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Abstract

We value American options on bonds using the Geske-Johnson (1984) tech-
nique as modified by Bunch and Johnson (1992). The method requires the
valuation of European options, and options with two and three possible ex-
ercise dates. It is shown that a risk-neutral valuation relationship along the
lines of Black-Scholes (1973) model holds for options exercisable on multiple
dates, even under stochastic interest rates, when the price of the underly-
ing asset is lognormally distributed. The proposed computational procedure
uses the maximized value of these options, where the maximization is over all
possible exercise dates. The value of American option is then computed by
Richardson extrapolation. The volatility of the underlying default-free bond
is modelled using a two-factor model, with a short-term and a long-term
interest rate factor, where the short-term interest rate is mean-reverting.
Simulations show that penny accuracy is achieved with this computationally
efficient method.
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1 Introduction

The valuation of American-style bond options involves two important aspects
that need to be modelled carefully. First, stochastic interest rates influence
the volatility of the price of the bond, the underlying asset, in a complex
fashion as the bond approaches maturity. The behavior of the volatility over
time influences the value of the option if held to maturity, as well as the
incremental value of the early exercise (American) feature. Second, the early
exercise decision for such options is affected by the term structure of interest
rates on future dates, since the live value of the claim on each future date
depends on the discount rates on that date.

In this paper, we model the volatility of the default-free bond price using
a two-factor model. Hence, the bond’s volatility is determined by the volatil-
ities of the two interest rate factors as well as the sensitivity of the bond price
to changes in the two factor rates. Such a model allows us to capture the
effect of non-parallel shifts in the term structure of interest rates, that may
have a significant effect on the volatility of the bond price over time, and
hence, on the value of the contingent claims. In analyzing the early exercise
decision, it is useful to derive a quasi-analytical model for the value of an
option that can be exercised on one of many dates, for speedy computation
of option values and hedge parameters. This is possible when (continuously-
compounded) interest rates are normally distributed, i.e., when the prices of
zero-coupon bonds are lognormally distributed, since, in this case, it can be
shown that a risk-neutral valuation relationship (RNVR) along the lines of
the Black—Scholes model exists for the valuation of European options, even
under stochastic interest rates.

Since an American option can be thought of as an option with many
exercise dates, where the number of dates becomes very large, it is necessary
to establish a similar RNVR for options exercisable on one of many dates.
Once such an RNVR is established, American-style options can be valued
using an extension of the Geske and Johnson (1984) (GJ) approach, i.e.,
by extrapolation using a series of options that can be exercised on one of a
number of discrete dates. The series consists of a European option, an option
exercisable on one of two dates, and so on.

1This has been established in the case of a single-factor interest rate model by Jamshid-
ian (1989) and for the general case by Satchell, Stapleton and Subrahmanyam (1995).
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GJ apply their methodology to the case of American put options. How-
ever, the principle behind the GJ approach can be applied to any American-
style option whose value depends upon the underlying asset price as a state
variable.? In particular, it applies to American options for which early exer-
cise can be generated, for example, by the changing volatility of the underly-
ing asset, or by the nature of the exercise schedule. It can also be applied to
the valuation of American options on assets, including bonds, when interest
rates are stochastic.?

Since the quasi-analytic formulae for American options involve multivari-
ate cumulative-normal density functions, their implementation can be sim-
plified by approximating the normal distribution by n-stage binomial distri-
butions along the lines of Cox, Ross and Rubinstein (1979). However, the
method needs to be generalized to handle the changing volatilities of the as-
set (both conditional and unconditional) over time. Also, the method has to
take into account the possibility that the term structure of interest rates and,
in turn, bond rices are driven by a multifactor model. The method we use to
capture changing volatilities is similar in spirit to that suggested in Nelson
and Ramaswamy (1990), generalized by Ho, Stapleton and Subrahmanyam
(1995) (HISS).

In the single-variable approach with a constant volatility of the price of
the underlying asset, the Cox, Ross and Rubinstein (1979) method involves
building a binomial tree centered around the forward price of the asset, rather
than around its expected spot price. For a European option, the option
payoff is computed at each node of the tree on the expiration date and the
expected value of this payoff is discounted to determine the option value. For
American options with multiple exercise dates, the procedure is somewhat
more complex. First, the method used here entails building a binomial tree
whose conditional expectation is the forward price for delivery on each of the
possible future exercise dates of the option. Next, the contingent exercise
decisions on each future state and date are determined and the forward price
of the option on each future date is determined. Finally, these forward prices
are discounted using the appropriate zero-coupon bond price to determine

?Huang, Subrahmanyam and Yu (1996) use an alternative method where the early
exercise boundary is first estimated and then the value of American options is determined
by extrapolation.

3See Ho, Stapleton and Subrahmanyam (1997) for an application of the GJ approach
to the general problem of valuation of options on assets when interest rates are stochastic.
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the current value of the option.

In the case of American-style options on finite-life, coupon bonds the
(3J method has to be adapted somewhat. Since the volatility of a finite-life
bond tends to decline over time, with the approach of the bond maturity,
an American-style option on the bond is very much a wasting asset. In the
case of European options, a long-maturity option may have less value than
a shorter-maturity option. For this reason we use a GJ type approximation
where the European option and the option with two possible exercise dates
are chosen so as to maximize the value of the options. Thus our bench-
mark, or minimum possible, value for the American-style option is the value
of the European option with the maximum value; where the maximum is
taken with respect to the feasible lives of the option. In the case of a typical
ten-year coupon bond, this maximized European option value may be that
of a two or three year maturity option. Similarly, in the case of the option
with two possible exercise dates, we take the maximum option value taken
over all possible pairs of exercise dates.* GJ type extrapolation is then per-
formed, using an exponential rather than a linear approximation to generate
estimates of the American-option price.® We also demonstrate that only a
relatively small increase in accuracy is obtained when options exercisable on
one of three dates are added to the extrapolation. This small increase can be
obtained only with a relatively large amount of computational effort. Simu-
lations show that it is far more important to obtain accurate estimates of the
volatility and the forward price inputs, than to consider options exercisable
on more than two dates. Thus, our solution provides a rather simple prescrip-
tion for the answer to a problem of considerable complexity. The method
presented in this paper may be applied to the valuation of any American
option under stochastic interest rates, given that the distributional assump-

4This method was proposed and tested in a somewhat different form by Bunch and
Johnson (1992). Since Bunch and Johnson do not value options on finite-lived assets, they
can take the first term in the extrapolation as the value of the European option whose
maturity equals that of the American option. Along the same lines, they then find the
maximum option value with two exercise dates, given that the second exercise date is the
final maturity date of the American option. In the case of finite-lived assets such as bonds,
the Bunch and Johnson approach has to modified along the lines proposed here since the
volatility of the bond declines as it approaches maturity.

5Ho, Stapleton and Subrahmanyam (1994) modify the linear Richardson approximation
technique used by both GJ and Bunch and Johnson, adapting it for long-maturity option
using exponential approximation.
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tions are satisfied. It is fully consistent with approaches using a multifactor
model of the term structure of interest rates, but is simpler and more ef-
ficient than other approaches, because it involves the evaluation of options
with only a small number of exercise dates. It is also more general than
alternative approaches using a particular factor model for the evolution of
the term structure of interest rates, although it uses a two-factor model for
generation of the volatility inputs. However, the important restriction, as
in the case of the Black and Scholes (1973) model, is that asset prices must
follow a multivariate lognormal distribution.

In section 2, we discuss the modification of the GJ approach to the case
of American options in the context of other approaches in the literature. In
section 3, we present a valuation model for American-style options on bonds
and establish the requisite RNVR’s. In section 4, we proceed to illustrate the
method by applying it to American options on a variety of bonds. We show,
using simulations, that for reasonable exercise schedules, the GJ method can
be applied in modified form using options exercisable on one date (European
options) and on one of two possible dates only.

2 Bond Options and the Use of the Geske—
Johnson Methodology

Much of the work in recent years on the valuation of contingent claims on
bonds and interest rates uses a factor model to characterize the evolution of
the term structure of interest rates. For example, Ho and Lee (1986), Black,
Derman and Toy (1990), and Jamshidian (1989) all build a process for the
evolution of the term structure based on a single-factor model. Although
Heath, Jarrow and Morton (1990a, 1990b, 1992) provide a framework for the
pricing of claims using a general multi-factor approach to characterize the
term structure, the implementation of this methodology using a binomial lat-
tice becomes difficult when the number of factors increases beyond two, due
to the computational problems associated with building a multi-dimensional
lattice of bond prices or interest rates.® In addition to the cumbersome
procedure for building a multidimensional lattice, the problem of valuation
of American-style options requires an examination of the optimality of early

6See Hull and White (1994) for details of implementation of a two-factor model.
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exercise at each node of the lattice, which is even more complex. The compu-
tational limits of the multi-factor lattice approaches are illustrated by Amin
and Bodurtha (1995) who find even a ten-stage lattice very costly to imple-
ment when two or more factors are involved. In contrast, the GJ methodology
can be implemented without any restrictive assumptions involving the factor
model underlying term structure movements.

In view of the limitations of the lattice-based approaches, it is worthwhile
to explore the possibility of deriving a quasi-analytical model and using the
GJ methodology to value American options. GJ originally suggested the use
of the Richardson approximation to extrapolate the value of an American op-
tion from the values of a series of options: a European option, an option with
two possible exercise dates, an option with three possible exercise dates, and
so on. A number of subsequent papers have extended and modified the basic
GJ approach. For example, Omberg (1987) and Breen (1991) approximate
the distribution of the price of the underlying asset with a binomial process.
However, Omberg (1987) shows that there could be problems of non-uniform
convergence in some cases. Essentially, in these cases, the computed value of
the American option is not monotonic in the number of number of options
considered for the Richardson extrapolation. Hence, one has to be careful in
choosing the number of options for extrapolation. Bunch and Johnson (1992)
modify the GJ method by showing that it may be more efficient to compute
the prices of all options with two exercise dates and select the one with the
maximum value. In this manner, one can obtain the best approximation with
the extrapolation. HSS (1994) point out that the accuracy of the GJ tech-
nique can be improved, particularly in the case of long-term options, such as
warrants and bond options, by using an exponential rather than a linear ap-
proximation in the extrapolation. In addition, HSS (1997) show that the GJ
technique can be extended successfully to the multi-dimensional case where
interest rates as well as the price of the underlying asset are stochastic.

In the present paper, we use all these extensions and modifications of the
GJ technique, and apply them to the problem of valuation of bond options.
First, we use the binomial methodology of Omberg (1987) and Breen (1991),
but avoid the non-convergence problem by using a two-point extrapolation
on the lines of Bunch and Johnson (1992). We also use the exponential
approximation proposed by HSS (1994) to improve the results for long-term
options. Also, since we necessarily have to address the issue of stochastic
rates when valuing bond options, we use the results in HSS (1997) where it
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is shown that a risk neutral valuation relationship exists for the pricing of
claims even in this case.

3 The Valuation Model

We are interested in valuing American-style options on bonds, given the ex-
ercise schedule, i.e., the relationship between the exercise price of the option
and the exercise date.” The options could, in principle, be standard call or
put options or more complex exotic options whose characteristics are defined
by the respective payoff functions. The exercise schedule is defined as

K. =K(t),i=12,...,J, (1)

where ¢; are the exercise dates, t; is the earliest date on which the option can
be exercised, t; = T' is the maturity date of the option, and J is the number
of dates between the current date, 0, and the maturity date ¢; on which the
option can be exercised.

The value of the underlying bond at time ¢; is defined as S;;. Thus, the
“live” value of the option, i.e., its market value if it is not exercised at or
before time t7, is Cy,, and its value, just prior to the exercise decision at time
ti 1s

max[g(S,), Ci), 1 =1,2,...,J, (2)
where g(3;,) is the payoff function of the option. Since we are concerned here
with the possible early exercise of such options, the price of the option on
intermediate dates between 0 and t; is relevant. We denote the price of the
option at time ¢;, with J possible exercise dates over its life, as

Oyttt K(8), 1= 1,2,..., . (3)

Similarly, the value of the option at time0 is defined as Co(t1,ta, . . ., s, K(t:)),
i=1,2,...,J

In general, the GJ approach to the valuation of American options esti-
mates the American options by Richardson extrapolation from the values of
a series of options, with 1,2,...,J exercise dates. We denote the estimated

"The exercise schedule, which represents the changing exercise price of the option over
its time to maturity, is specified as part of the bond option contract. It is a feature of
many bond option contracts, particularly those that are embedded as part of the bond.
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American option prices as C'(J, K(t;)), where J refers to the maximum num-
ber of exercise dates of the option in the series used. For instance, in this
notation C'(2, K (t;)) is the estimated price of the American option using the
values of two options: the corresponding European option and an option
with at most two exercise dates.

We first establish conditions under which options can be valued using
formulae analogous to those of Black and Scholes (1973). The central idea
here is the concept of a risk neutral valuation relationship, which can be
defined as follows for European options:

Definition 1: A Risk-Neutral Valuation Relationship (RNVR) exists for a
European option if it can be valued by taking the expected value of its payoff
using a distribution for the asset price which is identical to the true distribu-
tion but with the mean shifted to equal the forward price of the asset.

The Black and Scholes (1973) model can be thought of as a RNVR,
under the assumption of continuous trading (or a lognormal pricing kernel)
and a lognormal distribution for the asset price on the expiration date of
the option. As shown by Merton (1973) and extended by several others
including Satchell, Stapleton and Subrahmanyam (1995), Turnbull and Milne
(1991) and Heath, Jarrow and Morton (1990a), this result can be extended
to the case of stochastic interest rates. In the case of American-style options
under stochastic interest rates, the definition of a RNVR has to be broadened
somewhat along the following lines:

Definition 2: A Risk-Neutral Valuation Relationship (RNVR) exists for the
valuation of an option that has multiple exercise dates, if the option can
be valued by taking the expected values of its payoff using distributions of
the asset price at the various exercise dates, and discounting them using the
relevant zero-coupon bond prices. The distributions are identical to those of
the true distributions except for a mean shift which makes the conditional
expected value of each of the prices equal to their respective forward prices.

The concept of a RNVR for European options can thus be generalized
to American options. The key aspect of the RNVR for American options
is that it yields a valuation model based only on the forward price of the
asset for delivery at various future dates before the expiration date of the
option and the corresponding volatilities. We now define the implications of
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a RNVR more precisely and then establish conditions under which the price
of an option with two possible exercise dates, Co(t1,t2, K (1), K (12)), can be
found, if we know: (a) the forward price at time 0 of the asset for delivery
at ¢, (b) the conditional forward price of the asset at time 2, for delivery at
ty, (c) the forward price at time 0 of the zero-coupon bond for delivery at t;
which pays one unit of currency at t,, plus all the relevant volatilities. More
formally,

Proposition 1 If a RNVR relationship exists for the valuation of an option
with two possible exercise dates, then

CO(tlat% ](tl )a ]{tz) = BO,tl E[Y;HL (4)

where
Y;l = maX[Stl - I(tl ) Ctl (t27 ]{12)]7

(3)

and where

Ctl (t2a I(tz) = BtlthEtl [Ytz]a (6)
Y;f'z - maX[Si'z - I{tzao]’ (7)

and all the relevant conditional distributions of the three random variables,
Si, Si,, and By, 4,, have means equal to their respective forward prices.

Proof: Y;, and Y;, are the option values (or cash flows accruing to the holders
of the option) at times ¢; and 5. A positive cash payoff occurs at t; if the
value of the option at #; if not exercised, Cy, (t2, K,), is less than the payoff
from early exercise. The positive payoff Y, occurs only if the early exercise
condition at ¢; is not fulfilled and the option ends up in-the-money at #,.
From the definition of a RNVR, we know that the option value is the
value discounted at By, and By, ., of the expected payoffs on the option.
Hence (4) is correct if expectations are taken with respect to the shifted
distributions of S;,, S;, and By, 4,. Also, if the RNVR holds, the exercise
decision at t; can be taken by valuing the option at ¢1, using (6) and (7).
Note that there are two random variables at ¢, that affect this decision, the
price of the underlying bond, Sy, and the zero-coupon bond price, Bj,,.
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The latter affects the spot price of the option (if unexercised). Equation (6)
values the option at #; with a RNVR. The expectation of St,, as of time 1,
is the forward price of S;, at time ¢;. O

Corollary If « RNVR exists for the valuation of an option with ezercise
dates, t1 and t,, a RNVR exists for the valuation of European options with
exercise dates t1 and tq, respectively.

Proof: If we make K;, = oo, (4) becomes
CO(tla t2, I(tl ) -[{tz) = BoqtlE[KlL

that is
Co(tlv t27 ‘[{tl ’ ]{h) = BoytlE[ma‘x(Sh - ](h ’ O)]? (8)

since

Ctl (tz, ]{tg) = 0

This confirms the RNVR, for a European option of maturity ;.
Also, if we make K;, = oo, (4) becomes

Co(tl, tz, I(tl 5 I(tz) = BO,tl E[Btl,t2 maX(Stz — [(tg 5 0)],
that is
Co(tl, tg, [{tl N I{tz) = _BoytzEj[]fl’la,X(St2 — 1(12 y O)] . (9)

This confirms the RNVR, for a European option of maturity ¢,. O

The implications of Proposition [ for the computation of the C; price are
illustrated in Figure 1. There are n; states at time ¢; where a state is defined
as a pair of values of the asset price (St ) and the zero coupon bond price
(Bi,.1,). The expected value of each variable is its respective forward price. In
each state a call price is computed using (6). This is compared with the early
exercise payoff, S;, — K;,. In Figure 1, states 0 to hy indicate states in which
early exercise occurs. In all other states the option is not exercised at ¢;. In
the states where exercise occurs, Y;, is equal to Sy, — K3,. In all other states
Y,, = Cy,. If the option is not exercised at ¢; it may pay off at ¢,. This occurs
in states hq to no at 5. Note that the probability of the Y}, values occurring
are joint probabilities over the pair of variables (S, By, +,). The probability
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of the payoff ¥;, = max[S,, — K,,,0] values occurring are joint probabilities
over the triplet of variables (S, By, 4,55t ). Proposition I implies that the
expected values of Y;, and Y, can be computed using distributions of the
three random variables each with a conditional mean equal to its forward
price. The call price can then be computed by discounting the time ¢; payoff
or option value at the zero-coupon bond prices By, .

HSS (1997) establish sufficient conditions for the existence of a RNVR
relationship to exist for the valuation of an option exercisable on one of many
dates when the asset prices on a future date are joint-lognormally distributed.
Specifically, this involves the derivation of conditions that are strong enough
to guarantee that the risk-neutral distributions of the underlying asset price,
{S,,i=1,2,...,J} are joint lognormal with their conditional means being
equal to the respective forward prices. These conditions are that the price
process for the underlying asset and the (conditional) pricing kernels, at
time 0 for cash flows at time t1, and at time ¢; for cash flows at time {;, ¥y,
and 1y, ,, respectively, are joint-lognormally distributed.® The result holds
for the general case with J exercise dates. However, to avoid cumbersome
notation, we state the following proposition for the case of options that are
exercisable on one of two dates:

Proposition 2 Suppose that the prices of an asset at t; and ty, Sy, and Sy,,
and the price at t; of the zero-coupon bond which matures at ty, By, 4, are joint
lognormally distributed. Then, if there exist joint lognormally distributed
pricing variables ¥y, , Py, 1,, which satisfy

FO,t1 = E(Stﬂ/)tl)a E(dm) = 17 (10)

Ft1,t2 = E(Stzd)h,h)v Et1(¢)t1,t2) =1, (11)
and if @ RNVR holds for all European call options, then a RNVR exists for
the valuation of an option with two possible exercise points.

Proof: See HSS(1997). O

Since, by Proposition 2, a RNVR exists for the option with two exercise
dates, it follows from Proposition 1 that the option can be valued given
appropriate forward price and volatility inputs. The same argument applies
to the case of an option exercisable on one of J dates.

8The pricing kernel can be thought of as a (state-dependent) random variable that
adjusts for the risk aversion in the economy.
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4 The Application of the Geske—Johnson Tech-
nique to Bond Options

In HSS (1996), we extend the GJ methodology to the case of American
options with stochastic interest rates. In its simplest form, the GJ technique
estimates the value of an American option by Richardson extrapolation as

C(2, K (t;)) = Colty, ta, K(t:)) + [Coltr, ta, K(:)) — Co(t, K ()], (12)

using options with just one and two exercise dates, and as

G K () = Coltr, ta b, K(1)) + ;[Co(tl,tg,t;),,l{(ti)) — Coltr, ta, K (1))
—%[Co(tl,tQ,I{(ti)) — Colt, K ()], (13)

using options with one, two, and three exercise dates. Ior simplicity of
notation, we write (' for the time 0 value of an option with J exercise dates
and C; as the estimated price of the American option using J options®.

In applying this technique to the case of options on bonds, this procedure
needs to be modified because of the changing volatility of the underlying as-
set. To see this, consider the case of stock options to which the GJ technique
was first applied. The reason why the simple GJ technique works quite well
for stock options is that the (non-annualized) volatility of the underlying as-
set increases with time in this case. Hence, in this case, the European option
C, with an expiration date T has the highest value of any of the European
options with maturities in the range [0, T]. Similarly, the C; option with the
highest value is, at least approximately, the one with exercise dates at T'/2
and 7', and the Cs option with the highest value is close to the one with
exercise dates 7'/3,27T/3 and T'.

The pattern of volatility of a bond price over the life of the bond is quite
different from that for stock prices because of the finite life of the bond. A

°In simplified notation, equations (12) and (13) are as follows:
Cy = Cy+[Cy—C,
7 1
Cs = C3+ 5[03 —Cs] - 5[02 - C1].
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default-free bond with a finite maturity of N years tends to have declining
(annualized) volatility over its life, with the volatility declining to zero at
maturity. This means that the (non-annualized) variance of the bond price,
as a function of time, rises and then eventually falls to zero, at maturity. The
changing volatility of the bond price creates a problem in applying the GJ
technique, since it is no longer clear which values of options exercisable on
a finite number of dates (Cy,Cy,Cs) should be used in the extrapolation in
equations (12) and (13) above. For example, suppose the American option
that we wish to value has an expiration date of T < N, where N is the
maturity date of the underlying bond. Now, consider a European option on
the bond with the same expiration date, T'. The value of the European option
C, depends on the expiration date, since the volatility of the underlying bond
price changes over time, depending on the value of T'. In the extreme case,
where T = N, the volatility is zero, and the option Cy, therefore, has zero
value. Similarly, when T is very small in relation to N, the time to expiration
of the option is too low for the option to have much value. However, if T is
somewhere in between, say at N/2, the value is likely to be much higher!©.
A practical solution to this problem is to use the “maximizing” modifi-
cation of Bunch and Johnson (1992) to the basic GJ technique. Under this
modification, the C;, Cy, Cs values that are used are the mazima over all pos-
sible exercise dates. Thus, C} is the value of the European option with the
highest value, where C is maximized over all possible exercise dates in the
range [0, T]"!. Similarly, C; is maximized over all possible pairs of exercise
dates, and C3 over all possible triplets of exercise dates'?. The Bunch and

10This highlights an important difference between the option on a finite life bond and
an option on an infinite life asset, such as a stock. In the case of stock options, the longest
life call option is the one with the highest value.

1 The European option with the highest time 0 value is

€1 = Gu(t") = max(Cu(0))t € (0, ],
where T is the final maturity date of the American option.

12The “mid-Atlantic” option with two exercise dates which has the highest value at time
0 is worth

C; = CZ(tIyt;) = l;n":;'x[cz(tlztz)]:tl S t2at1)t2 S (O;T]7
1,42

where T is the final maturity date of the American-style option. C3 is defined analogously
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Johnson (1992) technique, which provides only a marginal improvement in
accuracy in the case of stock options is, therefore, essential in applying the
GJ methodology to bond options.'?

In HSS (1994), a further modification of the GJ methodology is suggested.
It is shown that, for long-dated options, the accuracy of the GJ approach
can be improved by assuming an exponential relationship between the prices
of options with different numbers of exercise dates. Combining the ideas of
the HSS (1994) “exponential” technique and the Bunch and Johnson (1992)
“maximization” technique, we use the following predictor of the value of an
American option. Using just C; and Cj values, the approximation for the
value of the American option is given by

Cy = [C5/CF1C5. (14)

The value of the American option is the asymptotic value of the series of
maximized option values. The methodology is illustrated in Figure 2, which
shows a plot of option values as a function of the number of exercise points.
When there is only one exercise point, the option values lie in the range A to
A’, the highest value being at A. Similarly, for two and three exercise points,
the maximum values are at D and E, respectively. Using the values at A, D
and E, the asymptotic value at B is obtained by extrapolation.

by

C5 = Cs(t],t3,t3) = ,max [Ca(ty,ta, t3)], 1 <ta <ts,ty,ta,t3 € (0,71
1,62,t3

13Bunch and Johnson (1992) found that the increased accuracy produced by their maxi-
mization technique meant that inclusion of options with more than two exercise dates was
unnecessary (except for deep-in-the-money options). We conducted a similar test using
options with three exercise points and using the prediction formula (33) with J = 3. The
maximization procedure is more complex with three exercise points, so the time taken to
compute the prices is considerably increased. We found that the prices were very similar
from the two models, showing that penny accuracy (i.e., to within 1%) was produced by
the model with just two possible exercise dates. Details of the simulations are given in
Ho, Stapleton and Subrahmanyam (1991).
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Inputs required for the calculation of é’l, 02 and ég

In HSS (1995), we describe a method which can be used to construct a
multivariate-binomial approximation to a joint-lognormal distribution. This
approximation can be used to value an option with two possible exercise
dates. The key step in this methodology is the construction of a binomial
tree with the required mean, variance and covariance characteristics. In this
section we describe the required inputs for the model.

The important inputs required for the calculation of option prices are
the forward prices of the asset for each exercise date, and volatility of the
asset price over the relevant time periods. For example, since we need the
maximum European option price, we need the forward price and volatilities
for all possible future exercise dates. In the examples that follow we maximize
the option prices by calculating the prices of options with maturities that
increase by six-monthly intervals. Similarly, when calculating C; and Cj
values, we consider a set of possible exercise dates on a grid of six-monthly
spaced points. We also consider bonds with semi-annual interest payments.
Therefore, in the examples, we simply take the forward price of the bond,
Fy.., to be a constant. In general, however, the forward prices need to be
computed in the usual way by compounding the spot prices of the bond up
to the exercise date and adjusting for the value of any intermediate coupon
interest payments.'4

The model first requires volatility inputs for computing the European

141y, the case of a bond, the forward price of the underlying asset for delivery at time
t;, Fo.,, depends upon the coupon-interest payments on the bond. If the bond pays no
interest then by spot-forward parity the forward price would be

FO,t,': BOt 3
1

i=1,2,...,J.

However, given semi-annual coupon payments of £ paid at r = %, 1, 1%, ..., N, this simple
relationship has to be modified as follows using spot-forward parity:

al QBOT
Fo4y = {50 — Z 2 2’ /Bo,;,

where £ is the semi-annual coupon and N is the maturity date of the bond. Note that

coupons paid after time t; are deducted from the bond price.
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option prices, for all maturities ¢; € (0,T], where T is the final maturity date
of the American option. As discussed earlier, the price of the underlying
bond has a time-dependent volatility due to its fixed final maturity date. For
the valuation of the options with two and three possible exercise dates, we
require both unconditional and conditional volatilities on the relevant dates.
For example, if we wish to value an option with two exercise dates, ¢ and
t,, we need the unconditional volatilities oq and og,, and the conditional
volatility oy, 4,-1°

A number of approaches to estimating these volatilities are possible. First,
the volatilities could simply be assumed to be given exogenously. Second, we
could generate the volatilities using a factor model. Thirdly, we could build
a model of the evolution of the term structure of interest rates, value bonds
given these interest rates, and then price the options using these prices.

The first approach has been used in many practical applications of the
Black and Scholes (1973) model to the pricing of European options on bonds.
The second approach was employed by Brennan and Schwartz (1979) and
Schaefer and Schwartz (1987), for pricing bond options. The former paper
uses a two-factor model, with the long rate and the spread between the short
and long rate as factors. The latter paper uses a one-factor duration model
to generate bond volatilities. The third approach builds a no-arbitrage term
structure and was first used by Ho and Lee (1986) and then by Heath, Jarrow
and Morton (1990a, 1990b, 1992). In this paper, we use the second of the
approaches outlined above, for the following reasons.

First, we need so many volatility inputs that the first approach is some-
what impractical when a large number of simulations are to be performed.
The third approach on the other hand, which was used by Jamshidian (1989)
to value bonds options, is extremely complicated to apply, except in the case
of one-factor models. Thus, there is a tradeoff between the number of fac-
tors used to describe the movements in the term structure and the level of
detail in defining the evolution over time. We, therefore, use the second ap-
proach and assume that an exogenously given two-factor model of interest
rates generates the yields on bonds. In such a model, we run the risk of

15Gince conditional and unconditional volatilities are required for any combination of
exercise dates, we need to ensure consistency between the volatility estimates. The bond
volatility, for example, should be a declining function of time, as the madturity of the bond
approaches. This is roughly analogous to ensuring consistency between spot and forward
interest rates.
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not satisfying the basic no-arbitrage conditions of a complete term structure
model. However, at a practical level, this risk is perhaps worth taking, given
the computational effort that would be required to build a full, arbitrage-
free two-factor model of the term structure. The volatility of a bond over
a specified period depends on the volatility of the term structure of interest
rates. Here, we assume that the term structure is generated by two factors,
a short-term rate factor z; and an orthogonal second factor y;. The second
factor can be thought of as a spread between the short-term interest rate and
the long-term interest rate. The i~th interest rate at time ¢ is given by the
linear relationship

re, = aits + biyy, 1= 1,2,...,J, (15)

where a; = 1, by = 0, and hence, r;, = z;,. We further assume that the
short-term interest rate factor follows a mean-reverting process of the form

v = 1+ (2o — )1~ ax) + e (16)

where p is the long-run mean of the process, o is the periodic mean reversion
and ¢ is a white noise error term. In this discrete version of the Vasicek-type
model, the (non-annualized) variance of z; over any period (0,1) is

varo(a:) = var_1(2:)[1 — (1 — az)*)/[1 — (1 — o)) (17)

Equation (17) shows the relationship between the degree of mean reversion
of the short-term interest rate factor and its volatility over a finite time-
period. If the short rate mean-reverts strongly, the volatility will be a steeply-
declining function of time. Thus, on an annualized basis, the volatility of the
short-term interest rate over a long period will be significantly less than its
volatility looked at over a short period. On the other hand, we assume here
that the long-rate spread factor, y;, follows a random walk. This implies that
the long-rate factor has a constant volatility, looked at over different time
intervals, (0,1).

The price of a default free bond, with principal amount of $1, coupon
rate ¢, and final maturity date IV, at time ¢ is modelled as the linear sum of
the discounted cash flows. We denote the discount factor for the bond cash
flows that occur at time ¢t + ¢;,1; = (%,1,1%,...,N —t) as Byyty;. Time is
counted in half-years since we model the price of a bond paying semi-annual
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coupons. Assuming that time ¢ is a coupon-payment date, the ex-coupon
price of the coupon bond at time ¢, denoted by Bf y is

) N-t
(N = Z ‘Q‘Bt,t+t,» + BN, (18)
t,‘:é—
where
By, = €75, (19)

and where r;, is given by the two-factor model in equation (15). We can now
model the volatility of the coupon bond price as a function of the volatilities

of the two interest rate factors z; and y;. First, we invoke the following

approximation'®

wrl o] = (B [%y—)})u + (o [?“Tyy—)})(m (20)

given that z; and y; are independent. To apply this relationship in the case
of our two-factor model, we first define

f(ze,y:) = In B v, (21)
and then derive

Of (@, y1) O0ln By B Eg;i_ tisa; By, + (N —t)anBin

8.’17t 8.’Et ;N ’

(22)

and

Of(zey) OBy  TpoitisbiBuri + (N —0bvBin
Oy: 9y TN '

Note that the expectation in (20) in our case is the expectation under the
risk-neutral measure where the mean is the forward price of the asset. It

16Gee Stuart and Ord (1987), p. 324.
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follows, therefore, that we can use the following approximation for the mean
of the partial derivatives:

dln Bf Z?f:—% tiaiFo v + (N — tanFoen o4
8$t - FO,t K ( )

Oln Bfy Ei\f;é tizbiFot vt + (N —t)bnLoy N )
0y - Fo,t ' (

where Fy, is the forward price of the coupon bond and Foy 4+, is the forward
price for delivery at ¢ of a zero-coupon bond with final maturity ¢ + t;.17 We
now, for convenience, define the “duration”-type terms as follows:

N—-t
C
D, = Z ti'Q—CliFo,t,t+t,- + (N = t)anFou N, (26)
t¢=1§
N-t c
Dy = Z tigbiFO,t,t+ti + (N - t)bNFO,t,N‘ (27)
t,'=%

It follows, after substituting in equation(20), that the variance of the loga-
rithm of the coupon-bond price is:

varg.(In B y] = D3varg () + Dzvaroyt(y). (28)

Finally, we have the expression for the coupon-bond volatility in terms of the
annualized volatilities of z; and y;:

Jo,t = \/Biag,t,z + Dzog,t,y' (29)

In order to price options with two possible exercise dates, t; and t;, we require
unconditional volatilities from (29) and also the conditional volatilities. The

17The approximation in (24) and (25) ignores the effect of non-linearity due to Jensen’s
inequality. In particular, the effect of the covariances of Fp ¢ i+, and Fy . are ignored.
This would have the effect of understating the volatilities to some extent by ignoring the
effects of second-order (convexity) and higher-order effects.
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conditional volatilities are computed from the same model, simply recogniz-
ing the maturity of the underlying bond at time ¢;. Hence, the “duration”
terms become

Sr P sl e T (N — )anFy pn

' t;=
D, = —h4=3 : 30
Ft17t21N ( )

b fo;? ti50iFy b ot + (N — 12)bN Fy 1, v 3l
= o , (31)

and the conditional volatility is

Otits = \/(D;)20-t21,t2,w + (D;/)Zo-tzl,tz,y' (32)

Estimation of American Option Values

The computational efficiency of the method is achieved by predicting the
value of an American option using a European option and an option with
two possible exercise date'®. However, as illustrated in Figure 2, it is only
the maximized option prices denoted

Cy = Ci(t"K) = m?X[Cl(t)],t € (0,71,
c; = Co(t];t5,K) = rtrll%gc[C’g(tl,tg)], ty < tg,t1,t9 € (0,71,

for simplicity, that are relevant. In Figure 2, the options with one exercise
point are the European options. Point A denotes the option with price CF.
In HSS (1994) we argued that an exponential relationship could be as-
sumed to exist between the American option value and the number of possible
exercise points. Applying the exponential relationship in this case we have

((o0) = C*(T) exp (—f}) | (3)

where C/(o0) is the American-option price, C*(.J) is the maximum value of
the function Co(t1,t2,...,ts, K), and k is a constant. We define C, as the
predicted value of the American-style option, using just C7 and C5 as shown
in equation (14). In the following section, we examine the comparative statics
of the predicted value of the American option.

18Breen (1991) shows the efficiency of the GJ approximation in the binomial case.



Valuation of American Bond Options 20

5 Comparative Statics of the Model

In this section, we examine the characteristics of the American bond option
prices generated by our model in some detail. We demonstrate that the
model values American bond options to “penny accuracy” using only the
prices of European options and options with two exercise dates. We consider
two types of simulations of our model:

5.1 A. Sensitivity analysis of the computational method

Here, we examine the effect of two key inputs to the algorithm. One is the size
of the binomial lattice (i.e., the number of binomial stages, n) and the other
is effect of using three rather than two option prices in the extrapolation.

5.2 B. Comparative statics and analysis of key input
parameters

The parameters we consider are the exercise price, volatility, and time to
expiration. In the simulations reported below, the parameters used in the
base case are:

Maximum size of binomial lattice, n = 60.

Maturity of the underlying bond, N = 10 years.

Annual coupon rate of bond, ¢ = 10.8%.

Time-grid size for the underling bond = 0.5 years.

Short term interest rate volatility, g ;. = 0.0055.1

Long term interest rate volatility, og,, = 0.0040.

Mean reversion coeflicient, o, = 0.05.

Exercise price, K = 100.2°

19The interest rate volatility numbers, 0 ¢ » and 6o,¢,y are chosen so that they provide
reasonable estimates for bond price volatility when multiplied by the “duration”-type
terms in equation (29).

20 Although it is possible to make the strike price a function of ¢ we simply choose

K(t) = K,

a constant, in the following simulations.



Valuation of American Bond Options 21

A. Sensitivity analysis of the computational method

The effect of changing the size of the binomial lattice(n)

Table 1 shows the estimated values of the option, C,, based on two option
prices in extrapolation as a function of the number of binomial stages, n.
For example, for n = 60, the maximum European option price is estimated
with t* = 2.5 years, resulting in a value of C7 = 0.7948. The combination of
(t1,t3) which gives the maximum value of C; = 0.9580, is ¢} = 1.5 years and
t3 = 5.0 years. The estimated (' in this case is 1.1548. The model values
exhibit the normal fluctuations associated with the binomial lattice method
as a function of n, which get dampened as n gets larger. These values and
other simulations not shown here with different exercise prices show that the
values in the range of n = 11 to n = 15 provide a reasonable approximation
to the asymptotic C, value. The advantage of using a relative small n is the
obvious computational efficiency in relation to competing methods that use
numerical (polynomial approximations) for bivariate and trivariate normal
distributions.

The effect of using three option prices in the extrapo-
lation (Cjs)

In Table 2, we investigate the effect of adding options exercisable at one of
three dates in the extrapolation to value the American call options, 1.e., using
equation (13) instead of (12). Again, the option price used is the maximum
of the values across exercise dates, where the three exercise dates are chosen
with t; < ty < t3. The principal finding is that only a marginal increase in
accuracy is obtainable by considering options exercisable on three dates.

The simulation results show that the American call option price using
options with one and two exercise dates, C’g, is 1.4758 for n = 12, whereas
the corresponding price using options exerc1sable on one, two and three dates,
03 , is 1.5005. Using n = 30 and n = 60, the American call price for 02 are
1.4826 and 1.4796, respectively. The corresponding C3 prices are 1.5070 and
1.5106, respectively. The differences between Cy and C; for n = 12, 30,60 are
small, about 2 or 3 pennies (about 1-2 %). The pricing dlfferences appear
to increase with the size of the binomial lattice, n.

The C5 model requires a far more complex calculation and optimization
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procedure than the o model, since the value of the option must be maxi-
mized over combinations of three different exercise dates. We feel that the
marginal increase in accuracy obtained may not be justified by the increase
in computational time.

B. Sensitivity analysis of key input parameters

We now consider the effect of changing three key input parameters, the ex-
ercise price, the maturity of the underlying bond and the volatility inputs.

Sensitivity of option prices to changes in exercise price
(K)

We next investigate the impact of the change in the exercise price on value
of the American-style option, C,. This has the effect of investigating the
valuation characteristic of the model for options which are deep-in-the-money
to options which are deep-out-of-the-money. Because of the convergence of
the option prices when the option is very deep-in-the-money and deep-out-
of-the-money, the results reported for Simulation 2 are tabulated in Table 3
for exercise prices of K = 95 to K = 110 only.

The simulations show that as the call option is further out-of-the-money,
the value of C’g approaches zero. Using the case where oq;, = 0.0055 and
004y = 0.0040 as the call option gets deep-in-the-money the value of C,
increases from an at-the-money (K = 100) price of 1.1585 to a price of 4.9457
for K = 95. The well-behaved characteristics of the option prices, which are
quite similar to those found in the Black-Scholes model, are clearly depicted
in Figure 3.

In addition, Figure 3 shows that as 0¢., and og;, increases the value
of the call option also increases. The call values are therefore shown to be
sensitive to the forward prices (as represented by changing the exercise price,
K) and the estimates of oq,, and og4,. The sensitivity, however, is more
pronounced for at-the-money options.
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Sensitivity of option prices to the maturity of the un-
derlying bond (V)

The next comparative statics exercise investigates the pricing characteristics
of the C estimate for the valuation of options on 10.8% coupon bonds with
maturities of 5, 10, 15 and 20 years. The other parameters used in the model
are listed in Table 4. It can readily be seen from the table that the price of
C, increases with bond maturities for a given estimate of the volatility of the
short-term (oo..) and long-term (oq,,) interest rate factors.

Sensitivity of C; to volatility inputs (0q:.), (701,)

Lastly, we investigate whether the results above, on the accuracy of the Cy
estimation, is sensitive to the volatility used. The results tabulated in Table
5 show as expected that C, increases with increase in the volatilities of the
short and long rates, i.e., ¢, and 0g4 4.

6 Conclusions

An American option can be thought of as the limit of a series of options
exercisable on one of many exercise dates. However, in the case of an option
with a general exercise schedule, on an asset with an arbitrary volatility
structure, the limit is one of a series of maximized option prices. We propose
a model which uses just a European and an option exercisable on one of two
dates. We show in the simulations of the model, that a binomial version of
the model, with just 12 stages in the binomial process is sufficient for penny
accuracy. Also we show, using simulations of bond option prices, that the
model has characteristics which are similar to those of the Black and Scholes
(1973) model with respect to changes in strike prices and volatility.

Predictions using just the European and an option exercisable on one of
two dates are tested by comparing them with a prediction using a European
and an option exercisable on one of three dates. Again we show that using
the European and an option exercisable on one of two dates, leads to penny
accuracy.
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Figure 1
Computation of Cy(t1,%2, K(¢;)), the early exercise decision
and payoffs from exercise.

The figure illustrates the computation of the value of the option exercisable at
time t; and {3, using equations (3) to (6). E and NE indicate, respectively, the
states in which early exercise does or not occur at time #1. States 0 to h; indicate
states at time t,, which follow from states at time ?;, when early exercise occurs.
In states 0 to hg, it is worthwhile to exercise at time t;. The option is valued by
discounting the payoffs period-by-period, taking the optimal exercise decision into
account, and using the discount factors in each state. The value on each date is
the expectation of the discounted payoffs under the risk-neutral distribution.
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Figure 2
Approximating American call option values using “maximized”
values of European options and options exercisable
on one, two and three dates.

The range A — A’ shows the European option values for different feasible maturities.
Ct is the maximum European option value. The range D — D’ shows the option
values for options with two possible exercise dates. C3 is the maximum of these
option values. Similarly, C3 is the maximum value of options exercisable on three
possible dates. The asymptotic point B is derived by using the following equation

Cs(00) = €™ (J) exp(k/T),

after solving for the constant k using C7 and Cj. C3(o0) is the predicted value of
the American option.
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Figure 3
Sensitivity of American call option values to changes in the
exercise price for different volatilities of the
short-term and long-term interest rates factors.

The graph plots American call option values against exercise prices for fixed
volatilities of the short- and long-term interest rate factors, og:. = 0oty =
0.002,0.0055,0.008,0.01. The other parameters used in the calculations of op-
tion values are as follows: The size of the binomial lattice, n, is 12, the grid size is
0.5 years, the mean reversion coefficient, oy, is 0.05, the bond maturity, N, is 10
years with an annual coupon, ¢, of 10.8%. In the graph, C’g(oo) is the exponential
estimate of the American call option value.
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Table 1
American call option values as function of the
size of the binomial lattice.

The table shows the estimated American call option value for different sizes of the
binomial lattice, n. The grid size used in the maximization process is 0.5 years, the
mean-reversion coefficient, a,, is 0.05, the volatilities of the short- and long-term
interest rate factors are, respectively, og ;. = 0.0055 and g, = 0.0040, the bond
maturity, NV, is 10 years with an annual coupon, ¢, of 10.8%, the exercise price of
the option, K, is 100. In the table, t* is the maturity at which the maximum is
obtained for C5 the maximum valued European option value, where the maximum
is taken over all possible option maturities. C3 is the maximum value of all options
with two possible exercise dates where the maximum is taken over all possible pairs
of exercise dates, {; and t;. The pair of dates for the maximum is (#1,3). Ca(c0)
is the exponential estimate of the American call option value.

Maximum Maximum  Exponential
Size of European Twice- American
Binomial Option Exercisable Option
Lattice, Maturity, Value, Maturity, Option, Value,
n t* Cr o C3 Cy(00)
5 2.5 0.7996 1.5 4.0 0.9216 1.0622
6 2.5 0.7988 20 5.0 0.9665 1.1693
7 2.5 0.7984 1.5 4.0 0.9420 1.1114
8 2.5 0.7980 20 5.5 0.9651 1.1672
9 2.5 0.7977 1.5 4.0 0.9507 1.1331
10 2.5 0.7975 20 5.5 0.9630 1.1630
12 2.5 0.7971 20 5.5 0.9609 1.1585
14 2.5 0.7968 2.0 6.0 0.9590 1.1542
16 2.5 0.7965 2.0 6.0 0.9575 1.1510
18 2.5 0.7963 1.5 4.0 0.9470 1.1263
20 2.5 0.7962 1.5 4.0 0.9498 1.1331
25 2.5 0.7958 1.5 5.0 0.9597 1.1572
30 2.5 0.7956 1.5 4.5 0.9576 1.1527
35 2.5 0.7954 1.5 5.0 0.9571 1.1517
40 2.5 0.7952 1.5 4.5 0.9590 1.1565
45 2.5 0.7951 1.5 4.5 0.9546 1.1461
50 2.5 0.7950 1.5 5.0 0.9587 1.1561
55 2.5 0.7949 1.5 4.5 0.9572 1.1526

60 2.5 0.7948 1.5 5.0 0.9580 1.1548
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Table 2
American call option values estimated with values of the
European option and options with two and
three possible exercise dates.

The table shows the estimated American call option values for varying size of the
binomial lattice, n. The volatilities of the short- and long-term interest rate factors
are: 0gt5 = 0oty = 0.0055 The grid size used in the maximization process is 0.5
years, the mean-reversion coefficient, o, is 0.05, the bond maturity, N, is 10 years
with an annual coupon, ¢, of 10.8%, the exercise price of the option, K, is 100. In
the table, t* is the maturity at which the maximum is obtained for the European
option, C7 is the maximum European option value, where the maximum is taken
over all possible option maturities. C3 is the maximum value of all options with
two possible exercise dates, where the maximum is taken over all possible pairs of
exercise dates, t; and t5. The pair of dates for the maximum is (¢7,13). Cy(o0) is
the exponential estimate of the American call option value. C% is the maximum
value of all options with three possible exercise dates where the maximum is taken
over all possible combinations of exercise dates, t1, t; and ¢3. The three dates for
the maximum is (17, 13,13). C5(00) is the corresponding exponential estimate of
the American call option value with three possible exercise dates.

Maximum Maximum Exponential
Size of European Twice—- American
Binomial Option Exercisable Option
Lattice, Maturity, Value, Maturity, Option, Value,
n t= Cr G C3 C'y(00)
12 2.5 1.0432 1.5 4.5 1.2408 1.4758
30 2.5 1.0416 1.5 4.0 1.2427 1.4826
60 2.5 1.0407 1.5 4.5 1.2409 1.4796

Maximum Exponential

Size of Thrice— American
Binomial Exercisable Option
Lattice, Maturity, Option, Value,
n oty 13 C3 C3(00) C3(00) — Ca(0)
12 1.5 3.0 6.0 1.3292 1.5005 0.0247
30 1.5 3.0 5.5 1.3324 1.5070 0.0244

60 1.5 3.0 6.0 1.3343 1.5108 0.0312
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Table 3
American call option values for different values
of the exercise price.

The table shows the estimated American call option value for different values of
the exercise price, K. The size of the binomial lattice, n, is 12, the grid size is 0.5
years, the mean-reversion coefficient, oy, is 0.05, the volatility of the short-term
interest rate factor, o ¢ 4, is 0.0055, volatility of the long-term interest rate factor,
00,1y, i 0.0040, the bond maturity, N, is 10 years with an annual coupon, ¢, of
10.8%. In the table, t* is the maturity at which the maximum is obtained for the
Furopean option value, C7 is the maximum-valued European option value where
the maximum is taken over all possible option maturities, €} is the maximum
value of all options with two possible exercise dates where the maximum is taken
over all possible pairs of exercise dates, t; and t3. The combinations of dates for
the maximum are (¢, 13). Cy(00) is the exponential estimates of the American call
option values.

Maximum Maximum Exponential
European Twice— American

Exercise Option Exercisable Option
Price,  Maturity, Value, Maturity, Option, Value,
K t* Cr T 5 C3 Cy(o0)
95 1.0 4.4090 0.5 4.5 4.6696 4.9457
96 1.0 3.5189 0.5 4.5 3.7549 4.0068
97 1.0 2.6584 0.5 4.5 2.8878 3.1371
98 1.0 1.8611 1.0 6.0 2.1413 2.4637
99 2.0 1.2373 1.5 5.0 1.4533 1.7071
100 2.5 0.7971 2.0 5.5 0.9609 1.1585
101 3.0 0.4863 2.0 4.5 0.5977 0.7345
102 3.0 0.2765 2.5 5.0 0.3514 0.4466
103 3.5 0.1495 2.0 4.0 0.1892 0.2395
104 3.0 0.0722 2.5 4.5 0.0925 0.1185
105 3.5 0.0336 2.0 3.5 0.0391 0.0453
106 3.0 0.0129 20 3.5 0.0150 0.0174
107 3.5 0.0052 1.5 3.5 0.0053 0.0054
108 3.5 0.0018 1.0 3.5 0.0018 0.0018
109 3.0 0.0005 1.0 3.0 0.0005 0.0005

110 3.0 0.0001 0.5 3.0 0.0001 0.0001
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Table 4
American call option values for different bond maturities.

The table shows the estimated American call option value for different maturities
of the underlying bond. The size of the binomial lattice, n, is 12, the grid size is 0.5
years, the mean-reversion coefficient, o, is 0.05, the volatility of the short-term
interest rate factor, 0 ¢, is 0.0055, volatility of the long-term interest rate factor,
Oo,t,y, is 0.0040, the bond maturity, N, varies from 5 to 20 years, with an annual
coupon, ¢, of 10.8%, the exercise price of the option, K, is 100. In the table, ¢~ is
the maturity at which the maximum is obtained for the European option, CT is the
maximum European option value, where the maximum is taken over all possible
option maturities, C*(2) is the maximum value of all options with two possible
exercise dates where the maximum is taken over all possible pairs of exercise dates,
t; and ty. The pair of dates for the maximum is (£,¢3). C2(c0) is the exponential
estimate of the American call option value.

Maximum Maximum Exponential
European Twice- American

Bond Option Exercisable Option
Maturity, Maturity, Value, Maturity, Option, Value,
N t* oh ot Cs Cy(0)
5 1.5 0.4081 1.0 3.0 0.4909 0.5904
10 2.5 0.7971 2.0 5.5 0.9609 1.1585
15 3.0 1.1507 2.5 6.5 1.3737 1.6399

20 4.0 1.3989 3.0 8.0 1.6678 1.9885
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Table 5
American call option values for varying
short and long interest rate volatilities.

The table shows the estimated American-style bond option values for varying
volatilities of the short- and long-term interest rate factors, og ;. and ooy, Te-
spectively. The size of the binomial lattice, n, is 12, the grid size is 0.5 years,
the mean-reversion coefficient, a,, is 0.05, the bond maturity, N, is 10 years with
an annual coupon, c, of 10.8%, the exercise price of the option, K, is 100. In
the table, ¢* is the maturity at which the maximum is obtained for the European
option, C7 is the maximum European option value, where the maximum is taken
over all possible option maturities, C¥ is the maximum value of all options with
two possible exercise dates where the maximum is taken over all possible pairs of
exercise dates, t; and t,. The pair of dates for the maximum is (1},13). Cy(00) is
the exponential estimate of the American call option value.

Short and Maximum Maximum  Exponential
Long Rate European Twice— American
Factors Option Exercisable Option
Volatility, Maturity, Value, Maturity, Option, Value,

00,6,z = 00ty t* Cst ot Cs C(0)
0.0020 2.5 0.3582 2.0 5.0 0.4277 0.5107
0.0040 2.5 0.7494 1.5 4.5 0.8917 1.0611
0.0055 2.5 1.0432 1.5 4.5 1.2408 1.4758
0.0080 2.5 1.5336 1.5 4.5 1.8215 2.1634

0.0100 2.5 1.9266 1.5 4.5 2.2850 2.7100
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