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The Dynamics of Discrete Bid and Ask Quotes

Abstract

This paper describes a general approach to the estimation of security price dynamics when
the phenomena of interest are of the same scale or smaller than the tick size. The model
views discrete bid and ask quotes as arising from three continuous random variables: the
efficient price of the security, a cost of quote exposure (information and processing costs)
on the bid side and a similar cost of quote exposure on the ask side. The bid quote is the
efficient price less the bid cost rounded down to the next tick; the ask quote is the efficient
price plus the ask cost rounded up to the next tick. To deal with situations in which the
cost of quote exposure possesses both stochastic and deterministic components and the
increments of the efficient price are nonstationary, the paper employs a nonlinear state-
space estimation method. The method is applied to intraday quotes at fifteen-minute
intervals for Alcoa (a randomly chosen Dow stock). The results confirm the existence of
persistent intraday volatility. More importantly they establish the existence of a persistent
stochastic component of quote exposure costs that is large relative to the deterministic

intraday “U” component.
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1. Introduction

Although most determinants of a security price are likely to be continuous
variables, institutional arrangements generally constrain the security to a discrete grid.
This grid may be coarse relative to the price variation over brief intervals, and also relative
to the economic costs of order submission and execution. This paper suggests that the bid
and ask quotes arise from an implicit efficient price and quote-exposure costs, all of which
are continuous random variables. The discrete bid quote is the implicit efficient price less
the continuous bid exposure cost rounded down to the next tick; the discrete ask is the
efficient price plus the continuous ask exposure cost rounded up. The paper proposes a
nonlinear state-space procedure for estimation and (in real time applications) online
filtering, and applies this model to fifteen-minute bid and ask quotes for a New York
Stock Exchange stock.

This paper is most closely related to earlier empirical studies of discreteness in
stock prices. The first analyses in this area focused on estimation of long-term stock
return variances from transaction prices, a concern motivated by option pricing
applications (see Ball (1988), Cho and Frees (1988), Gottlieb and Kalay (1985), and
Marsh and Rosenfeld (1986)). The emphasis in later studies of transaction prices shifted
to microstructure phenomena (see Angel (1994), Dravid (1991), Glosten and Harris
(1988), Harris (1990, 1991, 1994), Hausman, Lo and MacKinlay (1992), and Madhavan,
Richardson and Roomans (1994)). Discreteness is often encountered as a “nuisance”
effect, a data characteristic that must be addressed en route to confronting more
interesting economic hypotheses. But since the minimum tick size may affect trading
activity, discreteness is also of theoretical and policy interest (Ahn, Cao and Choe (1996),
Anshuman and Kalay (1994), Bernhardt and Hughson (1996), Brown, Laux and Schacter
(1991), Chordia and Subrahmanyam (1995), Cordella and Foucault (1996), Glosten
(1994), Harris (1990, 1991)).

The present study seeks to model bid and ask quotes as opposed to transaction

prices. Quotes are of particular interest in microstructure studies because they can be
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updated in the absence of trades to reflect changing information and also because they
reflect perceived asymmetric information costs. Discreteness has different effects on
quotes and transaction prices. A risk-neutral trader would presumably be indifferent to
the fair-game perturbation associated with symmetrically rounding the unobserved
continuous price to the nearest tick. A market maker posting bid and offer quotes, on the
other hand, must round his bid price down and his offer price up in order avoid the
expectation of losing money on the next trade. For this asymmetric rounding Dravid
(1991) computes the first two moments of the transaction price changes under the
assumptions of stationarity and a constant quote exposure cost. The present approach
allows for nonstationarity and stochastic quote exposure cost.

The paper is also closely related to studies of discreteness in the bid-ask spread.
Harris (1994) and Bollerslev and Melvin (1994) model the discrete spread using ordered
qualitative-data approaches. In these studies, the spread is a continuous function of
observable variables and a random disturbance that is transformed onto a discrete grid.
The spread in the present model, in contrast, is driven by a underlying variables that are
continuous, unobservable, stochastic and autocorrelated. Furthermore, in modeling the
bid and ask separately, the present analysis incorporates a rich specification of the efficient
price dynamics.

The model possesses a state-space representation in which a continuous
unobserved efficient price and quote exposure costs are the state variables and the discrete
bid and ask prices are the observations. This framework is appealing because the
recursive procedure used to compute the likelihood function is a Bayesian updating that
mimics agents’ inferences. Furthermore, state-space models are natural and convenient
tools with which to investigate deterministic and stochastic time variation in parameters.
The paper implements several such generalizations.

In comparison with reduced-from vector autoregressive (VAR) microstructure
models (e.g., Hasbrouck (1991a, 1991b, 1993), the present design assumes more structure
in the form of the probability densities and the discrete-valued functions that map the

continuous state variables onto prices. These assumptions suffice to identify a (nonlinear)
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state-space model. Although tightly structured in its discreteness aspects, this model
remains general in other regards, notably those related to time variation in the parameters.
The conventional approach to characterizing intraday parameter variation involves
estimating fixed-parameter models over intraday subsamples (e.g., as in Hasbrouck
(1991), the first hour of trading). In contrast, the present approach admits stochastic and
deterministic parameter variation in a comprehensive statistical model.

Thus, although the paper deals primarily with discreteness, the ultimate aim in this
line of inquiry is a modeling framework flexible enough to accommodate parameter shifts
resulting from the start and finish of trading and random variation in the underlying
informational and liquidity determinants of trading activity.

The analysis does not extend to clustering (the affinity of transaction prices and
quotes for integers, halves, quarters, etc., in decreasing frequency). Clustering in
transaction prices is examined by Niederhoffer (1965, 1966) and Harris (1991), and in
quotes by Christie and Shultz (1995a, 1995b). In a dynamic setting, clustering requires
specification of a stochastic mapping from continuous state variables to discrete
observations that is more complicated than the simple rounding functions employed here.

The paper is organized as follows. The next section describes the underlying
economic model that generates the bid and ask quotes. The paper then turns to the
problem of inference: how to estimate the underlying model from the observed discrete bid
and ask prices. Section 3 discusses the restrictions imposed on the underlying variables by
the discrete observations. Section 4 introduces the nonlinear filtering algorithm, the
associated maximum likelihood procedure and computational techniques. The full
dynamic model, which incorporates stochastic and deterministic time variation in the cost
and efficient price volatility, is presented in Section 5. The model is estimated for a
representative NYSE stock in Section 6. Section 7 discusses the role of discreteness in
microstructure analyses and the costs and benefits of the proposed technique. A brief

summary concludes the paper in section 8.
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2. The economic model

Denote by m the implicit efficient price of the security (the expectation of the
security’s terminal value, conditional on all public information). The agent establishing the
bid quote is assumed to be subject to a nonnegative cost of quote exposure 30 for small
trades, such that in the absence of discreteness restrictions she would quote a bid price of
m—p3 This cost is assumed to impound fixed transaction costs and asymmetric information
costs. With a one-unit tick size in the market, she is assumed to quote a bid price of
b = Floor(m— ), where Floor(") rounds its argument down to the next whole integer.
Similarly, the agent establishing the ask quote is assumed to be driven by a quote exposure
cost >0 (also for small trades), such that in the absence of discreteness restrictions he
would quote an ask price of m+a. Constrained by discreteness, he offers at an ask quote
of a = Ceiling(m + &), where Ceiling(-) rounds its argument up to the next whole
integer. In summary, the bid and ask prices are given by

b = Floor(m - f5)
a = Ceiling(m + a)

¢y

If the tick size is not unity, all variables may simply be rescaled.

This construct can be motivated by most simple models of dealer behavior. In the
framework of Glosten and Milgrom (1985) quote setters face a population of informed
and uninformed traders. m is the expectation of the final value of the security conditional
on all public information (including the transaction price history). The quote exposure
costs are defined implicitly by the conditions that m—f and m+ o ensure the quote-setter(s)
zero expected profits and no ex post regret, an outcome supported by Bertrand
competition.

By asymmetrically rounding up on the ask and down on the bid, the market maker
avoids the possibility of loss on the incoming trade. If the rounding were symmetric (all
prices rounded up, all prices rounded down or all prices rounded to the nearest integer),
then one or both sides of the quotes might be associated with an expected loss. For

example, if the efficient price is 5 and the cost is 1.1, nearest-integer rounding yields a bid
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of 4 and an ask of 6, both of which yield expected losses. Furthermore, symmetric
rounding may imply degenerate quotes (identical bid and ask prices) if cand fare small.

Due to the asymmetric rounding, a Glosten-Milgrom dealer will achieve a profit
(both ex ante and ex post) on each trade. These profits need not lead to competitive price
cutting because the discreteness restriction ensures that any such action, if feasible, will
result in a loss. Nor need these profits lead to a surge of new entrants. Even markets
(such as the NYSE) that allow nondealers to enter limit orders usually enforce local time
priority. The probability of execution and therefore the incentives for limit order
placement diminish with the length of the queue.

More generally, Bis the quote setter’s marginal cost on the bid side of the market
at a particular time. From an economic perspective, it is useful to recognize that some of
the components of this cost may be negative, as long as the total f3 is nonnegative. An
example of this arises in the context of inventory control. Suppose that the cost of
clearing a trade is 0.5 (ticks). A dealer who is short (relative to her desired holdings)
might nevertheless bid as if 4=0.2, reflecting a greater propensity to accumulate a position.
There is an implicit benefit of accumulation that may be viewed as a negative cost of -0.3.
If the same dealer were also offering the security, we might also expect her & to be high
relative to the clearing cost, reflecting her reluctance to accommodate further sales.
(Similar remarks apply, of course, to the ask exposure cost.)

Negative cost components may also arise in the case of quotes established by
public limit order traders. Their principal alternative to a limit order is a market order.
They are not seeking to realize a dealer’s profit on average, but merely to reduce their
costs of trading (Harris and Hasbrouck (1996) and Harris (1994)). The quote exposure
cost may also impound the quote setter’s private information.

From a modeling viewpoint, nonnegative & and f serve to prevent the bid and ask
implied by (1) from coinciding or crossing. In general practice, the bid and ask quotes
prevailing at a point in time reflect entered orders that have been subjected to a matching

procedure according to the rules of the market. The assumptions of a common m and
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nonnegativity of @ and fare expedients that avoid the necessity of explicitly modeling this
matching process.

Most interesting applications will involve situations where the quote exposure
costs are random. This randomness can be viewed as arising from several sources. Along
the lines of the Glosten-Milgrom model, there may be random time variation in the
determinants of this cost, such as perceived exposure to adverse information or holding
costs. In this view all dealers and potential dealers are subject to the same cost.
Alternatively, we may view the quote setter as an agent drawn from a population of
traders with random cost functions. If more than one such agent is active at an instant,
then the relevant costs are the minimum s and f's in the set.

Although this model allows for randomness in ¢, fand m, the discreteness aspect
of the model arises from a nonstochastic transformation. There is no discreteness “error”
or disturbance that is required to impound the effect of discreteness.

As noted in the introduction, most studies of discreteness in security markets have
focused on transaction prices. Quotes and transaction prices are obviously related,
however, and the transaction price models therefore offer useful points of comparison. In
this connection, there is at the outset one obvious incompatibility. If transactions arise as
uncorrelated equiprobable realizations of the bid and ask quotes determined by equation
(1), these prices cannot be described as a symmetrically-rounded random-walk. In the
present model discreteness is imposed at the point at which the quotes are set, not the
subsequent point at which trade occurs.

There is no assumption that all trades take place at the posted quotes. Following
Rock (1996), the posted quotes modeled here are viewed as the best available prices
absent knowledge of the full size of the incoming order. A trader (such as a specialist or
floor trader) who can bid or offer conditional on the incoming order size may better the
posted quotes. In practice, such agents bid or offer after the order has been received, and
these implicit quotes do not prevail after the transaction has occurred.

The models actually estimated in the paper allow the quote exposure costs to

exhibit both deterministic and stochastic dynamic behavior. It is useful to point out,
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however, that even when these costs are equal and constant, random variation in m
suffices to induce randomness in the spread. For example, if = = 1/4, then the spread
is one tick as long as the fractional part of m is between 1/4 and 3/4; and the spread is two
ticks otherwise. Therefore, variability in the discrete spread may be an erroneous proxy
for variability in the spread’s continuous determinants. In addition, price transitions will
sometimes be marked by quotes that appear to move “one leg at a time”. (Consider the
quotes associated with assuming = = 1/4 and the m, sequence {0.4, 0.9, 1.3}.) U.S.
stock quotes often exhibit this behavior.

In the present model the quote setter’s solution to an implicit continuous
optimization problem (& or ) is subjected to a transformation to yield discrete quote
placement strategies. This must be viewed as an approximation to a decision process in
which discreteness is more fundamentally incorporated into the calculation, i.e., an integer
programming problem. Models along these lines include Anshuman and Kalay (1994),
Glosten (1994), Chordia and Subrahmanyam (1995), Bernhardt and Hughson (1996) and
Cordella and Foucault (1996). These models are stylized in numerous respects (typically
allowing a restricted set of traders and permissible interactions) and focus almost
exclusively on information costs. In these characterizations, a continuous “pre-rounding”
cost constructs (such as the present rand ) do not explicitly arise. It could nevertheless
be argued that such quantities exist implicitly, and that they impound the costs of quote-

setting mentioned above (although they would also incorporate discreteness effects).

3. Inference from observed bid and ask quotes.

Viewed as a transformation of continuous random inputs (m, a and f) into discrete
bid and ask prices, the model described by (1) is a very simple one. From the perspective
of the econometrician (and that of many market participants), however, the observed bid
and ask prices are given, and inference focuses on the unobserved inputs. Viewed in this
direction, the model is more complex.

As a function of the observed bid and ask quotes (b, a), the feasible region for (m,

a, f) consistent with model (1) is:
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Q(b,a):{(m,a,ﬂ):a>0,ﬂ>0,bSm—-ﬂ<b+1 anda—l<m+a£a} )

The inequalities define a convex polytope (geometric solid) of up to six faces. Figure 1
depicts the region Q(b=0, a=1) (a one-tick spread), along with several rotated
perspectives.

Although the estimations in this paper are based on (2), it is useful to consider the
special case in which the quote exposure costs are the same on both bid and offer sides.
Letting c= a= f, the feasible region is

Q(b,a):{(m,c):c>0, bSm—c<b+1anda—l<m+c£a} 3)

These inequalities define a two-dimensional region. Figure 2 depicts (=0, a=1) (a one-
tick spread), Q(b=0, a=2) (a two-tick spread), and Q(b=0, a=3) (a three-tick spread).
The diamond shape of the region Q(b=0, a=2), for example, can be viewed as arising in
the following way. When c is just slightly greater than zero or slightly less than one, the
range of m consistent with 5=0 and a=2 is a small neighborhood about one. When c is
1/2, m can range from 1/2 to 3/2.

(Figures 1 and 2 are related as follows. The condition that &=/ defines a vertical
plane in Figure 1 lying at a forty-five degree angle with respect to the &z and P axes. This
plane now defines two-dimensional region containing m and ¢ (=a=p). The intersection of
the plane and the tetrahedron defines the half-diamond shape in Figure 2 associated with
0(b=0, a=1).)

Given a prior probability density function f{m,a,b), the posterior density

conditional on observing bid and ask quotes b and a is:

f(ma,p) .
f(mafba)=1 pripa) T mP)<O(ba) @

0, otherwise

where Pr(d, a) is the probability of observing discrete bid and ask quotes b and a:

Pr(b,a) = [ f(m,0, Bdmdadp (5)
(m, e, B) e O(b,a)
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Since this conditioning imposes a truncation on the ranges of the variables, it might seem
that the conditional densities would be simple truncated versions of the priors. The
truncations defined by Q(b,a), however, apply to linear combinations of the variables, not
the variables themselves. The shape of Q(b,a) effectively forces a nonlinear
transformation on the priors.

As an example, consider the case of equal exposure costs where c= a= fis
lognormally distributed: In(c) is assumed to be distributed normally with mean x=-1 and
standard deviation o=0.6. From equation (5) this implies Pr[a—b=1] = 0.29,

Pr[a—b=2] = 0.58, Pr[a-b=3]=0.11, and Pr[a—5>3] = 0.03, i.e,, frequencies of one-,
two- and three- tick spreads that might be observed for a typical NYSE stock.

For simplicity, assume a uniform diffuse prior on m: i.e., a probability density that
is constant over some suitably large region. Formally it suffices to take

F(m)= {K_ for m €(0,x) ©

0, otherwise

where Kis “large” (but not infinite). The choice of xis arbitrary; it integrates out of all
calculations. The cost parameter is assumed to be independent of the price level, which
implies that the prior density of the latent variables may be written as f{m, c)=f(m) fc).
Figure 3 depicts the prior and conditional density functions conditional on
observing bid and ask quotes =0 and a=2. The prior for m is drawn as a flat line of
height x'. The conditional density for m is not uniform over the allowable range of m
(1/2<m<3/2). If m is near an endpoint, the range of feasible c values is a small one, with
correspondingly low probability. If m is near the center of the range, the feasible set for ¢
is larger. Similarly the conditional density for c is not simply a truncated log normal, but
slopes down gradually to the boundary defined by c=1. When c lies on this boundary, the
set of m values consistent with the observed quotes is a single point (of probability zero,
given the continuous prior assumed for 7). As we move inward from this constraint, the
set of feasible m becomes larger. (The peak in the conditional cost density arises from the

“corners” in the diamond Q(a=0, b=2) in Figure 2.)
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4. Maximum Likelihood Estimation.

Suppose now that the quote generation process occurs over time periods =1, . . .,
T with state variable realizations z={m,, o, } and corresponding observed bid and ask
quotes ¢={b,, a;}. In most applications the state variables will not be i.i.d.. Typically m;
might follow a random walk with non i.i.d. increments, and the latent cost variables might
also exhibit serial correlation. The model in such cases is neither linear nor Gaussian. The
general estimation approach follows Hamilton (1994a, 1994b) and Harvey (1991). The
numerical technique is due to Kitagawa (1987), which is summarized in Hamilton (1994b).
(Glosten and Harris (1988) employ another variant of this method.)

The essence of the procedure is a recursive likelihood calculation. Suppose that

the probability density function of the current state variables conditional on current and

past observations, f,(z, 1 N TS 9) is known for some time . Looking ahead to #+1,

f(zm lqn qt—]"") = Jf(ztﬂlzt)f(ztht’ql—la‘")dzt (7)

where f (z,+l |z,) is the state transition density function.
The conditional probability of observing ¢,,, is

Pr(qm 9> 9115+ ) = If(zm anqz—la- . ) dz,., ®
Zm € Qt+1

where Q,,, = Q(bm,am) as defined in equation (2). The sequence of these probabilities
may be used to construct the likelihood function.

The range of the integration in (8) is a distinctive feature of the present problem.
In typical filtering applications the integration region is R’ where d is the dimension of the
state vector. In the present application, however, the quotes serve to bound the possible
values of the state variables: Q, defines a small region of z; space. In an online
forecasting application we would be interested in computing the probabilities given by (8)
for a number of possible realizations of .. In an estimation situation, however, we need
only compute the probability for the value of g+ that actually occurs in the sample.

Next, note that the joint density of next period’s state variables and quotes is:
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f(zt+1:qt+] qt’qt—la"-) - {f(ztﬂ qt’qt—],...), ifzm EQH] (9)

0, otherwise

This too reflects a simplification peculiar to the present problem: computation of the
right-hand-side density usually involves integration over a density function of the
observational errors. Here, the observations (the quotes) are a deterministic function of

the state variables. Therefore

f(zt+l > qt+l |qta q,_l g )

S (Zm A ‘1:-1,---) = Pr(q,“ 7 R )
0, otherwise

,ifz,, €0, (10)

This completes the update. Maximum likelihood estimation proceeds by maximizing the
sum of the log of the conditional probabilities Pr(qm |q,,q,_1,...). It should be noted,
however, that the procedure does not provide estimated residuals that might be used to
test the specification of the transition densities.

Although straightforward in principle, this update requires the evaluation of two
integrals for which closed-form solutions are not readily available. In the standard Kalman
filter, all joint, marginal and conditional densities are normal, and the results of the
integrations are summarized by update formulae for the conditional means and variances.
In the present case, successive updates involves computation of nested, truncated densities

of increasing dimension.

Computational Considerations

The present analysis follows Kitagawa (1987) in approximating the conditional
density f (z,|q,,q,_,,. ) by a numerical grid or lattice. For state variables
z,={m,a, B}, let lattice cell C; define a rectangular solid in z space. The conditional

density f (z,
lattice cells Pr(Cf |q,,q,_1,...) for i =1,.... The state transition densities f’ (z,+1 |z,) become

9,15 ) is now represented by the set of numerical values defined over the

the discrete transition probabilities Pr(C,’;, C, ) fori=1,... andj=1,.... The integration in

(7) is now replaced by the summation:

p r(Cz{rl |q,, 45 ) = Z Pr(ctil

C!)Pr(Cllg.. g1r---) (11)
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The integration in (8) becomes:
Vol (Cz{q N Qtil)
Vol(C,ﬂl)

Pr(4,ul9, 9rs--) = 2 P{(Clil,, 4, 00-) (12)

j
When the lattice cell lies entirely within the feasible region Q.1, the summand in (12) is
simply Pr(C,{(1 |q,, s> ) . But when only a portion of the cell lies within the feasible
region, the summand is weighted to reflect this. The calculation of the intersection
volume was performed using the computational geometry algorithms and software
routines discussed in O’Rourke (1994).

As with the integration in (8), computation of the summation in (12) is facilitated
by the restrictions implied by Q,.;. The intersection C},, N Q,,, is empty for virtually all of
cells in the z; space, and it is easy to specify the small set of nonempty cells. Furthermore,
if the purpose of the calculation is “off-line” estimation (rather than real-time forecasting),

we can economize on the calculation of the Pr(C,’,,l q,,q,_l,...) in equation (12) by

computing only the values that will be used in the subsequent probability calculation.
These simplifications greatly reduce the computational burden.
There are several approaches to approximating the discrete transition probabilities

Pr(C,’;l C,’) If the density function is relatively constant over C.,,, a useful approximation

is

Pr(C, z) (13)

C:)= Vol(Cl) (2,

where z/ and z, are the cell midpoints. If the density function is not relatively constant

over C/,, one may employ

Pr(C,{L1

C;) ~ _[f(zt+1

J
z t+1 € Cz+l

AR (14)

The method makes no assumptions that the state variables evolve independently.
The framework accommodates, for example, models in which quote exposure costs
covary or depend on the change in the efficient price. As will be discussed in the next

section, however, the present implementation is more restrictive.
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The model is “discretized” in two respects. The first stems from the discreteness
fundamental to the problem at hand, that of the bid and ask observations. The second
aspect, the discrete lattice used to update the probabilities, is only a computational device.
The two roles for discreteness are unrelated. If there existed efficient algorithms for
computing the required definite integrals of large dimension, the lattice approach would be
unnecessary.

The use of a lattice for numerical evaluation obviously introduces misspecification
into the model. The adequacy of the approximation depends on the cell size relative to the

scale of the phenomena involved.

5. The full dynamic model

Overview

The present implementation assumes that the efficient price evolves independently
of the quote exposure costs. Under this assumption, the dynamics of the two components
may be discussed separately. The efficient price evolves as:

m = m,, +u, (15)

As discussed below, the increments to the efficient price u; are assumed to follow an
ARCH-type process.
The bid and ask quote exposure costs are assumed to evolve as:

In(a,) = p, +o(In(e,_,) - 4, )+ v¢

In(8) = 24+ $(In(B.)— 1. )+ 7 (10

where v* and v/ are independently distributed as N (0, of) . This specification allows for
deterministic time variation in the mean, and also a persistent stochastic component.
Although both the bid and ask exposure costs are driving by a common
deterministic component, the stochastic components are assumed independent. This
assumption is most appropriate to a market setting in which the bid and ask quotes are set
by limit orders of different traders. In the case where the quotes reflect the interests of a

single dealer, it would probably be more appropriate to allow for positive correlation
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between the two costs. From a computational viewpoint, it is simple to restrict the model
to perfect correlation. In this case there is a single cost of quote exposure c=o=f. In this
case (discussed in Section 3), the state variables are m, and ¢, While one would certainly
seek to allow for general correlation, attempts in this direction have not yet proved
promising.

I now turn to a detailed discussion of the two components.

The Efficient Price Evolution

The modeling of the increments to the efficient price follows the exponential
generalized autoregressive conditional heteroskedasticity (EGARCH) approach suggested
by Nelson (1991). To allow for leptokurtosis and time-varying volatility in the efficient
price increments, the standardized increment is assumed to be distributed as generalized
error distribution (GED) variate with parameter v: ¢, =u, /o, is distributed as GED(V).
The GED distribution is given by:

vexp{— (%)l://u"]

20T (1/v)

2571(1/v)

, Where A = W)—- 17

fGED(c V) =

In the case where =2, this reduces to the standard normal density.

A standard EGARCH specification models time-varying variances as:
In(a?) = 7+ g{in(02,) - 1)+ 7( .- EIS) (18)

where the terms on the right hand side reflect a mean, an autoregressive adjustment
toward the mean, and a disturbance component driven by the prior period’s shock. The
expected absolute value is unconditional and time-invariant, depending only on the tail-
thickness parameter. It is given by E|¢]= 22T (2/v)/T(1/v). (The asymmetry term
suggested by Nelson is omitted.)

In the present application, a problem arises from the fact that the m, (and therefore
u; and {;=uy/ ;) are not observable. Since knowledge of the bid and offer quote history is
insufficient to compute equation (18), o; must be carried as an unobservable state variable.

This is not computationally feasible. As a more tractable alternative, I assume that the
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variance process is driven by the conditional expectation of the absolute efficient price
increment. That is, |§.1| in (18) is replaced by its conditional expectation Eq.i[|{.1]] = Ex.

il|l#1])/oe1. In addition, the mean is allowed to be time-varying:
In(a7) = 7, + p(In(07,) - 74 + 7 (E.alSa - EI, ) (19)

where E,_|{, \|= E[I u,_,||q,_,,q,_2,...] / o, . This quantity is easily computed in the course of

the iterative update.

Defterministic time variation

Both the quote exposure cost function in (16) and the variance specification in
(19) allow for deterministic effects. At a bare minimum it appears necessary to allow for
the intraday “U” shapes frequently exhibited by market data. A parsimonious function that
permits end-point elevation can be built from exponential decay functions. The

deterministic component of the cost process is:

4, =k + kP ex p(_ kP T:;pen) n kzczase ex p(_ ksclose Ttelose) (20)

open close :

where 777 is the elapsed time since the opening quote of the day (in hours) and 7 is
the time remaining before the scheduled market close (in hours). The deterministic
component of the variance is similarly modeled as:

2D

R exp(—— l;"’””z',‘”""‘) +15°* if tis an intraday interval
* ™™ if t is an overnight interval

(Alternative specifications employed an end-of-day exponential function similar to that

used in (20). The results were statistically indistinguishable from those based on (21).)

Alternative specifications

The full model described above is a joint description of the bid and ask quote
exposure costs and the efficient price. Given the complexity of the model and its
computational burdens, however, it is useful to investigate the performance of simpler
models with more modest aims. For example, if only the quote exposure costs are of
interest, the model might be estimated assuming at each point in time a diffuse prior for

the efficient price (cf. the development in section 3). This variant, consisting solely of the
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cost equations (16) is termed the “cost model”. When m is eliminated as a state variable,
the numerical grid approach is still necessary due to the stochastic variation in the cost,
but the reduction in dimension speeds computation. Alternatively, if the efficient price
dynamics are the sole concern, one might estimate (15) under the assumption that the
quote exposure costs are diffusely distributed over the positive real line. This variant is

termed the “discrete EGARCH model”.

6. Estimation

Data

I estimate the specifications described in the last section to NYSE bid and ask
quotes for Alcoa (ticker symbol AA) for all trading days in 1994. Alcoa is the first Dow
Stock (in alphabetical ordering) and is viewed as a representative high-activity security.
Bid and ask quotes are those prevailing at the close of 15-minute intervals. The first
observation of a day generally corresponds to 9:45, the last to 16:00 (26 points). There
are 6,780 observations.

Table 1 reports descriptive statistics for the absolute value of the bid first-
differences. (Results for ask first-differences were virtually identical.) The proportion of
intervals for which the bid change is zero is 39% (intraday) and 18% (overnight). Not
reported in the table is the additional finding that in 24% of the intraday intervals and in
8% of the overnight intervals, there was no change in either the bid or the ask quote. If
the underlying changes in the efficient price are viewed as arising from a continuous
distribution of modest leptokurtosis, these figures suggest that the efficient price changes
are not large relative to the tick size. The extreme values in the sample lie roughly seven
standard deviations from the mean for the intraday intervals and five standard deviations
from the mean for the overnight intervals.

(For a normally-distributed variate, the probability of observing an extreme value
seven standard deviations from the mean in a sample of 6,528 observations is
approximately 1x107'°; that of an extreme value five standard deviations from the mean

in a sample of 251 observations is approximately 1x1077.)
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Table 2 reports descriptive statistics for the bid-ask spread. There is clear
variation in the spread. In a sense, one purpose of the present model is the allocation of

this variation to deterministic and stochastic effects.

Computational details

Computation of the likelihood function for the model of Section 5 followed the
method described in Section 4. The three-dimensional integration lattice was constructed
from one-dimensional lattices, one for each of the state variables &, #, and m. The break-
points for the « lattice were (in ticks): 0., 0.01, 0.2, 0.04, 0.07, 0.13, 0.24, 0.46, 0.88,
1.67, 3.16 and 6 (the maximum spread in the analysis). These breakpoints approximate
fixed intervals in In(@). The lattice for m ranged from the lowest bid in the sample to the
highest ask, in 0.2-tick increments.

The number of cells necessary to cover a given quote region (J(a,b) depends only
on the spread a-b. For spread sizes of one through six ticks, the corresponding cell counts
are: 282, 352, 218, 218, 198, 162 (for the full model); S, 10, 15, 25, 30 (for the restricted
EGARCH-only model); 74, 95, 42, 40, 40, 25 (for the restricted cost-only model). From
equations (11) and (12), it is apparent that the number of computations involved in the
recursive update is the product of the number of cells for the time 7 observation and that of
the time #+1 observation.

Given the structure of the model, the transition probability density function factors
as f (z,+1 |z,) =f (a,J,1 la,) f (,B,+1 |ﬂ,) f (mm |m,) , where the components may readily be
derived from equations (15) and (16). The transition probabilities between lattice cells
were generally computed using the midpoint approximation described in (13). However,
if the m transition contained zero, approximation (14) was used. (The GED distribution is
peaked at zero for low values of v.)

Estimates of the full model

Table 3 reports parameter estimates. For purposes of exposition, these may be

grouped as cost- and EGARCH (variance)-related. The EGARCH-related parameter

estimates suggest a strong persistent stochastic component of the return variance. The
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autoregressive variance parameter estimate of ¢=0.88, however, implies a half-life of
about six (15-minute) periods. The intraday persistence reflects, therefore, phenomena
different from those underlying daily and longer-term volatility persistence. The GED
tail-thickness parameters of v*® =086 and v*™#" =102 . For comparison purposes,
Figure 4 graphs the GED density with 1=0.86 against the standard normal.

The vestimates are lower than Nelson’s estimate for daily CRSP returns (about
1.6). The present estimates imply a more pronounced leptokurtosis, consistent with a
“lumpy” intraday information arrival process for individual stocks. This is less
pronounced in the daily index returns due to aggregation over firms and time.

Turning now to the quote-exposure cost estimates, the deterministic parameters
depict the usual U-shaped intraday pattern, although the standard errors of the decay rates
are large. Of more interest is the characterization of the stochastic component. Both the
disturbance variance o; and the autoregressive parameter ¢ are strongly positive. The
autoregressive parameter suggests that 37% of the excess log cost persists at the
subsequent time point (fifteen minutes later).

The relative importance of the deterministic and stochastic sources of variation in
the quote exposure cost can be ascertained from simulations of the model using the
parameter estimates. For a simulation of 2,500 days, Figure 5 depicts the time path of the
10™ 50™ and 90™ percentiles of the cost expressed in dollars per share. The 50* percentile
(the median) displays the “U” shape characteristically found in spreads. The median is
roughly four cents per share at the open and two cents thereafter, rising slightly at the
close. Most importantly, the elevation associated with the beginning and end of trading is
modest compared with the stochastic variation implied by the 10™ and 90" percentile
bands. This suggests that the stochastic component is relatively large.

The finding of a mean-reverting persistent component in the cost of quote
exposure is consistent with several models of economic behavior. It may reflect mean-
reversion in the underlying cost determinants (such as asymmetric information exposure
costs or inventory holding costs related to risk) that are common across all actual and

potential quote-setters. It may also reflect, however, the arrivals and departures of
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individual traders with differing costs. A buyer anxious to trade, for example, might enter
a limit order that betters the prevailing bid. At some point this limit order is likely to be
removed, either because it has been hit or else because the trader has withdrawn it and

replaced it with a market buy order.

Estimates of the cost and EGARCH models. ‘

Both the cost and EGARCH models are computationally simpler subcases of the
full model. The first follows from an ongoing assumption of a diffuse prior for the
efficient price; the second assumes a diffuse prior on the quote exposure costs. The
resulting estimates are given in the last two columns of Table 3. Not only are the
estimates virtually identical to those obtained for the full model, but so are the estimated
standard errors. Although one might have hoped that the full specification would result in
more precise estimates, this does not appear to be the case.

Several considerations could account for this failure. One possibility is simply
general model misspecification. But it is also possible that even in a correctly specified
model, the information about & and S contributed by m is small. There is no strong
economic presumption supporting correlation between m and the cost variables. (For
example, when we are in a full diamond region of Figure 2, knowledge of m is more

informative about the dispersion of ¢ than expected value of c.)

7. Discussion: does discreteness matter?

The question was posed by Hausman, Lo and MacKinlay (1992) in discussing their
ordered probit model of transaction price changes. It is relevant here for similar reasons.
At the cost of complexity and computational expenditure, both papers employ refined
statistical methods to characterize the discreteness aspect of security prices. It is fair to
inquire whether and in what circumstances, these costs might be justified by the benefits.
The following discussion suggests some general principles.

If the microstructure time series can be assumed covariance stationary for the
purposes at hand, and if the features of interest are functions of the first and second

moments, then one can apply the methods of linear multivariate time series analysis
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without making an explicit provision for discreteness. Broadly speaking, vector moving-
average and autoregressive models are based on the Wold representation theorem, which
doesn’t rely on assumptions contrary to discreteness. Hasbrouck (1996) discusses the use
of these techniques in microstructure analyses. Reduced-form vector autoregressions are
capable of modeling key aspects of the interactions between order flow, transactions and
quotes without specifying structural features of the market. As an example, Hasbrouck
(1991a) discusses a cross-firm analysis of estimated market depth (price responsiveness to
order flow).

However, if one wishes to move beyond the characterizations offered by the
reduced form models, then one is forced to confront the fact that most of the underlying
determinants of security prices and trading costs are continuous variables and most of the
sample data are discrete. If the features of interest are large relative to the tick size (e.g.,
annual movements in a security’s value), then there is little lost by taking the discrete data
as realizations from a continuous distribution. As the scale of these features becomes
comparable to or smaller than the tick size (e.g., intraday value changes), then the model
becomes progressively more misspecified. The scale of the quote exposure costs
investigated in this paper, for example, is so much smaller than the tick size that ignoring
discreteness would lead to meaningless results.

It may be, furthermore, computationally treacherous to fit discrete data to a
continuous likelihood function. When the object of analysis is the modeling of security
price variances, for example, the econometrician will often attempt to increase the power
of the analysis by using data of higher frequency. The generalized error distribution used
here provides a case in point. Attempts to model actual and simulated fifteen-minute
discrete bid changes in this fashion were numerically unstable. (The distribution of
discrete bid changes has a large mode at zero. The likelihood maximization procedure
kept attempting values of the kurtosis parameter vtending toward zero, in a presumed
effort to capture this peak.)

The present procedure possesses the additional merit that it accommodates both

deterministic nonstationarity and stochastic parameter variation. Both are frequently
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found in microstructure models that attempt to capture behavior of diverse agents in non-
time-homogeneous settings (e.g., around market openings and closures). Although the
usual Gaussian Kalman filter estimates are generally consistent and “best-linear” when the
disturbances are non-Gaussian, neither of these properties obtains when the transition
probabilities are time-varying and stochastic (Hamilton (1994)).

Finally, the present procedure shares with most state-space estimators the feature
that it is essentially a Bayesian forecasting algorithm. As such, the econometrician’s
computation parallels the inference that might plausibly be taken in real time by a market

participant.

8. Conclusion

This paper has presented a dynamic model of discrete bid and ask quotes. The
discrete quotes are rounded transformations of a continuous efficient price and continuous
quote exposure costs. The latter are presumed to capture most of the costs usually
associated with market-making or limit order placement, such as fixed transaction costs
and asymmetric information costs. The full statistical model is a rich one, allowing for
stochastic and deterministic time variation in the efficient price volatility and the quote
exposure cost. The model is estimated by maximum likelihood using a nonlinear state-
space filtering approach due to Kitagawa (1987).

This specification is estimated for NYSE bid and ask quotes collected at the end of
15-minute intervals for Alcoa over 1994. The estimates confirm the existence of
deterministic “U” shapes in the quote cost and efficient price volatility. More importantly,
however, the estimates confirm the existence of a persistent stochastic component of the
quote exposure cost. The magnitude of this component is roughly comparable to the
variation associated with the “U” shapes.

In extending the model to incorporate other aspects of the market process, there
are several guidelines. It is relatively easy to incorporate deterministic effects and
observed exogenous variables into either the cost or efficient price specifications. Such

developments usually require additional parameters in the likelihood function, which does
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not significantly affect the time required for the numerical calculation of this function
(although it will probably increase the number of iterations required for convergence).

It is more difficult to add endogenous variables, such as quote sizes (number of
shares at the bid and ask) or trades that are determined in part by prevailing quotes. These
developments require an expansion of the set of state variables and a large accompanying
increase in the computational burden. One might also want to specify a model for the
quote exposure cost that is more complicated than the first-order autoregressive process
employed here, by including additional autoregressive or moving average terms. These
modifications also require additional state variables. Expansion of the state variable set
runs into the “curse of dimensionality” because of the requirement that the integration of

the conditional probabilities be computed numerically over all variables.
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Table 1.
Descriptive statistics for 15-minute bid changes, Alcoa, 1994.
Bid changes (in 1/8 dollar ticks) were computed for Alcoa for all trading days in 1994
(plus the overnight change).

Intraday Overnight
N 6,528 251
Min (ticks) -10 -15
Max (ticks) 11 19
Mean (ticks) 0.03 -0.21
Std. Dev. (ticks) 1.58 3.70
Distribution
% with no change 39% 18%
% with 1-tick change 37% 27%

% with >1-tick change 25% 47%
g
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Table 2.
Descriptive statistics for bid-ask spread at 15-minute intervals, Alcoa, 1994,
Spreads (in 1/8 dollar ticks) were computed for Alcoa at fifteen minute intervals during

the trading day, for all trading days in 1994

N 6,780
Min 1
Max 5
Mean 1.65
Std 0.67
Distribution

1-Tick 45.9%
2-Tick 43.5%
3-Tick 10.3%

4 or more ticks 0.3%
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Table 3.
The state variables in the model are z, = {m,,a,, B,} where m is the implicit efficient price,
@ is the quote exposure cost on the ask or offer side of the market, and £ is the quote
exposure cost on the bid side of the market. 7 indexes 15-minute intraday intervals (plus
the overnight period). The dynamics of the state variables are:

m =m,, +u, (15)
and

In(a,)=u, + ¢(ln(a,_1) - ,u,_l) +ve

In(8) = 4+ Hin(B) - 11,) +v* (19

where v* and v” are independently distributed as N (0, af) . (Equation numbers are those
given in the text.) The efficient price disturbance, u,, has standard deviation o and after

standardization is distributed as a generalized error distribution variate with tail-thickness

vexp[— @Ié’/ll”}

22T (1/v)

parameter v.

_ 2y
, Where 4 = —I:(W (17)

$=u/o, fGED(C; V):

The efficient price variance follows a modified EGARCH process:
In(a?) =1, +¢(in(02,) - 1.0)+ 7 (Eral - ElS) (19)

where E, |¢, \|= E[I TR | A ] / o, is the filtered estimate conditional on the bid and
ask prices through #-1.

The deterministic component of the cost process is:

u =k +kr" exp(— i Tttrpen) + k;lose ex p(_ k;lose Ttelose) (20)

close ;

is the elapsed time since the opening quote of the day (in hours) and 7;°*is

open

where 7;

the time remaining before the scheduled market close (in hours). The deterministic
component of the variance is:

e2))

_ [L+ 8 exp(— B g™+ 57, if tis an intraday interval
* g™ if tis an overnight interval
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Table 3 (Continued).
The observations are the quotes, which comprise a bid and ask price, g={b,, a;}. These
are functions of the state variables:

b, = Floor(m, - f3,)
a, = Ceiling(m, + ;)

(M

The column corresponding to the “full” model gives parameter estimates based the
Kitagawa nonlinear filtering procedure. The “cost” estimates reflect an estimate of the
cost-related parameters assuming a diffuse prior for the efficient price (also using the
Kitagawa procedure). The “EGARCH?” estimates refer to maximum likelihood estimation
of a discretized EGARCH specification.

The models are estimated for Alcoa over all trading days in 1994, with 7 indexing
15-minute intervals within the day (and the overnight interval). Standard errors are

reported in parentheses.
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Table 3 (Continued).

Model
Full Cost EGARCH
Quote exposure k, -1.67 -1.68
cost parameters: (0.03) (0.03)
e 0.45 0.46
(0.06) (0.06)
ke 2.42 2.40
(0.72) (0.69)
klose 0.21 0.19
(0.07) (0.07)
keglose 3.48 3.50
(2.50) (2.68)
¢ 0.37 0.39
(0.03) (0.03)
o, 0.86 0.86
(0.03) (0.02)
EGARCH 4 0.39 0.35
parameters: (0.06) (0.07)
oven 1.73 1.76
(0.23) (0.24)
IR 1.11 1.11
(0.23) (0.23)
I5e 0.59 0.61
(0.14) (0.15)
i 2.73 2.73
(0.13) (0.14)
p 0.88 0.90
(0.02) (0.02)
4 0.29 0.28
(0.03) (0.03)
v 0.86 0.81
(0.02) (0.02)
i 1.02 1.01

(0.12) (0.11)
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Figure 1
As a function of the efficient price m, bid quote exposure cost 3, and ask exposure cost
a, the discrete bid and ask quotes are given by b=Floor(m—f3) and a=Ceiling(m+ c).
Given the observed discrete quotes, the feasible region for m, arand SBis
0®,a)={(m,a,p).a, f>0,b<m-f<b+landa—1<m+a< a}. The figure depicts
the region Q(b=0, a=1). The figure shows a detailed view and rotated perspectives.
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Figure 2
As a function of the efficient price m and quote exposure cost c, the discrete bid and ask
quotes are given by b=Floor(m—) and a=Ceiling(m+c). Given bid and ask quotes a and
b, the region of feasible m and c is:
O,a)={(m,c):c>0,b<m-c<b+landa-1<m+c<a}

The figure depicts the regions Q(0, 1), O(0, 2) and Q(0, 3).
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Figure 3
Figure depicts unconditional and condition probability densities for the efficient price m
and quote exposure cost ¢. The unconditional density of c is lognormal: Log]c] is
normally distributed with mean —1.0 and standard deviation 0.6. The unconditional
density for m is a uniform diffuse prior on the interval (0, x), where «is an arbitrary
positive constant (and does not appear in the conditional densities). The conditional

densities are conditional on observing bid and ask quotes of 5=0 and a=2.

Panel A. Unconditional and conditional densities of the quote exposure cost c.

J©) Siclb=0, a=2)
2 2
14 1
[4 4
0 1 2 0 1 2

Panel B. Unconditional and conditional densities for the efficient price m.
fim) Jim|b=0, a=2)
2

1/x




Figure 4
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Figure depicts the probability density functions for the standard normal and standard GED

with tail-thickness parameter 1=0.86.
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Figure 5§
Figure depicts the time of day patterns in the quote exposure cost for ticker symbol AA
implied by the model and estimates given in Table 3. The solid line is the 50™ percentile
of the cost. The upper and lower dashed lines are the 10" and 90" percentiles

(respectively). (NB: these are not estimation confidence intervals.)
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