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Abstract

In this paper, we derive an equilibrium in which some investors buy call/put options
on the market portfolio while others sell them. Also, some investors supply and others
demand forward contracts. Since investors are assumed to have similar risk-averse
preferences, the demand for these contracts is not explained by differences in the shape
of utility functions. Rather, it is the degree to which agents face other, non-hedgeable,
background risks that determines their risk-taking behavior in the model. We show
that investors with low or no background risk have a concave sharing rule, i.e., they
sell options on the market portfolio, whereas investors with high background risk have
a convex sharing rule and buy these options. A general increase in background risk in
the economy reduces the forward price of the market portfolio. Furthermore, the prices
of put options rise and the prices of call options fall. Investors without background risk
then react by choosing a sharing rule with higher slope and concavity.






1 INTRODUCTION

The spectacular growth in the use of derivatives to manage risks has been one of the
most significant recent developments in the financial markets. In particular, the use of
options to hedge against changes in foreign exchange rates, interest rates, equity market
prices and commodity prices, is now widespread. In addition, there is increasing interest
in real options, such as the option to exploit natural resources, and their role in the theory
of investment. Further, many insurance contracts can be thought of as put options. In
contrast to the widespread use and importance of options as well as the vast academic and
practitioner literature on option pricing, research on explaining the motivation for the use
of options is quite sparse. Some explanations have been provided including, for example,
the existence of differential transactions costs, heterogeneous expectations and differences in
preferences across market participants. However, there has been very little detailed analysis
of the reasons why option-like instruments are employed by diverse market participants.

In this paper, we provide a new explanation for option supply and demand: the existence
of non-hedgeable background risks. The explanation which we provide is that agents face
non-hedgeable, independent, background risks. These risks which could, for example, be
associated with labor income or holdings of non-marketable assets, are assumed to be
non-insurable. Our model assumes, therefore, that markets are incomplete. Agents faced
with such background risks respond by demanding insurance in the form of options on the
marketable risks.

Furthermore, our model may be able to explain otherwise puzzling behavior. For ex-
ample, a familiar case is the use of options by corporations that hedge foreign-exchange
exposure. A corporation that plans to sell a foreign currency at a future date will often
buy a put option on the currency from a counter-party such as a bank. The three stan-
dard explanations - heterogeneous expectations, differences in preferences, and transactions
costs - for such a transaction are less than plausible, on closer examination. It is difficult
to believe that the expectations of industrial corporations consistently differ from those of
banks regarding future foreign exchange rates. Also, there is no reason to believe that the
shareholders of banking firms have fundamentally different utility functions from those of
individual corporations. Further, large organizations, whether they are banks or industrial
corporations, are likely to face rather similar transactions costs.

Our alternative explanation relates more to the risk profiles of the two parties. The
industrial corporation is likely to face many non-hedgeable risks, such as the risks in the
product market. In contrast, the banking firm is exposed mainly to hedgeable market
value risks such as those associated with foreign exchange rates and interest rates, or those
that can be diversified away to a large extent. In the language of this paper, the industrial
corporation faces significant non-hedgeable background risk, whereas the banking firm does

not. In our model, we show that the banking firm will tend to sell options and the industrial



corporation will tend to buy options.

We assume an economy where agents inherit a portfolio of state-contingent claims on
the market portfolio. There is a perfect and complete market for state-contingent claims
on this portfolio. All agents in the economy have hyperbolic absolute risk aversion [HARA]
utility for wealth at the end of a single time-period. This assumption allows us to compare
optimal sharing rules in the presence of background risk with the linear sharing rules that
exist in an economy with HARA utility and no background risks. The sharing rule tends
to be convex for those agents who face high background risk and concave for those who do
not. Thus, the non-linearity in our model is attributable to differential background risks.
A convex or concave sharing rule can be obtained by buying or selling options, whereas a
linear sharing rule involves only the use of spot or forward contracts.

The effect of an independent background risk with a non-positive mean is then analyzed
within a comparative statics framework. An increase in the size of the background risk
effectively makes an individual agent more averse to market risks. Given the prices of
state-contingent claims, the agent’s reaction is to demand more claims on states in which
the outcome of the market portfolio is low, financing these purchases with sales of claims
on states in which the outcome is high. If many agents react similarly in the face of an
increase of their background risk, prices of state-contingent claims will change. Equilibrium
prices of put options on the market portfolio rise and those of call options fall. Also the
forward price of the market portfolio falls.

Next, we analyze the effect of an increase in aggregate background risk on the optimal
sharing rules of agents. We show that an agent who happens to face no background risk
reacts to the increase in aggregate background risk by choosing a sharing rule with a higher
slope and concavity, i.e., by buying fewer claims in the low states and more claims in the
high states. In other words, this agent "takes the other side” in response to the increased
demand for insurance from agents with background risk.

The organization of the paper is as follows: In section 2, we review the relevant literature
on the impact of background risk. In section 3, we assume that a perfect, complete (forward)
market exists for state contingent claims on the market portfolio. We define the agent’s
utility maximization problem in the presence of background risk and illustrate the properties
of the precautionary premium given the assumption of HARA preferences. In section 4, we
show that, in this economy, the presence of background risk modifies the well-known linear
sharing rule.! In equilibrium, every agent holds the risk-free asset, the market portfolio and
a portfolio of state-contingent claims akin to options on the market portfolio. Agents with
high background risk buy these options, whereas those with low background risk sell them.
In section 5, we consider the effect of an increase in background risk on the pricing of claims
on the market portfolio. We show that an increase in background risk increases the risk

aversion of the pricing kernel, reducing the forward price of the market portfolio, increasing

!See Cass and Stiglitz (1970) and Rubinstein (1974).



the forward price of put options on the market portfolio, and decreasing the forward price
of call options. We also show that an increase in background risk causes the forward prices
all all options to increase more than does an increase in risk aversion, holding the forward
price of the market portfolio constant. In section 6, we analyze the optimal sharing rules of
agents in response to an increase in aggregate background risk. In section 7, we conclude

with a discussion of these results and their empirical implications.

2 THE PREVIOUS WORK ON BACKGROUND RISK

It has been increasingly recognized in the literature that an agent’s behavior towards a
marketable risk can be affected by the presence of a second, independent, background risk.
Nachman (1982), Kihlstrom et. al. (1981) and Ross (1981) discuss the extent to which
the original conclusions of Pratt (1964) have to be modified when a background risk is
considered. Recent work by Kimball (1993) shows that if agents are standard risk averse,
i.e., they have positive and declining coefficients of risk aversion and prudence, then the
derived risk aversion [Nachman (198\2)] of the agent will increase with background risk.?
Further work by Gollier and Pratt (1993), extending results of Pratt and Zeckhauser (1987),
shows the effect of the introduction of background risk on weak proper risk aversion, a less
stringent condition than standard risk aversion. In this paper, we concentrate on the
HARA-class of utility functions, which is a special case of standard risk aversion. This
restriction allows us to derive specific results regarding the demand for risky claims by
agents in the economy.

In deriving the optimal sharing rules in the presence of non-hedgeable risk, we draw
also on the work of Kimball (1990). In particular, we use his concept of the precautionary
premium. Further, in the special case of the HARA-class of functions considered in this
paper, specific statements can be made about the precautionary premium. This allows us,
in turn, to specify the optimal sharing rule and identify the role of hedging with forward
contracts and options.?

In a recent paper Weil (1992) considers the effect of background risk on the equity
premium. He shows that standard risk aversion implies an increase in the equity premium.
In this paper, we derive related results for option prices. The above work on background
risk has also been applied to the analysis of optimal insurance. Papers by Doherty and
Schlesinger (1983a, 1983b) and Eeckhoudt and Kimball (1992) regarding the optimal de-
ductible and the coinsurance rate show that agents expand the coverage of risks in the

presence of background risk. Since insurance contracts can be modeled in terms of options,

2The coefficient of risk aversion is defined as the negative of the ratio of the second to the first derivative
of the utility function. The coefficient of prudence is defined as the negative of the ratio of the third to the
second derivative of the utility function.

37t should be noted that Briys, Crouhy and Schlesinger (1993) and Briys and Schlesinger (1990) have

also previously employed the precautionary premium in the context of hedging.



our results for the demand for options can also be interpreted in terms of the demand for
insurance. Finally, there is the related, but distinct work of Leland (1980) and Brennan
and Solanki (1981) in portfolio insurance.* These papers investigate differences across the
utility functions of agents such that they buy or sell options on the market portfolio. They
show that agents will demand portfolio insurance if their risk tolerance relative to that of
the representative agent increases with the return on the market portfolio. Our analysis
is linked to this previous work in the sense that background risk provides a rationale for
utility functions to exhibit the properties found to be necessary by Leland. In our economy
differences in the risk-taking behavior of agents arise even though the agents have similar

utility functions.

3 BACKGROUND RISK, THE DEMAND FOR RISKY
ASSETS, AND THE PRECAUTIONARY PREMIUM

We assume a two-date economy where the dates are indexed 0 and 1. There are I agents,
i=1,2,...,1,in the economy. At time 1, X is the risky payoff on the market portfolio. We
assume a complete market for claims on the market portfolio so that each agent can buy
state-contingent claims on X.® In particular, as in Leland (1980), the agent chooses a payoff
function, i.e. a sharing rule, which we denote as g;(X). This function relates the agent’s
payoff from holding state-contingent claims on the market portfolio to the aggregate payofl,
X.

In addition to the investment in the marketable state-contingent claims, the agent also
faces a non-insurable background risk. This risk has a non-positive mean and is independent
of the market portfolio payoff, X. We denote this background risk as a time 1 measurable
random variable, o;¢;, where ¢; is a random variable with non-positive mean and unit
variance. o; is a constant measuring the size of the background risk. The agent’s total
income at time 1 is, therefore,

¥ = gi(X) + oiei (1)

The background risk is unavoidable and cannot be traded. The agent can only take this
risk into account in designing an optimal portfolio of claims on X. Hence, we investigate

the effect of the background risk, o;¢;, on the optimal sharing rule g;(X).

*Gennotte and Leland (1990) and Brennan and Schwartz (1989) investigate a related issue: the effect
of portfolio insurance on the stock market during the crash of 1987. However, their emphasis is on market
liquidity and the effect of hedging in an equilibrium with option-based strategies.

5We are concerned, in this paper, with the effect of non-marketable background risk on agents’ portfolio

behavior. Standard results from portfolio theory would apply to the choice between various marketable

assets, and hence, this simplification does not affect the results here.



The agent solves the following maximization problem:

ﬁ%E[Vi[gi(X) + 0:€i]] (2)

st B [[g(X) - g2(X)](X)/(141)] =0
where ;(-) is the utility function of the agent ¢. In the budget constraint, g2(X) is the
agent i’s endowment of claims on the market portfolio payoff X, and ¢(X) is the market
pricing kernel, which is initially given exogenously and 7 is the riskless interest rate, also

given exogenously.® The first order condition for a maximum in (2) is
E[v{(g/(X) + oien)| X] = (X)), VX (3)

where A; is the Lagrangian multiplier of the budget constraint.

In order to analyze the impact of background risk on the agent’s optimal demand for
claims on the market payof, it is useful to introduce Kimball’s concept of the precautionary
premium. Kimball (1990) defines a precautionary premium, 1;, analogous to the Arrow-
Pratt risk premium, except that it applies to the marginal utility function rather than the

utility function itself. For y; = z; + 0;€;, he obtains
Elv{(zi + o] = vi(zi — i) (4)

where ¢; = ;(x;,0;). The precautionary premium is a function of the market payoff of
the agent and the scale of the background risk. It is the amount of the deduction from z,
which makes the marginal utility equal to the conditional expected marginal utility of the
agent in the presence of the background risk.” Substituting (4) in the first order condition
(3) yields, for z; = g;(X),

vi(zi — Yi(zi,00)) = Mig(X), VX. (5)

We assume that the utility function »;(-) is of the hyperbolic absolute risk aversion (HARA)
form X s .
— Vi ity "

vi(y) = — [—] 6

where v; and A; are constants and satisfy the condition that A;4y; > 0, so that the agent’s
marginal utility is finite. This would, in turn, imply restrictions on o;¢; and g;(X ), which

are assumed to be satisfied.® Further, we restrict our analysis to cases where —oc <7y < 1,

®In later sections, we will characterize the pricing kernel within an equilibrium and derive comparative
statics results relating to it. In a complete market, ¢(X)/(1 + r) is the price of a claim that pays $1 in
state X, divided by the probability of occurrence of the state. ¢(X)is the forward price of the claim, which
implies that F[¢(X)] = 1.

"The precautionary premium can also be related to the Arrow-Pratt risk premium.

8Most commonly-used utility functions such as the quadratic, constant absolute risk aversion and constant

proportional risk aversion cases can be obtained as special cases of the HARA family, by choosing particular
values of v; and A;. In the case of constant absolute risk aversion, v; = —oo and vi(y:) = — exp(Aiy:).

With 4; = 0, we obtain the generalized logarithmic utility function, v;(y:) = In(A: + ¥:).



i.e. those exhibiting constant or decreasing absolute risk aversion. We choose the HARA-
class since it is the only class which implies linear sharing rules for all agents, in the absence
of background risk.?
From equations (5) and (6) it follows that
Ai + gi(X) — i(ai,00) ]

vi(@; — Pi(2i,00)) = = = N(X) (7)

Equation (7) reveals that, given the shape of the market pricing function, ¢(X), the sharing
rule g;(X) depends directly on the precautionary premium ;(x;,0;). We, therefore, begin
by analyzing the effect of the z; and o; on the precautionary premium.

For fairly general utility functions, a number of properties of the precautionary premium,
;, have been established in the literature. Most of these follow from the analogy between
the risk premium, 7;, defined on the utility function, and the precautionary premium, 4;,
defined on the marginal utility function. From the analysis of Pratt-Arrow, 7; is positive
and decreasing in z;, if the coefficient of absolute risk aversion, a;(y;) = —v/(y:)/vi(y:) is
positive and decreasing in y;. Similarly, ¢; is positive and decreases with z;, if the coefficient
of the absolute prudence, defined as 9;(y;) = —v"(y:)/v!'(y;) is positive and decreases with
y; (see Kimball, 1990). The correspondence can be taken further. For small risks with a
zero-mean, the risk premium [precautionary premium] is equal to one-half the product of
the coefficient of absolute risk aversion [absolute prudence] and the variance of the payoff
on the small risk. For larger risks, higher absolute risk aversion [prudence] implies a higher
risk premium [precautionary premium].

Since, for the HARA-class of utility functions, the coefficient of absolute prudence is
strictly proportional to the coefficient of absolute risk aversion, 4; < 1 implies also positive
decreasing absolute prudence and hence, standard risk aversion as defined in Kimball (1993).

We now establish the following results regarding the shape of the ¥;(z;, 0;) function:

Lemma 1: In the presence of background risk, if v;(y;) is of the HARA family with —oo <
i < 1;

¢i > 07
o0;

Oz; < 0
%

Ox? > 0,

k3

For v; = —oo (ezponential utility), ¥; > 0 and 0v;/dz; = 0.

Proof: See Appendix A. O

?See Cass and Stiglitz (1970) and Rubinstein (1974)



The significance of Lemma 1 is that it implies that, given a level of background risk,
its effect, measured by the precautionary premium, declines and at a decreasing rate in
the income from the marketable assets. In other words, the precautionary premium is a
positive, decreasing, convex function of the marketable income. The first two statements
are implied by positive, decreasing absolute prudence. The exception is the case of the
exponential utility function for which the precautionary premium is independent of the
marketable income.'® We are interested also in the effect of the scale of the non-hedgeable

background risk, which is indexed by o;. Hence, we now establish

Lemma 2: In the presence of background risk, if v;(y;) is of the HARA family with oo <
i < 1,

.
0%9;
(?O'iaxi < 0,
P
do;02? > 0

For y; = —oo (ezponential utility), 0v;/00; > 0, but independent of x;.
Proof: See Appendix A. O

In other words, the increase in the precautionary premium due to an increase in back-
ground risk is smaller, the higher the income z; moreover, the convexity of the premium
increases as the background risk increases. The first statement in Lemma 2 is implied by
positive prudence. The significance of Lemma 2 is that it allows us to compare the effect of
background risk on the optimal sharing rules of different agents. Other things being equal,
an agent with a higher background risk (larger o;) will have a more convex precautionary
premium function than one with a lower background risk (o; small). Under certain condi-
tions, as we shall see in the next section, this translates into a convex optimal sharing rule

in terms of aggregate marketable income.

4 OPTIMAL SHARING RULES

We can now derive the optimal portfolio behavior of agents with different levels of back-
ground risk. Then, we can obtain the equilibrium prices of state-contingent claims, which
can be studied relative to each other and relative to an economy without background risk.

We assume a complete market for state-contingent claims on the market portfolio payoff,

1The statements of Lemma 1 regarding —g% and % hold also for a positive mean of the background

i

risk, since the mean has the same effect as adding a constant to z;.



X. However, agents cannot sell their background risk in the market. Individual agents
i €11,2,...,1], choose optimal sharing rules, g;(X), for claims on X. Agents have HARA
class utility functions with v; < 1 and homogeneous expectations regarding the market port-
folio payoff. In equilibrium, we require that ¢;(X) sums to X over the individual agents.
Agents face different levels of background risks, indexed by o;, which affect their demands
for shares of the market portfolio payoff.!!

Solving for ¢;(X) from equation (7), aggregating over all agents in the economy and

imposing the equilibrium market clearing condition }_; g:(X) = X, we have
1
X=3 [¢i(gi(X),0i) + (X)) (1 =) — Ay, VX (8)

In principle, (8) can be solved to endogenously determine the market pricing kernel,
#(X), and then, by substituting back in the individual demand condition, (7), to determine
the equilibrium optimal sharing rule, g;(X ), for agent i. However, in general, the resulting
expressions for ¢(X) and g¢;(X) are complex functions of the parameters v;, 4;, and the
variables, A;, ¥; for all the agents in the economy.

However, further insight into the portfolio behavior of agents can be gained by assuming
that all the agents have the same risk aversion coefficient, v, but face different levels of
background risk, o;. This allows us to isolate the effect of the background risk in the
portfolio behavior of the agent.!? If all the agents have the same 7, we can derive a simpler

equation for ¢g;(X). In this case, we have:

Theorem 1: Assume that agents in the economy have homogeneous expectations and have
HARA utiity functions with the same . Then, assuming that they face different levels of

background risk, indexed by o;, the optimal sharing rule of agent i is

9i(X) = A7 + ai X + i[9 (gi( X)) — (X)) (9)

where

a) AY = a; A — A; s the agent’s risk free income at time 1, where A = Zf A; and

1
AT !

Qi = —7 .
Zh:l Ah v-1 =1

b) a; X is the agent’s linear share of the market portfolio payoff,

c) o[} (gi( X)) — ¥(X)] is the agent’s payoff from contingent claims, where

11 As a special case of the model, where o; = 0 for all i, we have the case explored by Leland (1980).
2Teland (1980) focuses on the other case, where there is no background risk, but agents differ in terms
of their risk aversion coeflicients. Ie shows that the sharing rule of agent i is convex if and only if v; is less

than the v of the representative agent, assuming HARA preferences.



Yr = ¥i(9:(X):0i) (nd

2 o

I
P(X)= Y Pi(gi( X))
1=1

Proof: Solving (8) for ¢(X) in the special case where v; = 7,Vi, and substituting in (7)
yields (9). O

Theorem 1 does not provide an explicit solution for g;(X), the sharing rule, since
¥7(g:(X)) and ¥(X) themselves depend on the sharing rule. However, it permits us to
separate the demand of the agent for claims on X into three elements. The first two pro-
vide a linear share of the market portfolio payoff. If there were no background risk for all
agents in the economy, the third element would be zero and the individual agent would
have a linear sharing rule (as in Rubinstein (1974)). Note that the linear share represented
by the first two elements can be achieved by arranging forward contracts on the market
portfolio, or, equivalently, by aggregate borrowing/lending and investment in shares in the
market portfolio. The non-linear element is provided by the third term in equation (9).
This is non-linear because we know that the precautionary premium ; is a convex function
of g;:(X) (Lemma 1). However, in equilibrium, it is the relative convexity of ¥} = v;/a;
compared to the aggregate 9 of all agents in the market that determines the convexity (or
concavity) of the sharing rule. Since the third element in the sharing rule is non-linear, it
must be achieved by the agent buying or selling option-like contingent claims on the market
portfolio. However, whether an individual agent buys or sells such claims depends upon
¥* = 9;/a; compared to the aggregate .12

In order to evaluate the sharing rule for a particular agent and to ask whether that

130ne might conjecture that under appropriate conditions there exists an agent with a linear sharing rule.
This is very doubtful, however. The following example shows a situation in which such an agent cannot
exist. Suppose there exist three agents. Agent 1 has no background risk. The other two agents have small
background risks so that
Yi(zi,0:0) = 1/27],-(1,-)0?; 1= 2,3.

Now suppose that agent 2 has a linear sharing rule. Then

P2(22,02) = az(Pa2(z2,02) + ¥a(23, 03))

follows from his sharing rule, or
¥2(2,02)(1 — o2) = ¥a(z3, 93)).
For small risks it follows
12(22)05 (1 — 02) = na(3)a3.
In the HARA-case, this yields
o5(l—a) o}
Az + x2 As + x3
so that z3 is linear in z2. Hence linearity of z2 = g2(X) implies linearity of £3 = g3(X). But then agent

1 must also have a linear sharing rule in equilibrinm which contradicts corollary 1.1. Therefore, in this

example, a representative agent, i.e. an agent with a linear sharing rule, cannot exist.

10



agent is, for example, a buyer or seller of options, we need to investigate the convexity of
1
the pricing function ¢(X). For that purpose, we investigate the shape of #(X)7-T , as a

function of X.!* Differentiating equation (7) and aggregating over the agents in the market,

aox)= ] L 9 17
] gl

we find

From this equation, it follows that d¢(X)/0X < 0. This result confirms our intuition that
contingent claims on states where X is low are relatively expensive. This conclusion is
confirmed in the presence of the non-hedgeable risks. From equation (8) and %ixél <0,
it follows that @dAXﬁl > 0. Therefore, differentiating (10) with respect to X and applying
9%*;/0g:(X)? > 0 (Lemma 1) we find that ¢(X)91-—1 is a strictly concave function. Now,
from the aggregate equation (8), it follows immediately that (X ) = >=; ¢:(X) is strictly
convex.

Background risk changes ¢(X)1/(*=1) from a linear function of X to a concave function.
Therefore, an agent without background risk reacts to this concavity by selling claims in
states where X is low or X is high and by buying claims in the other states. This implies

a concave sharing rule:

Corollary 1.1: Suppose that there is an agent who has no background risk in an economy

where other agents face background risk. The sharing rule of this agent is strictly concave.

Proof: Since the agent has no background risk, this follows by placing ¥ = 0 in equation
(9). Since ¥(X) is convex, as has been shown above, —a;9(X) is concave and the optimal

sharing rule for this agent is concave. O

In order to obtain a concave sharing rule, the agent has to sell call and put options at
different strike prices. Strictly speaking, options with infinitely many strike prices would be
required to exactly construct the desired sharing rule. The essential point is that although
the agent may also take positions in linear claims such as forward contracts, options are
also required to produce the desired sharing rule.

This is also true of agents with positive background risk who would have a non-linear
demand for claims on the market portfolio. This non-linear element is the difference between
two convex functions, ¥}(X) and ¥(X). It is difficult to be precise, therefore, about an
agent’s sharing rule except to say that it will tend to be convex if his precautionary premium
(caused by relatively high o;) is more convex than that of the average agent in the market.
Those agents with relatively high o; will tend to buy claims with convex payoffs and those

with relatively low o; will tend to sell those claims. This is parallel to Leland’s result that

14¢(X)ﬁ is a linear function of X — v, the aggregate wealth reduced by the aggregate precautionary

premium. As 9 is non-linear in X, ¢(X)7-T is not linear in X, given the background risk.

11



those agents with relatively low ; will tend to buy convex claims. Hence, those agents will
have to buy put and/or call options. Therefore, background risk can explain why some
agents buy and others sell portfolio insurance.

Next, we can relate our result in Theorem 1 directly to the literature on sharing rules
where a two-fund separation is established. Two-fund separation refers to the agent buying
a portfolio of riskless securities and a share of a portfolio of risky assets.!> Theorem 1
indicates that the existence of background risk destroys the two-fund separation property.
It is not possible to generalize the result to three-fund separation since the third “fund”
varies across agents. To see this note that agents’ holdings in the third “fund” net out to
zero and hence have the nature of “side-bets”. These side bets are similar, however, for
those agents with “similar” v;(¢;(X), ;). In the following corollary, we define “similar” in

a precise manner and obtain a three-fund separation result.

Corollary 1.2: Consider a class of agents I, defined by the set {i € I : ¥:((g:(X),0:)) =
qi3(X) for ¢; > 0 } where (X ) is the precautionary premium for the class. A three-fund

separation theorem holds in equilibrium for this class of agents.
Proof: Using Theorem 1 for this case, the optimal sharing rule is
gi(X) = A7 + ail X — (X)) + gvop(X),i € L. 0

The agent buys a risk-free asset, a share a; of the market portfolio adjusted for the
aggregate precautionary premium, and thirdly, a share g; of a fund with a non-linear payoff,
¥3(X). Note, however, that the condition ;(g;(X),0:) = ¢:;(X ) is rather strong. It holds
if A;+9i(X)=qi(A;+9;(X))and o; = g;0;, which implies strict proportionality between
g; and a;.

It should be noted that all the results of this section are also valid if some agents have
background risk with a positive mean. This follows since the size of the background risk
is constant and the mean is a constant added to z;. Thus, the demand and supply of
options due to background risk does not depend on the mean of the background risk. In
the following sections we have to assume, however, that the means of background risk are

non-positive.

5 THE EFFECT OF A CHANGE IN AGGREGATE BACK-
GROUND RISK ON THE PRICING OF CLAIMS

In this section, we consider the effect of a general increase in the background risk of individ-

ual agents in the economy. Using certain simplifying assumptions, we show the effect, first

15Gee, for example, Cass and Stiglitz (1970) and Rubinstein (1974).
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on the pricing kernel and then on the forward price of the market portfolio and the forward
price of options on the market portfolio. As we have seen above, aggregation is difficult
to obtain over agents with different HARA utility functions. To clarify the argument, we
again make the assumption that the risk aversion parameter, v, is the same for all agents.

In this case, equation (8) can be written in the form

P(X,0)+ ML= P[S(X )7 - A= X, VX (11)
where
1
¢(X70') = Z¢i(gi(X)’0i)
I

and o represents the level of the aggregate background risk.!® The pricing kernel is, there-

fore,

1A+ X —9(X,0)]"!
3 — ] (12)

In order to characterize the effects of an increase in background risk on equilibrium

40 = |

prices, it is necessary to make assumptions regarding aggregation. In particular, the ag-
gregate shadow price of the budget constraint, and the aggregate precautionary premium,
need to be characterized in a manner similar to the behavior of these variables at the level
of the individual agent. Hence, we now assume that the results of Lemma 2 with respect
to changes in the background risk hold in aggregate, i.e. 9% /dc > 0, 6% /dcdX < 0,
33 /0X%0c > 0. These mild assumptions regarding the aggregation properties are re-
quired to exclude possible complex feedback effects of prices on the composition of agents’
portfolios.

These assumptions assure that the aggregate precautionary premium behaves in a man-
ner similar to that of individual agents. We can now establish the following properties of
#(X), defining ¢ (X ) and ¢2(X ) respectively as the pricing kernels with low and high levels
of background risk:

Lemma 3: Given that the economy satisfies the aggregation property, the pricing kernel
&(X) has the property
R
0X 0o

18Note that o is defined implicitly by the aggregate property. It is the background risk that yields the

<0 (13)

aggregate precautionary premium given the aggregate marginal utility function in (11).
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-1

Proof: The proof is in two steps. First, consider (A—*i):%_—w)v = f(X,o0). Then we have
0?f/0X 00 <0 as

_o, OY oy _ 0%

_ =2 0¥, OV 1 OV

0X 0o = Ix 80)( 8X) Ix 0X 0o

where

b -Dr-2)

-1 _ Y- -2
fX_ fa fX_(A-FX—’l,b)?

S

Next, from the above results and ¢(X) = f(X,0))/E(f(X,0)), it follows that ¢;(X) and
$2(X) intersect once and ¢o(X ) has the steeper slope, i.e. 0?2¢(X)/90dX < 0. O

The effect of o on the pricing kernel in Lemma 3 is illustrated in Figure 1, where the
pricing kernels with low and high levels of background risk are shown by ¢1¢; and ¢,
respectively. Clearly, since the two curves intersect only once, the implication of the diagram
is that contingent claims paying off in low states X < X* will be priced more highly in
the higher background risk economy. Conversely, claims on high payoff states will decline
in price. Before drawing conclusions regarding the prices of particular securities, we first
derive some further properties of ¢(X).

It is useful now to define the absolute and relative risk aversion for this economy. Since
#(X) is proportional to the “marginal utility” of this economy, we define the coefficient of

absolute risk aversion of the pricing kernel as

0¢/0X
2(X)= - 14
R (14)
and the coefficient of relative risk aversion of the pricing kernel as
Xo¢/0X

X)= ——F 57— 15
() = -0 (15)

Differentiating (12) we find, for the absolute risk aversion in this case,

d¢/0X 1-09/0X

2(X)= - =(1-v)——< 16

with an analogous expression holding for (X ). Lemma 4 follows immediately.

Lemma 4: In an economy composed of agents with HARA preferences and a common risk
aversion parameter v, the coefficients of absolute and relative risk aversion of the pricing

kernel are increasing in background risk i.e.

92(X)

or(X)
o 7

do 0

>0,
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Proof: From Lemma 2, and the assumption that changes in background risk have the
same impact on the individual and the aggregate precautionary premium, it follows that
/g > 0, and 8%*¢/0Xdo < 0. Hence, the numerator of (16) increases with o. The
denominator decreases, since A + X — 1(X) > 0. Hence, 8z(X)/dc > 0 and, by a similar
argument, dr(X)/dc > 0. O

Lemma 4 is analogous to the classical risk aversion results along the lines of Pratt (1964)
for HARA utility functions. The coefficient of absolute risk aversion of the pricing kernel,
z(X), is similar to that of the utility function. Hence, there is an analogy between the
behavior of the pricing kernel and the utility function.

We are now in a position to analyze the effect of background risk on the value of various
contingent claims on the market portfolio payoff. First, consider a forward contract to
buy the market portfolio payoff, X. The forward price is the agreed price which makes the

forward contract a zero-value contract. Defining this forward price as F((X) we have

0= E[(X - F(X))¢(X)] (17)

or simply
F(X) = E[X¢(X)] (18)

Options on the market portfolio payoff are defined in an analogous manner. The forward

prices of call and put options on the market portfolio payoff at a strike price K are as follows:
C(K) = E[maz(X — K,0)¢(X)] (19)

and
P(K) = E[maz(K - X,0)¢(X)] (20)

We can derive the following comparative statics properties of these prices for an increase

in the background risk.

Theorem 2:17 Given that the economy satisfies the aggregation property, an increase in back-
ground risk has the following effects:
a) The forward price of the market portfolio payoff declines, t.e.

OF(X)/00 <0
b) The forward price of a call option at strike price K declines, i.e.

dC(K)/do < 0,VE

17The same results can also be derived from a weaker assumption than HARA utility. It suffices that an
increase in an agent’s background risk makes him/her more averse to marketable risk. If this is true for
every agent and a mild aggregation property holds, then the same result can be obtained for more general

preferences.
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¢) The forward price of a put option at strike price K increases, i.e.

dP(K)/dc > 0,YK

Proof: Consider an increase in the background risk represented in Figure 1. It follows
immediately from Lemma 4 that 9F(X)/dc < 0, since, from Lemma 4, risk aversion
increases with the background risk.

Now consider the value of call and put options on X. The values of all claims to the
right of the cross-over point, X, decline as background risk increases. Hence, the forward
price of a call option at a strike price k' > X~ declines with an increase in background risk.

For K < X*, we can write the forward price of the call option as
C(K) = E[maz(X - I&',0)¢(X)I{R»<X<X.}] + E[maz(X - K, 0)¢(X)I{X2X*}] (21)

where Iy is the indicator function.
Consider an option whose payoff is equal to the payoff of the call option reduced, in
every state, by an amount X* — K, the option payoff at X*, the crossover point between

the two pricing kernels. The value of this option is given by

C(K,X*-K) = E[maz(X -X",-X"+ K)Qb(X)I{K<X<X*}]
E[maz(X — X*,—X* + K)$(X ) x>x+]
C(K)-(X"-K) (22)

[l

Since a constant amount X* — K is subtracted from the price of the call option to obtain

the price of the modified contract, we can write

0C(K) O0C(K,X™ - K)
do 0o

Now consider C'(K) under the two pricing kernels ¢1¢; and ¢2¢; in Figure 1. Its payoff

(23)

function has two areas. The area to the right of the crossover point, which has a positive
payoff, declines in price under pricing kernel ¢2¢, relative to ¢1¢1, since the former is lower
in this region. The other area to the left of the crossover point has a negative payoff and
hence, also declines in price under the pricing kernel ¢2¢, relative to ¢11, since the former
is higher in this region.

Hence, the forward prices of all call options decline with a rise in background risk. A
similar argument can be used to show that the prices of all put options increase with a rise
in background risk. O

The effect of an increase in background risk is to reduce the prices of claims in states
with relatively high payoff of the market portfolio and increase the prices of claims in states
with relatively low payoff of the market portfolio. Furthermore, the “average” price of

claims represented by the forward price of the market portfolio also declines. It is apparent
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from Figure 1 that call options with a high strike price (i.e. to the right of the crossover
point X*) get cheaper when the background risk increases. However, this is also true for all
call options regardless of the strike price. This is intuitively reasonable when one notices
that the forward price of a call with a zero strike price changes by the same amount as the
forward price of the market portfolio, since these two contracts differ only by a constant in
their payoffs. Similarly, the figure shows that a put option with a low strike price becomes
more expensive. This is also true of all other put options. Again, the forward price of a
put option with a very high strike price changes by the same amount as that of the short
position in the market portfolio, since their payoffs differ only by a constant.

Theorem 2 has important testable implications. It allows us to clearly separate the
effects of an increase in aggregate background risk from those of an increase in the risk
of the market portfolio payoff X. An increase in the latter risk should lower the forward
price of the market portfolio because of risk aversion, but raise the forward prices of call
options with high strike prices, since for these options the insurance value increases while the
intrinsic value is zero anyway. In contrast, an increase in aggregate background risk lowers
the forward prices of all these options. Therefore, a situation in which the forward prices
of all puts and of calls on the market portfolio with high strike prices increase, indicates
a rise in the risk of the market portfolio payoff X. Conversely, a situation in which the
forward prices of all puts go up and those of all calls go down, indicates an increase in
background risk. Hence this approach allows to distinguish empirically between increases
in background risk and increases in the risk of the market portfolio payoff.

How can we distinguish the effects on option prices of an increase in background risk
from those that result from a general increase in risk aversion? Omne way to do this is to
compare the effects on option prices of an increase in background risk with those that follow
from an increase in risk aversion, where both changes have the same effect on the forward
price of the market portfolio. The result is shown in the following Theorem 4. It considers
the relative increase in put and call option prices in the two cases. In the following theorem
we consider firstly, an increase in background risk, and secondly, an increase in risk aversion
where both changes have the same effect on the forward price of the market portfolio. We
establish:

Theorem 3: Assume an economy which satisfies the aggregation property. Suppose initially
that there is no background risk in this economy. Consider now the effect of introducing
background risk with o > 0, with no change in risk aversion, and alternatively an increase
in risk aversion caused by a change in vy from o to 1, where these two changes reduce the
forward price of the market portfolio by the same amount. Then, the forward prices of all
call and put options are higher in the C(;se where background risk increases than in the case

where risk aversion increases, i.e.

If F(X|o >0,y =7) = F(X|o=0,7=m), then
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C(Klo >0,y =7) > C(Klo=0,7v=m), VK,
P(Klo>0,y=7) > P(Klo=0,y=m), VK.'®

The notation C(K|o,7) refers to the forward price of a European call option at strike
price K given that background risk is at level o and the risk aversion parameter is at level

~. Similar notation is adopted for put options and for the market portfolio.

Proof:
With background risk, o > 0, the pricing kernel is denoted by ¢1(X). Given the back-

ground risk, the pricing kernel and the forward price are given by the following equations

1A+ X —p(x) !
() = [ LA X V)

F(X|o > 0,7=m) = E[X¢:1(X)] (25)

(24)

where E[¢1] = 1, and Ay is the shadow price of the budget constraint, taking background
risk into account.
Without background risk, ¢ = 0, and

0= g =] (20)
F(X|o = 0,7 =) = ELX¢s(X)] 20

where ), is again the shadow price of the budget constraint. It follows almost immediately
that the risk aversion coefficient 1 —v; > 1 —+1.1% To see this, note that if 7, = 72, then by
Lemma 4, 2(X|o > 0,7 = 71) > 2(X |0 = 0,7 = 72), where the 2(-)’s are the coefficients of
absolute risk aversion in the two cases. This implies that F(X|o > 0,7 = 11) < F(X|o =
0,7 = 72), which contradicts the assumption of the Theorem. If 71 < 72, the same result
obtains, @ fortiori. O

We now compare the background risk pricing kernel, ¢1(X) and the kernel ¢o(X ). The
following Lemma confirms that the shape of the functions is as shown in Figure 2. The

curves must intersect twice at X! and X2.

Lemma 5: The pricing kernel with background risk ¢,(X ), and the pricing kernel with no
background risk and increased risk aversion ¢(X), both of which yield the same forward

price, intersect twice with
o (X) > ¢o(X) for X < X,
H(X) < ¢a(X) for X' < X < X3, (28)
$1(X) > ¢(X) for X? < X.

18We consider only non-trivial options such that Prob(X < K) > 0 and Prob(X > K') > 0 for all options,

so that there is a non-zero probability of the option finishing out-of-the-money.

19Weil (1992) proves this formally for the more general case where v’ > 0.
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Proof: a) First, since the forward price of the riskless asset with a face value of 1 is unity,
E(¢1(X)) = E(¢2(X)) = 1. In other words, any pricing kernel must yield a unit forward
price for the riskless asset with a face value of one. This restriction, together with ¢;(X) #
$2(X), implies that the pricing functionals intersect at least once.

b) Second, note that put-call-parity is violated if there exists only one intersection.
Suppose that X! is the only intersection point with ¢1(X) > ¢2(X), for X < X1 and
¢1(X) < ¢2(X) for X > X'. Then, consider the forward price of a call with a strike price
X'. This asset must be overpriced by ¢o(X ) compared to its price using ¢1(X). However,
a put with the same strike price, X', must be underpriced by #»(X) relative to d1(X)
which contradicts put-call-parity. Hence, just one intersection of ¢1(X) and ¢2(X) is not
possible.

¢) Third, in Appendix B, we show that more than two intersections cannot exist. O

It follows from Lemma 5 that the two pricing kernels are as shown in Figure 2.2° Given
the shape of the pricing kernels in Figure 2, where the background risk kernel and the no
background risk, increased risk aversion kernel intersect twice, it is interesting to note?!
that ¢, > ¢2 both below X! and above X?2. It follows that the price of a put option at a
strike price of X! or a call option at a strike price of X2, is higher for both options in the
case of background risk. However, we can now establish a more general result. If a call
option at a strike price X% has a lower price using ¢, and a put option at a strike price
X1 also has a lower price using ¢, then all put and call options have lower prices using ¢,
compared to ¢;. The remainder of the proof is given in Appendix C.O

The surprising aspect of this result is that all put and call prices are higher in the
background risk economy than in the economy with increased risk aversion. It mirrors the
fact that the convexity of the pricing kernel is greater in this case. The importance of the
result is that it allows us to distinguish the effects of an increase in background risk on
option prices relative to those of a similar increase in risk aversion. Suppose we observe a
given reduction in the forward price of the market portfolio that could be due either to an
increase in the background risk of agents or to an increase in risk aversion. In the former
case, both forward prices of puts and calls will be higher. Another way of interpreting
Theorem 3 is that forward prices of all put and call options relative to the forward price
of the market portfolio are higher when background risk increases than when risk aversion
increases. The theorem therefore adds empirical content to the previous result in Theorem
2.

20The proof of Lemma 5 uses certain properties of the HARA function. Therefore, it is doubtful whether
a similar result could be obtained under weaker assumptions.
21This is analogous to the result that an agent with no background risk sells claims below X' and above

X? and buys in between.
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6 THE EFFECT OF A CHANGE IN AGGREGATE BACK-
GROUND RISK ON THE OPTIMAL SHARING RULE

In the previous section, we investigated the effect of an increase in aggregate background
risk on the forward prices of claims in different states. Since the prices of claims in low
states rise and those of claims in high states fall, an investor without background risk would
be motivated to sell more claims (or buy fewer claims) on low states and buy more claims
on the high states. This does not necessarily imply that the agent’s sharing rule becomes
more concave, in part because the market value of the endowment is also affected, which
has a feedback effect on the sharing rule. In order to sort out the "income effect” from
the "substitution effect,” we need to formally analyze the effect of an increase in aggregate
background risk on the agents’ portfolio choice.

We will assume that the same aggregation conditions that were assumed in the previous
section hold, i.e. 8y/do > 0, d*/00dX < 0, 83 /dx?0c > 0. These assumptions were
motivated by reasoning that what is true at the level of the individual agent also holds at
the aggregate level. In addition, we assume that the shadow price of the budget constraint
for an agent without background risk, say investor 7, increases less than for the average
agent in the economy. This can be justified by the following consideration.

Evaluating the expectation of equation (5), we have
E[I/l{(.ri - Qﬁi(mi,ai))] = /\,‘, Yi.

If o; increases, then t;(z;,0;) increases, too. Hence, the marginal utility increases. If the
sharing rule z; = g;(X) were to stay the same, then A; would increase. Now consider an
investor 7 without background risk. For this investor #; = 0. It follows that Az is unaffected,
if his/her sharing rule is unaffected by the increase in aggregate background risk. In other

words we assume that
(A7
7)Yt
o= 45—
1
> (A)7 T
1=1

does not decrease, when aggregate background risk increases. We can now derive a result

about the sharing rule of an investor without background risk.

Theorem 4: Consider an investor 7 without background risk and assume that oz does not de-
crease when aggregate background risk increases. Then an increase in aggregate background

risk leads to an increase in the slope and concavity of this agent’s sharing rule.

Proof: The slope of the sharing rule is given from (9) by differentiating with respect to X

09i(X) _
——87—‘ = az[l - a’lb(X)/aX] >0

20



Hence, da;/dc > 0 and 8%)(X)/0Xdo < 0 imply that §%¢g;(X)/0Xdc > 0. In other
words, the slope of the sharing rule increases with background risk, 0. The increase in

concavity follows from 8%%(X)/dX? > 0 and 9*p(X)/0X%90 > 0. O

Theorem 4 shows that an agent without background risk takes more marketable risk
by changing to a sharing rule with a higher slope. But the slope increases more in the
low states than in the high states. These results follow from two considerations: (1) Since
most agents face an increase in background risk, while the agents without background risk
do not, the agents with increased background risk prefer to take less marketable risk, and
hence, demand a sharing rule with a smaller slope. The latter agents induce the one without
background risk to use a sharing rule with higher risk by offering higher prices for claims
in the low states and lower prices for claims in the higher states. (2) The agents whose
background risk increases not only suffer from this increase more in terms of marginal utility
in the low than in the high states, but also the concavity of their precautionary premium
increases, ceteris paribus. Hence, they would want to balance this effect by a more convex
sharing rule. This can only be achieved if the agents without background risk use a more
concave sharing rule. In general, an increase in aggregate background risk means that
agents whose background risk increases relatively more tend to use sharing rules with a
smaller slope and less concavity. Agents whose background risk increases relatively little
tend to use sharing rules with a higher slope and higher concavity. Agents with small,
unchanged background risk tend to sell more portfolio insurance, while agents with higher,

strongly increasing background risk tend to buy more portfolio insurance.

7 CONCLUDING COMMENTS

An increase in the background risk faced by some agents in the economy tends to increase
the convexity of their sharing rules and their demand for options. Agents with low back-
ground risk tend to increase the concavity of their sharing rules and their supply of options.
Background risk also increases the forward prices of put options and reduces the forward
prices of call options.

From an empirical perspective, the model allows us to distinguish the effects of an
increase in background risk from those associated with an increase in either the volatility of
the market portfolio or those associated with an increase in market risk aversion. Suppose
we observe an increase in the risk premium on the market portfolio. This could be the
result of an increase in background risk, market risk, or risk aversion. If background risk
is the cause, then we should observe an increase in put prices and a decrease in call prices.
If the risk of the market has increased [by a mean preserving spread], put prices rise, but
the prices of out of the money calls will rise, while others will fall. If an increase in risk

aversion is the cause, then, although put prices will rise and call prices will fall, all option
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prices will be smaller than they would be if the cause was an increase in background risk.
The model also predicts that agents with relatively high background risk will buy options
from those who face low background risk. If we could identify groups of individuals with
high background risk, for example people with high job insecurity, we should find that they
tend to purchase portfolio insurance. Also, if rich individuals tend to have low background
risk, relative to their wealth, these people should tend to be sellers of options. These are

predictions of the theory which are potentially verifiable with empirical data.
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Appendix A
Properties of the Precautionary Premium for the HARA Class of

Preferences with v < 1

For the HARA class of preferences, with v < 1,

1y JA+y)”
W) = [—1_7] (29)
It follows that
At g7
) = [1—_“17"1] >0 (30)
At g7
S(y) = —[1—1“3] <0 (31)
" _ ')’____2 A+y v-3
Vy) = 7_1[——1_7] >0 (32)
-1
o) = |12 >0 (33)
_ 1-2[A+y]7
n(y) 7_1[1_7} >0 (34)

We can now prove the various statements of Lemmas 1 and 2.

1) Proof that 3 > 0.

For the HARA utility function, the marginal utility function ¢’ is a strictly convex

function since ¥ > 0. As a result, we have from Jensen’s inequality

Vie—y(z,0)] = E[/(c+oe)la]
> V[E(z 4+ oe)lz) =V (z + 0 E(e)) (35)

since the risk £ has a non-positive mean. Hence,

¢ > —0 E(¢) (36)
because v’ is a strictly decreasing function of z. O
2) Proof that 9¢/dz < [=] 0.

We have for a HARA utility function
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where a(z) is the Arrow-Pratt measure of risk aversion. Hence,

dn(z) da(z)

sign n(z) = sign a(z), sign Iy = sien —— (38)
Tt follows from arguments of Pratt (1964) about a(z) that
0
% <[=]0 (39)

Oz

where the inequality holds for decreasing absolute risk aversion and the equality holds for

exponential utility (y = —oo) for which a(z) is constant. O

3) Proof that 9+ /da > 0.

By analogy with the arguments of Pratt (1964) and Rothschild and Stiglitz (1970) ,
since
V' >0, 0" <0 = 0r/0c >0

we can write that
V<0, " >0 = 9¢/dc >0 a

4) Proof that 8*¢(z,0)/0zd0 < 0.

For simplicity of notation, we drop the condition “[z” in the following equations. Dif-
geq

ferentiate the definitional equation

V(e —p(z,0)] = EV(z + o¢)] (40)
with respect to ¢ and obtain
0Y(z,0) _ EV"(z + o¢)e]
0o —v'[z — P(z,0)]
(41)

_ E["(z+oe)e] E[-V(z+ o¢)]
= B too)] e p(a0)] (42)

The second term on the right hand side of equation (42) is positive, given the assumption
of risk aversion. Since the left hand side is positive, both fractions on the right hand side
of (42) are positive. We now show that both fractions decline in z.
Differentiate the first fraction with respect to z. The differential is negative if and only
if
E[V"(z + 0¢)|E["(z + o¢)e] > E[V(z + ae)e] E[v"(x + o¢)] (43)
which is the same as
E[V"(z + o¢)e] < E[—V"(z 4 o¢)e]
E[v"(z + o¢)] E[-v"(z + o¢))

(44)
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since E[v"(z + 0¢)] < 0 and E[v"(z + 0¢)] > 0.

Consider an agent facing the choice between a riskless and a risky asset, where the excess
return on the risky asset is equal to fi + ¢, and i+ E(e) is the expected excess return of the
risky asset over the riskless rate. Let o denote the optimal dollar investment in the risky
asset, given another utility function with marginal utility being equal to —v"(-). Then, the
optimality condition is that the right hand side of inequality (44) equals —j, with z being
the riskfree income plus ofi. For a utility function with higher absolute risk aversion the
same fraction would be smaller than —ji, since the optimal investment in the risky asset
would be smaller. As for the HARA class with v < 1, —v"'(-)/v"(-) > =v"'(-)/v"(-) > 0,
inequality (44) holds. This proves that the first fraction on the right hand side of (42)
declines in z.

In order to show the same for the second fraction, define
Ve = ple, )] = B[ (@ + o¢)] (45)

where ¢ is the premium defined by the second derivative of the utility function. [ is the
premium defined by the utility function (risk premium) and ¢ is the premium defined by
the first derivative (precautionary premium)]. Then, the second fraction in (42) can be

rewritten as

Bl-v"(z +0¢)] _ V"[z — ¢(2,0)]

e~ 30l vl - (2,0 o)
For the HARA class of preferences, the right hand side of (46) can be written as
Wh—%@wﬂ_<4+x—ﬂnaw%2 (47)
Ve —P(z,0)]  \A+z-9(2,0)

Differentiate the right hand side of (47) with respect to x. The differential is negative (since

v < 1),if

(A-l—:z:—cp)_l(l—(;—:)>(A+m—¢)—1(1—%7’$> (48)

We substitute for %f and % by differentiating (40) and (45) to obtain

o(z,0)] _  EW'(z+ oc)]

[1 Y ] vz - (e, o)) (49)
dp(z,0)] _  E["(z + o¢)]

[1 ~ Oz ] vz - p(z,0)] (50)

We substitute (49) and (50) in (48) to yield

E [(A +z+ 05)7—3] E [(A +z+ 05)7_2]

At 2 Ata-gI oy
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Substitute for the denominators in the two sides of the inequality from (40) and (45) and

obtain

) [(A +a+ 05)7_3} E [(A +z+ 05)7_1] > [E {(A +z+ 05)7—2}] ’ (52)

Since

2
(A+z+0e) 3 (A+z+0e) ' = [(A +z+ 05)7_2] (53)
it follows from Cauchy’s inequality that (52) holds. Hence 8%¢/dzd0 < 0. O

5) Proof that §%¢/dz? > 0.

From equation (49), it follows that
*(z,0)
Ox?
if and only if the right-hand side in equation (49) decreases as x increases. We have already
shown this to be true in equations (46) through (53). O

>0 (54)

6) Proof that 93¢ /dcdz? > 0.

First, note that convexity of 1> approaches 0 as ¢ — 0. Since 9 is convex for any positive
value of o, it follows that convexity increases with o for small changes from o = 0. We now
use a monotonicity result to show that convexity increases with o for any value of 0. We
rewrite equation (40) for the HARA class and multiply throughout by (1/0)?~! to obtain

[[A +a] ¢(w,v)]””l 5 [(M%U_] + 5>H] (55)

(22 (2

Multiply and divide equation (55) throughout by q, where q>0, to yield

[q[qu z] qlbgﬂ:ff)]"_l = E [(W + 5>H} (56)

Define z; such that
qA + zo] = A+ 2.

Then, using subscript 0 for x in equation (56) yields

o e[
In words, if ¢ changes from ¢ to go and x changes from zg to z;, then the new precautionary
premium (z1,90) = q(zg,0). In order to show that the convexity of ¢ grows with o,
suppose that ¢ is raised from a level arbitrarily close to 0. Then, the convexity of ¥(z9,0)
increases. Hence, the convexity of ¥(z1, go) increases by the factor ¢. As ¢ can be arbitrarily

large, the convexity of ¢(z1,¢o) increases monotonically with go. O
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Appendix B
Proof that more than two intersections of ¢1(X) and $3(X) is not possible

Given ¢1(X ) and ¢2(X), define the risk aversions of the two pricing kernels as

; _ _8¢1/8X
p _ _0(152/8)(
First, we show that (X)
d 21 X
ax [Zz(X)] <0
To establish this, note that
d—di[zl(X)/zz(X)] <0 iff %[!nzl()() —Inz(X)] <0
d
Ef[lnzl(X) — Inz( X))
d '
= (= W(0) ~ In(A 4 X~ (X + I A+ X))
O S NE Bc S
1-9(X) A+X-9(X) A+X
_ ¥X) a(X,o) 29(X,0)
1= 9(X) 1-m i 1= (60)
< 0

By assumption, ¢”(X) > 0, and hence the first term is negative; by Lemma 4, z1(X)
increases with o, so that the last two terms together are negative. Hence, the whole
expression is negative so that d{z1(X)/22(X)]/dX < 0.

Now suppose that there exist at least three points of intersections X1 X?% and X3.
Suppose that at X!, ¢1(X) intersects ¢o(X) from above, ie., Q‘%{& < Q%%(&. Since
P1(X 1) = ¢o(X1), it follows that

Zl(Xl) > ZQ(XI).

At X2, ¢1(X) intersects ¢2(X ) from below so that it follows 21(X?) < 22(X?). At X3, we
must have z;(X3) > 22(X?) since ¢1(X ) must intersect ¢2(X) from above. This contradicts
%[%] < 0. With two intersections, this also implies that at X', ¢1(X) must intersect
$2(X) from above and at X2, ¢1(X) intersects ¢2(X) from below. O
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Appendix C

Proof of Lemma 5

To establish Lemma 5, consider, for example, the call option with a strike price K shown

in Figure 3 and the linear payoff function defined by the line L(X):
L(X)=a+bX (61)

where @ and b are chosen so that L(X) equals the option payoff at both cross-over points
X! and X2 ie. L(X') = Cx1 and L(X?) = Cx2. Cx denotes the payoff of a call with
a strike price K. L(X) is a portfolio of the risk-free payoff and the payoff on a forward
contract. Thus, L(X) is priced the same by both pricing kernels. Therefore, it suffices to
show that the differential payoff from the call and L(X) is underpriced by ¢2. The forward
price of the option, using ¢q(X), is
C(K,$1) = E[L(X)pi(X)]+ E1[(Cx — L(X))$1(X)]
+ E5[(Cx — L(X))$1(X)] + E3[(Cx — L(X))¢1(X)] (62)

where E;(-) denotes the expectations operator over the interval X < X1, Ey(-) over the
interval X! < X < X2, and F3(-) over the interval X > X?2. Equation (62) states that the
value of the option is the value of the linear payoff L(X) plus the value of the difference
between the option payoff and L(X) in each of the three segments. Now, the value in the

case of no background risk and higher risk aversion is
C(K,¢2) = E[L(X)¢o(X)]+ Ei[(Cx — L(X))$o(X)]
+ B[(Cx — L(X))¢2(X)] + Es[(Cx — L(X))$o(X)] (63)
Comparing (63) with (62), the first term is the same in both equations, i.e.

El(a+bX)$:1(X)] = E[(a+ bX)da(X)]

since

E[X ¢1(X)] = E[X ¢5(X)]

Referring to Figure 3, since ¢1(X) > ¢2(X) and Cx > L(X) for the first segment, X < X1,
Ey[(Cx — L(X))¢1(X)] > Er[(Cx — L(X))¢2(X)]

Next, since ¢1(X) < ¢2(X) and Cx < L(X) for the second segment, X' < X < X2,
Eq[(Cx — L(X))$1(X)] > Ea[(Cx — L(X))¢a(X)]

Finally, in the third segment, since ¢1(X) > ¢2(X) and Cx > L(X) for X > X2
Es[(Cx — L(X))¢1(X)] > E3[(Cx — L(X))ba(X)]

It follows, therefore that C(K,¢1) > C(K,$2). Also, all puts have higher prices under ¢,

using the same argument or by using put-call parity, since the forward price of the asset is

the same. O
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Figure 1
The Effect of an Increase in the Background

Risk on the Pricing Kernel

¢ Pricing Kernel

S

*

X
Market Portfolio Payoff

Relationship between the pricing kernel, ¢(X), and the level of the
aggregate market payoff, X. The solid line (q ¢1 ) represents the

relationship between the pricing kernel and aggregate market payoff
for low levels of background risk. The dotted line (¢, ¢,) represents

the same relationship for high levels of background risk.



Figure 2

Pricing Kernels: Background Risk

and Increased Risk Aversion

¢2¢‘

Pricing Kernels

Market Portfolio Payoff

Relationship between the pricing kernel, ¢(X), and the level of aggregate market payoff,
X <¢>1 <1>1 is the pricing kernel with background risk and ¢2¢2is the pricing kernel without
background risk, but with the higher risk aversion. As is evident from the figure,
for X< X, $,00 > ¢,(X)
X > %, ¢,(X) > ¢,(X) and
X' <X <X, @,(X) < ¢,(X); where
X' and X® are defined such that

atX =X, X, ¢,X = ¢,X).



Figure 3

The Value of a Call Option Under the Background
Risk and Increased Risk Aversion Pricing Kernels

b2 ¢

Pricing Kernels,
Option Payoff

L(X)

Market Portfolio Payoff

Relationship between the pricing kernel, ¢(X), and the level of aggregate market payoff,
X. ¢1 ¢1 is the pricing kernel with background risk and ¢2¢2is the pricing kernel
without background risk but with increased risk aversion.

The payoff on a call option at a strike price K is given by the line segments OKCx.
L(X) = a + bX is a linear payoff such that L(X') = Cy and L) = Cy



