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Abstract

We derive a no-arbitrage model of the term structure in which any two futures
rates act as factors. The term structure shifts and tilts as the factor rates
vary. The cross-sectional properties of the model derive from the solution
of a two-dimensional ARMA process for the short rate which exhibits mean
reversion and a lagged memory parameter. We show that the correlation
of the factor rates is restricted by the no-arbitrage conditions of the model.
Hence in a multiple-factor model it is not valid to independently choose
both the mean reversion, volatility and correlation parameters. The term-
structure model, derived here, can be used to value options on bonds and
swaps or to generate term structure scenarios for the risk management of
portfolios of interest-rate derivatives.
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1 Introduction

The term structure of nominal interest rates exhibits several patterns of
changes over time. In some periods it shifts up or down, perhaps in response
to higher expectations of future inflation. In other periods, it tilts, with
short rates rising and long rates falling, perhaps in response to a tightening
of monetary policy. Sometimes its shape changes to an appreciable extent.
Models of the term structure are of interest to practitioners and financial
academics alike, both to price interest-rate sensitive derivative contracts, and
to measure and manage the interest-rate risk arising from portfolios of these
contracts. A desirable feature of these models is that they should capture at
least the shifts and tilts of the term structure.

One early, intuitively appealing two-factor model which captured the above
features of the empirical term structure was the long rate-spread model of
Brennan and Schwartz (1979). Although this model has the attractive feature
of modelling term structure movements in terms of two key rates, it is not
presented in the "no-arbitrage” setting first proposed by Ho and Lee (1986).
Today, it is recognised that a highly desirable, if not a necessary condition
for a model to satisfy is the no-arbitrage condition. In this paper, we develop
a model that is consistent with the principle of no arbitrage and which yields
a two-factor model similar to that of Brennan and Schwartz.

Fundamentally, the no-arbitrage condition, when applied to the term struc-
ture requires the price of a long bond to be related to the expected value
(under the ’risk-neutral’ probability density) of the future relevant short
bond prices. This requirement links the cross-sectional properties of the
term structure at each point in time to the time series properties of bond
prices and interest rates. This point is discussed extensively in a one-factor
Gaussian interest model context by Backus and Zin (1993). In the context
of our two-factor model we are able to show that if the short rate follows
a mean-reverting two-dimensional process (a process generated by two state
variables) then the no-arbitrage condition implies a short rate-long rate model
of the term structure not dissimilar to that of Brennan and Schwartz. Also,
in this model the correlation between the long and short rates is restricted
by the degree of mean reversion of the short rate and the relative volatilities
of the long and short rates.
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We suggest a time series model in which the conditional mean of the short
rate follows an ARMA (autoregressive, moving average) process. The short
rate itself is ARMA plus an independent white noise term. This assumption
allows us to nest the popular AR(1) single-factor model as a special case.
It is also general enough to produce stochastic no-arbitrage term structures
with shapes that capture most of those observed. A similar model in which
the conditional mean of the short rate is stochastic has been suggested by
Balduzzi, Das and Foresi (1995).

Recent literature, mainly inspired by the practical need to price various in-
terest rate derivative contracts, has produced a bewildering variety of term
structure models. In section 2 of this paper we discuss this literature, relate
our model to previously proposed models and attempt to assess the incre-
mental contribution of our work. One of the most difficult aspects of term
structure modelling is notation and definition of the relevant variables and
parameters. For this reason we devote section 3 to a description of the set up
of the problem, the variables and our notation. We also, in this section, spec-
ify the ARMA process which the conditional mean of the short is assumed
to follow.
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2 Term Structure Models : The Literature

One fundamental decision that has to be made in term structure modelling
is the choice of the assumption about the distributional properties of interest
rates (and hence bond prices). One classification of the literature is according
to whether interest rates are normally distributed or lognormally distributed
and whether they evolve in discrete time or continuously. Gaussian interest
rate models of the type first derived by Vasicek (1977) have been devel-
oped extensively by Jamshidian (1989), Hull and White (1993), Turnbull
and Milne (1990) and applied to the valuation of a variety of interest rate
and bond options. Also, the no-arbitrage models of Ho and Lee (1986) and
Heath,Jarrow and Morton (1990a,1990b) (HJM) are discrete time additive
binomial models whose interest rates limit to normally distributed variables.
An objection that has often been raised against this whole class of models is
that they allow nominal rates to be negative, with positive probability. How-
ever, perhaps from a practical point of view, a more important drawback is
that interest rates have higher variance when they are high than when they
are low. Empirical evidence provided by Chan et al (1994) rejects the as-
sumptions of this class of models in favour of the alternative assumption that
variance is level dependent.

In this paper we propose a model in which the rate of interest is lognormally
distributed. This assumption has the advantage that the variance is depen-
dent on the level of the rate. Thus rates are skewed to the right in our model.
In practice many traders use the Black (1976) model to price interest rate
caps, a model that also assumes lognormal interest rates. Also as discrete
approximations, the Black, Derman and Toy (1990)(BDT) and Black and
Kirinski (1990) models have similar assumptions. Our incremental contri-
bution to this literature is that we provide a particularly simple two factor
extension of the BDT model. We also provide a set of sufficient conditions
for the cross-sectional two-factor model to hold in a no-arbitrage setting.

Another categorization of models in the literature is that between equilibrium
models and no-arbitrage models of the term structure. The former include
Cox, Ingersoll and Ross (1985) and the extension to a two-factor model with
stochastic volatility by Longstaff and Schwartz (1992). In contrast there
are the no-arbitrage models of Ho and Lee (1986), BDT, HJM and many
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others. Our model is in the no-arbitrage model category. The addition to
the literature in this case is that we show that the no-arbitrage condition
restricts the correlation of the factor interest rates in a multi-factor model.
Closely connected to the no-arbitrage models, in fact a sub-category, are
recent theories based on the pricing kernel. Constantinides (1992) assumes a
process for the kernel and derives a single-factor model of the term structure.
Backus and Zin (1993) develop a model in a Gaussian one-factor framework
and show the relationship between the time series process of the pricing
kernel, the process for the short interest rate and the term structure. Backus
and Zin use a discrete time ARMA model of the pricing kernel. In this paper
we directly model the 'risk-neutral’ density of the short rate, rather than
the pricing kernel. Hence our approach is somewhat different from theirs.
However, in one aspect we extend their approach by using a vector ARMA
process which leads, given no-arbitrage, to a two-factor characterization of
the term structure.

A multi-factor model for the term structure has been proposed recently by
Duffie and Kan (1994). Duffie and Kan analyse a class of ’affine’ or linear
models, assuming a vector process for the yields on zero-coupon bonds. Their
non-stochastic volatility example reduces to a multi-variable Gaussian model
in which any two rates can be interpreted as factors. In our model we derive a
somewhat similar result. In our case any two forward rates can be employed
as factors. However, our no-arbitrage model restricts the correlation of these
chosen factor rates. Lastly, in Longstafl and Schwartz (1992) a two-factor
model is derived in which the volatility of interest rates is the second factor.
This model is capable of explaining the term risk premium. In this sense 1t
is similar in spirit to the model proposed here. However, in our model two
factors explain the term structure even when either the local expectations
hypothesis holds or when volatility is non-stochastic. If stochastic volatility is
an important explanatory variable, it may act in addition to our two factors.
It could therefore be added as a third factor in a possible extension. In our
model the term structure shifts and tilts perhaps in response to expectations
of future real interest rates and inflation rates. It does so even in a risk
neutral world. Hence our incremental contribution is to derive a different set
of conditions for a two-factor model to those of Longstaff and Schwartz.
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3 Assumptions, Notation, and the Spot Rate
Process

As in HIM we denote P(¢,T') as the time ¢ price of a zero-coupon bond paying
$1 with certainty at time 7. Today is time 0 and ¢ and 7" are measured in
years. At time ¢ the price of an m year zero coupon bond is revealed. This
price is P(¢,t + m). We define the spot interest rate for m year money at
time ¢ by the linear relationship

iy =[1— P(t,t+m)]/m (1)

Note that the interest rate is defined on a bankers’ discount (or T Bill basis).
This has considerable analytical advantages over the conventional definition
where the rate is defined on a continuously compounded basis. The other
difference between the spot rate defined by (1) and the HJM interest rate is
that m is not necessarily a very short (instantaneous) period. However, as
in HIM, m does not vary.

The futures interest rate at time ¢ for delivery at time 7" is denoted F'(¢,T).
Again, the rate is defined on a bankers’ discount basis. Hence, in relation to
the futures price of an m-maturity bond, at t for delivery at T, P(¢,1,T+m)

F(t,T) = [L = P(t,T,T +m)] /m (2)

we now denote the logarithm of the futures rate as

J@t,T) =In[F(2,T)] (3)

Note that under this notation, which is broadly consistent with HIM, F'(t,t) =
i; and f(¢,¢t) = In(e).

In Table 1 we summarize the notation used in the paper. The mean and
annualized standard deviation of the (logarithm) of the spot rate are denoted
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Table 1

Notation for the Mean and Volatility of Spot and Futures Rates

(1)

(2)

Time Period 0 t T
Spot prices u(0,t,t) Unconditional P(t,t + m) Zero bond price | P(T,T + m)  Zero bond
and interest logarithmic at t for price at
rates for mean of 7; delivery of $1 time T
m-year money at (t+ m) for delivery
of $1 at time
a(0,1,t) Unconditional T+ m
(annualised)
volatility of i; it m-—year interest | ip m—year
= F(t,t) rate at time ¢ = F(T,T) interest
rate at time
T
Futures p#(0,t,T) Mean of f(¢,T)
interest rates
for bonds a(0,t,T) Unconditional
maturing at (annualised)
time volatility
T+m of f(¢,T)
F(t,T) futures
interest rate
at t for
delivery at T
(m-year money)
f(t,T) Logarithm
of F(¢,T)
w(t, T,T) Conditional
mean of f(T,T)
o(t,T,T) Conditional
(annualised)
volatility
of f(T,T)

Tn Table 1, above, m is a constant. In the simulations of the model, m = 91/365. Hence, in this case, i;

can be representative of the three-month LIBOR rate. All interest rates used are on an annualised basis.

Note: all means and volatilities are under the risk neutral measure .
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:u(tv T, T) = Et[f(Ta T)] (4)

(NI
—~
[}
—

o(t,T,T) = [var[f(T,T)]/(T =1)]

respectively. Also in the case of futures rates, we define

M(Oath) - EO[f(t7T)] (6)
o(0,4,T) = [varo[f(t, T)}/t]? (7)

Note that the mean and variance of the spot rate in (5) are statistics of a
time T measurable random variable. In (7) the statistics relate to a time ¢
measurable random variable.

Our main assumptions are as follows:-

1. Prices of zero-coupon bonds are determined in a no-arbitrage economy.

2. The process for the short rate is lognormal under the equivalent mar-
tingale measure.

3. The logarithm of the short rate follows a two-dimensional process with
the characteristics:-

(a) the mean of f(t,)follows an autoregressive moving average (ARMA)
process

(b) innovations in f(¢,¢) are mean reverting, i.e., they follow an au-
toregressive (AR) process.

These assumptions imply first that an equivalent martingale measure exists
for the pricing of zero-coupon bonds. Second, the process for the logarithm
of the short rate under this measure is mean reverting and of the form
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ft,t) = p(0,6,8) + [f(t =Lt =1) = p(0,t = 1,2 = D](1 —¢)
+ ti vt ey (8)

where time is measured in periods of length n years. In (8), c is the rate
of mean reversion per period, v; and ¢, are mutually and intertemporally
independent, normally distributed variables.

Equation (8) assumes a spot rate process which is essentially an extension of
the Vasicek (1977) process. In its simplest form with v;_, = 0 the spot rate
follows the process

f(t7t> :N(O’t’t)+[f(t_1vt_1) _M(O’t_17t_1)](1 —“C>+6t (9)

Here the logarithm of the spot rate is a mean reverting process with a mean
reversion coeficient of ¢ per period. The process is ’calibrated’ to current
expectations of future rates, p(0,¢,¢). The process in equation (9) is not
complex enough, however, to mirror actual movements of the term structure.
We need to capture changes in expected spot rates that are unrelated to
current realisations of the spot rate itself. This is achieved by adding a second
dimension to the process. Hence we assume that the short rate follows the
two-dimensional ARM A process in equation (8). Equation (8) allows for an
independent shift in the conditional expectation of f(t,t). For example, we
have with a=0

w(t—1,6,8) = p(0,8,8) + [f(t—1,t = 1) — p(0, £ — 1,t = D}(1 = &)+ vy (10)

Hence, the conditional expectation of the time ¢ spot rate depends on two
time t — 1 measurable stochastic variables, ¢;_; which determines f(t —1,1—
1) and v;_; which further shifts the expectation of f(¢,7). In general, the
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parameter o makes the conditional expectation an ARM A(1,¢ — 1) process.
If o > 0 the effect of a shock to expectations persists to later spot rates. 1 —a
measures the degree of decay in expectations. For example, with o = 1, there
is no decay at all. In this case the conditional expectation of f(t,t) is affected
equally by all realisations of v between time 0 and time t. Given that the
short rate follows the process in equation (8) the expectations of the spot
rate f(t+k,t-+k) at time ¢ can be found by successive substitution. We find

Lemma 1 If the logarithm of the spot rate follows the ARMA process

t—1

F,)—p(0,8,8) = [F(E=1,1=1)—p(0,t—1,t=D)](1—c)+Y_ vs—ra™ ' +e;, Vi,
=1 (11)

then the expectation of the logarithm of the interest rate 1,4y at time t s

ptt+kt+k) = p(0,t+kt+k)+ (L) = p(0,t,1))(1 o)

t—1 k
+ Z vi_ro” Z(l - c)k_TozT’1 (12)
7=0 T=1
Proof. Substitute successively for f(1,1), f(2,2),....f(t + k,t + k) and take
the conditional expectation E,[f(¢t + k,¢ + k)].
|

To appreciate the meaning of Lemma 1 we will look at various limiting cases.
First, if @« = 0,¢ = 0, the process for the short rate is a two-dimensional
random walk. The expectation at t of f(t + k,t+ k) is in this case

plt,t+k b+ k) = p(0,t + kbt + k) + f(t,8) — p(0,6,8) + v (13)



A Two-Factor Model of the Term Structure 10

The expectation in (13) is affected both by the degree to which f(¢,%) ex-
ceeded its expected value, p(0,%,¢) and by the independent shift factor v;.
Note that in this case, the shift in the expectation is the same for each k. If
¢ =0, we have

B+ bt k) = p(0,t+ k4 k) + F(1,) — p(0,,1)

t_lz/ of(l—ak) 14
t o e (14

and with a =1

t—1
Wt b+ kot 4 k) = p(0,¢ 4+ B4 )+ F(8,8) = p(0,8,0) + 3 vsk (15)
7=0

In this case each of the shift factors affects the expectation. Also, the shift
in the expectation depends on k. Also, if ¢ > 0, =0, we find

:u(tvt-l'kat—*'k) = N(Ovt-I"k’t+k)+[f(tat)—:u‘(ovt7t)](1_c)k+’/t(1_c)k—l (16)

Finally, with ¢ > 0, =1
pltt+kt+k) = p(0,t+kt+k)+ [f(t,1) = u(0,8,))(1 ~ o)

C

N ;1 ot [1_—@_*2] a7

These special cases of the ARMA process are summarized in Table 2.
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4 Futures Rates in a No-Arbitrage Economy

We first establish an expression for the futures rate, F(¢,¢ + k). Given the
no-arbitrage condition for bond prices and the fact that the interest rate, 7,
is linear in the bond price, we have the following result:

Lemma 2 In a no-arbitrage economy, if the spot interest rate, defined on
a ‘banker’s discount’ basis, is lognormally distributed under the martingale
measure, the k period futures rate at time t for an m-year loan is

k
f(t,t+k):u(t,t+k,t+k)-|——QEUQ(t,tJrk,H—k) (18)

where n is the length, in years, of the periodt tot+1

Proof. From the no-arbitrage condition, the futures price is equal to the
expectation under the equivalent martingale measure,

P(t,t + kn,t + kn+m) = EP(t + kn,t + kn + m)]

Hence, using the definition of the interest rates ¢;;x , the futures price is
given by

Et(l — mit+k) =1- mEt(it-Hc)a (19)

It then follows immediately from the definition of the futures rate that

Ft,t 4 k) = Ey(irgs) (20)

Since by assumption, i;4 is lognormal, under the martingale measure, with
a conditional logarithmic mean and annualised volatility, of u(t,t + &, + k)
and o(t,t+ k,t + k), we have
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Et(it-{—k) = exp(,u(t,t—}—k,t-i-k)-}— k—QTEU?(t,t-i’k,t-}'k))
= F(t,t+k)=-exp f(t,t+ k)

12

Lemma 2 states that lognormality of the futures rate follows from lognor-
mality of the spot rate. This is because the conditional logarithmic mean of
the spot rate, u(t,t + k,t + k) is normal and because the conditional vari-
ance, o(t,t + k,t + k) of the spot rate is a constant. Lemma 2 also restricts
the correlation of the spot and the futures rates. Combining the results of

Lemmas 1 and 2 we can write the logarithm of the kth futures rate as

fltt+ k) = p(0,t+kt+k)+[f(t,) = n(0,2,))(1 - )
t-1 k
+ Z l/t—TaT Z(l o C)k—-raf—l
=0 T=1

k
+?na2(t,t+ kot + k)

The conditional variance of the futures rate is

o’(t—1,t,t+k)/n = (1— ¢)**var;_1[f(t,1)]
L 2
+ Z(l — c)]C_TozT_1 vary_1(vy)

=1

Also, since the variance of the spot rate is

o*(t — 1,t,t)/n = var,1[f(t,1)]

it follows that the covariance of the spot and the k th futures rate is

(21)

(22)

(23)
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cove1[f(t, 1), f(t, t+ k)] = (1 - e)fvar, 1 [f(t,1)]
= (1—c)fa?(t-1,t,t)/n (24)

and the correlation of the spot and futures rates is therefore

(1 —c)fo(t—1,t,1)
o(t—1,6,1+ k)

p(t — 1, t,t+ k)= (25)

This expression for the correlation of the short rate and the kth futures
rate illustrates an important implication of the no-arbitrage model. Given
the volatilities of the spot and futures rates, we are not able to indepen-
dently choose both the correlation and the degree of mean reversion. The
no-arbitrage model restricts the correlation between the two factors to be a
function of the degree of mean reversion of the short rate.

We can now establish an important property of the kth futures rate that
allows us to solve for the cross-sectional term structure of interest rates. We
have:

Lemma 3 Given the conditions of Lemma 2, the logarithmic mean of the
kth futures rate is related to the conditional logarithmic mean of the spot
interest rate at t + k by

k
p(0,4,0+ k) = p(0 1+ bt + k) + o (L ik kitk k) (26)

The lemma relates the means of the futures and corresponding spot rates.
The extra term reflects the fact that from Lemma 2 the futures rate itself is
lognormal with volatility o(0,%,t 4 k).

Proof. See Appendix 1.
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We can now derive the main result of the paper. This is a two-factor cross-
sectional relationship between interest rates at time t. The following propo-
sition follows from Lemmas 1, 2, and 3. We show now that the ARMA
time-series process assumed in the statement of Lemma 1 is necessary and
sufficient to generate a two-factor term structure.

Proposition 1 In a no-arbitrage economy in which the short rate of interest
follows a lognormal process of the form

t—1

) = w0, 6, 0) +[f(t—1,t—=1) = p(0,t =1t = D))J(1—c)+ D -’ +¢

=0

the term structure of futures rates at time t is generated by a two-factor
model. The kth futures rate is given by

Ftt+k) = p(0,t,t+ k) + ar[f(t,t) — p(0,4,1)]
+oe[f(t,t + 1) — p(0,t,¢t + 1)] (27)
where
b= [(1— ) +... + a7
and

ap = (1 — C)k — (1 - C)bk.

Also, a short rate process in the form of (9) is necessary for the two-factor
model in equation (27).

Proof. Sufficiency Solving the model by successive substitutions and taking
the conditional expectation yields
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a(tt+kt+k) = p(0,t+kt+k)+ [t t) — p(0,¢,1)](1 = c)f

k
+‘/t Z(l _ c)k—fa‘r—l

7=1

where
t—1
‘/t = Z l/t—‘raT
7=0

Substituting a similar expression for u(t,t+ 1,4 1) and using Lemmas 2
and 3 yields the two-factor model (27).

Necessity See appendix 3.

Proposition 1 relates the kth futures rate to the spot rate f(¢,?) and the first
futures rate, f(t+1,¢t+1). If m = 91/365, for example, this means that the
kth three-month futures rate is related to the spot three-month rate and the
one period futures, three-month rate. In a recent contribution, Duffie and
Kan (1993) have pointed out that if the model is linear in two such rates, 1t
can always be expressed in terms of any two forward rates. In our context,
it may be more practical to express the kth futures rate as a function of the
spot rate and the nth futures rate. Hence, we derive the following implication
of Proposition 1:

Corollary 1 Suppose we choose any two futures rates as factors, where Ny
and Ny are the maturities of the factors then the following linear model holds:

f(t7t+ k) = M(Ovt7t+ k) +Ak(N17N2)[f(t7t+N1) _N(Oatat+N1)]

T BNy, Na)[f(t, L+ Vo) — (0,1, 4 Ny) (28)

where



A Two-Factor Model of the Term Structure 16

Bi(N1, Ny) = (arby, — bean, )/ (an,bn, — by, an,),

Ag(N1, No) = (—axby, + bran, )/ (an,bn, — byyany),
and

be=[(1— )14+ 1],

and

ar = (1 =) — (1 — ¢)by.

Corollary 1 follows by solving equation (27) for k¥ = Ny, and £ = N, and
then substituting back into equation (27).

Corollary 2 The Random Walk Case

Suppose that ¢ = 0 and the logarithm of the interest rate follows a random
walk. In this case, the kth futures is

Flt 14k = M<o,t,t+k>+(5#) [f(t,t>—u<o,t,t>1+(%) (14 N) (0,1, 1+ N)]
(29)

Proof
Corollary 2 follows directly from Corollary 1 with

k
bk,N = Na
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and hence,

N —k
Qg = — -

N

Here, the kth futures is affected by changes in the Nth futures according to
how close k is to N. Equation (29) is a simple two-factor ‘duration’ type
model.

Corollary 3 The Stochastic Process for the Futures Rates

Given that the spot rate follows the process assumed in Proposition I (suffi-
ciency) then the kth futures rate follows the process

f(t?t+ k) _N(Oatat+ k) = (1 _C)[f(t —1,t+ k— 1) - /L(O,t -1t + k— 1)]
—(1 = Viea[ K] + (Veer +2)(1 = ) + Vi[K]

where

t—1

Vi = > v.ad’

7=0

k
K = Z(l—c)k_TaT—l
=1

Proof See Appendix 4.

5 Forward rates and zero-coupon bond yields

We have derived the distribution of futures prices and futures rates, at time
¢, using an assumption about the process for short rates and the no-arbitrage
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condition. The term structure of futures rates at a point in time is closely
related to the term structure of forward rates. The latter are required to com-
pletely describe the yields on zero-coupon bonds and to value an arbitrary
set of cash flows at time t. The general relationship between futures prices
and forward prices is well known from Cox, Ingersoll, and Ross (1981)(CIR).
The CIR result states that the difference between the forward and the futures
price of an asset, depends on the covariance, under the equivalent martingale
measure, of the asset futures price and the money market accumulation fac-
tor. We can apply the CIR result to find an equivalent relationship, in our
model, between the forward and futures rates of interest. in the case of the
model of futures rates here, we have:

Proposition 2 The forward rate at time t for delivery at t 4k of an n-year
zero-coupon bond is

Gt + k) = F(t,t + k) — cov[F(t, ¢ + k), ), (30)

where

lb = Bo,lBl,z---Bt—l,t/Bo,t

and where cov refers to the covariance of the variables under the martingale
measure.

Proof. Applying the general result in CIR we have the time ¢ 4+ k forward
price of the zero-coupon bond for delivery at time ¢
P'(t,t+k,t+k+m)=P(t,t+kt+k+m)+coo[P(t,t+kt+k+m) ]
Now, defining the forward rate by the relation
Gt,t+k)y=(1—Pt,t+kt+k+m)]/m
and given the futures rate
F(t,t +k)y=[l—P(t,t+k,t +k+m)]/m,
then, substituting in the CRR relationship we find
G(t,t+ k)= F(t,t+ k) — cov[F(t,t + k), ]

Proposition 2 allows us to compute forward rates, futures rates, and any
zero-coupon bond price given the term structure of futures rates.
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6 The Two-Factor Model:A Binomial Dis-
crete Example

In Ho, Stapleton and Subrahmanyam (1995)(HSS), a method is described
for approximating a multivariate lognormal distribution with a multivari-
ate binomial distribution. To approximate the joint distribution at time ¢
of two variables X and Y with logarithmic mean and standard deviation
lizy Os, fhy, 0y and correlation pg, is particularly simple. As described in HSS
it can be achieved either by choosing the conditional probability parameters
in an appropriate manner, or by orthogonalizing the variables. The latter
method may be more efficient for highly correlated variables hence we choose
that method here. The objective is to replicate the joint distribution of the
short rate, f(¢,t) and the Nth futures rate f(¢,t + N). The required inputs
are the means of the two rates u(0,¢,t) and p(0,¢,t + N), their volatilities
0(0,t,t) and 0(0,¢,¢+ N), and the correlation between the two rates, p. The
volatilities and correlation are given in equations (22), (23) and (25) being
determined by the variances of the factors V; and ¢;. The means can be
determined from the current term structure in the following manner.

We assume that the term structure of zero bond prices,
{P(0,km),k=1,2,...,K},

is observable at time 0, where k represents the index of m-year periods. The
bond price for any maturity ¢ is approximated by

P(0,t) = P(0,km)*P(0, (k + 1)m)' ™%, (31)

where
km <t < (k+1)m,

and
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z=(k+1)m—1t.

In equation (31), the bond price P(0,t) is obtained by a geometric interpo-
lation of the given zero bond prices. The futures rate at time 0 for delivery
at time ¢, using the relationship in equation (2) between futures prices and
values is

F(0,0) = [L — P(0,t,t +m)]/m. (32)

The expected m-year rate at time 0, given the no-arbitrage condition is

Eo(i¢) = F(0,1). (33)

Hence, we must have

1(0,4,1) + %oﬂ(o,t,t)t —In[[l = P(0,,4+ 1)]/m] (34)

which, given an estimate of &(0,¢,¢), determines the mean p(0,%,%).

The mean of the futures rate f(¢,t+/N) can be computed in a similar manner.
A futures contract made at time 0 to enter a futures contract at time ¢ to
buy an asset at time ¢ + N is simply a futures contract to buy the asset at
time ¢t + N. Hence the futures rate at time 0 is also the rate for the futures,
futures contract. Thus, F(0,¢,¢+ N) is the futures rate at 0 for entering an
N-period futures at t. The expected futures rate is then

E(F(t,N)) = F(0,t + N) (35)

by no-arbitrage, and

F(0,t+ N) = [1— P(0,t + N,t + N + m)]/m, (36)
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which implies

1
In (F(0, 1+ V) = (0,4, + N) + 50%(0,t,t + V), (37)

which determines x(0,¢,t + N), given an estimate of o(0,¢,t + N).

Having generated binomial approximations for the short rate f(¢,¢) and the
Nth futures rate f(¢,t + N) we can then apply the linear equation (28) to
derive the term structure of futures rates. The remaining input parameter is
the vector of means of the futures rates for £ = 1,... K. Again, we have

1
w(0,4,t + k) =1n[l— P(0,t + k,t+ k+m)]/m — 5az(o,t,t + k)t,  (38)

using a similar argument to that used for determining p(0,t,% 4 N).

In the binomial version of the model, we choose a parameter v representing
the number of up and down movements of the binomial process, for each
factor. Since there are two factors, the output of the model is a set of (u+1)?
term structures at time t. For the case of u = 2, the nine term structures
generated are illustrated in Figure 1.
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7 Conclusions

We have derived a stochastic model of the term structure of futures rates
in which the two factors are any two futures rates. The remaining futures
rates are then log-linear functions of those two factor rates. The factors
are themselves derived from an assumed two-dimensional ARMA process for
the short rate. The model is simple to compute and can be used either to
value options or to generate interest-rate scenarios, which can then be used
to evaluate the risk of interest-rate dependent portfolios.
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Appendix 1: Proof of Lemma 3
Proof that
kn
MWJJ+k%:MQt+ht+M+~§U@J+k¢+k)
Proof. In the proof of Lemma 2, we have the no-arbitrage condition

F(t,t+ k) = Ey(irgr). (39)

Hence, the expectation of the futures rate is given by

Bo[F(t,t + k)] = Bolirse), (40)

by the law of iterated expectations.

Taking the logarithm of equation (40) and using the lognormal property, we
have

t

k

o?(0,t+k,t +k).
(41)

From the lognormality of ¢4,

(t+k)no?(0,t+k,t+ k) = varo[u(t,t +k,t + k)] + kno®(t,t+k,t+ k). (42)

But, using Lemma 2,

varo[u(t,t + k,t + k)] = nto?(0,t,1 + k). (43)

Substituting equations (43) into (42), and then (42) into (41), yields
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k
u(0, 8,4+ k) = p(0, + k, t + k) + —27302(t,t+k,t-|—k).

24
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Appendix 2: Interpolation Methods for the
Simulations

The current term structure consists of 16 zero coupon bond prices of ma-

turities varying from 1 day to 30 years. ! Given P(0,7;),5 = 1,2,...,16,
we assume m = o= and generate P(0,km),k = 1,2,...,120 by geometric

interpolation. In this method

P(0,km) = P(0,7;)"P(0, Tj+1)1_”, (44)
where
T]'Sk‘mSTj_i_l, (45)
and
oo TirL —km (46)
Ti+1 — T

Given this input we have sufficient data to generate the required term struc-
tures of futures rates. We use the HSS method first to generate the short
rate f(t,t) and the Nth futures rate f(t,t + N). We then use the linear
model (28), to generate the futures rates f(t,t+ k), for k =2,3,...,120 for
each scenario. Given a binomial lattice with u stages for each rate, there are
(u + 1)? scenarios and hence (u + 1)? term structures.

1Here we input zero coupon rates for maturities 1 day, 7 days, 1 month, 3 months, 6
months, 9 months, 1 year, 2 years, 3 years, 4 years, 5 years, 7 years, 10 years, 15 years, 20
years, and 30 years. In practice, data availability and the number of grid points depends
on the currency used.
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Appendix 3: Proof of Proposition 1, Neces-
sity

Assume that the kth futures rate is given by

f(t7t+ k) _ﬂ(()?t’t-l-k) = ak[f(tvt) —,u((),t,t)] +bk[f(tat+ 1) _M(O’t7t+ 1)]

(47)
For compactness write this as
fl(t7t+ k) = akfl(tat) +bkfl(tvt+ 1) (48)
Consider the orthogonal component z; from
fltt+1)=a+Bf(t,1)+ = (49)
and
Pt k) = apf'(tt) +bila+ 8f(21) + 2]
= (ak + bkﬂ)f/(t, t) + bka + kat (50)

To establish necessity, assume that the kth futures rate is given by (47), (48),
(49) and (50) above. We also have, given lognormality of the rate

k
Ftt+ k)= plt,t+kt+k)+ ga(t,t%—k,t—}—k)?
hence

k
FUL AR = (0,1, K) = pu(t bbb b+ B)+ S0 (t 4k, 4 R) = (0,84 K)
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and substituting (50)

k
,u(t,t+k,t+k)+7na(t,t+k,t+k)2—p(0,t,t+k) = (ap+buB)f' (£, 1) +bro+bez

EJf(t+kt+ k)] + k—;a(t,t—l— kot + k)2 —p(0,t,t+ k)
= (ar + Bb)[f(t,1) — u(0,8,8)] + brer + br2e

For the first futures:

Bf(t+ 1,64 D] + Soltt+1t4 1) —p(06t+1)
= (al + bl)[f(tvt) - H(Oat,t)] +bia + biz

S L+ + [Goltt+ 1+ 1) = p(0,4 0+ 1)
= (o b)) — (0,8, 8) + by + buz + eusn

where E;(¢441) = 0.

Hence the spot rate follows a two-dimensional process with innovations z;, £441.
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Appendix 4: Derivation of the Process for the
kth Futures Rate

Using Lemmas 2 and 3, the deviation of the kth futures rate from its expec-
tation is related to that of the spot rate by the equation [substitue (26) in

(21)]

Pt k) = p(0,4, 4 k) = (1= O [f(1,) — pl0,8.0)] + Vi[K]  (51)

where

t—1
Vi = ) ve.d’
7=0

k

K = Z(l—c)k_TO/"1

T7=1

Also, by assumption, the spot rate is

f(t’t)—:u(oatat) = (1—C)[f(t-—1,t—1)—ﬂ(0,t—1,t—1)]+‘/;_1 té (52)

The kth forward at time ¢ — 1 is similarly given by

fE=1,t4+k=1) — p0,t—1,t+k—1)
= (1—o*ft—=1,t—1)—p(0,t — 1,4 —1)]
+ Vi1 [K] (53)

Substituting (53) in (52) and (52) in (51) yields the corollary.
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Figure 1
Yield Curves Generated by Binomial Version of Two-Factor Model

Figure 1 plots the yield curves generated by a binomial discrete version of the no-arbitrage two-factor model
of the term structure, using the methodology described in Ho, Stapleton and Subrahmanyam (1993). The
parameter N, representing the number of up and down movements of the binomial process for each factor,
is set at N = 2. This gives (N + 1)2 = 9 yield curves. The nine term structures depicted show the shift
and tilt characteristics implied By the two-factor model. The parameters used in the simulation is a flat
current term structure with sixteen maturities of 5 per cent per annum. The two factors are a short rate
and a futures rate, with volatilities of 0.20 per annum, and maturities of 3 and 6 months, respectively.

The mean reversion parameter is set at 0.10 per annum.
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Table 2

32

Special Cases of the ARMA Process

Effect on Conditional Expectation of ¢ + kth spot rate

Shock mean reversion ¢ = 0 mean reversion ¢ > (
memory
a =0 | Two-dimensional random walk. Mean reverting process.

Shift in expectation same for each
Uitk

Shift in expectation dampened by
mean reversion.

Shift in expectation affected by past
shocks but proportional to k&

Shift in expectation affected by past
shocks, but dampened by mean
reversion.
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