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1 Introduction

This paper develops a two-factor model of the term structure of interest rates. We follow
the standard tradition in the finance term-structure literature (see, for example, Brennan
and Schwartz (1979), Cox, Ingersoll, and Ross (1981, 1985), Longstaff and Schwartz (1992),
and Vasicek (1977)), and identify the first factor with the level of the short-term rate. The
novelty of our analysis is that we identify the second factor with the central tendency of the
short-term rate. Our model captures the notion that short-term rates display short-lived
fluctuations around a time-varying rest level, the central tendency, which, in turn, changes
stochastically over time. As a result, current short-term rates are not sufficient to predict
future short-term rates movements, as would be the case if the central tendency was constant
over time. However, since longer-maturity bond prices incorporate information about the
central tendency, longer-maturity bond yields can be used to predict future short-term rates
movements.

Our study integrates two strands of literature. The first strand of literature is the tradi-
tional regression-based work on the term structure of interest rates, which uses information
in longer-term rates to forecast future short-term rates. Examples of this approach are
Campbell and Shiller (1992), Fama (1984), Fama and Bliss (1987), Mankiw (1986), Shiller
(1979), and Shiller, Campbell, and Schoenholtz (1983). The second strand of literature uses
no-arbitrage arguments to derive implications for longer-term yields based on the dynamics
of the short-term rate. Classical examples of this second approach include Cox, Ingersoll,
and Ross (1985) and Vasicek (1977). We take a middle course between the two approaches
in the sense that we show how an equilibrium term-structure model can be used to learn
about the dynamics of the short-term rate.

Our analysis gathers some preliminary evidence on the explanatory power of longer-
term yields for the short-term rate. We regress the next-period one-month rate on the
current one-month rate and a longer-maturity bond yield; we find that the bond yield always
has explanatory power, especially for the shorter maturities. This evidence motivates a
two-factor term-structure model, which is based on the assumption that the instantaneous
riskless rate reverts towards a central tendency, which, in turn, changes stochastically over
time. We impose minimal restrictions on the dynamics of the central tendency, other than
that its conditional mean should not be affected by the instantaneous riskless rate. The
theoretical analysis suggests a proxy for the central-tendency factor which depends on a
linear combination of two yields. The central-tendency proxy is then used to estimate the
stochastic process for the instantaneous riskless rate, proxied by the one-month Treasury bill
rate.

In the empirical analysis we show that models of the one-month rate which allow for a
time-varying central tendency perform better than the standard Vasicek (1977) and Cox,
Ingersoll, and Ross (1985) models, in which the central tendency is assumed constant. We
replicate the analysis for different subperiods. The time variation in the central tendency is



especially important for the 1952-1971 and 1982-1993 periods, when the Federal Reserve’s
operating policy took into account both the volatility of interest rates and the behavior of
monetary aggregates.

The approach advocated here complements other two-factor models of the term structure
of interest rates such as that of Longstafl and Schwartz (1992), who propose a model in which
the second factor is identified with the conditional volatility of the short-term rate. Also,
in a spirit similar to ours, Babbs and Webber (1995), Naik and Lee (1994), and Pennacchi
and Jagadeesh (1995) postulate a process for the short-term rate where its central tendency
changes over time.

The paper is organized as follows. Section 2 presents the data and puts forward the
motivating evidence, while Section 3 develops the theoretical model. In Section 4 we estimate
various models of the one-month rate and we examine the properties of the central-tendency
proxy. Section 5 performs diagnostics of the interest-rate model. Section 6 concludes.

2 Preliminary evidence

This section illustrates the properties of the data, and puts forward some preliminary evi-
dence that longer-maturity yields contain information for future short-term interest rates.

Table 1 presents summary statistics for the interest-rate series used in the empirical
analysis. We use monthly U.S. interest rates from June 1952 through December 1993. One-
month Treasury-bill rates are from the Center for Research in Security Prices (CRSP) RISK-
FREE file, while the discount-bond prices used to compute continuously compounded yields
are from the FAMABLIS file also on the CRSP tape. All interest rates are continuously
compounded. We consider four separate subperiods, June 1952 — August 1971, September
1971 — September 1979, October 1979 — September 1982, and October 1982 — December
1993.

The subperiods were selected to control for different operating procedures followed by
the Federal Reserve: During the 1950s and 1960s the Federal Reserve took the view that
monetary policy should be based on the intuitive judgment of money-market conditions. This
period also roughly coincides with the time during which the Bretton Woods exchange-rate
agreement was in place, which ended in August, 1971. During the 1970s the Federal Reserve
made a formal commitment to targeting the growth rate of key monetary aggregates, such
as M1 and M2. In practice, this translated into a tight targeting of the federal funds rate
at a level perceived to be consistent with the stated quantity targets. The October 1979
October 1982 period witnessed the Federal Reserve’s “experiment.” The operating target
of monetary policy became the amount of non-borrowed reserves with the banking system,
and both the level and the volatility of interest rates reached levels never experienced before.
The post-October 1982 period is one of de-emphasis of monetary aggregates and of renewed



concern for reducing the volatility of interest rates.

While it is the changing institutional setting of post-war monetary policy that suggests
the years 1971, 1979, and 1982 as possible break points, the evidence in Table 1 confirms that
interest rates behaved quite differently across subperiods. Mean interest rates are highest
in the third subperiod, and lowest in the first one; the volatility of the changes of all rates
is also highest in the third subperiod, and lowest in the first one. The skewness of the
levels of interest rates is highest (and positive) in the first subperiod, while it is lowest
(and negative) in the third subperiod. This behavior is consistent with the notion that
interest rates cannot turn negative, and that when interest rates are especially high large
sudden drops are quite likely. Changes in interest rates also display marked excess kurtosis
over the entire period, especially for the shorter-maturity rates, while this excess kurtosis
disappears during the individual subperiods. This is consistent with the view that controlling
for variations in means and variances across subperiods, as in Naik and Lee (1994) and in
this paper, may improve the performance of models with Gaussian innovations. Table 1
also shows that all rates exhibit high first-order autocorrelations for the first subperiod; and
the higher-order autocorrelations (not shown in the Table) decay very slowly. Fama (1984,
page 515) writes that this “pattern [is] suggestive of mean non-stationarity,” as it would be
the case with breaks in regimes and changes in the central tendency. In fact, the first-order
autocorrelations for the individual subperiods are lower than for the entire period. Given
the persistence of the levels of all rates, when appropriate we conduct our analysis both in
levels and 1in first differences. This approach is consistent, for example, with the findings of
Campbell and Shiller (1987), who provide strong evidence of unit roots in the monthly series
of U.S. interest rates, for the 1959-1978 period.

With a time-varying central tendency, current short-term rates do not adequately sum-
marize the information in the bond market about future short-term rates. Hence, in addition
to the current short-term rate, we should use longer-maturity yields. To explore this idea
we regress the future short-term rate on the current short-term rate and current longer-term
yields:

rie1 = Bo + Pire + Ba yi(T) + erroriyy, (1)

3

where y(7) is the yield on a discount bond of maturity 7 = 1, 2, 3, 4, and 5 years, and
r is the one-month interest rate. This regression is performed for both the levels and the
first differences of the interest rates. If interest rates were driven by a single factor following
an autoregressive process as in Cox, Ingersoll, and Ross (1985) or Vasicek (1977), current
short-term rates would completely summarize the information about future short-term rates,

and we should find that 8, = 0.

Table 2 reports the results of estimating the statistical model (1), both in levels and in
first differences, for the entire period and for the different subperiods. The main finding
is that for the entire period the estimates of all coeflicients are significant. In particular
32, the coefficient of the long-term yield, is significant both for the regression in levels and
in first differences. This finding confirms that there is information in the longer-maturity



yields that can be used to explain future short-term rates variations. Longer-term rates are
more significant in the first and fourth subperiods. Thus, we expect a model with a time-
varying central tendency to perform better in these subperiods than in the second and third
one. Also, the coefficient of the long-term yield, 3;, tends to decrease with the maturity
of the yield used in the regression, especially for the regression in levels. This finding is
consistent with the notion that the shorter the maturity of the bond yield, the higher the
information on proximate short-term rate changes. When we consider the regression in the
levels, we also find that the coefficient of the short-term rate, £y, tends to increase with the
maturity. In fact, in all regressions the sum of 3; and 3, is approximately equal to one. This
is consistent with the evidence that interest rates of all maturities are very persistent, as it is
the case with integrated series, and with the notion that interest rates may be cointegrated.
In fact, Campbell and Shiller (1987) provide evidence of a cointegrating relationship between
short-term and long-term rates, as implied by the expectations hypothesis.

3 Yields with a time-varying central tendency

The evidence presented in the previous section suggests that longer-term bond yields help
forecast future short-term rates, even when we control for information contained in the
current level of the short-term rate. Hence, in this section we develop an equilibrium model
of the term structure of interest rates, in which longer-term yields depend on the time-varying
central tendency of the short-term rate. The resulting theory suggests that an appropriate
combination of bond yields proxies for the central tendency of the postulated short-term rate
process.

The behavior of the instantaneous riskless rate r is described by the stochastic differential

dr = k(0 — r)dt ++\/o2 + o?r dZ, (2)

where k, 0g, and oy are constants, and Z is a standard Brownian motion; @ is the central
tendency towards which the instantaneous rate reverts. As in Pearson and Sun (1994), the
diffusion term of (2) generalizes the square-root process of Cox, Ingersoll, and Ross (1985)
by allowing the lower bound for the instantaneous interest rate to be different from zero.

equation’

In turn, & evolves over time according to the stochastic differential equation
df = m(0)dt + s(0)dW, (3)

where, like Z, W is a standard Brownian motion. We assume that the conditional drift m ()
and the conditional volatility s(8) are “smooth” (continuous with continuous derivatives)

"We use the same notation to indicate the instantaneous riskless rate and the one-month rate, and in the
empirical applications of Section 4 we use the one-month rate to proxy for the instantaneous riskless rate.
p P



functions of # alone. Specifically, # may evolve according to

df = (mo + m10)dt + \/s8 + s20 dW. (3")

The covariance between the two factors, drdf/dt = 0,4, is assumed constant.

We assume the premium required to compensate investors for the risk of fluctuations of
7 to be linear in r, Ag+ Ay7, with Ag, Ay constant, while the premium required to compensate
investors for the risk of fluctuations of 8, {(#), is a smooth function of # alone. Under the
assumptions above, the price of a risk-free discount bond of maturity r, P = P(r,0;7)
satisfies the partial differential equation (see Cox, Ingersoll, and Ross (1985))

E(DP) —rP — P.(Ao + Mi7) — P5l(0) = 0, (4)
where D denotes the Dynkin differential operator.?

We assume that there is a solution for the fundamental valuation equation (4); the
solution is of the form

P(r,8;7) = e =BOY, (5)

where B(7) is a constant that depends only on the maturity 7, while A(6;7) is a smooth
function of 4, for any given maturity 7. In fact one can write equation (4) as

B(7)[k0 — Xo — (k + M)r] + B*(7)[od + oir + 020]/2 + Ay(0; 7)[m(0) — 1(8)]
+[Apo(0;7) + A5(0;7)]5(0)*/2 4+ B(1)Ag(0;7)0r0 — Br(7)r — A (0;7) — 1 =0,

and verify that for the previous equation to be uniformly satisfied over the domain of r we
need

“B(r)(k+ \i) + BX(r)02/2 — B,(r) — 1 = 0.

The solution for B(7), subject to the initial condition that B(0) = 0, is well-known (see Cox,
Ingersoll, and Ross (1985)):

2(e57 — 1)
(M + 64+ k)(ebm—1) 428
which reduces to B(t) = (1 —e™*7)/k when A, = 07 = 0 (see Vasicek (1977)). If m(8), s(0)?

and [(0) were linear functions of ¢ as postulated in equation (3'), yields would be linear in r
and 6, and bond prices would have the familiar form

P(?’, a’ 7_) — 6—C(T)—B(T)T‘—D(T)9’ (7)

B(r) =

§ = /(M + k)2 + 207, (6)

2Equation (4) can be written in the more intutive excess-returns form

E(DP)
5 T

P, Py
=—(Ap+ A — (6

P( 0+ 1T)+ P ( )?
where % can be interpreted as the short-term rate “beta,” and % as the central-tendency beta. By analogy
with standard linear pricing models, (Ao + A17) and [(#) are the factor risk premia associated with 7 and 6,
respectively.

Tt



where A(0;7) = C(7) + D(7)0. Conditions for yields to be linear in the underlying state
variables are given in Cox, Ingersoll, and Ross (1981), and Duffie and Kan (1993).

In the following we show how, by choosing appropriate weights, one can build a linear
combination of two bond yields which is independent of » and thus mimics the variation of
the second factor only. This implication that yields of different maturities can be used as
instruments for unobservable factors is well known (Cox, Ingersoll, and Ross (1985), pp.398-
401), and is the basis of a number of empirical studies, e.g., Stambaugh (1988) and Sun
(1992), before ours. Formally, consider two bonds of maturity 7 and 73, respectively. From
equation (5), the corresponding yields are

y(r,0;7) = —1In P(r,0;7)/7: = [A(6; ;) + B(ri)r]/m, fori=1,2. (8)
Solving for r from the first yield, substituting into the second, and rearranging we obtain:
niB(r)y(r,0;m1) — nB(m1)y(r,0; 2) = B(r2)A(0; 1) — B(r1)A(6; 72). (9)

Note that this quantity does not depend on r. Thus, we can use an affine function of the
variable on the left-hand side of equation (9) as a proxy for #. In fact, if the drift and diffusion
of the process for # were also linear in @, then prices would be of the form in equation (7),
and the second factor é could be written as

B(n)[ny(r,0;m) = C(n)] = B(n)[ry(r,0;72) — C(Tz)]‘

B(ry)D(71) — B(11)D(m) (10)

0=

While this is the case only when 6 is an exact affine function of the variable on the left-
hand side of equation (9), equation (10) justifies a prozy for # which is used in the empirical
analysis of the next section. We denote this proxy with 6:

0 = ao + a1 [B(ra) iy (r, 0;71) — B(m)may(r, 0; 7). (11)

Using the proxy (11) rather than the variable (10) is convenient in that even if m and s
are not linear in #, still we would expect (11) to be a reasonable approximation of the true,
unknown, functional form relating 6 to any two bond yields. At this point, we may also note
that if the conditional mean and variance of the process for 6 were in fact linear in 6, all
proxies estimated from any bond-maturity pair (71, 72) would be the same.

4 Empirical analysis

This section uses the previous theoretical findings to show how an equilibrium term-structure
model can be used to learn about the dynamics of the short-term rate.

An important issue in estimation is that of identifying empirical counterparts to the
factors 7 and €, which are in principle unobservable. We follow a standard practice (see, for



example, Chan, Karolyi, Longstaff, and Sanders (1992), and Longstaff and Schwartz (1992)))
and treat the one-month Treasury bill rate as a proxy for the instantaneous rate r. While
this practice is convenient, the one-month rate is only an approximation of the instantaneous
rate of interest, because yields on any finite-maturity bond depend on both factors, r and
0, as well as on their risk premia, Ao + Ayr and [(#) (see, e.g., Pearson and Sun (1994)).
Second, we proxy 6 with the quantity proposed in equation (11) of the previous section. The
approximation depends on the fact that only when m and s are linear, is 6 a linear function
of the yields in (11).

A second issue is that we need to discretize the stochastic differential equation describ-
ing dr to implement it on discretely sampled data. When there is only one factor as, for
example, when § is constant, we could estimate an ezact stochastic difference equation for
the instantaneous rate implied by the differential equation for dr. However, since we allow
f to vary, we shall use the Euler discretization often used in the literature (see, for example,

Chan, Karolyi, Longstaff, and Sanders (1992)),
Popn — 1y R k(0 — ry) + \/0d + 0¥ €rqn. (12)

Since we use monthly observations, we set h = 1/12 and estimate our model by maxi-
mizing the log-likelihood function

-53 [lna?+l + (rig1 — Ft+1)2/af+l] , (13)
where
rir = (1 — (k/12))ry + (k/12)8, (14)
ot = (0p/12) + (0}/12)r, (15)
and 0, is given by
ét = ag + CL1[B(7'2)7'1y(7‘t, 0 7'1) - B(Tl)T‘zy(?’t, 0:; 7'2)]7 (H)
where s
2(e’” — 1 ‘
B(r) = S 5= \/in + B+ 207 )

(M + 6+ k)(ef”—1) 428

We estimate the model (6), (11), (13), (14), and (15) using monthly observations. The
estimates presented here are obtained using one- and two-year bond yields to construct the
proxy in equation (11): 7y = 1 and 7, = 2.> The estimation period goes from July 1952 to
December 1993. Results are presented in Table 3.

The Table shows parameter estimates for four different models:

3We experimented with different maturity pairs as well, with very similar, if slightly worse, results. The
robustness of our results to the choice of maturity pairs is further discussed in Section 5.



1. Vasicek: a; = 01 = 0;
2. CIR: a1 = 09 = 0;

3. Vasicek™: oy = 0;

4. CIR*: g9 = 0;

In “Vasicek” and “CIR” we restrict § to be a constant. The first model corresponds to the
Vasicek (1977) Ornstein-Uhlenbeck process, while the second model corresponds to the Cox,
Ingersoll, and Ross (1985) square-root process. In “Vasicek*” and “CIR*” the mean of the
square-root process is also affected by 9.

By equations (11) and (6) the coefficients relating the central-tendency proxy to bond
yields depend on the parameter A; which, in turn, describes the sensitivity of the market
price of r-risk to 7. In the empirical implementation, though, we found the log-likelihood to
be largely insensitive to different values of A;: the Vasicek*, and CIR* models were estimated
imposing A; = 0.0, —.5,—1.0, —2.0, with slight decreases in likelihood value, the larger A,
in absolute value. Parameter estimates and the extracted 6 series were also essentially the
same. Table 3 reports the estimation results for the different models assuming A; = 0.

The full-period estimation results indicate that in the Vasicek* and CIR* models the
estimate of ay is negative and significant: the central-tendency proxy is indeed time-varying.
It is also apparent that the level of the one-month rate affects its conditional volatility: in the
CIR* model the estimate of oy is positive and significant. Also, it is worth noting that the
assumption of a constant central tendency (Vasicek and CIR models) leads to lower estimates
of the mean-reversion parameter k. This is consistent with the intuition that interest rates
should converge more quickly towards a central tendency which is time-varying than towards
a constant one.

Turning now to the subperiod evidence, we find that during the two periods September
1971 — September 1979 and October 1979 — September 1982, the measure of the central ten-
dency captures little if any time-variation in the interest rate. This evidence is in agreement
with the findings presented in Table 2, which shows that for the second and third subperiod
the level and the changes of longer-maturity yields have little explanatory power for the
future level and changes of the one-month rate, respectively. A possible interpretation for
these findings is that during the September 1971 — September 1979 period the one-month
rate itself was changing very smoothly, making the very concept of a central tendency of little
use, at least at the monthly frequency. Also, the Federal Reserve’s aggressive management
of non-borrowed reserves during the October 1979 — September 1982 period resulted in such
a high volatility of interest rates that the notion of a smoothly-changing time-varying central
tendency is again useless. For this period, it is only the conditional volatility parameters to
be estimated with reasonable precision, and the data show a slight preference for a model
where volatility is tied to the level of the interest rate (CIR and CIR*) relative to a model
with constant volatility (Vasicek and Vasicek*). On the other hand, for the first and the last



subperiod the central-tendency proxy plays an important role in explaining the conditional
mean of the one-month rate. These two periods have in common a somewhat “eclectic” ap-
proach of the Federal Reserve to monetary policy, where both interest-rate volatility and the
growth of monetary aggregates were taken into account when formulating operating targets.

Using the parameter estimates for the CIR* model of Table 2, for the entire period, we
obtain a time series of . Figure 1 plots 6 and the one-month rate. The visual evidence of
Figure 1 confirms that 0 indeed behaves as a central tendency, and it is less volatile than
the one-month rate of interest.

Table 4, Panel A, presents some summary statistics for the series f estimated for the
entire period and for the four subperiods, both in levels and first differences. The comparison
between Table 4 and Table 1 shows that § has essentially the same mean as the one-month
rate, while its variability is always lower (both for the levels and for the first differences).
This is not surprising since the central tendency should fluctuate around the same long-run
mean as the one-month rate, and should exhibit a smoother behavior than the rate that
reverts towards it. Other indications that § displays a smoother behavior than the one-
month rate are as follows. The autocorrelation coefficient of 6 is always higher than that of
the one-month rate. Moreover, when we consider the entire period, the kurtosis of the first
differences of # is much lower than that of the first differences of the one-month rate: we
may conclude that jumps in the central tendency are unlikely and our estimation of f acts
as a “filter” of the one-month rate, eliminating some of the outliers in that series.

Table 4, Panel B, calculates the correlations between f series extracted using different
maturity pairs using the CIR* model. We may recall that if the process for # were in fact
linear (that is, with m (@) and s(f) linear in equation (3)), all proxies estimated from any pair
of bond yields would be the same. The correlations for the levels are all very close to one,
showing that different maturity pairs lead to very similar d series. Still, the correlations for
the first differences of the  series are lower, which is consistent, for example, with departures
from linearity in the process for 6.

5 Diagnostics of the model

In this section we perform some tests of the appropriate specification of our model. First,
we test whether the spread 0 — r indeed helps predict changes in r, as implied by our model.
Second, we test whether the one-month rate helps predict future changes in the central-
tendency proxy, which should not be the case according to the assumed recursive structure
of the model. Third, we compare the forecast of changes in the one-month rate based on our
model to an unrestricted forecast.

In Table 5, Panel A, we estimate the model
et — 1= o + B0, + Bore + €TTOT 41, (16)

9



where 0 is obtained from the estimation of the CIR* model (see Table 3). This model
differs from the CIR* model in that we do not impose the restriction that f = —8, =
k/12. Moreover, we are not imposing a specific structure for the conditional volatility of the
innovation. The standard errors reported in the Table are adjusted for heteroskedasticity of
unknown form of the residuals. The evidence of Panel A is supportive of our analysis. The
parameters are precisely estimated for the entire sample and in the last subperiod. Also,
with the exclusion of the first subperiod, we cannot reject the restriction that 5y = —/,.
This is consistent with the prediction of our model that the spread between the estimated
central-tendency proxy and the one-month rate, f — r, has explanatory power for future
changes in the one-month rate.

The second test is reported in Table 5, Panel B, where we estimate the model
éz+1 — ét = fo + ﬂlét + Fary + erroryy . (17)

According to the assumed recursive structure of our model (see equation (2) and (3)), r
should not help predict future changes in 0. Panel B provides evidence that this assumption
is not always consistent with the data. While in the last two subperiods 3, is close to zero
and imprecisely esimated, which is consistent with our model, the estimate of 3, is positive
and precise for the entire period and for the first subperiod. The fit of the model (17), as
measured by the adjusted R?, is best for the third period, when, as shown in Table 4, ¢
displays the lowest serial correlation.

Table 6 presents one last diagnostic of our model: a comparison between the optimal
forecast of 1,4y — r; implied by the theoretically-motivated CIR* model, and an unrestricted
forecast. Based on our model, we have

B —ri = —(k/12)r + (k/12)6,
ao(k/12) + (=k/12)re + a1 (k/12) B2)ye(m1) + (—a1)(k/12) B(1)2y.(2)
= wo + w,r + wy(l)yt(l) + wy(l)yt(‘z)

These weights are compared to the estimated coefficients of the model

Pl — T = Po+ Bire + Ba yi(1) + F3 y1(2) + erroryyy. (18)

Panel A of Table 6 presents the estimates of w,, wy ), and wy(y). For the periods in which the
time-varying central tendency matters most, namely the entire period and the first and last
subperiod, the estimate of wy) is negative, while the estimate of w,(,) is positive, and larger
in absolute size. This is consistent with the notion that a measure of the slope of the yield
curve, y(2) — y(1), should anticipate changes in the one-month rate in the same direction.
Also, we calculate the sum of the three weights, and we find that it is quite close to zero for
the entire period, and for the second and third subperiod. This is not surprising, since we
are using a linear combination of three series, r, y(1), and y(2), which are highly persistent
(see Table 1), to explain the changes in the one-month rate, which instead exhibit almost
no serial correlation (see Table 1). Hence, the coefficients of the linear combination need to

10



sum up to zero. Also, if we believe that the three interest-rate series contain a unit root, this
would be evidence that they are cointegrated, where the weights w represent the coefficients
of the cointegrating vector. Panel B of Table 6 presents the estimates of the parameters of
the unrestricted model (18). While the estimates of the coefficients 31, 35, and f5 are quite
different from those of the weights w, the general message from the unrestricted model is
similar to that of the restricted one. First, the estimates of (3 are not significant, which
implies that the one-month rate and one longer-maturity yield are sufficient to model the
conditional expectation of r;1y —r;. Hence, this confirms that two factors (interest rates) are
sufficient to capture the dynamics of the short-term rate. Note, though, that the estimates
of 31 are larger (in absolute value) than the estimates of the weight w,. This is further
evidence that the short-term rate contributes to explain the time-varying central tendency
0, contrary to the assumed recursive structure of our model. Second, the estimates of 3
are negative, while the estimates of 3, are positive. This is again consistent with the notion
that a measure of the slope of the yield curve, this time y(1) — r;, should anticipate in the
same direction changes in the one-month rate. Third, the sum of the three 3 coefficients is
always close to zero, which is the same result that we obtained for the restricted model.

6 Conclusions

In one-factor models, such as Cox, Ingersoll, and Ross (1985) or Vasicek (1977), the condi-
tional mean of the instantaneous rate changes with its current level. This papers gathers
evidence that the conditional mean of the one-month rate is explained by bond yields of
different maturities, even after controlling for the effect of the current level of the one-month
rate. This suggests the presence of a second factor driving the conditional mean of the
one-month rate, other than the level of the one-month rate itself: we refer to this second
factor as the central tendency. The above idea is captured in a two-factor model of the term
structure, where the instantaneous rate fluctuates around a stochastic central tendency. We
then build a proxy for the central-tendency factor based on the information contained in
the term structure of interest rates. Based on this central-tendency proxy, we estimate a
model of the one-month rate which performs better than models which assume the central
tendency to be constant.
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Table 1. Summary statistics of selected U.S. interest rates: Levels

The data are monthly, annualized continuously-compounded yields on zero-coupon U.S. government fixed-
income instruments. Observations are monthly, June 1952 though December 1993; data on the one-month
Treasury-bill rate are from the Center for Research in Security Prices (CRSP) RISKFREE file, while the
discount-bond prices used to calculate continuously-compounded yields on longer-maturity instruments are
from the FAMABLIS file, also on the CRSP tape. MEAN is the sample mean, ST DEV the standard deviation,
and AUTO the first-order autocorrelation. SKEWNESS and KURTosIs denote the standardized measures of
third and fourth moments; both are zero for the normal distribution.

Jun 1952 ~ Dec 1993

Maturity MEAN ST DEV SKEWNESS Kurrosis AuTo
1 month 5.113 2.936 0.983 1.059 0.966
1l year 5.954 3.067 0.745 0.351 0.982
2 years 6.138 3.022 0.685 0.135 0.986
3 years 6.293 2.968 0.645 0.040 0.987
4 years 6.408 2.951 0.606 —0.051 0.988
D years 6.479 2.923 0.584 —0.160 0.989
Jun 1952 - Aug 1971
Maturity MEAN ST DEV SKEWNESS KurToOSIS Auto
I month 3.153 1.566 0.551 —0.298 0.967
1 year 3.788 1.675 0.446 —0.267 0.977
2 years 3.864 1.576 0.534 —0.056 0.976
3 years 3.997 1.531 0.566 —0.067 0.977
4 years 4.069 1.497 0.591 —0.006 0.976
D years 4.121 1.446 0.650 0.036 0.976
Sep 1971 — Sep 1979
Maturity MEAN ST DEV SKEWNESS KurToOsIs AuTo
1 month 6.110 1.836 0.489 -0.721 0.917
I year 6.909 1.588 0.462 —0.551 0.912
2 years 7.043 1.281 0.367 —0.462 0.917
3 years 7.118 1.084 0.268 —0.560 0.909
4 years 7.199 0.997 0.152 —0.632 0.906
5 years 7.257 0.928 0.087 —0.720 0.917
Oct 1979 — Sep 1982
Maturity MEAN ST DEV SKEWNESS KURrTOSIS Auto
I month 11.545 2.647 —0.419 —0.640 0.708
I year 12.671 1.909 —0.651 —0.045 0.686
2 years 12.593 1.716 —0.487 —-0.038 0.751
3 years 12.493 1.657 —0.419 —0.349 0.795
4 years 12.401 1.650 —0.301 —0.524 0.817
5 years 12.341 1.514 —0.391 -0.741 0.826
Oct 1982 — Dec 1993
Maturity MEAN ST DEV SKEWNESS KurToOSsIS AvuTo
1 month 6.043 2.058 —0.158 —0.886 0.919
1 year 7.190 2.168 —0.193 —0.549 0.969
2 years 7.664 2.153 0.015 —0.454 0.970
3 years 7.980 2.081 0.123 —-0.427 0.966
4 years 8.248 2.025 0.237 —-0.413 0.967
5 years 8.397 1.986 0.344 —0.360 0.967



Table 1. Suminary statistics of selected U.S. interest rates: First differences

Jul 1952 — Dec 1993

Maturity MEAN ST DEV SKEWNESS KURTOSIS AuTo
1 month 0.002 0.735 -0.863 10.072 -0.089
1 year 0.003 0.538 -1.083 13.411 0.116
2 years 0.004 0.462 -0.724 10.161 0.154
3 years 0.005 0.421 -0.177 7.562 0.109
4 years 0.006 0.405 -0.210 5.323 0.060
5 years 0.006 0.375 -0.330 5.031 0.071

Jul 1952 - Aug 1971

Maturity MEAN ST DEV SKEWNESS KuRrToOsIs AuTo
I month 0.011 0.378 -0.009 1.925 -0.200
1 year 0.014 0.319 -0.042 3.153 0.163
2 years 0.015 0.299 0.022 4.526 0.090
3 years 0.015 0.279 -0.304 4.620 0.033
4 years 0.016 0.268 -0.197 4.017 -0.003
5 years 0.017 0.253 -0.165 4.026 0.014

Sep 1971 - Sep 1979

Maturity MEAN St DEV SKEWNESS KURrTOSIS Auto
1 month 0.059 0.583 -1.614 8.372 -0.137
1 year 0.056 0.486 -0.572 1.670 -0.007
2 years 0.046 0.379 -0.068 0.288 0.016
3 years 0.040 0.338 0.087 0.594 -0.026
4 years 0.036 0.332 0.244 1.355 -0.075
5 years 0.032 0.282 0.023 0.692 -0.068

Oct 1979 — Sep 1982

Maturity MEAN St DEV SKEWNESS KurToOSIS AuTto
1 month -0.085 1.883 -0.535 0.592 0.036
1 year -0.012 1.482 -0.701 1.126 0.101
2 years 0.031 1.207 -0.676 1.034 0.163
3 years 0.045 1.050 -0.283 0.653 0.127
4 years 0.053 0.972 -0.404 0.122 0.054
5 years 0.064 0.866 -0.522 0.441 0.072
Nov 1982 — Dec 1993
Maturity MEAN ST DEV SKEWNESS KurTosis AuTto
I month -0.030 0.764 0.213 2.8h7 -0.245
1 year -0.048 0.393 0.103 0.418 0.134
2 years -0.050 0.388 0.130 0.019 0.209
3 years -0.049 0.386 0.306 -0.012 0.138
4 years -0.045 0.396 0.309 0.145 0.099
5 years -0.045 0.394 0.100 0.136 0.071
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Table 2. Long yields’ information on the future short-term rate

We estimate the following model
riy1 = Bo + B1ry + oy (7) + erroryy g, (1)

where y(7) is the yield on a discount bond of maturity 7 = 1, 2, 3, 4, and 5 years, and r is the one-month
interest rate. The model is estimated both in levels and in first differences

Arii1 = Bo + Bi1Ary + B2 Ay () + error,y . (1)

ADJ. R-5Q is the adjusted R? and DW is the Durbin-Watson statistic. Standard errors, adjusted for
heteroskedasticity (White (1980)), are in parenthesis.

Levels

Jul 1952 — Dec 1993

Maturity 5 B ADJ. R-5Q DW

1 year 0.624 0.338 0.944 1.849
(0.080) (0.075)

2 years 0.763 0.207 0.941 1.925
(0.065) (0.059)

3 years 0.823 0.152 0.940 1.980
(0.059) (0.052)

4 years 0.847 0.129 0.940 1.996
(0.054) (0.047)

5 years 0.865 0.111 0.939 2.019
(0.051) (0.044)

Jul 1952 — Aug 1971

Maturity B B ADJ. R-5Q DW

1 year 0.662 0.297 0.948 2.088
(0.073) (0.068)

2 years 0.733 0.245 0.946 2.156
(0.066) (0.066)

3 years 0.788 0.196 0.945 2.198
(0.054) (0.056)

4 years 0.830 0.156 0.944 2.225
(0.050) (0.054)

5 years 0.827 0.165 0.944 2.206
(0.051) (0.057)
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Sep 1971 — Sep 1979

Maturity J3) o) ADJ. R-5Q DW

1 year 0.721 0.317 0.904 2.080
(0.123) (0.143)

2 years 0.873 0.179 0.902 2.084
(0.094) (0.113)

3 years 0.904 0.161 0.902 2.101
(0.077) (0.109)

4 years 0.931 0.123 0.901 2.116
(0.072) (0.108)

5 years 0.949 0.093 0.900 2.128
(0.062) (0.098)

Oct 1979 — Sep 1982

Maturity Jo7! o)) ADJ. R-SQ DW

1 year 0.726 0.083 0.549 1.623
(0.226) (0.313)

2 years 0.771 0.015 0.548 1.657
(0.188) (0.280)

3 years 0.792 —0.028 0.548 1.681
(0.171) (0.255)

4 years 0.756 0.055 0.549 1.634
(0.167) (0.250)

H years 0.785 —0.017 0.548 1.674
(0.162) (0.273)

Oct 1982 — Dec 1993

Maturity 51 B ADJ. R-SQ DW

1 year 0.447 0.499 0.900 2.023
(0.110) (0.099)

2 years 0.554 0.400 0.893 2.067
(0.099) (0.090)

3 years 0.626 0.342 0.887 2.123
(0.089) (0.084)

4 years 0.684 0.291 0.882 2.154
(0.079) (0.077)

5 years 0.711 0.268 0.880 2.188
(0.075) (0.074)
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Table 2. Long yields’ information on the future short-term rate (ctd.)

First differences

Aug 1952 - Dec 1993

Maturity B B, ADJ. R-SQ DW

1 year —0.356 0.607 0.131 1.951
(0.081) (0.104)

2 years —0.301 0.645 0.124 1.952
(0.077) (0.113)

3 years —0.272 0.645 0.107 1.949
(0.083) (0.142)

4 years —0.237 0.641 0.107 1.962
(0.081) (0.139)

b years —0.223 0.616 0.085 1.945
(0.080) (0.142)

Aug 1952 — Aug 1971

Maturity o3} B ADJ. R-5Q DW

| year —0.401 0.479 0.156 2.153
(0.083) (0.096)

2 years —0.355 0.406 0.111 2.127
(0.087) (0.102)

3 years —0.345 0.417 0.107 2.135
(0.082) (0.098)

4 years —0.328 0.398 0.095 2.117
(0.084) (0.104)

5 years —0.317 0.438 0.105 2.112
(0.084) (0.115)

Sep 1971 — Sep 1979

Maturity 51 o) ADJ. R-5Q DW

1 year —0.348 0.359 0.036 2.006
(0.188) (0.155)

2 years —0.263 0.376 0.036 1.983
(0.192) (0.175)

3 years —0.270 0.497 0.056 1.980
(0.191) (0.213)

4 years —0.233 0.424 0.041 1.968
(0.189) (0.220)

5 years —0.249 0.553 0.050 1.975
(0.182) (0.232)
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Table 2. Long yields’ information on the future short-term rate (ctd.)

Oct 1979 — Sep 1982

Maturity B B2 ADJ. R-5Q DW

1 year —0.441 0.809 0.127 1.603
(0.212) (0.242)

2 years —0.373 0.930 0.137 1.567
(0.180) (0.250)

3 years —0.327 0.974 0.112 1.547
(0.212) (0.386)

4 years —0.258 1.006 0.134 1.567
(0.182) (0.362)

5 years —0.243 0.990 0.076 1.564
(0.179) (0.401)

Oct 1982 — Dec 1993

Maturity &) B2 ADJ. R-SQ DW

| year —0.315 0.557 0.125 2.098
(0.097) (0.197)

2 years —0.305 0.554 0.123 2.086
(0.095) (0.199)

3 years —0.295 0.472 0.102 2.082
(0.098) (0.211) :

4 years —0.283 0.458 0.103 2.082
(0.096) (0.201)

5 years —0.279 0.398 0.088 2.075
(0.100) (0.205)
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Table 3. Maximum likelthood estimation

We maximize the log-likelihood function

—.SZ [ln af“ + (reg1 — ft+1)2/‘7t2+1] ,

where R
7_'t+1 = (1 — (k'/lQ))rt + (k/12)9t
aipr = (05/12) + (a7 /12)r4,
and 0, is given by .
O = ao + a1[B(2)y: (1) — B(1)2y:(2)]

where

2(e’7 — 1)
B(r) = §=1/(M + k)2 4202,
(7) (M + 6 +k)(efm — 1)+ 26 (Au 4 k)? + 207

(13)

(14)
(15)

We use one- and two-year bond yields to construct the proxy in equation (11). We set the market price of
interest rate risk A; = 0. We report the value of the parameter estimates, the maximized log likelihood, and

standard errors (in parenthesis).

Jul 1952 - Dec 1993

Model k ag ax oy o1 log lik.

Vasicek 0.383 0.051 0.025 2202
(0.107) (0.013) (0.000)

CIR 0.296 0.051 0.102 2291
(0.096)  (0.011) (0.001)

Vasicek* 1.778 0.000 -2.068 0.024 2210
(0.228)  (0.007)  (0.216)  (0.000)

CIR* 2.122 —0.001 -2.269 0.099 2305
(0.246)  (0.002)  (0.159) (0.002)

Jul 1952 — Aug 1971

Model k dg a o oy log lik.

Vasicek 0.354 0.035 0.013 1169
(0.180) (0.008) (0.000)

CIR 0.489 0.034 0.082 1158
(0.211)  (0.008) (0.002)

Vasicek* 2.064 -0.004 -2.479 0.012 1173
(0.521)  (0.004)  (0.359)  (0.000)

CIR* 2.616 -0.003 -2.769 0.079 1166
(0.524) (0.002) (0.387) (0.002)
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Table 3. Maximum likelihood estimation (subperiods, contd.)

Sep 1971 — Sep 1979

Model k ag a oo o1 log lik.

Vasicek 0.370 0.079 0.019 452
(0.497) (0.024) (0.000)

CIR 0.238 0.089 0.075 461
(0.412) (0.057) (0.003)

Vasicek* 0.389 0.044 -1.642 0.019 452
(0.930) (0.084) (7.100) (0.000)

CIR* 0.243 0.095 0.369 0.075 461
(0.510) (0.072) (5.234) (0.004)

Oct 1979 — Sep 1982

Model k g ay oo o1 log lik.

Vasicek 2.790 0.112 0.061 127
(1.535) (0.013) (0.007)

CIR 2.463 0.112 0.180 128
(1.475) (0.014) (0.024)

Vasicek™* 2.381 0.160 1.130 0.060 127
(1.669) (0.159) (3.497) (0.007)

CIR* 1.924 0.189 1.670 0.180 128
(1.496) (0.181) (3.575) (0.024)

Oct 1982 — Dec 1993

Model k ag ay oo o1 log lik.

Vasicek 0.737 0.055 0.026 593
(0.410) (0.010) (0.001)

CIR 0.772 0.055 0.113 587
(0.458) (0.011) {0.004)

Vasicek* 3.986 -0.011 -3.580 0.023 604
(0.620) (0.008) (0.597) (0.001)

CIR* 4.467 -0.013 -4.108 0.102 602
(0.518) (0.008) (0.612) (0.004)
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Table 4. Summary statistics of the estimated central tendency 6

Panel A. In this panel, the proxy for the central tendency 0 is calculated as in equation (11) using the
one- and two-year bond yields and the estimates of the model parameters reported in Table 3. MEAN is
the sample mean, ST DEV the standard deviation, and AUTO the first-order autocorrelation. SKEWNESS
and KurTos1s denote the standardized measures of third and fourth moments; both are zero for the normal

distribution.

Levels
Sample Period MEAN St DEV SKEWNESS KuRTOSIS Auto
Jun 1952 — Nov 1993 5.092 2.522 0.634 —0.076 0.985
Jun 1952 - Jul 1971 3.178 1.359 0.700 0.362 0.957
Aug 1971 — Aug 1979 8.931 0.210 0.534 —0.128 0.832
Sep 1979 — Aug 1982 11.114 1.113 0.211 —0.522 0.780
Sep 1982 — Nov 1993 5.988 1.954 0.231 —0.394 0.961

First differences

Sample Period MEAN ST DEV SKEWNESS KuRrrosis Auto
Jul 1952 — Nov 1993 0.000 0.003 —0.150 2.963 0.013
Jul 1952 - Jul 1971 0.000 0.003 0.180 4.029 —0.178
Sep 1971 — Aug 1979 0.000 0.001 —1.119 7.045 —0.298
Oct 1979 - Aug 1982 -0.000 0.006 0.543 0.049 0.121
Oct 1982 — Nov 1993 -0.000 0.003 0.135 0.255 0.215

Panel B. Correlation of § extracted using the maturity pairs 1-2 years, 1-3 years, 1-4 years, and 1-5 years.

Levels, June 1952 — November 1993

01 5 1,3 01,4 01,5
1o  1.000
615  0.995  1.000
§ra 0992 0997  1.000
0rs 0990 0996 0998  1.000

First differences, July 1952 — November 1993

él,Z él,S 01,4 01,5
0,5  1.000
013 0.834  1.000
0y4  0.804  0.888  1.000
65 0792 0872 0.903  1.000
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Table 5.

Panel A. Does (0 — r) explain dr?

We estimate the following model
rep1 — 1o = Bo + By + Bare + erroreyy; (16)

the proxy for the central tendency 0 is calculated as in equation (11) using the one- and two-year bond
yields and the estimates of the model parameters reported in Table 3. ADJ. R-SQ is the adjusted R? and
DW is the Durbin-Watson statistic. Standard errors, adjusted for heteroskedasticity (White (1980)), are
in parenthesis. In the last column, x?(1) is the Wald test of the restriction that §; = —fs; the statistic is
distributed chi-square with one degree of freedom, with p-value indicated in parenthesis below.

Sample Period By B ADJ. R-5Q DW x2(1)
Jul 1952 — Dec 1993 0.128 -0.133 0.044 2.012 0.053
(0.049) (0.049) (0.816)
Jul 1952 — Aug 1971 0.152 0.000 0.047 2.256 4.505
(0.056) (0.021) (0.033)
Sep 1971 — Sep 1979 -0.120 -0.022 -0.010 2.206 0.099
(0.454) (0.030) (0.752)
Oct 1979 — Sep 1982 0.121 -0.201 0.047 1.733 0.032
(0.319) (0.155) (0.856)
Oct 1982 — Dec 1993 0.314 -0.325 0.162 2.151 0.172
(0.079) (0.079) (0.677)

Panel B. Do § and r explain d§7

We estimate the following model
Oi41 — 0, = Bo + B10; + Bare + erroriyi; (16)

the proxy for the central tendency § is calculated as in equation (1) using the one- and two-year bond
yields and the estimates of the model parameters reported in Table 3. ADJ. R-SQ is the adjusted R? and
DW is the Durbin-Watson statistic. Standard errors, adjusted for heteroskedasticity (White (1980)), are in
parenthesis.

Sample Period 51 B2 ADJ. R-5Q DW

Jul 1952 — Nov 1993 —0.072 0.055 0.031 1.942
(0.021) (0.020)

Jul 1952 — Jul 1971 —0.158 0.119 0.044 2.204
(0.044) (0.040)

Sep 1971 — Aug 1979 —0.054 0.003 0.020 2.551
(0.033) (0.008)

Oct 1979 - Aug 1982 —0.259 —0.042 0.126 1.475
(0.087) (0.046)

Oct 1982 — Nov 1993 —0.036 0.017 —0.000 1.550
(0.037) (0.035)
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Table 6. Restricted and unrestricted forecasts of short-term rate changes

According to equations (14) and (11), the optimal forecast of short-term rate changes is a linear combi-

nation of the short-term rate and two longer-maturity bond yields

Eﬂ“t+1 - Tt

—(k/12)re + (k/12)0,

= ao(k/12)+ (—k/12) i + a1 (k/12) B(m2)T1 ye(T1) + (—a1)(k/12) B(11)2 y:(72)
—m—ert N —_———

Wo

Wy

Wy(1)

= wo+ Wrrr+ wy(l)yt(Tl) + wy(z)yt(ﬁ)

Wy(2)

where w, denotes the estimate of the weight (loading) on the explanatory variable z. Each weight is a
function of the estimated parameters and thus an estimate itself. Hence, we compute standard errors on wg
using a first-order Taylor series expansion around the ML estimates, and the estimated variance-covariance
'matrix of the ML estimates of the parameters of the model. We contrast the estimates of the weights w with

the estimates of the regression parameters of the unrestricted model

rip1 — e = Bo+ Bire + ﬂzyt(ﬁ) + Bay:(m1) + errorsyq.

Standard errors for this regression, in parenthesis, are adjusted for heteroskedasticity (White (1980)).

Sample Period wy Wy (1) Wy(2) Sw
Jul 1952 — Dec 1993 —0.176 —0.186 0.332 —0.030
(0.020) (0.056) (0.027) (0.033)
Jul 1952 — Aug 1971 —0.218 —1.052 1.961 0.691
(0.046) (0.146) (0.078) (0.077)
Sep 1971 - Sep 1979 —0.020 0.583 —0.655 —0.092
(0.042) (0.157) (0.186) (0.032)
Oct 1979 — Sep 1982 —0.160 0.844 —1.476 —0.092
(0.124) (0.155) (0.623) (0.468)
Oct 1982 — Dec 1993 -0.372 -0.919 1.817 0.526
(0.043) (0.188) (0.154) (0.063)
Sample Period B By B3 > B
Jul 1952 — Dec 1993 -0.436 0.673 —0.283 —0.046
(0.079) (0.160) (0.125) (0.018)
Jul 1952 — Aug 1971 —0.337 0.361 —0.068 —0.044
(0.072) (0.152) (0.146) (0.020)
Sep 1971 — Sep 1979 —-0.318 0.469 —0.161 —0.009
(0.168) (0.486) (0.379) (0.045)
Oct 1979 — Sep 1982 —0.371 0.748 —0.639 —0.261
(0.241) (0.897) (0.771) (0.144)
Oct 1982 — Dec 1993 —0.568 0.797 —0.288 —0.060
(0.108) (0.256) (0.215) (0.026)

J



