance may be calculated. Thus, to match the consurmption sample to the option sample, the earliest starting date would be
1983:02. However, because of the potentially large effect of the 1987 crash on the option and return data, the beginning of the
sampleis chosen to be 1988:01.

This paper also provides comparisons of consumption-based pricing kernels estimated using the full consumption history
(1964:01 — 1997:12) with estimates over the sample period. See, for example, Section IV.c and Table 4 aswell as Section V.c and
Table 7. The “full consumption history” is defined as starting in 1964:01, because, while the NIPA consumption estimates
beginin 1959:01, five years of dataisrequired to estimate the habit.

% The price index variable as given in the FRED database is the consumer priceindex for all urban consumers (cpiaucns). The
price index for agiven month (i,ymm) is taken to represent the beginning of the month price level, so that the net inflation rate
over the month of yymm is equal to iyymme1/iyymm - 1.
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Theriskless interest rate over the month (RF;) is derived from the one-month Treasury Bill rate reported in
the CRSP Risk-Free Rates file® During the sample period, the monthly riskless rate averages .43% with a
standard deviation of .14%. These correspond to an annuaized mean of 5.31% and an annualized standard
deviation of .47%. The highest annualized riskless rate over the period is 9.36% in April 1989, and the lowest
annudlized risklessrate is 2.54% in March 1993.

The underlying asset is chosen to be the S& P500 portfolio (without dividends), so the asset return (Ri+1) is
st equd to the monthly capita- appreciation return on the S& P500 portfolio as reported in the CRSP US
Indices database. The average monthly return for the S& P500 portfolio is 1.21% (or 15.47% on an annud
bas's). However, during the 1990-1991 recession, there is a sustained decline in equity vaue.

The monthly S& P500 return standard deviation is 3.47%, which is equa to 12.01% on an annua basis.
Over the sample period, the largest monthly return decrease is—9.49% in August 1990 and the largest monthly
return increase is 11.15% in December 1991. S& P500 returns exhibit negative skewness (-.11) and postive
kurtosis (3.37). The means of the total and excess S& P500 returns are different (1.21% versus .77%), but the
other moments (standard deviation, skewness, and kurtosis) are Smilar.

Panel B of Table 1 presents sample atitics for the same variables measured over the full consumption
history (1964:01 — 1997:12). Over the full history, the monthly S& PS00 excess return has alower mean (.20%
versus .77%) and a higher standard deviation (4.22% versus 3.46%) than in the sample period. The monthly
consumption growth rate over the full history has a higher mean (.17% versus .11%) and a higher standard
deviation (.38% versus .32%) than in the sample period.

IV.b. Dataused in estimation of option-based risk-neutral S& P500 variance

This paper uses S& P500 futures option prices to estimate the optionbased risk-neutral density and risk-neutrd
variance of S& P500 returns?® The S& P500 futures option and S8 PS00 futures data is end-of-day data

% The CRSP Risk-Free Rate file contains continuously -compounded annualized one-month Treasury yields measured on the
last trading day of each month. To obtain the one-month riskless rate defined as 1/B, — 1, where B, is the one-month riskless
bond price measured at the beginning of month t, the following procedureis used. First, the average of the bid and asked one-
month Treasury Bill yields from the CRSP file is extracted for each month of the sample. Then, thisis converted to ariskless
one-month bond price using the expression B, = exp[(-yield* days)/365], where days represents the actual number of daysin
the month. Theriskless rate over the month yymm is taken to be the one-month riskless rate is measured at the end of the
monthyymm — 1. Thisis annualized using the formula RF 4, = (1 + Rl:,m,my)12 -1

% S& P500 futures option data from the Chicago Mercantile Exchange (CME) is potentially preferable to S& P500 option data
from the Chicago Board Options Exchange (CBOE), because the CME reports official futures option closing (settlement)
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obtained from the Futures Industry Ingtitute (FI1) for al contracts traded from 1988:01 through 1997:12. A
cross-section of futures options contracts is extracted on the first trading day of each month. Futures options
with trading volume of at least five contracts, with two weeks but no longer than three months until maturity, and
with moneyness (exercise price/ futures price — 1) between —20% and 20% are included in the monthly
estimation procedure.

Egtimation of the conditiond risk-neutral S& P500 dendty using the kernel regression technique requires
Black- Scholes (1973) implied voltilities obtained from European S& P500 index options. In this paper, the
BBSR American option pricing formula of Broadie and DeTemple (1996, Appendix B.5) is used to estimate a
BBSR implied volatility for each S& PS00 futures option.?” The BBSR implied volatility for an S& P500 futures
option approximates the Black- Scholesimplied volatility for an S& PS00 option with identical contract terms.®
To obtain eech implied volatility, the BBSR formulais numericdly inverted with the number of time-steps set to
100, which is the maximum number tested by Broadie and Detemple (1996).

prices, whilethereisno official closing price reported by the CBOE. Other papers have used transactions datato artificially
construct a cross-section of time-synchronous S& P500 option closing prices, e.g. Dumas, Fleming, Whaley (1998). The
Chicago Mercantile Exchange utilizes a methodol ogy to maintain the accuracy of futures option (and underlying futures)
settlement prices due to their rolein determining daily mark-to-market payments. For additional details, seerule 813 of the CME
rulebook.

" The BBSR formulais constructed as a computationally -efficient implementation of the Cox, Ross, and Rubinstein (1979)
binomial pricing model for American options on the spot asset. Several modifications are made to apply this model to futures
options. In place of the up and down returnsu and d, ug = u*€°° and d = d* €°° are used, where D is the amount of calendar
time represented by one time-step. In place of the risk-neutral probability p, the risk-neutral probability pr = (1-dg)/(Ug—dg) is
used. These parameters are derived as follows. The cost-of-carry model states that F, =e“"P, where F, is the futures price, P,
isthe spot price, T-t isthe number of years until the futures contract expires, and c is the continuously -compounded annual
cost of carry. So, ug=F,/ F,= <™ PP,/ &P, = u*e® And, dr = Fy/ F = €T PP,/ TP, = d*e® To price futures
options, the risk-neutral probabilities (p, 1-p) are written in terms of the futures returns rather than the underlying returnsto
obtain pr and 1-pg. The appropriate formulais pg = (1-dg)/(us— di). This parameter is derived asfollows. The BBSR algorithm
defines p as p= (e —d) / (u—d). Using the definitions above, u=uge*® and d=de". Substituting into p to define pg, pe = (1-
dp)/(ug—dg).

% When early exerciseis not optimal, the BBSR S& P500 futures option implied volatility is equal to the BBSR S& P500 option
volatility for contracts with identical terms. Thisis because the S& P500 futures option and S& P500 option prices are identical,
and the BBSR formulafor an American futures option is equivalent to the BBSR formulafor a European spot option. When the
binomial model assumptions are satisfied and early exerciseis potentially optimal, then the BBSR S& P500 futures option
implied volatility isequal to the BBSR S& P500 option volatility for contracts with identical terms (same exercise price and
expiration date). If thisis not the case, then there is an arbitrage opportunity.

In general, the BBSR S& P500 futures option implied volatility is approximately equal to the BBSR S& P500 option volatility
for contracts with identical terms, since the BBSR formulaincorporates the effect of the early-exercise premium on the futures
option price. The BBSR S& P500 option implied volatility converges to the Black-Scholes (1973) S& P500 option implied
volatility, since the BBSR formulais an implementation of the Cox, Ross, and Rubinstein (1979) binomial formula, which
converges to the Black-Scholes formula. Hence, the BBSR S& P500 futures option implied volatility approximates the Black-
Scholes (1973) S& P500 option implied volatility.

Brenner, Courtadon, and Subrahmanyam (1985) and Ramaswamy and Sundaresan (1985) discuss the relationship between
the prices of futures option and option contracts. And, Brenner, Courtadon, and Subrahmanyam (1989) show that price
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For the BBSR implied volatility caculation, the riskless rate is extracted from the term- structure defined by
the one and three month Treasury Bill rates from the CRSP Risk- Free Rates file® The cogt-of-carry is set
equa to the implied cogt- of-carry that is consistent with the observed S& PS00 futures price and S& PS00 index
levd.*® And, the option time until expiration is measured as a fraction of a calendar year.

Pand A of Table 2 describesthis data. On average over the sample period, the short-term continuoudy-
compounded riskless interest rate term structure is upward doping with one-month riskless rates averaging
5.17% and three-month riskless rates averaging 5.50%. The average cost of carry is 5.55% with a standard
deviation of 5.57%.*"

To diminate potentia data errors from the sample, contracts with annuaized implied volatilities outside of
the range from 5% to 90% are deleted. A single implied voltility is obtained for each contract on each date by
averaging the implied variances of puts and calswith identical contract terms on the same trading date. Then,
for each contract, afitted European S&P500 call option priceis obtained using the estimated implied volatility
and the Black- Scholes (1973) formulawith the Merton (1973) dividend adjustment.

In this caculation, underlying price is set equd to the closing vaue of the S& PS00 index on the estimation
date, and the dividend yield is set equd to the monthly difference (annualized) between the S& P500 return with
dividends and without dividends as reported in the CRSP US Indices database. Panel A of Table 2 reports that
the average annualized S& PS00 one-month dividend yield is 3.06% and the lowest and highest dividend yields
over the sample period are 1.32% to 8.46%. The riskless rate and time until expiration are calculated as before.

difference between futures option and option contractsistypically a small fraction of the option premium, except for long-
maturity or deep in-the-money options.

# | nterest rates for maturities between one and three months are obtained by linear interpolation of the observed one and
three month rates. I nterest rates for maturities between two weeks and one month are set equal to the observed one-month
rate.

¥ The“implied” cost of carry isdirectly estimated from the spot and futures price by solving the cost-of-carry model for the
cost-of-carry in terms of the spot and futures price. From F, =P, ¢ = [In(F) - log(P)]/(T-t) where F, is the futures price for a
contract with time until expiration of T-t and P, isthe spot price. For stock index futures, ¢ =r —d, wherer istheriskless interest
rate and disthe dividend yield until the futures expiration.

® The cost-of-carry may be either positive or negative depending on the relative levels of the dividend yield and the riskless
rate. Over the sample period, the range for the cost-of-carry isfrom -5.51% to 28.83%. Thisisawider range than would be
expected given the fluctuationsin riskless rates and dividend yields over this period, which may reflect some deviations from
the cost-of-carry pricing model for S& P500 futures. See, for example, Brennan and Schwartz (1990).
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The resulting cross-section of fitted European S& PS00 cdl prices on the firgt trading day of each monthis
screened for violations of no-arbitrage monotonicity or convexity conditions of Merton (1973).%? Contracts that
violate these conditions are deleted.

The S&PS00 futures option dataiis summarized in the second panel of Table 2. There are atotal of 4501
option contracts that meet the screening criteria. On the first trading day of each month, there are contracts from
at least two expiration dates, where one expiration is less than one month and one expiration is grester than one
month. Average time-until-expiration for these contractsis .11 years or about 40 days. The moneyness of the
contracts ranges from -20.00% to 18.98%, and the annudized implied volatility of the contracts ranges from
7.54% to 61.09%.

IV.c Edgimation of consumption-based risk-neutral S& P500 variance

Applying equation (19), the unconditiona consumption-based risk-neutral S& P500 one-month return variance
may be estimated as the average scaed product of the squared excess S& P500 return and the pricing kernd. In
this case, the excessreturn (R — RF;) is defined by the difference between the S& PS00 one-month return and
the one-month riskless rate. And, using equation (24), the nomina one-month pricing kerndl is defined as M. =
I [(Cesr — Xes) (Ct — X)] 921" where C; isthe level of consumption at datet, X; isthe leve of habit a datet,
and .1 isthe grossinflation rate from date t to date t+1. The habit is defined as the five-year moving average of
historicad consumption scaled by d.

Table 3 reports the characterigtics of the nomina monthly pricing kernd at arange of levels of utility function
concavity (g=1, 5, 10, 15, 20, 25, 30), levels of habit (d =-.9,-.7,-.5,-.3,-.1,0, .1, .3, .5,.7,.9),and a
fixed rate of time preference (r =.999). Pands A, B, and C provide pricing kernd summary datistics using
consumption data from 1988:01 to 1997:12, which is the sample period used for estimation of unconditiona
risk-neutral variance. Panels D, E, and F report the same daidtics for the sample using the full history of

% The monotonicity condition isthat the call price function is decreasing in exercise price, i.e. C(Ky, T-t) 3 C(K,, T-t) for K, <
K. This corresponds to the condition that the cumulative risk-neutral return density function isincreasing in returns. The
monotonicity condition istested by comparing the prices of pairs of adjacent call options. If the condition is violated, the
higher exercise price option is deleted from the sample. This procedure is repeated twice.

The convexity condition isthat the call option pricing function is a convex function of exercise price, i.e. C(K,, T-t) £ 1 C(K4,
T-t) + (11 )C(K;, T-t) for Ky <K, < Ka. This corresponds to the condition that the risk-neutral return density function is non-
negative. Setting | = .5, multiplying both sides of the equation by two, and rearranging, C(K4, T-t) - 2C(K,, T-t) - CG(K3, T-t)3 0
for K; <K, < Ks. The monotonicity condition istested by comparing the prices of triplets of adjacent call options. If the
convexity condition isviolated, the highest exercise price option is deleted from the sample. This procedure is repeated twice.
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consumption data from 1964:01 to 1997:12. The actual consumption history beginsin 1959:01, but the first
habit calculation, which requiresfive years of data, is 1964:01.

Congder the middle column of pand A (d = 0), which corresponds to a constant relative risk-averson
pricing kernd. The monthly pricing kerndl mean for g= 1 and d = 0is.9951, and the consumption-based
unconditional annualized riskless rate is 6.07%.3 Moving down the column, the monthly pricing kernel meen for
g=30andd =0is.9680, and the consumption-based unconditionad annudized risklessrate is 47.74%.

For the full consumption history reported in pand D, the pricing kerne mean forg=1and d =0is.9933
and for g= 30 and d = 0is.9510. The corresponding riskless rates are 8.40% and 82.74%. These results are
conggtent with the risk-free rate puzzle, snce estimated riskless rates are unredigtically high using areasonable
rate of time- preference and ahigh leve of risk-aversion.

For the habit mode reported in the right-most column of Pand A (d = .9), the pricing kernel mean increases
and the riskless rate decreases as gamma increases. Four of the five pricing kernel mean estimates are greater
than one for these habit specifications, and the corresponding unconditional riskless rates range from—3.07% at
g=51t0-96.19% at g = 30. Theresultsare amilar in Panel D using the full consumption higtory. Thus, the habit
model has the ability to maintain lower interest rates a higher levels of risk-aversion and areasonable rate of
time- preference than the CRRA model. However, ardated problem with the habit modd is the prediction of
negative interest rates a high levels of risk-averson and habit.

For the consumption durability pricing kernd reported in the leftmost column of Pand A (d = -.9), the
pricing kernel means are very close to the pricing kernd means for the congtant relative risk-averson mode.
Thereaults are the same for the full consumption history reported in Pand D. The consumption durability
specification does not solve the risk-free rate puzzle.

Panels B and E report monthly pricing kernd standard deviations. The resultsin Panels B and E
demondirate that the pricing kernel standard deviation isincreasing in the level of habit. For example, in Pand B,
asd increasesfrom -.9t0 .9 at g =1, and the pricing kernel standard deviation increases from .0024 to .0250.
The pricing kernd standard deviaion isdso increasing in thelevd of g, asillustrated by the column
corresponding to d = 0 in Pands B and E. Findly, pricing kernd standard deviations are higher in the full history
than in the sample period, e.g. .0034 in the sample period and .0043 in the full history with g=1and d = 0.

¥ The consumption-based unconditional riskless interest rateis estimated as RFcmontny = L/average(M,) — 1, where M, isthe
monthly consumption-based pricing kernel realization. Thisis annualized using the formula RF; anua = (1 + RFC,,T,O,my)12 -1
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Pands C and F report the ratio of the pricing kernd standard deviation to the pricing kernd mean. The
characterigtics of the ratios are Smilar to the characterigtics of the pricing kernel standard deviations. In other
words, the ratios are increasing in d and increesing in g. Also, the ratios are higher in the full history than in the
sample period.

Hansen and Jagannathan (1991) show that an acceptable pricing kernd must have a pricing kernd standard
deviaion and mean ratio that is a least as large as the unconditiona excess asset return mean and standard
deviation ratio. This relationship may be informaly examined using sample data for S& P500 excess returns®
Panel G indicates that over the sample period, the mean-standard deviation ratio for excess S& PS00 returnsis
.2958, and over the full history theratio is.1224.

Using the sample period data (Pandl C), pricing kerndl parameter values that generate aratio of at least
2958 areg=30and d =.7 or g3 15 and d =.9. These results suggest that habit formation and utility function
concavity must be very large to satisfy the Hansen and Jagannathan (1991) bound. Using the full sample data
(Panel F), pricing kerndl parameter valuesthat generate aratio of at least .1224 aeg=30andd =.1, g3 25
andd=.3,9g% 20andd =.5,g3 15andd =.7,0r g3 5and d =.9. So, usng the full higtory of consumption
and returns data, a larger set of acceptable habit modd s satisfy the Hansen and Jagannathan (1991) bound. This
informal evidence indicates that a habit specification is preferred to a consumption durability or constant relative
risk-aversion specification, and that the sample period provides a more stringent test of the pricing kerne
specification than the full consumption history.

The consumptionbased unconditiond risk-neutral S& PS00 variances for arange of congtant relative risk-
averson and habit pricing kerndls are reported in Table 5 and Table 6. Andogous results using the full
consumption history are reported in Table 7. Section V provides a detailed discussion of these results.

IV.d Edgimation of option-based risk-neutral S& P500 variance

On thefirgt trading day of each month in the sample period, the option-based risk-neutra S& PS00 one-month
return variance is obtained by numerically integrating squared excess returns with respect to the etimated

¥ |nthisanalysis, the S& P500 return is the S& P500 one-month return including dividends from the CRSP US Indices database,
theriskless rate is the one-month Treasury Bill rate from the CRSP Risk-Free Ratesfile, and the excess return isthe difference
between the S& P500 return and the one-month riskless rate. The following comparisons do not account for the standard errors
of the measured ratios. For arigorous approach that utilizes the appropriate test statistics, see Cecchetti, Lam, and Mark

(1994).

28



conditiond risk-neutra S& P500 one-month return density (equation 28 with R..; equa to the S& P500 one-
month return). The option-based unconditiona risk-neutral S& PS00 variance is estimated as the average of
conditiona variance estimates over the sample period (equation 29 with the risk-neutra variance equd to the
risk-neutra variance of S& P500 one-month returns).

The conditiona risk-neutra S& PS00 one-month return density is caculated by numericdly differentiating
the estimated S& P500 one-month cdl price function with respect to the exercise price (equation 27 with P,
equa to the S& P500 level, R+, equal to the S& P500 one-month return, and K equad to the exercise price for
an S&PS00 index option). In this paper, the estimated S& P500 one-month cdl price function is given by the
Semi- parametric representation in equations 31-32 with T-t set equal to 1/12 year, where the S& P5S00 implied
volatility function is estimated by akernd regresson of S& P500 option implied volatilities on S& PS00 futures
price, exercise price, and time until expiration.

Figure 2 graphs the nonparametrically-estimated S& P500 one-month implied voldility functions on five
representative dates of the sample (the first trading day of June 1988, June 1990, June 1992, June 1994, and
June 1996). This figure shows that the S& P500 implied volaility functions exhibit avolatility skew, i.e. implied
voldtilities are decreasing as afunction of exercise price (or as afunction of the S& P500 return where S& P500
return = exercise price/ S&P500 levd - 1). Time-variation in the level and dope of the voltility skew are dso
apparent.

The conditiona risk-neutra S& P500 return densities are graphed in Figure 3 for the same five estimation
dates. Changes in probability expectations and preferences over S& P500 return states are reflected in changes
in the estimated conditiond risk-neutra S& PS00 return dengity. For example, the estimated conditional risk-
neutral annudized standard deviation on the firgt trading day of June 1988 is 19.57%, and the conditiona risk-
neutrd skewnessis—.10. On thefirgt trading day of June 1990, the estimated conditiond risk-neutrd annudized
standard deviation is 15.55%, and the conditional risk-neutral skewnessis—.23.

Table 4 provides summary satistics for the estimated conditiondl risk-neutral S& P500 return variances and
risk-neutrd standard deviations. The key Satigtic reported in Panel A of Table 4 isthe estimate of the option+
based unconditiona risk-neutra S& P500 annudized variance (.0278), which is obtained by averaging the
monthly conditiond risk-neutral annualized variance estimates. This corresponds to an average risk-neutrd
annualized standard deviation of 16.67%.
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The second row of Panel A reports the characteristics of the option-based conditiona risk-neutral standard
deviation, which is amore familiar statistic.* Over the sample period, the conditional risk-neutral annudized
standard deviation ranges from 10.93% to 29.02%. The highest conditiona risk-neutral standard deviation is
estimated in 1988:01 and the lowest is estimated in 1994:02. The time-series of conditiona risk-neutra
S& P500 return standard deviationsis graphed in Figure 4.

Panel B of Table 4 presents bootstrap confidence intervas for the average risk-neutra variance and average
risk-neutral standard deviation.* The 95% confidence interva for the average risk-neutral variance is [.0256,
.0301], and the 95% confidence interval for the average risk-neutral standard deviation is[15.71%, 16.93%).

Pand C of Table 4 reports sample statistics for estimated option-based risk-neutrd standard deviations
using different choices of bandwidth for the kernd regression. Thefirgt, second, and third rows show estimation
results using 75%, 100%, and 125% of the Silverman bandwidth. The average risk-neutral standard deviation is
very similar for al three bandwidth choices (16.41%, 16.31%, and 16.52%). These results suggest that the
option-based unconditiona risk-neutra variance estimates are robust to the selection of bandwidth.

V. Tests of consumption-based pricing kernels using unconditional risk-neutral S& P500 return

variance differences

V.a. Constant relativerisk-aversion

In Table 5, consumption-based unconditiona risk-neutral S& PS00 return variances are estimated using a
congtant relative risk-averson pricing kernd, and they are compared with option-based unconditiond risk-
neutra S& P500 return variances. The tested pricing kernels are estimated at arange of levels of risk-averson
(g=1,5, 10, 15, 20, 25, 30) and afixed rate of time-preference (r =.999).%

¥ Therisk-neutral standard deviation time-seriesis obtained by taking the square-root of each monthly estimate of the risk-
neutral variance. By Jensen’ sinequality, the square-root of the average variance (Q0278 = 16.67% from the first row of Panel
A) isnot equal to the average of the square-root of each variance (16.31% from the second row of Panel A).

% These confidence intervals are obtained using the bootstrap percentile technique. The distribution of sample averagesis
constructed by sampling 120 data points (with replacement) from the monthly dataset, calculating the average of the variable
of interest, and repeating 10,000 times. The confidence intervals are the empirical percentiles of the distribution of sample
averages.

¥ The unconditional consumption-based risk-neutral variance is not sensitive to the choice of r . The selection of r =.999is
similar to the estimation results of Hansen and Singleton (1982), and thisrelatively large valuefor r tends to mitigate the risk-
freerate puzzle for the CRRA specification. Ther that is required to match the estimated unconditional risklessinterest rate
over the sample period is also calculated.
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Column two of this table reports that the optionbased estimate of unconditiona risk-neutral S& PS00 return
varianceis .0278. The subsequent columns report that consumptionbased unconditiona risk-neutral variances
for the CRRA specification range from .0145 to .0151 (12.06% to 12.30% in standard deviation terms). As
shown in the column 4 of the table, al consumption-based and option-based variance differences are
ggnificantly different from zero at the 1% confidence level. The CRRA unconditiond risk-neutrd variance is
decreasing in risk-aversion, S0 higher leves of risk-averson do not improve estimates of CRRA unconditiond
risk-neutral variance.

Since the CRRA pricing kerndl is unable to replicate the option-based unconditiona risk-neutra variance a
economicaly plausible preference parameter vaues, there isarisk-neutra variance puzzle for this pricing kernel
specification. The high levels of risk-aversion that are required to solve the equity premium puzzle worsen the
risk-neutra variance puzzle.

Comparisons of the consumption-based and option-based unconditiona risk-neutra variance risk-premia
are presented in the fifth column. The estimated option-based unconditiond risk-neutra variance risk- premium
(annualized vaue of .0127) is equd to the difference between the estimated option-based unconditiona risk-
neutra variance (annudized vaue of .0278) and the estimated unconditiona squared S& PS00 excess return
(annudized vaue of .0151). The estimated consumption-based unconditiond variance risk-premia are
subgtantidly lower with arange of -.0000 to -.0006.

Columns 6 through 9 document the risk-free rate puzzle for the CRRA specification. The estimated
unconditional riskless rate over the sample period is 5.30%.% In contrast, the estimated unconditional
consumption-based riskless rate using the CRRA model ranges from alow of 5.88% at g = 1to ahigh of
39.65% for g = 30. Other than for g = 1, the estimated unconditional consumption-based risklessrate is
sgnificantly different from the estimated unconditiond riskless rate a the 1% levd.

Column 9 presents the rate of time preference (r ) that is necessary for a particular CRRA specification to
match the estimated unconditional riskless rate.® The required r is greater than one for al CRRA models

except for g = 1. A rate of time preference greater than one corresponds to a preference for future consumption

% The unconditional risklessrateis estimated as 1/average(B,) — 1 where B, is the one-month Treasury Bill price derived from
the one-month Treasury Bill rate reported in the CRSP Risk-Free Rates file. Thisis slightly different than the average riskless
rate reported in Table 1 (5.31%), which is estimated as average(RF).

¥ Therequiredr to match the estimated unconditional riskless rateis equal to (model r ) / (pricing kernel mean * (1 + estimated
unconditional risklessrate)).
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over current consumption. Thistypically considered to be economically implausible, dthough Cecchetti, Lam,
and Mark (1994, pp. 135-136) provide arguments to support negative time preference.

V.b. Habit formation and consumption durability

Table 6 compares option-based and consumption-based unconditiona risk-neutral S& PS00 return variances
using apricing kernd that is consistent with habit formation (d > 0), consumption durability (d < 0), and
congtant relative risk-averson (d = 0). Consumption-based pricing kernds are estimated using arange of levels
of utility function curvature (g = 1, 5, 10, 15, 20, 25, 30) and afixed rate of time-preference (r = .999). Instead
of testing arange of possible levels of habit (d), an “implied d” is caculated that minimizes the difference
between consumption-based and option-based unconditiona risk-neutral S& P500 variance at fixed levels of g
andr . Theimplied deltais restricted to the range of [-.99, .99], Snce vaues outside this range imply extreme
time-inseparability.

Asreported in column 1 of thistable, the implied d rangesfromahighof 99 a g=1toalow of .95a g=
30. Thefact that dl implied d’ s are positive suggests that habit formation is a preferred specification to
consumption durability or constant relative risk-averson. Column 4 shows that the equdity of the consumption-
based and option-based unconditiond risk-neutra variance cannot be reected at concavity parameters (g)
between 10 and 30. So, at suitably high levels of concavity and habit, the risk-neutrd variance puzzle is
resolved.

As shown in column 8, a arate of time preference of .999, equality of estimated unconditiona
consumption-based riskless rates and estimated unconditiond risklessratesis not rgected for g = 1. However,
equaity isreected at the 5% leved for g=5 and at the 1% leve for g3 10. Column 9 showsthat the
consumption-based interest rate predictions may be svaged by using low rates of time-preference for the
otherwise acceptable habit models, e.g. r between .44 and .58 for g3 10.

The acceptable habit modds have somewhat higher concavity and habit parameters and lower rates of time-
preference than habit modd's estimated in the existing literature* For example, Ferson and Constantinides
(1991) use GMM to estimate a one-lag habit mode with financid instrumenta variables, monthly equity and

“* Not all papersfind that habit formation is preferred to consumption durability. Dunn and Singleton (1986) and Eichenbaum
and Hansen (1990) find evidence for consumption durability using monthly data.
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bond returns, and monthly consumption data. They obtain a habit parameter of .717, a concavity parameter of
8.437, and arate of time-preference of .838.*

Also, Cecchetti, Lam, and Mark (1994) use HansenJagannathan (1991) bounds to test a one-lag habit
mode with monthly consumption data.and monthly equity and bond returns. They find that a habit modd with a
habit parameter of .5, rate of time-preference of .9992, and a concavity parameter between 4 and 10 cannot be
regected at the 5% level. Also, with arate of time-preference of 1.0017, a one-lag habit modd with a habit
parameter of .5 and a concavity parameter between 2 and 9 cannot be rejected at the 5% level.*

The fact that there are preference parameters that allow a consumption-based pricing modd to fit the
characteristics of traded assets does not necessarily “solve’ an assat pricing puzzle. It isaso required that the
postulated preference parameter values be economicaly plausble. Plaushility is a subjective criterion, and there
is some debate about what values of g are too high (e.g. Kande and Stambaugh, 1991), what rates of time
preference are reasonable (e.g. Cecchetti, Lam, and Mark, 1994), and what level of habit is reasonable. This
paper smply notes that the acceptable habit models do not require preference parametersthat are typicaly
consdered to be unreasonable, i.e. negetive rates of time-preference (r > 1), negative utility function curvature

(9<0), or extreme levels of habit (d > 1).

V.c. Habit formation and consumption durability usng the full hisory of consumption data

This section presents an andysis of unconditiona consumption-based risk-neutra variance risk-premia
esimated using the full history of consumption data (1964:01 — 1997:12). Since there are some differencesin

“! The reported estimates in the text are from Ferson and Constantinides (1991, Table 4, p. 216, Panel 1, last row), which seems
to be the most comparable model to this paper. The sample period is May 1959 — October 1986. Ferson and Constantinides
(1991) also estimate a number of other models using different instruments (and lagged instruments), different frequencies of
consumption data (quarterly and annual), and different assumptions about the error process. Other estimates of the habit
parameter using monthly data and financial instruments (Table 4, p. 217, Panels 2 and 3) correspond to dof .642 and .361 with
rates of time-preference (r ) of .837 and .999.

Ferson and Constantinides (1991) write the consumption habit difference as C, + X; (X; = b,C..,), and their estimated habit
parameter isb, =-.717. Hence, an estimated b, of -.717 in Ferson and Constantinides (1991) corresponds to an estimated dof
.717 in this paper with the consumption habit difference as C, - X, with X, = dC,..

“2 The reported estimates in the text are from Cecchetti, Lam, and Mark (1994, Table IV, p. 140, Panel C), which seemsto be the
most comparable model to this paper. The sample period is 1964 to 1988. Cecchetti, Lam, and Mark (1994) also estimate models
using annual equity and bonds returns, monthly Treasury Bill term structures, and monthly foreign currency returns. In some
cases, the CRRA model is not rejected, but in all cases, the consumption durability model is rejected.

Cecchetti, Lam, and Mark (1994) write the consumption-habit difference as C, + X; (X, = dC,,), so an estimated d of -.5in
Cecchetti, Lam, and Mark (1994) correspondsto adof .5 in this paper. They also report the rate of time-preference in
annualized terms so their time-preference parameters of .99 and 1.02 correspond tor of .9992 and 1.0017 in this paper.
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the characteristics of consumption-based pricing kernds estimated over the sample period and the full history
(see Section 1V .c.), the estimated unconditiona risk-neutra variance risk-premia could be different over these
periods.

Panel A of Table 7 reports consumption-based unconditiona risk-neutral S& PS00 variance risk-premia
esimated using a condant relative risk-averson pricing kernd and the full consumption history. The
consumption-based unconditiona risk-neutra variance risk-premia digolayed in column 2 are dl negative, while
the option-based unconditional risk-neutral variance risk-premium (.0064) is positive*® Since the CRRA
gpecification is unable to replicate the option-based risk-neutral variance risk-premium, there is an unconditional
risk-neutral variance risk-premium puzzle that is andogous to the risk-neutral variance puzzle found in the
shorter sample period.

The CRRA predictions of unconditiona riskless interest rates are not consgstent with estimated unconditiond
riskless rates. Column 5 indicates that equdity of the estimatesis rgiected a the 1% level for al tested levels of
risk-aversgon. And, column 6 showsthat arate of time- preference greater than one is required to match the
estimated unconditiond riskless rate. These results are consstent with the risk-free rate puzzle found in the
shorter sample period.

Panel B of Table 7 reports consumption-based unconditiond risk-neutral S& P500 variance risk-premia
estimated using agenerd pricing kernd and the full consumption history. For these pricing kerndls, the levd of
habit (implied d) is estimated from the data by minimizing the distance between the consumptionbased
unconditiona variance risk- premium estimated from 196401 — 1997:12, and the option-based unconditiona
risk-neutral variance risk-premium estimated from 1988:01 — 1997:12.

Theimplied d’sin column 1 range from .86 to .99, and dl specificationswith g3 10 are able to exactly
match the option-based unconditiona risk-neutra variance risk-premium. These estimated habit levels are
somewhat lower in the full consumption sample than in the sample period.

Equdity of the estimated unconditiona consumption-based riskless rate and estimated unconditiond riskless
rate isrgected a the 10% level for g3 10, asreported in column 5. To obtain accurate riskless rate predictions

8 The option-based risk-neutral variance risk-premium islower in the full consumption history (.0064) than in the sample
period (.0127), since the average squared excess return is higher in the full consumption history (.0214) than in the sample
period (.0151).

“ Noticethat it is not possible to construct option-based risk-neutral variance over the longer time period, since option datais
not available. For estimation of theimpliedd, it seems more reasonabl e to assume that the average option-based risk-neutral
variance risk-premium is approximately the same over the full history and the sampl e period, than that the average option-
based risk-neutral variance is approximately the same over the full history and the sample period.
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using otherwise acceptable habit models (g3 10), the required rates of time-preference range from .85 to .87.
These rates of time-preference are closer to those estimated in previous papers than the required rates of time-

preference in the shorter sample period.

VI. Conclusions

This paper explores the adequacy of consumption-based pricing kernds using a new testing methodol ogy that
focuses on the covariance between the pricing kernel and squared excess returns. This covariance determines
the risk-neutra variance risk-premium and is closdy related to the risk-neutra variance of asset returns.

Sample estimators for the unconditional consumptionbased and option-based risk-neutrd variance and
risk-neutral variance risk-premium are developed. While the consumptionbased estimators depend on the
pricing kernel specification and preference parameter vaues, the option-based estimators are “ modd-free” The
difference between the consumption-based and option-based unconditiond risk-neutra varianceis used to
measure the adequacy of the consumption-based pricing kerndl.

This paper tests a consumption-based pricing kernd specification that is compatible with habit formetion,
consumption durability, and congtant relative risk-averson over arange of plausible preference parameter
vaues. The difference between consumption-based and option-based estimates of unconditiond risk-neutrd
S& P500 return variance is used as a pricing kernel specification test Setidtic.

Using monthly consumption and S& P500 returns data over the period 1988:01 — 1997:12, a consumption
based CRRA pricing kernd is unable to replicate the unconditiona option-based risk-neutral S& P500 return
variance. In contrast, a pricing kernd that incorporates habit formation reproduces the option-based risk-neutra
S& P500 return variance and variance risk-premium over thistime period. The acceptable habit pricing kernels
exhibit higher habit levels, higher utility function concavity, and lower rates of time-preference than in related
papers. When the full history of consumption data is used, the parameter estimates are more Smilar to those of

related papers.
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Table 1

Description of data used to estimate consumption-based unconditional risk-neutral S&P500 return variance

Panel A. Sample period, 1988:01 - 1997:12

Number of

observations |Mean Std. Dev. |Skewness Kurtosis Minimum [Maximum
Consumption (annualized) 120 $14,879 $515 0.57 2.16] $14,057| $16,011
Change in consumption (annualized) 120 $17 $47 0.24 4.02 -$113 $168
Habit (annualized) 120 $14,360 $539 -0.38 2.31| $13,191| $15,288
Change in habit (annualized) 120 $18 $7 0.40 1.89 $8 $30
Consumption growth rate (monthly) 120 0.11% 0.32% 0.25 4.08 -0.77% 1.12%
Surplus consumption ratio (monthly) 120 3.48% 1.46% 0.15 2.26 0.65% 6.49%
Inflation rate (monthly) 120 0.28% 0.20% 0.80 4.55 -0.12% 1.03%
Riskless interest rate (monthly) 120 0.43% 0.14% 0.28 2.33 0.21% 0.75%
S&P500 return (monthly) 120 1.21% 3.47% -0.11 3.37 -9.49%| 11.15%
S&P500 excess return (monthly) 120 0.77% 3.46% -0.15 3.42| -10.13%| 10.81%
Panel B. Full consumption history, 1964:01 - 1997:12

Number of

observations |Mean Std. Dev. |Skewness Kurtosis Minimum [Maximum
Consumption (annualized) 408 $12,152 $2,236 -0.07 1.82 $7,951| $16,011
Change in consumption (annualized) 408 $20 $45 -0.03 3.71 -$152 $168
Habit (annualized) 408 $11,563 $2,279 -0.08 1.83 $7,530| $15,288
Change in habit (annualized) 408 $19 $6 -0.09 2.20 $7 $31
Consumption growth rate (monthly) 408 0.17% 0.38% 0.11 3.74 -1.20% 1.58%
Surplus consumption ratio (monthly) 408 5.09% 2.08% -0.20 2.19 0.65% 9.33%
Inflation rate (monthly) 408 0.41% 0.33% 0.87 4.17 -0.46% 1.81%
Riskless interest rate (monthly) 408 0.51% 0.21% 1.34 5.04 0.21% 1.38%
S&P500 return (monthly) 408 0.72% 4.20% -0.28 5.36] -21.72%| 16.43%
S&P500 excess return (monthly) 408 0.20% 4.22% -0.31 5.32| -22.26%| 15.92%

This table reports characteristics of the data used to estimate consumption-based unconditional risk-neutral S&P500
return variance. Panel A reports data over the sample period, and Panel B reports data over the full consumption
history. All statistics are given by their standard definitions. Kurtosis is reported in total (rather than excess) terms, so
the value of 3 would reflect the kurtosis from a Gaussian density.

Consumption of the representative consumer is estimated using monthly per-capita consumption (non-durable
goods and services, seasonally adjusted, in real terms) from the Federal Reserve Bank’s FRED database. The habit is
defined as the five-year moving average of historical consumption scaled by d with d = 1. The consumption growth rate
is the log differenced monthly consumption level. The surplus consumption ratio is equal to the ratio of the
consumption-habit difference and consumption: (C, — Xy)/C..

The inflation rate is the monthly proportional change in the CPI (Consumer Price Index For All Urban Consumers)
as reported in the FRED database. The riskless interest rate is the calculated as 1/B; — 1, where B; is the one-month
[Treasury Bill price derived from the one-month Treasury Bill rate reported in the CRSP Risk-Free Rates file. The
S&P500 return is the monthly nominal capital-appreciation return for the S&P500 portfolio as reported in the CRSP US
Indices database, and the S&P500 excess return is the difference between the S&P500 return and the riskless rate.




Table 2

Data used to estimate option-based unconditional risk-neutral S&P500 return variance

Panel A. Data used in implied volatility and fitted option price calculations
First trading day of each month, 1988:01-1997:12

N Mean Std. dev. Minimum Maximum
Riskless interest rate
(1 month, annualized) 120 5.17% 1.62% 2.67% 8.78%
Riskless interest rate
(3 month,annualized) 120 5.50% 1.69% 2.73% 9.12%
Implied cost of carry (annualized) 314 5.55% 5.57% -5.51% 28.83%
S&P500 dividend yield (annualized) 120 3.06% 1.38% 1.32% 8.46%

Panel B. S&P500 futures option data
First trading day of each month, 1988:01-1997:12

N Mean Std. dev. Minimum Maximum
Time until expiration (years) 4501 0.11 0.06 0.03 0.22
Trading volume (contracts) 4501 172.38 305.79 5 6682
Moneyness (K/F; - 1) 4501 -2.71% 6.54% -20.00% 18.98%
Implied volatility (annualized) 4501 18.74% 6.75% 7.54% 61.09%

This table reports characteristics of the data used to estimate option-based unconditional risk-
neutral S&P500 one-month return variance. The first panel of the table reports data that is used
in the calculation of the BBSR implied volatilities and the fitted call option prices.

The riskless rate used is extracted from the term-structure defined by the one and three-
month continuously compounded Treasury Bill rates from the CRSP Risk-Free Rates file. The
implied cost of carry is equal to the difference between the dividend yield and riskless rate over
the remaining life of the futures contract. The implied cost of carry is equal to [In(F) - log(P)]/(T-t)
where F, is the futures price for a contract with time until expiration of T-t and P, is the
contemporaneous S&P500 level. The S&P500 dividend yield is the monthly difference
(annualized) between the S&P500 return with dividends and without dividends as reported in the
CRSP US Indices database.

There are 120 months in the sample, which accounts for the number of data points for the
riskless interest rate and the S&P500 dividend yield. The implied cost of carry is calculated for
each expiration date every month, so there are at least two data points per month and
sometimes three, resulting in a total of 314 data points.

The second panel of the table reports the characteristics of the S&P500 futures option data.
The S&P500 futures option and S&P500 futures data is end-of-day data obtained from the
Futures Industry Institute (FII) for all contracts traded from 1988:01 through 1997:12. A cross-
section of futures options is extracted on the first trading day of each month. Futures options with
trading volume of at least five contracts, with two weeks but no longer than three months until
maturity, with moneyness (K/F; — 1) between —20% and 20%, and implied volatilities (annualized)
between 5% and 90% are used. Contracts that violate the no-arbitrage monotonicity or convexity
conditions are deleted. Time until expiration is reported as a fraction of a calendar year. An
implied volatility is calculated for each contract by numerically inverting the BBSR American
option pricing formula (Broadie and DeTemple, 1996) adjusted to apply to futures options
contracts.




Table 3

Characteristics of the consumption-based pricing kernel

Sample period 1988:01-1997:12
Panel A. Pricing kernel mean (monthly)

d=-9 d=-7 d=-5 d=-3 d=-1 d=0 d=.1 d=.3 d=.5 d=.7 d=.9
g=1 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951 0.9952 0.9953 0.9954 0.9962
g=5 0.9905 0.9905 0.9906 0.9907 0.9908 0.9909 0.9910 0.9912 0.9918 0.9933 1.0026
g=10 0.9848 0.9849 0.9851 0.9853 0.9856 0.9858 0.9860 0.9868 0.9883 0.9927 1.0252
g=15 0.9792 0.9794 0.9797 0.9801 0.9806 0.9809 0.9814 0.9828 0.9858 0.9946 1.0648
g=20 0.9738 0.9741 0.9745 0.9750 0.9758 0.9764 0.9771 0.9793 0.9842 0.9989 1.1235
g=25 0.9684 0.9688 0.9694 0.9701 0.9713 0.9721 0.9731 0.9764 0.9835 1.0055 1.2045
g=30 0.9632 0.9637 0.9644 0.9654 0.9669 0.9680 0.9694 0.9739 0.9837 1.0147 1.3130
Panel B. Pricing kernel standard deviation (monthly)

d=-9 d=-7 d=-5 d=-3 d=-1 d=0 d=.1 d=.3 d=.5 d=.7 d=.9
g=1 0.0024 0.0025 0.0026 0.0028 0.0031 0.0034 0.0036 0.0045 0.0060 0.0096 0.0250
g=5 0.0083 0.0092 0.0104 0.0119 0.0140 0.0153 0.0170 0.0217 0.0301 0.0487 0.1262
g=10 0.0164 0.0183 0.0206 0.0237 0.0280 0.0307 0.0340 0.0435 0.0602 0.0974 0.2604
g=15 0.0246 0.0273 0.0309 0.0355 0.0418 0.0459 0.0509 0.0650 0.0901 0.1465 0.4166
g=20 0.0326 0.0363 0.0410 0.0471 0.0555 0.0610 0.0676 0.0865 0.1199 0.1966 0.6108
g=25 0.0406 0.0451 0.0510 0.0586 0.0691 0.0759 0.0842 0.1078 0.1500 0.2487 0.8632
g=30 0.0484 0.0539 0.0609 0.0700 0.0826 0.0907 0.1006 0.1291 0.1803 0.3033 1.2010
Panel C. Ratio (PK standard deviation / PK mean)

d=-9 d=-7 d=-5 d=-3 d=-1 d=0 d=.1 d=.3 d=.5 d=.7 d=.9
g=1 0.0024 0.0025 0.0026 0.0028 0.0032 0.0034 0.0037 0.0045 0.0060 0.0097 0.0251
g=5 0.0084 0.0093 0.0105 0.0120 0.0141 0.0155 0.0172 0.0219 0.0304 0.0490 0.1259
g=10 0.0167 0.0186 0.0210 0.0241 0.0284 0.0311 0.0345 0.0441 0.0609 0.0981 0.2540
g=15 0.0251 0.0279 0.0315 0.0362 0.0426 0.0468 0.0519 0.0662 0.0914 0.1473 0.3913
g=20 0.0335 0.0372 0.0420 0.0483 0.0569 0.0624 0.0692 0.0883 0.1219 0.1969 0.5436
g=25 0.0419 0.0466 0.0526 0.0604 0.0711 0.0781 0.0865 0.1104 0.1525 0.2473 0.7166
g=30 0.0503 0.0559 0.0631 0.0725 0.0854 0.0937 0.1038 0.1325 0.1833 0.2989 0.9147
Full consumption history 1964:01 - 1997:12
Panel D. Pricing kernel mean (monthly)

d=-9 d=-7 d=-5 d=-3 d=-1 d=0 d=.1 d=.3 d=.5 d=.7 d=.9
g=1 0.9932 0.9932 0.9932 0.9932 0.9933 0.9933 0.9933 0.9933 0.9933 0.9933 0.9937
g=5 0.9864 0.9865 0.9865 0.9865 0.9866 0.9866 0.9866 0.9868 0.9871 0.9882 0.9958
g=10 0.9781 0.9782 0.9782 0.9784 0.9785 0.9787 0.9788 0.9794 0.9807 0.9846 1.0147
g=15 0.9699 0.9701 0.9702 0.9705 0.9709 0.9711 0.9715 0.9727 0.9755 0.9843 1.0530
g=20 0.9619 0.9622 0.9624 0.9629 0.9635 0.9640 0.9647 0.9668 0.9717 0.9871 1.1132
g=25 0.9541 0.9544 0.9549 0.9556 0.9566 0.9573 0.9583 0.9616 0.9691 0.9932 1.1996
g=30 0.9465 0.9469 0.9476 0.9485 0.9499 0.9510 0.9524 0.9571 0.9678 1.0026 1.3186
Panel E. Pricing kernel standard deviation (monthly)

d=-9 d=-7 d=-5 d=-3 d=-1 d=0 d=.1 d=.3 d=.5 d=.7 d=.9
g=1 0.0034 0.0035 0.0036 0.0038 0.0041 0.0043 0.0046 0.0054 0.0071 0.0109 0.0260
g=5 0.0101 0.0111 0.0125 0.0143 0.0167 0.0183 0.0202 0.0256 0.0351 0.0555 0.1333
g=10 0.0200 0.0221 0.0249 0.0285 0.0335 0.0366 0.0405 0.0514 0.0704 0.1116 0.2780
g=15 0.0299 0.0331 0.0373 0.0427 0.0501 0.0548 0.0606 0.0770 0.1056 0.1686 0.4493
g=20 0.0396 0.0440 0.0495 0.0567 0.0665 0.0728 0.0805 0.1024 0.1408 0.2275 0.6683
g=25 0.0492 0.0546 0.0615 0.0704 0.0827 0.0906 0.1002 0.1277 0.1764 0.2894 0.9655
g=30 0.0587 0.0651 0.0733 0.0840 0.0987 0.1082 0.1198 0.1530 0.2126 0.3556 1.3870
Panel F. Ratio (PK standard deviation / PK mean)

d=-9 d=-7 d=-5 d=-3 d=-1 d=0 d=.1 d=.3 d=.5 d=.7 d=.9
g=1 0.0034 0.0035 0.0037 0.0038 0.0041 0.0043 0.0046 0.0055 0.0071 0.0110 0.0262
g=5 0.0102 0.0113 0.0126 0.0145 0.0169 0.0185 0.0205 0.0260 0.0356 0.0562 0.1339
g=10 0.0204 0.0226 0.0255 0.0292 0.0342 0.0374 0.0414 0.0525 0.0718 0.1134 0.2740
g=15 0.0308 0.0341 0.0384 0.0440 0.0516 0.0565 0.0624 0.0791 0.1082 0.1713 0.4267
g=20 0.0412 0.0457 0.0514 0.0588 0.0690 0.0755 0.0835 0.1059 0.1449 0.2305 0.6004
g=25 0.0516 0.0572 0.0644 0.0737 0.0864 0.0946 0.1046 0.1328 0.1820 0.2914 0.8048
g=30 0.0620 0.0688 0.0774 0.0886 0.1039 0.1138 0.1258 0.1598 0.2197 0.3546 1.0519




Table 3 (continued)
Characteristics of the consumption-based pricing kernel

Panel G. Characteristics of S&P500 excess return

Mean /
N Mean Std. dev. [Minimum [Maximum |Std. dev.
Sample 120 1.03% 3.47% -9.72% 11.07% 0.2958
Full history 408 0.52% 4.21% -22.04% 16.25% 0.1224

This table reports characteristics of the consumption-based pricing kernel for a range of levels of utility function concavity (¢ =1, 5, 10, 15,
20, 25, 30), levels of habit (d=-.9, -.7, -5, -.3,-.1, 0, .1, .3, .5, .7, .9), and a fixed rate of time preference (r =.999). The nominal pricing
kernel is defined as M1 = 1 [(Cre1 — Xie1)/ (Ci — Xt)]'glﬁl'1 where C; is the level of consumption, X; is the level of habit, and I..; is the gross
inflation rate. The habit is defined as the five-year moving average of historical consumption scaled by d. The pricing kernel is compatible
with habit formation (d > 0), consumption durability (d < 0), or constant relative risk aversion (d = 0).

Panels A, B, and C report the pricing kernel mean, pricing kernel standard deviation and the ratio of the pricing kernel standard
deviation to the pricing kernel mean for the sample period (1988:01 — 1997:12). The pricing kernel mean and standard deviation are
calculated using monthly data and reported in monthly terms. The ratio reported in Panel C is the ratio that is bounded below by the ratio
of the benchmark portfolio unconditional expected return and unconditional standard deviation (Hansen and Jagannathan, 1991).

Panels D, E, and F report the same statistics for the sample using the full history of consumption data (1964:01 — 1997:12). The actual
consumption history begins in 1959:01 but the first habit calculation, which requires five years of data, is 1964:01.

Panel G reports sample characteristics of the monthly S&P500 excess return used to calculate the Hansen and Jagannathan (1991)
bound. The S&P500 return is the S&P500 one-month return including dividends from the CRSP US Indices database, the riskless rate is
the one-month Treasury Bill rate from the CRSP Risk-Free Rates file, and the excess return is the difference between the S&P500 return
and the riskless rate. The statistics for the “sample” are obtained using the period 1988:01 — 1997:12 and the statistics for the “full history”
are obtained using the period 1964:01 — 1997:12. The excess return mean and standard deviation ratio provides the Hansen and
Jagannathan (1991) lower bound on the pricing kernel mean and standard deviation ratio.




Table 4

Option-based risk-neutral S&P500 return variance estimation

Panel A. Sample statistics (1988:01-1997:12)

N Mean Std. Dev. Min Max
Conditional risk-neutral variance (annualized) 120 0.0278 0.0126 0.0119 0.0842
Conditional risk-neutral standard deviation (annualized) 120| 16.31% 3.45% 10.93% 29.02%
Number of options per estimation date 120 37.51 16.03 16 96
Panel B. Confidence intervals for sample averages
Percentile of simulated distribution of sample averages
0.5% 2.5% 5.0% 95.0% 97.5% 99.5%
Average risk-neutral variance (annualized) 0.0250 0.0256 0.0260 0.0297 0.0301 0.0309
Average risk-neutral standard deviation (annualized) 15.52%| 15.71% 15.81% 16.83% 16.93%| 17.15%
Panel C. Comparison using different bandwidths
N Mean Std. Dev. Min Max
Conditional risk-neutral std. dev. 0.75*(Silverman bandwidth) 120| 16.52% 3.33% 10.78% 28.38%
Conditional risk-neutral std. dev. 1.00*(Silverman bandwidth) 120| 16.31% 3.45% 10.93% 29.02%
Conditional risk-neutral std. dev. 1.25*(Silverman bandwidth) 120| 16.41% 3.58% 11.10% 30.03%

of the distribution of sample averages.

The first panel of the table reports sample statistics for the option-based conditional risk-neutral one-
month variance estimates. The conditional risk-neutral variances are obtained by numerical integration
of the option-based conditional risk-neutral S&P500 one-month return density, which is estimated on
the first trading day of each month. The conditional risk-neutral standard deviation is the square-root of
the conditional risk-neutral variance. Conditional variances are annualized by multiplying by 12, and
conditional standard deviations are annualized by multiplying by ¢12.
The second panel of the table reports confidence intervals for the average conditional risk-neutral
variance and average conditional risk-neutral standard deviation. These confidence intervals are
obtained using the bootstrap percentile method. The distribution of sample averages is constructed by
sampling 120 data points (with replacement) from the monthly dataset, calculating the average of the
variable of interest, and repeating 10,000 times. The confidence intervals are the empirical percentiles

The third panel of the table reports sample statistics for conditional option-based risk-neutral

standard deviations using different choices of bandwidth. The Silverman bandwidth (Silverman, 1996)
is equal to .9*N™Min(standard deviation, interquartile range/1.34). N represents the number of
observations, and the standard deviation and interquartile range are calculated as sample statistics of
the regressors. The sensitivity to bandwidth selection is measured by performing the same estimation
procedure with bandwidth equal to 75% or 125% of the Silverman bandwidth.




Table 5

Option-based and consumption-based unconditional risk-neutral S&P500 return variance comparison

Constant relative risk aversion pricing kernel specification (d=0), 1988:01 - 1997:12

(1) ) (3) 0 (5) (6) () ®) ©)
Significance
Estimated of Estimated Estimated Required r to
Estimated unconditional |unconditional |unconditional unconditional Signficance of |replicate
unconditional [risk-neutral  [risk-neutral  [risk-neutral consumption- [Estimated unconditional |estimated
risk-neutral  [standard variance variance risk based riskless [unconditional [riskless rate unconditional
Delta |variance deviation difference premium rate riskless rate [difference riskless rate
Option-based 0.0278 16.67% 0.0127
Consumption-based (g= 1, r =.999) 0.00 0.0151 12.30% 1% -0.0000 5.88% 5.30% 10% 0.9996
Consumption-based (g= 5, r =.999) 0.00 0.0150 12.26% 1% -0.0001 11.08% 5.30% 1% 1.0039
Consumption-based (g= 10, r =.999) 0.00 0.0149 12.19% 1% -0.0002 17.34% 5.30% 1% 1.0091
Consumption-based (g= 15, r =.999) 0.00 0.0148 12.16% 1% -0.0003 23.33% 5.30% 1% 1.0140
Consumption-based (g= 20, r =.999) 0.00 0.0147 12.12% 1% -0.0004 29.05% 5.30% 1% 1.0188
Consumption-based (g= 25, r =.999) 0.00 0.0146 12.09% 1% -0.0005 34.49% 5.30% 1% 1.0233
Consumption-based (g= 30, r = .999) 0.00 0.0145 12.06% 1% -0.0006 39.65% 5.30% 1% 1.0276

the specified confidence level.

unconditional riskless rate)).

This table reports comparisons of option-based and consumption-based unconditional risk-neutral S&P500 return variance. The consumption-based nominal pricing kernel
is defined as M., = r[CM/CI]'gIM‘1 where C, is the level of consumption and I, is the gross inflation rate. The tested consumption-based pricing kernels are estimated at a
range of levels of utility function concavity (g = 1, 5, 10, 15, 20, 25, 30) and a fixed rate of time preference (r = .999).
The risk-neutral standard deviation is the square root of the risk-neutral variance. All estimates are averages over the period 1988:01 — 1997:12 and are reported in
annualized terms. The statistical significance of the unconditional risk-neutral variance difference (and unconditional riskless interest rate difference) is obtained using
confidence intervals constructed using the bootstrap percentile method with 10,000 simulation replications. A value of 1%, 5%, or 10% represents rejection of equality at

The estimated option-based unconditional risk-neutral variance risk-premium is equal to the difference between the estimated option-based unconditional risk-neutral
\variance and the estimated unconditional S&P500 squared excess return. The estimated consumption-based unconditional risk-neutral variance risk-premium is equal to
the difference between the estimated unconditional consumption-based risk-neutral variance and the estimated unconditional S&P500 squared excess return. Over the
sample period, the estimated unconditional S&P500 squared excess return is estimated as a sample average and has an annualized value of .0151. The estimated
unconditional risk-neutral variance risk-premium is annualized by multiplying the estimated monthly value by 12.

The unconditional consumption-based riskless rate is estimated as RF¢ monniy = 1/average(M;) — 1. The unconditional riskless rate is estimated as 1/average(B;) — 1 where
B is the one-month Treasury Bill price derived from the one-month Treasury Bill rate reported in the CRSP Risk-Free Rates file. Both interest rates are annualized using
the formula rfanna= (1 + rfmmmy)12 - 1. The required r to replicate the unconditional riskless interest rate is equal to (model r) / (pricing kernel mean * (1 + estimated




Table 6

Option-based and consumption-based unconditional risk-neutral S&P500 return variance comparison

General pricing kernel specification, 1988:01 - 1997:12

(1) ) @3) (@) (5) (6) () ®) ©)
Significance
Estimated of Estimated Estimated Required r to
Estimated unconditional |unconditional |unconditional unconditional Signficance of [replicate
unconditional |risk-neutral [risk-neutral |risk-neutral consumption- [Estimated unconditional [estimated
risk-neutral standard variance variance risk based riskless [unconditional |riskless rate unconditional
Delta variance deviation difference premium rate riskless rate [difference riskless rate
Option-based 0.0278 16.67% 0.0127
Consumption-based (g= 1, r =.999) 0.99 0.0149 12.22% 1% -0.0002 -2.37% 5.30% >10% 0.9927
Consumption-based (g= 5, r =.999) 0.99 0.0162 12.71% 1% 0.0010 -76.66% 5.30% 5% 0.8812
Consumption-based (g= 10, r =.999) 0.99 0.0222 14.89% >10% 0.0071 -99.83% 5.30% 1% 0.5849
Consumption-based (g= 15, r =.999) 0.98 0.0277 16.66% >10% 0.0126 -99.99% 5.30% 1% 0.4411
Consumption-based (g= 20, r =.999) 0.97 0.0278 16.67% >10% 0.0127 -99.99% 5.30% 1% 0.4554
Consumption-based (g= 25, r =.999) 0.96 0.0278 16.67% >10% 0.0127 -99.99% 5.30% 1% 0.4678
Consumption-based (g= 30, r =.999) 0.95 0.0278 16.67% >10% 0.0127 -99.99% 5.30% 1% 0.4766

This table reports comparisons of option-based and consumption-based unconditional risk-neutral S&P500 return variance. The consumption-based nominal pricing kernel is defined as
Mg = 1 [(Coq — %a1)! (Cr = X)] ¥yt Where C, is the level of consumption, X is the level of habit, and I, is the gross inflation rate. The habit is defined as the five-year moving average of
historical consumption scaled by d The pricing kernel is compatible with habit formation (d> 0), consumption durability (d< 0), or constant relative risk aversion (d= 0).
The tested consumption-based pricing kernels are estimated at a range of levels of utility function concavity (g = 1, 5, 10, 15, 20, 25, 30), a fixed rate of time preference (r =.999), and
a level of habit (d) set equal to the “implied delta.” The implied delta is the delta within the range [-.99,.99] that minimizes the distance between the consumption-based and option-based
unconditional risk-neutral variance for fixed levels of gand r .
The risk-neutral standard deviation is the square root of the risk-neutral variance. All estimates are averages over the period 1988:01 — 1997:12 and are reported in annualized terms.
The statistical significance of the unconditional risk-neutral variance difference (and unconditional riskless interest rate difference) is obtained using confidence intervals constructed
using the bootstrap percentile method with 10,000 simulation replications. A value of 1%, 5%, or 10% represents rejection of equality at the specified confidence level.
The estimated option-based unconditional risk-neutral variance risk-premium is equal to the difference between the estimated option-based unconditional risk-neutral variance and the
estimated unconditional S&P500 squared excess return. The estimated consumption-based unconditional risk-neutral variance risk-premium is equal to the difference between the

estimated unconditional consumption-based risk-neutral variance and the estimated unconditional S&P500 squared excess return. Over the sample period, the estimated unconditional
S&P500 squared excess return is estimated as a sample average and has an annualized value of .0151. The estimated unconditional risk-neutral variance risk-premium is annualized by
multiplying the estimated monthly value by 12.

The unconditional consumption-based riskless rate is estimated as RF nonhy = 1/average(M;) — 1. The unconditional riskless rate is estimated as 1/average(B;) — 1 where B; is the one-
month Treasury Bill price derived from the one-month Treasury Bill rate reported in the CRSP Risk-Free Rates file. Both interest rates are annualized using the formula rfya= (1 +
rfmmh,y)12 - 1. The required r to replicate the unconditional riskless interest rate is equal to (model r ) / (pricing kernel mean * (1 + estimated unconditional riskless rate)).




Table 7
Option-based and consumption-based unconditional risk-neutral variance risk-premium comparison

Panel A. Option-based variance risk-premium (1988:01 - 1997:12), Consumption-based variance risk-premium (1964:01 - 1997:12)
Constant relative risk aversion pricing kernel specification

(€] 2 3 Q) ®) (6)
Estimated Estimated Required r to
unconditional unconditional Signficance of replicate
risk-neutral consumption- |Estimated unconditional [estimated
variance risk based unconditional [riskless rate |unconditional
Delta premium riskless rate |riskless rate |difference riskless rate
Option-based 0.0064
Consumption-based (g= 1, r =.999) 0.00 0.0000 8.46% 6.35% 1% 1.0006
Consumption-based (g=5, r =.999) 0.00 -0.0001 17.57% 6.35% 1% 1.0074
Consumption-based (g= 10, r = .999) 0.00 -0.0002 29.54% 6.35% 1% 1.0156
Consumption-based (g= 15, r = .999) 0.00 -0.0003 42.10% 6.35% 1% 1.0234
Consumption-based (g= 20, r = .999) 0.00 -0.0004 55.20% 6.35% 1% 1.0310
Consumption-based (g= 25, r = .999) 0.00 -0.0005 68.77% 6.35% 1% 1.0382
Consumption-based (g= 30, r = .999) 0.00 -0.0006 82.73% 6.35% 1% 1.0451

Panel B. Option-based variance risk-premium (1988:01 - 1997:12), consumption-based variance risk-premium (1964:01 - 1997:12)
General pricing kernel specification

1) (2 3 4 (5) (6)
Estimated Estimated Required r to
unconditional unconditional Signficance of [replicate
risk-neutral consumption- |Estimated unconditional [estimated
Implied variance risk based unconditional |riskless rate [unconditional
delta premium riskless rate |riskless rate |difference riskless rate
Option-based 0.0064
Consumption-based (g= 1, r =.999) 0.99 0.0002 3.91% 6.35% >10% 0.9970
Consumption-based (g= 5, r =.999) 0.99 0.0030 -58.46% 6.35% >10% 0.9237
Consumption-based (g= 10, r =.999) 0.98 0.0064 -84.95% 6.35% 10% 0.8488
Consumption-based (g= 15, r = .999) 0.94 0.0064 -82.60% 6.35% 10% 0.8591
Consumption-based (g= 20, r =.999) 0.91 0.0064 -81.73% 6.35% 10% 0.8626
Consumption-based (g= 25, r = .999) 0.88 0.0064 -81.22% 6.35% 10% 0.8646
Consumption-based (g= 30, r =.999) 0.86 0.0064 -80.78% 6.35% 10% 0.8662

This table reports comparisons of option-based and consumption-based unconditional risk-neutral S&P500 return variance risk premia using
ithe full consumption history. The consumption-based nominal pricing kernel is defined as My = r [(Cr — X))/ (Ci = X)] %1 ™ Where C is the
level of consumption, X; is the level of habit, and I, is the gross inflation rate. The habit is defined as the five-year moving average of
historical consumption scaled by d. The pricing kernel is compatible with habit formation (d > 0), consumption durability (d < 0), or constant
relative risk aversion (d = 0).

The tested consumption-based pricing kernels are estimated at a range of levels of utility function concavity (g =1, 5, 10, 15, 20, 25, 30), a
fixed rate of time preference (r =.999), and a level of habit (d) set equal to zero (for the constant relative risk-aversion pricing kernel) or set
equal to the “implied delta.” The implied delta is the delta within the range [-.99,.99] that minimizes the distance between the consumption-
based and option-based unconditional risk-neutral variance risk premium for fixed levels of gand r.

The estimated option-based unconditional risk-neutral variance risk-premium is equal to the difference between the estimated option-based
unconditional risk-neutral variance and the estimated unconditional S&P500 squared excess return over the period from 1988:01 — 1997:12.
The estimated consumption-based unconditional risk-neutral variance risk-premium is equal to the difference between the estimated
unconditional consumption-based risk-neutral variance and the estimated unconditional S&P500 squared excess return over the period from
1964:01 — 1997:12. Over the full consumption history, the estimated unconditional S&P500 squared excess return is estimated as a sample
average and has an annualized value of .0214. Unconditional risk-premia are reported in annualized terms.

The unconditional consumption-based riskless rate is estimated as RF nonniy = 1/average(M;) — 1. The unconditional riskless rate is
estimated as 1/average(B,) — 1 where B, is the one-month Treasury Bill price derived from the one-month Treasury Bill rate reported in the
ICRSP Risk-Free Rates file. Both interest rates are annualized using the formula RF,nua= (1 + RFmommy)12 - 1. The required r to replicate the
unconditional riskless interest rate is equal to (model r) / (pricing kernel mean * (1 + estimated unconditional riskless rate)). The significance
of the estimated unconditional riskless rate difference is determined using the bootstrap percentile method with 10,000 simulation replications.




Figure 1
Monthly consumption and habit levels
Annualized, 1964:01-1997:12
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Implied volatility function value

Figure 2
Nonparametric estimates of

S&P500 one-month implied volatility functions
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Figure 3
Semi-parametric estimates of
risk-neutral S&P500 one-month return densities
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Risk-neutral standard deviation

Figure 4
Semi-parametric estimates of
option-based conditional risk-neutral
S&P500 one-month return standard deviation
Annualized, 1988:01-1997:12
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