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Abstract

In this paper we study some foundational issues in the theory of asset

pricing with market frictions. We model market frictions by letting the

set of marketed contingent claims (the opportunity set) be a convex set,

and the pricing rule at which these claims are available be convex. This

is the reduced form of multiperiod securities price models incorporating

a large class of market frictions. It is said to be viable as a model of

economic equilibrium if there exist price-taking maximizing agents who are

happy with their initial endowment, given the opportunity set, and hence
for whom suplly equals demand. This is equivalent to the existence of

a positive linear pricing rule on the entire space of contingent claims -

an underlying frictionless linear pricing rule - that lies below the convex

pricing rule on the set of marketed claims. This is also equivalent to the

absence of asymptotic free lunches - a generalization of opportunities of

arbitrage. When a market for a non marketed contingent claim opens, a

bid-ask price pair for this claim is said to be consistent if it is a bid-ask
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price pair in at least a viable economy with this extended opportunity set.

If the set of marketed contingent claims is a convex cone and the pricing

rule is convex and sublinear, we show that the set of consistent prices of

a claim is a closed interval and is equal (up to its boundary) to the set

of its prices for all the underlying frictionless pricing rules. We also show

that there exists a unique extended consistent sublinear pricing rule - the

supremum of the underlying frictionless linear pricing rules - for which the

original equilibrium does not collapse, when a new market opens, regardless
of preferences and endowments. If the opportunity set is the reduced form

of a multiperiod securities market model, we study the closedness of the

interval of prices of a contingent claim for the underlying frictionless pricing

rules.

KEYWORDS: Viability, equilibrium, absence of arbitrage, free lunch,

market frictions, convex and sublinear pricing rule, consistent bid-ask prices,

arbitrage bounds, equilibrium bounds.

1. Introduction and synopsis

In the foundational theory of asset pricing, developed in the Arrow-Debreu model
(Theory of value [1959, chap. 7]), Black and Sholes (1973) and Cox and Ross (1976
a and b), and subsequently formalized in a general framework by Harrison and
Kreps (1979), Harrison and Pliska (1979), Kreps (1981), and Du�e and Huang
(1986), securities markets are assumed to be frictionless. The main result is that a
securities price model is viable as a model of economic equilibrium, or equivalently
is arbitrage-free, if and only if there exists a strictly positive linear pricing rule
that prices the contingent claims in the opportunity set, modeled as a linear space.

In this paper, we develop some foundational issues related to the theory of
asset pricing, in securities markets with frictions. We model market frictions by
letting the set of marketed contingent claims M (the opportunity set of available
investments) be a convex set containing 0 - instead of a linear space as in the fric-
tionless case - and by letting the pricing rule � at which these contingent claims
are available be a convex function satisfying �(0) = 0 - instead of a linear function
as in the frictionless case. The fact that the set of marketed contingent claims is
convex means that if two contingent claims x and y are marketed, their average
1
2
(x+ y) is also marketed. The fact that the pricing rule is convex means that its

price is lower than or equal to their average price. The convexity of � and the
fact that �(0) = 0 imply that the price at which a contingent claim can be bought
is larger than or equal to the price at which it can be sold.1 We consider this
class of pricing rules, that includes the linear pricing rules, in order to take a large

1Indeed, 0 = �(0) = �(x�x2 ) � 1
2�(x) +

1
2�(�x) implies that �(x) � ��(�x):
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class of market frictions into account. Indeed, this model is the reduced form of
a multiperiod securities markets model where agents can trade a �nite number
of securities. These securities, which give the right to an amount of consumption
contingent on the state of the world at the �nal date, are used to transfer con-
sumption from the initial date to the �nal date. The set of marketed claims is
then the set of contingent claims that can be obtained (or dominated) through
securities trading while satisfying the constraints imposed by potential market
imperfections (such as, for instance, short sales or borrowing constraints), as well
as a budget constraint taking potential costs (such as, for instance, transaction
costs, shortselling costs, borrowing costs or taxes) into account. The pricing rule
is then de�ned for any given marketed contingent claim as the minimum cost of
obtaining (or dominating) it using such a trading strategy. If there are no market
frictions at all, the set of marketed claims is a linear subspace of the space of
contingent claims, and the pricing rule is linear (see Harrison and Kreps [1979]).
For a large class of market frictions - including bid-ask spreads, short sales con-
straints, shortselling costs, borrowing constraints, borrowing costs and taxes - it
can be shown that the set of marketed claims is a convex cone and that the pricing
rule is sublinear (see Jouini and Kallal [1995 a and b]). On the other hand, if
transaction costs increase less than proportionally with transaction size, the set
of marketed claims is a convex cone but the pricing rule is only convex. Also, in
an economy where agents have risk limits on their portfolios the set of marketed
claims and the pricing rule are only convex.

A price system, i.e. the combination of a convex set of marketed claims and
of a convex pricing rule, is said to be viable as a model of economic equilibrium
(a concept introduced by Harrison and Kreps [1979]) if there exist maximizing
agents with a convex, continuous, and stricly increasing preorder of preferences
who are happy with their endowment, i.e. for whom supply is equal to demand.
We show that a price system is viable if and only if there exists a positive linear
pricing rule on the entire space of contingent claims that lies below the convex
pricing rule on the convex set of marketed claims (we call such a linear pricing
rule an underlying frictionless linear pricing rule). This is in fact equivalent to the
absence of asymptotic free lunches - a generalization of opportunities of arbitrage
- in this type of economy.2

When a market for a non marketed contingent claim opens, we say that a bid-
ask price pair is consistent if it is a bid-ask price pair in at least a viable economy
with this extended opportunity set, and with identical or tighter bid-ask spreads

2In multiperiod securities price models, the underlying linear pricing rules can be shown to be
equal to the martingale, supermartingale, or martingale measures of appropriately normalized
price processes (or other related processes), depending of the nature of the market frictions (see
Jouini and Kallal [1995 a and b]).
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on the set of originally marketed claims. If the set of marketed claims is a convex
cone and the pricing rule is sublinear, we show that the set of consistent prices of
a contingent claim is a closed interval and is equal (up to its boundary) to the set
of its prices for all the underlying frictionless pricing rules. However, as a market
for a non marketed contingent claim opens (and as bid-ask spreads on the origi-
nally marketed contingent claims are potentially made tighter), new investment
opportunities may appear, and agents may reshu�e their portfolio causing the
existing equilibrium to collapse. Nonetheless, we show that there exists a unique
extended consistent sublinear pricing rule - namely the supremum of the under-
lying frictionless linear pricing rules - for which the original equilibrium does not
collapse when a new market opens, no matter what preferences and endowments
are. This means that without any further restrictions on preferences and endow-
ments, and based on arbitrage and equilibrium arguments alone, we cannot infer
tighter bounds on contingent claim prices than the arbitrage bounds also given by
the underlying frictionless pricing rules. Indeed, any tighter bid-ask price interval
could lead to a collapse of the equilibrium in place, in at least an economy.

In the case where the opportunity set is the reduced form of a multiperiod
securities market model, we study the closedness of the interval of prices of a
contingent claim for the underlying frictionless pricing rules. In particular, we
show that if markets are incomplete but otherwise frictionless this set is closed if
and only if it is reduced to a single element (a result of Jacka [1992] and Ansel
and Stricker [1994]).

Related work includes Leland (1985), Dybvig and Ross (1986), Prisman (1986),
Ross (1987), Back and Pliska (1990), Bensaid et al. (1991), Hindy (1991), He and
Pearson (1991), Cvitanic and Karatzas (1993), and Constantinides (1993). An
important part of the mathematical tools used in this paper are presented in
Schachermayer (1993) and in Delbaen and Schachermayer (1994a).

The remainder of the paper is organized as follows. Section 2 characterizes
viability and the absence of free lunch, and introduces the concept of consistent
bid-ask prices in a general setting with convex sets of marketed claims and convex
pricing rules. Section 3 specializes to sets of marketed claims that are convex cones
and to sublinear pricing rules. Section 4 studies the case where the opportunity
set is the reduced form of a multiperiod securities market model and relates some
of our results to independent work by Jacka (1992) and Ansel and Stricker (1994).
Section 5 concludes. All proofs are contained in the appendix.

2. The general model: convex pricing rules

We denote by R the real line and by R the extended real line R [ f�1;+1g:
If x is a vector in Rd; where d is an integer, we say that x is nonnegative (resp.
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positive) and we write x � 0 (resp. x > 0); if all the coordinates of x are
nonnegative (resp. nonnegative and at least one of them is positive). Let (
;F ; P )
be a probability space and let X = Lp

�

;F ; P ;Rd

�
; with 1 � p � 1; be

the space of all (equivalence classes of) Rd-valued and F -measurable integrable
random variables equipped with the classical Lp-norm if 1 � p < 1 and with
the � (L1; L1) ; also called weak-* topology, if p =1. It is well known that X is
then a complete topological vector space. Let X+ be the set of elements x of X
such that P (x � 0) = 1 and P (x > 0) > 0. If S is a subset of X; we denote by
S the closure of S; and by cone(S) the convex cone generated by S: A functional
f : X ! R is said to be positive if for all x 2 X+ we have f(x) > 0: We denote
the set of positive linear functionals on X by 	: We shall denote by Im(f) the
range of f; i.e. the set ff(x) : x 2 Xg: Note that the set of continuous linear
functionals on X can be identi�ed with Lq

�

;F ; P ;Rd

�
where q is de�ned by the

relation 1
p
+ 1

q
= 1 (with, by convention q = 1 if p =1), and 	 can be identi�ed

with Lq+
�

;F ; P ;Rd

�
:

Consider a two period economy where agents consume at the initial and the
�nal date only and where they can purchase, at the initial date, contingent claims
m to consumption at the �nal date that belong to the set of marketed claims M;

for a price �(m) assigned by the pricing rule � in units of consumption at the
initial date. The opportunity set in this economy is therefore entirely described
by the price system (M;�): Furthermore, we impose

Assumption 2.1 :

(i) The set of marketed contingent claims M is a convex3 subset of X contain-
ing 0;

(ii) The pricing rule � is a lower semicontinuous (l.s.c.)4 real valued convex5

function de�ned on M satisfying �(0) = 0:

(iii) The constant function 1 equal to 1 almost everywhere belongs to M and
� (1) = 1:

The fact that the set of marketed claimsM is convex means that if two claims
are marketed, their average is marketed as well, and the fact that the pricing
rule � is convex means that its price is lower than or equal to their average

3A subset M of X is said to be convex if for all x; y in M and all � in [0; 1] we have
�x+ (1� �)y 2M .

4A function �0 is said to be l.s.c. if the set f(m;�) 2M �R : � � �0(m)g is closed in M �R,
or equivalently if the set fm 2 M : � � �0(m)g is closed in M for all � 2 R, or �nally (in Lp

with 1 � p < 1) if lim inf
n

f�0(mn)g � �0(m) whenever the sequence (mn) � M converges to

m 2M:
5A functional � :M ! R de�ned on the convex set of marketed contingent claimsM; is said

to be convex if for all x; y inM and all � in [0; 1] we have �(�x+(1��)y) � ��(x)+(1��)�(y).
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price. The fact that M contains 0 and that �(0) = 0 means that agents may
keep their endowment and not purchase any other contingent claim, at a zero
cost. Furthermore, this implies that the price at which a contingent claim can
be purchased is larger than or equal to the price at which it can be sold (indeed
0 = �(0) = �(1

2
m + 1

2
(�m)) � 1

2
�(m) + 1

2
�(�m) implies ��(�m) � �(m) for

any marketed contingent claim m). The lower semicontinuity of the pricing rule
� is a technical assumption (which will not be needed at all in section 2), which
basically means that there is no way of getting arbitrarily close to a contingent
claim at a strictly lower cost. The fact that the constant function equal to 1
almost everywhere is marketed means that agents can acquire riskless contingent
claims to consumption at the �nal date. The fact that � (1) = 1 means that the
riskless rate is equal to zero, and is merely a normalization which can be made
without loss of generality as long as there exists a strictly positive contingent
claim m0 in M by which all prices and payo�s can be normalized.

The fact that there are only two periods in this economy is not really a re-
striction since the price system (M;�) can be viewed as the reduced form of a
multiperiod securities market model where agents use dynamic trading strategies
in order to transfer consumption from the initial to the �nal date, and are sub-
ject to a wide range of frictions such as portfolio constraints and trading fees or
other costs. For instance, if markets are frictionless the resulting set of marketed
claims M is a linear subspace of X and the pricing rule � is linear (see Harri-
son and Kreps [1979]). For a large class of market frictions - including bid-ask
spreads, shortselling constraints and costs, borrowing constraints and costs, and
taxes - the resulting set of marketed claims M is a convex cone and the pric-
ing rule � is sublinear and hence convex (see Jouini and Kallal [1995 a and b]).6

However, in a situation where transaction costs increase less than proportionally
with transaction size, the set of marketed claims M is still a convex cone and
the pricing rule � is convex (but not sublinear). In a situation where agents
have risk limits on their portfolio, the set of marketed claims M is of the form
M = fm 2 X : E(m2) � E(m)2 � s2g; where s is the maximum amount of
standard deviation allowed. In this case M is convex (but is not a cone) and the
pricing rule � is convex (but is not sublinear).

The consumption space in this economy is hence represented by R � X; and
we assume that every agent is de�ned by a preorder of preferences � satisfying

Assumption 2.2 :

(i) for all (r�; x�) 2 R�X, f(r; x) 2 R�X : (r�; x�) � (r; x)g is convex,

(ii) for all (r�; x�) 2R �X, f(r; x) 2R �X : (r�; x�) � (r; x)g and f(r; x) 2R
�X : (r; x) � (r�; x�)g are closed, and

6Chen [1992] analyzes economies with taxes.
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(iii) for all (r�; x�) 2R �X, for all r > 0 and all x 2 X+ we have (r�; x�) �
(r� + r; x�) and (r�; x�) � (r�; x� + x).

This means that preferences are assumed to be (i) convex, (ii) continuous
and (iii) strictly monotonic. This class of preferences is standard in equilibrium
theory (see Debreu [1959]), and is analogous to the class used by Harrison and
Kreps (1979).

We shall now de�ne the price systems (M;�) that are viable as models of
economic equilibrium for agents with preferences satisfying Assumption 2.2. We
shall follow closely the de�nition of viability introduced by Harrison and Kreps
(1979), except that because of the frictions modeled by the convexity of the pricing
rule and of the set of marketed claims, our agents have budget sets that are convex
sets instead of being half linear spaces.

De�nition 2.1 : The price system (M;�); where the set of marketed contingent
claims M is a convex subset of X and � is a convex pricing rule de�ned on M; is
said to be viable if there exists a preorder � satisfying Assumption 2.2 and such
that (r;m) � (0; 0) for all (r;m) 2 R �M satisfying r + �(m) � 0:

This means that a viable price system (M;�) is one for which we can �nd
some agents with strictly monotonic, convex and continuous preferences, who can
trade claims in R �M at prices given by the pricing rule �; and who are happy
with their endowments, i.e. for whom supply is equal to demand. This means
that viability is the minimal requirement for a price system (M;�) to model an
economic equilibrium, i.e. an economy where maximizing agents take prices as
given and where supply is equal to demand. We then have

Theorem 2.1 : The price system (M;�); where the set of marketed contingent
claims M is a convex subset of X and � is a convex pricing rule de�ned on M; is
viable if and only if there exists a strictly positive and continuous linear functional
 de�ned on X such that

 jM� �:

This means that (M;�) is viable if and only if there exists a linear pricing
rule that is viable (when associated to the set of marketed claims M) and lies
below � on M: We shall call such a linear pricing rule an underlying frictionless
pricing rule. Note that a necessary, although not su�cient, condition of viability
is that � is positive. Also note that ifM is a linear subspace of X and � is a linear
pricing rule as in the frictionless case, we �nd the classical result of Harrison and
Kreps (1979): (M;�) is viable if and only if there exists a strictly positive linear
extension of � to the whole space X.

In some of the multiperiod securities price models with market frictions of
which (M;�) is a reduced form, the underlying frictionless pricing rules can be
identi�ed with the martingale, supermartingale, or submartingale measures of the
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adequately normalized securities price processes (or of some related processes).
For instance, it is well known that if markets are incomplete (but otherwise fric-
tionless) - under suitable assumptions - the underlying frictionless pricing rules
are the martingale measures of the securities price processes normalized by a nu-
meraire (see Harrison and Kreps [1979] and Delbaen and Schachermayer [1994b]).
In securities markets with bid-ask spreads, they are the martingale measures of
the processes that lie between the normalized bid and ask price processes of the
traded securities (see Jouini and Kallal [1995 a]). In securities markets with short
sales constraints, they are the supermatingale measures of the normalized traded
securities price processes (see Jouini and Kallal [1995 b]).

We shall also relate the viability of a price system to the absence of arbitrage,
or more precisely to the absence of free-lunch as de�ned in Delbaen and Schacher-
mayer (1994a) and in Stricker (1990). In fact, in order to obtain a necessary and
su�cient condition for the viability of a price system we have to consider a slightly
more general concept: asymptotic free-lunches.7

De�nition 2.2 : There is no asymptotic free-lunch if cone(C � (R � X)+) \
(R �X)+ = ;; where C = f(r;m) 2 R �M : r + �(m) � 0g ; and (R �X)+ =
f(r; x) 2 R�X : r � 0; x � 0 and r + x 2 X+g :

This means that an asymptotic free-lunch is a way of getting arbitrarily close
to a positive payo� at a nonnegative cost. Note that the no free-lunch property
is usually de�ned by a condition on the space of contingent claims X instead of
our consumption space R�X: However, the two de�nitions are equivalent if any
amount of consumption can be transfered from the initial to the �nal date, e.g.
if M is a cone (we only assume that M is a convex set and even if (r;m) satis�es
the budget constraint, (0; r + m) is not necessarily feasible). Hence, it is easy
to show that this concept of asymptotic free-lunch is equivalent to the concept
of free lunch as de�ned in Delbaen and Schachermayer (1994a) and in Stricker
(1990) whenever M is a convex cone8 instead of being merely a convex set. Also,
if M �X+ �M; which means that there is free-disposal in this economy, and if
� is nondecreasing, then the absence of asymptotic free-lunch is equivalent to the
simpler condition cone(C) \ (R�X)+ = ;: We then have

Theorem 2.2 : The price system (M;�); where the set of marketed contingent
claims M is a convex subset of X and � is a convex pricing rule de�ned on M;

admits no asymptotic free-lunch if and only if it is viable.

7Recall that if S is a subset of X; we denote by cone(S) the closure of the convex cone
generated by S; where the closure is the strong closure if p � 1; and the weak-* closures if
p =1 (as in Delbaen and Schachermayer [1994a]).

8A subset M of X is said to be a convex cone if it is convex and if for every x in M and
every real number � � 0; we have �x 2M:
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We shall now consider contingent claims x that belong to the consumption
space X but do not necessarily belong to the set of marketed claims M; and we
shall examine what prices would be reasonable for the claim x in the sense of
viability. To do this, we introduce the notion of bid-ask prices consistent with
the price system (M;�):We denote by Mx the convex hull of M [f�x; xg; which
represents the extended set of marketed claims. By de�nition, Mx is the smallest
convex set containing M , �x and x. Note that the claims that belong to Mx are
those which can be written as (1� �)m+ �x or (1� �)m� �x; for some m 2M
and � 2 [0; 1].

De�nition 2.3 : Let (M;�) be a viable price system, where the set of marketed
contingent claimsM is a convex subset of X and � is a convex pricing rule de�ned
on M . Let x 2 X and (Q;P ) 2R 2, we say that (Q;P ) is a bid-ask price pair
for x consistent with (M;�) if there exists a l.s.c. convex functional �0 de�ned on
the extended convex set of marketed claims Mx; the convex hull of M [ f�x; xg;
satisfying �0(0) = 0 and such that

(i) (��0(�x); �0(x)) = (Q;P );

(ii) �0 jM� �; and

(iii) (Mx; �
0) is viable.9

This means that a bid-ask price pair for x is consistent with the viable price
system (M;�) if there exists at least a viable extended economy (Mx; �

0) such
that (i) this pair is the actual bid-ask price pair for the contingent claim x; (ii)
equilibrium prices are within the original equilibrium bid-ask prices for every
claim that belongs to M; and (iii) the equilibrium allocations are unchanged (i.e.
agents are still happy with their initial endowments, given the new investment
opportunities, and the possibly tighter bid-ask prices in the market). A typical
objection is that when a contingent claim x is added to the set of marketed claims
(and as the bid-ask spreads for the originally marketed claims are potentially
made tighter), agents may reshu�e their portfolios and as a result the entire
price system may have to change to preserve equilibrium between supply and
demand. However, it is reasonable to ask which prices are consistent with the
equilibrium price system in the sense that they would not necessarily make the
equilibrium collapse. In other words, consistency of a bid-ask price pair is a
minimal requirement for this pair to be observed in equilibrium in at least an
economy (M;�) where the market for a new contingent claim opens. We then
have

9In fact, to be consistent with our framework we should not allow for in�nite prices. The
extension to this case, however, is straightforwood. In particular, the viability of (Mx; �

0) implies
that P > �1 and Q < +1: If P = +1 this means that the claim x is not marketed and if
Q = �1 it means that a short position in the claim x is not marketed.
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Theorem 2.3 : If (M;�) is a viable price system, where the set of marketed
contingent claims M is a convex subset of X and � is a convex pricing rule
de�ned on M; then for any x 2 X there exists some bid-ask price pair (Q;P ) that
is consistent with (M;�); and the pair (Q;P ) can be chosen such that Q = P is
�nite. Furthermore, any price of the form  (x); where  2 	 and  jM� � is a
(bid or ask) price for x consistent with (M;�):10

Note that it does not mean that there will be no bid-ask spread for the con-
tingent claim x when this market opens; it means instead that there is no bid-ask
spread for x in at least an extended economy where bid-ask prices are overall at
least as tight as in the original economy, and where equilibrium allocations remain
unchanged. Furthermore, we have

Theorem 2.4 : If (M;�) is a viable price system, where the set of marketed
contingent claimsM is a convex subset of X and � is a convex pricing rule de�ned
on M; then if11 1 � p <1 and if we de�ne �r(y) for all y 2 X by

�r(y) = infflim inf
n

f�(mn) : (mn) � M and converges to yg

(i) The pair (��r(�x); �r(x)); is a bid-ask price pair for x consistent with
(M;�):

(ii) Any consistent bid or ask price of x lies between ��r(�x) and �r(x):

(iii) The pricing rule �r is the largest l.s.c. pricing rule that is lower than or
equal to �:

Note that �r is lower than or equal to the pricing rule � since it represents the
minimum cost of getting arbitrarily close to a contingent claim.

3. Sublinear pricing rules

In order to analyze further the links between consistent prices and underlying
frictionless economies, we have to impose

Assumption 3.1 :

(i) The set of marketed contingent claims M is a convex cone, i.e. a convex
set such that for all x 2M and all nonnegative real number � we have �x 2M:

(ii) The l.s.c. pricing rule � is sublinear,12 i.e. is convex and such that for all
x 2M and all nonnegative real number � we have �(�x) = ��(x):

10Note that if (Q;P ) is a bid-ask price pair for x consistent with (M;�) then P � Q:
11If p =1; we can state an analogous result but we have to replace the sequences by nets.
12Note that a convex pricing rule such that returns increase with the size of the transaction

(i.e. �(�x) � ��(x)) is sublinear.
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The fact thatM is a cone (in addition to being convex) means that a marketed
claim can be purchased in any arbitrary amount. The fact that the pricing rule
� is sublinear (in addition to being convex) means that the price of a marketed
claim is proportional to the quantity of the claim purchased. As we have already
mentioned, this is the case of the reduced form (M;�) of multiperiod securities
markets with a wide range of frictions including taxes, bid-ask spreads, shortselling
constraints and costs, and borrowing constraints and costs (see Jouini and Kallal
[1995 a and b]). In this context, the de�nition of consistent prices needs to be
modi�ed slightly as follows

De�nition 3.1 : Let (M;�) be a viable price system, where the set of marketed
contingent claims M is a convex cone of X and � is a convex sublinear pricing
rule de�ned on M: Let x 2 X and (Q;P ) 2R2, we say that (Q;P ) is a bid-ask
price pair for x consistent with (M;�) if there exists a l.s.c. sublinear functional
�0 de�ned on the convex cone M+R x such that

(i) (��0(�x); �0(x)) = (Q;P );

(ii) �0 jM� �; and

(iii) (M+R x; �0) is viable.

Note that this de�nition is identical to De�nition 2.3 except that we have
replaced the convex set Mx; the convex hull of M [ f�x; xg; by the convex cone
M + Rx to reect the fact that there are no constraints on transaction sizes in
this economy. In this context, we have the following result, which is a direct
consequence of Theorem 2.2.

Theorem 3.1 :

(i) The price system (M;�); where the set of marketed contingent claims M
is a convex cone of X and � is a convex sublinear pricing rule de�ned on M; is
viable if and only if fx 2M : �(x) � 0g �X+\X+ = ; (no free-lunch condition).

(ii) If M �X+ �M (i.e. if there is free disposal) and if � is nondecreasing
then the price system (M;�) is viable if and only if fx 2M : �(x) � 0g\X+ = ;
(no-arbitrage condition)

Note that the no-arbitrage condition is a minimum requirement of any reason-
able model since it only expresses the fact that a positive payo� cannot be obtained
for a nonpositive price. This Theorem states that this condition is equivalent to
the viability of a price system under the assumption that the pricing rule is non-
decreasing and that there is free-disposal in the set of marketed claims (which
is the case for most reduced form multiperiod securities markets models). More
generally, the Theorem states that the viability of a price system is equivalent
to the absence of free lunch, , as de�ned in Delbaen and Schachermayer (1994a)
and Stricker (1990), a weaker form of arbitrage opportunity. To proceed, we shall
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need

De�nition 3.2 : Let (M;�) be a viable price system, where the set of marketed
contingent claims M is a convex cone of X and � is a convex sublinear pricing
rule de�ned on M; and let x 2 X: We de�ne by

(i) C(x) = f(Q;P ) 2R2 : (Q;P ) is a bid-ask price pair for x consistent with
(M;�)g the set of consistent bid-ask price pairs of x; and

(ii) �(x) = f (x) :  2 	 and  jM� �g the set of underlying frictionless
prices of x:

Note that �(x) is the set of prices of x for all the underlying frictionless linear
pricing rules and it is easy to show that �(x) = ��(�x). Also note that if
(M;�) is a viable price system then �(x) is a nonempty interval of R; since the
set f 2 	 :  jM� �g is nonempty and convex. We then have

Theorem 3.2 : If (M;�) is a viable price system, where the set of marketed
contingent claims M is a convex cone of X and � is a convex sublinear pricing
rule de�ned on M; then for all x 2 X;

(i) C(x) is closed,

(ii) (�(x)� �(x)) \ f(Q;P ) : P � Q)g � C(x); and

(iii) If �X+ �M and �(�y) � 0 for all y 2 X+; then (�(x)� �(x)) \ f(Q;P ) : P � Q)g =
C(x):

This means that if negative contingent claims are marketed at a nonpositive
price in the economy, which is typically the case for reduced forms of multiperiod
securities market models (to see this, consider the null strategy), the set of con-
sistent prices of a contingent claim is a closed interval and is equal to (the closure
of) the set of its underlying frictionless prices. However, in general the set C(x)
is not exactly equal to the set (�(x) � �(x)) \ f(Q;P ) : P � Qg : indeed, it is
easy to construct examples for which �(�x) = 0 for some x 2 X+ and such that
(M;�) is viable.13 In section 4 we shall study in more detail the boundary of the
set (�(x)��(x))\ f(Q;P ) : P � Qg; and more speci�cally we shall characterize
the situations where the set �(x) is closed.

Note that in the particular case where the contingent claim x belongs to
the set of marketed claims M; we have the equality C(x) = ([��(�x); �(x)] �
[��(�x); �(x)])\f(Q;P ) : P � Qg: If (M;�) is the reduced form of a multiperiod
securities price model, then �(x) is the minimum amount it costs to obtain the
claim x; and ��(�x) is the maximum amount that can be borrowed against it

13For instance, consider an economy where there are two dates and two states of the world
at the �nal date, with only one security: a riskless asset. The resulting pricing rule �; which is
de�ned by �(x1; x2) = maxfx1; x2g; is a viable pricing rule and is such that �(0;�1) = 0; even
though the contingent claim (0; 1) belongs to X+:

12



by trading securities. Hence, the claim x would not be bought for more than
�(x) or sold for a price lower than ��(�x) in any extended economy, since a bet-
ter deal could be achieved through securities trading in both cases. This means
that the interval [��(�x); �(x)] is the set of admissible prices for the claim x.
Note that this does not mean that if the bid price of x is below ��(�x) or if
the ask price of x is above �(x) then there are opportunities of arbitrage; it only
means that there are no transactions at these prices. However, if the bid price of
x were to be above �(x) or its ask price were to be below ��(�x) then selling
the claim x at the bid price or buying it at the ask price and hedging the posi-
tion through securities trading would constitute an arbitrage opportunity. Since
we have C(x) = (�(x)� �(x)) \ f(Q;P ) : P � Qg by Theorem 3.1, this implies
[��(�x); �(x)] = �(x): Also recall that Jouini and Kallal (1995 a and b) char-
acterize the set �(x); and hence the interval of arbitrage bounds [��(�x); �(x)];
using the set of martingale measures, supermartingale measures and submartin-
gale measures, in various economies with bid-ask spreads, incomplete markets,
short sales constraints, shortselling costs, and borrowing costs.

As we have already mentioned, a typical objection to the concept of consistent
prices is that as the market for a non marketed contingent claim x opens (and as
bid-ask spreads in the originally marketed claims potentially tighten), new oppor-
tunities become available to agents and the old equilibrium might collapse. In a
frictionless economy, this does not happen if the contingent claim x is priced by
arbitrage, i.e. if it admits a unique consistent price (see Kreps [1981, Theorem
5]): in this case, even when the new claim x is introduced, an equilibrium re-
mains so. Similarly, in economies with market frictions we show that there exists
a unique price system, namely the supremum of all the underlying frictionless
pricing rules, for which equilibria do not collapse as the market for a new con-
tingent claim x opens (and as bid-ask spreads in the originally marketed claims
potentially tighten). Indeed, we have

Theorem 3.3 : Let (M;�) be a viable price system, where the set of marketed
contingent claims M is a convex cone of X and � is a convex sublinear pricing
rule de�ned on M: Given a contingent claim x 2 X; consider the extended set of
marketed claimsM+Rx; and let the pricing rule �0 be de�ned for all m0 2M+Rx
by

�0(m0) = sup
 02	: 0jM��

f 0(m0)g

(i) Then the price system (M +Rx; �0) is viable, consistent with (M;�); and
such that (r0; m0) � (0; 0) for all (r0; m0) 2 R� (M +Rx) such that r0+�0(m0) �
0; for every preoder of preferences � satisfying Assumption 2.2 and such that
(r;m) � (0; 0) for all (r;m) 2R�M such that r + �(m) � 0 :

(ii) Moreover, if �X+ �M and �(�y) � 0 for all y 2 X+; then (M +Rx; �0)
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is the unique l.s.c. price system satisfying (i):

Therefore, based on equilibrium or arbitrage considerations alone, and without
knowledge about preferences and endowments, it is not possible to infer tighter
bounds than the arbitrage bounds given by the interval

[ inf
 2	: jM��

f (x)g; sup
 2	: jM��

f (x)g] = �(x)

on the bid-ask prices of a contingent claim x: Indeed, any tighter bid-ask price in-
terval would lead to a collapse of the equilibrium in place, in at least an economy.14

Hence, inf
 2	: jM��

f (x)g and sup
 2	: jM��

f (x)g can be interpreted as the bid and

the ask prices of the contingent claim x 2 X:

4. Pricing rules from trading strategies

In this section, we shall assume that marketed contingent claims are available
to agents as the result of trading strategies, as in multiperiod securities markets
models (see for unstance Harrison and Kreps[1979] for the frictionless case and
Jouini and Kallal [1995 a and b] for models with market frictions). More precisely,
let � be a convex cone in a topological vector space representing the space of
admissible strategies and c be a nondecreasing real-valued sublinear mapping on
�. The convex cone � represents the space of self-�nancing strategies (i.e. that
do not require any infusion of funds other than at the initial date) and for any
strategy � 2 �; c(�) represents the initial investment necessary to carry out the
strategy �: To each strategy �, we associate its resulting payo� R(�) in X; where
R is a superlinear15 mapping between � and X.

In this context, a pricing rule P is de�ned as a l.s.c. sublinear functional such
that P (x); the price of a given contingent claim x; is lower than or equal to the
minimum cost necessary to dominate x. Since P is l.s.c., it is easy to see that

P (x) � P �(x) � inf lim inf
R(�n)�xn;xn!x

fc(�n)g;

the minimum cost necessary to dominate x or to dominate some payo�s arbitrarily
close to x: Moreover, if p < 1 then P � is the greatest l.s.c. sublinear functional
such that the price every contingent claim x is lower than or equal to the minimum

14Unfortunately, these bounds can be quite wide, as shown for instance by Soner, Shreve
and Cvitanic (1995) in a model where the risky asset follows a geometric brownian motion
and is subject to proportional transaction costs. By imposing restrictions on preferences and/or
endowments Davis et al. (1993) and Constantinides (1993), among others, obtain tighter bounds.

15This means that R(�1 + �2) � R(�1) +R(�2) for all �1; �2 2 �:
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cost necessary to dominate it.16 However, if p = 1 Delbaen and Schachermayer
(1994a) pointed out that the closure of a convex set cannot necessarily be obtained
by taking limits of all sequences. Therefore, P � is not necessarily l.s.c. in this
case.

As shown in the previous section (Theorem 3.1 and its consequences), if the
price system is viable there exists some convex subset17 K � 	 such that P (x) �
sup 2Kf (x)g for all x 2 X; where the equality holds if P (�y) < 0 for all
y 2 X+: Analogously, if P

� is viable, there exists  2 	 such that18 P �(x) �  (x)
for all x 2 X: In what follows, we shall denote by K� the set of all such linear
functionals  2 	 and we then have19 P �(x) � sup 2K�  (x); where the equality
holds if p < 1 and if P �(�y) < 0 for all y 2 X+: As a particular case, if � is a
convex cone of X denoted by M; R the canonical injection, and if c is denoted
by � we obtain the model of section 2 and P � is then the mapping �r de�ned in
Theorem 2.4. We then have20

Theorem 4.1 : If p > 1; then for every x 2 X; if there exists  0 2 K� such
that P �(x) =  0(x) then x 2Im(R)

Note that the converse implication is not true in general. Indeed, consider a
securities market model with two assets (B and S) and two states of the world (u
and d). The asset B is a bond and has a constant price equal to 1, the asset S is
a stock and pays 110 (resp. 90) units of consumption at date 1 in state u (resp.
d). We shall denote by (110; 90) this payo�. We assume that the stock can be
bought at a price equal to 110 and sold at a price equal to 90 at date 0: The space
of strategies � is equal to R2 and an element (�; �) of � represents a portfolio
composed by � bonds and � stocks. We then have c(�; �) = � + 110�+ � 90��

and R(�; �) = (� + 110�; � + 90�). In this framework, it is easy to see that
K� = f(p; 1� p) : p 2]0; 1[g, P �(110; 90) = 110 and that there is no  in K� such
that P �(110; 90) =  (110; 90).

In general frictionless but not necessarily complete markets, the space � of
admissible strategies is a vector space and the \cost mapping" c and the \Result

16Indeed, P � is l.s.c. by construction and we have P �(x) � infR(�)�xfc(�)g: Moreover,
P (x) � infR(�)�xfc(�)g and since P is l.s.c. we have P (x) � inf lim infyn!xfP (yn)g and
since P (yn) � c(�n) whenever yn � R(�n) we obtain P � P �:

17Indeed, to have the inequality it su�ces to consider the set K of underlying frictionless
pricing rules  2 	 such that P �  : If P (�y) < 0 for all y 2 X+; then all such  must satisfy
 (y) > 0 for all y 2 X+; and by Hahn-Banach Theorem and the fact that P is l.s.c. we have
the equality.

18This is a consequence of Theorem 2.1 where the lower semi-continuity of � is not required
in order to establish the result.

19Indeed, P � is l.s.c. if p <1:
20This Theorem relies on topological tools developed in Delbaen and Schachermayer (1994a),

and in particular on a simple version of Komlos Theorem for the case where p =1:
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mapping" R are both linear mappings. We then obtain as a simple consequence
of our previous analysis a result also proved in Jacka (1992) as well as in Ansel
and Stricker (1994).

Corollary 4.2 : In markets with no friction, for every x 2 X we have P �(x) =
 0(x) for some  0 2 K� if and only if f (x) :  2 K�g is reduced to a unique
element.

This means that if markets are incomplete but otherwise frictionless the set
of underlying frictionless prices �(x) is closed (using the notation of section 3) if
and only if it is a singleton.

5. Conclusion

In this paper, we have developed some foundational issues related to the theory of
asset pricing, in securities markets with frictions. We model market frictions by
letting the set of marketed contingent claims (i.e. the opportunity set) be a convex
set and by letting the pricing rule at which these claims are available be convex.
This is the reduced form of multiperiod securities price models, incorporating a
large class of market frictions including bid-ask spreads, short sales and other
portfolio constraints, shortselling costs, and borrowing costs. A price system is
said to be viable as a model of economic equilibrium if there exist price-taking
maximizing agents with a convex, continuous, and stricly increasing preorder of
preferences who are happy with their endowments, and hence for whom supply is
equal to demand. We show that a price system is viable if and only if there exists a
positive linear pricing rule on the entire space of contingent claims - an underlying
frictionless linear pricing rule - that lies below the convex pricing rule on the set of
marketed claims. We also show that this is equivalent to the absence of asymptotic
free lunches - a generalization of opportunities of arbitrage. When a market for a
non marketed contingent claim opens, a bid-ask price pair is said to be consistent
if it is a bid-ask price pair in at least a viable extended economy (where the new
contingent claim can now be bought and sold) - with identical or tighter bid-ask
spreads on the set of originally marketed claims. If the set of marketed contingent
claims is a convex cone and if the pricing rule is sublinear, we show that the set of
consistent prices of a contingent claim is a closed interval and is equal (up to its
boundary) to the set of its prices for all the underlying frictionless pricing rules. As
the market for a new contingent claim opens new opportunities arise, agents might
reshu�e their portfolio, and the original equilibrium might collapse. However, we
show that there exists a unique extended consistent sublinear pricing rule - the
supremum of the underlying frictionless linear pricing rules - for which the original
equilibrium does not collapse when a market for a contingent claim is opened, no
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matter what preferences and endowments are. This means that without restricting
preferences and endowments, and based on arbitrage and equilibrium arguments
alone, we cannot infer tighter bounds on the price of a contingent claim than the
arbitrage bounds also given by the underlying frictionless pricing rules. We also
study the closedness of the interval of underlying frictionless prices, in reduced
forms of multiperiod securities prices models. In particular, in a model where
markets are incomplete but otherwise frictionless we show that this interval is
closed if and only if it is reduced to a single element (a result that can also be
found in Jacka [1990] and Ansel and Stricker [1994]).
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Appendix

Proof of Theorem 2.1: Suppose that there exists a linear functional  in 	
de�ned on X such that  jM� �. Let � then be de�ned by (r0; x0) � (r; x) if r0+
 (x0) � r+ (x): It is clear that � is an element of the class C. Let (r;m) 2 R�M
such that r+�(m) � 0. We then must have r+ (m) � 0 since  jM� �. Noting
that 0 +  (0) = 0 we obtain that (r;m) � (0; 0).

Conversely, suppose that (M;�) is viable and hence let � be as in de�nition
2.1. Let J = f(r; x) 2 R � X : (0; 0) � (r; x)g; and K = f(r;m) 2 R �
M : 0 � r + �(m)g: Then J and K are disjoint and convex; furthermore J
is open. By a separation theorem (see Jameson [1974, theorem 23.13]) there
exists a nontrivial continuous linear functional � on R �X and � 2 r such that
�(r; x) > �; for all (r; x) 2 J; and �(r;m) � �; for all (r;m) 2 K: Note that
by continuity of � and strict monotonicity of � we must have �(0; 0) = � = 0.
Moreover, by strict monotonicity of � we have (0; 0) � (1; 0) and hence (1; 0) 2 J
which implies that �(1; 0) > 0. We then renormalize � so that �(1; 0) = 1. We also
let  be de�ned on X by  (x) = �(0; x). It is easy to show that  is a continuous
and linear functional. If we let x 2 X+, we have by strict monotonicity of �,
(0; 0) � (0; x) and hence (0; x) 2 J . Therefore we must have  (x) > 0 and  is
positive. It only remains to prove that  jM� �. For this, let m 2 M . It is clear
that (��(m); m) 2 K. Consequently, �(��(m); m) � 0 and  (m) � �(m) � 0.
Thus, we must have  jM� �:

Proof of Theorem 2.2: Let (M;�) be viable and hence such that there exists
a positive linear functional  2 	 such that  jM� �: Consider an element
(r; x) 2 C; we must have r + �(x) � 0 and then r +  (x) � 0: The positive
linear functional (r; x) ! r +  (x) is then nonpositive on cone(C � (R � X)+)
and positive on (R�X)+. This implies the absence of asymptotic free-lunch.

Conversely, if cone(C� (R�X)+)\ (R�X)+ = ;; since cone(C� (R�X)+)
and (R � X)+ are cones (with vertices at the origin), with empty intersection;
we then have according to the Kreps-Yan theorem21 (see, for example Delbaen
and Schachermayer [1994a], proof of Theorem 1.1) that there exists a continuous
linear functional �� on R�X such that ��((r; x)) > 0 for all (r; x) 2 (R�X)+ and
��((r; x)) � 0 for all (r; x) 2 cone(C � (R �X)+): We can then renormalize �� in
order to obtain �((r; x)) = r +  (x) satisfying the same properties, with  2 	:

21In fact, for 1 < p < 1; the Clark's (1993) separation theorem is su�cient. The theorem
of Kreps-Yan is then usefull for p = 1 or p = 1: Note that we are applying these separation

theorems in the space R �X which can be identi�ed with Lp
�e
; eF ; eP� where e
 = 
 [ f$g ;

eF = F[fA [ f$g : A 2 Fg and where eP is de�ned, for all A 2 F by eP (A) = 1
2P(A) andeP (A [ f$g) = 1

2 +
1
2 P(A).
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Let m 2M; we then have (��(m); m) 2 cone(C � (R�X)+) which implies that
��(m) +  (m) � 0. This means that  jM� �:

Proof of Theorem 2.3: Let (M;�) be viable, and let x 2 X: Let  2 	
such that  jM� �; as guaranteed by Theorem 2.1. Then ( (x);  (x)) is a bid-
ask price pair for x that is consistent with (M;�): Indeed, �0 de�ned on Mx by
�0 =  jMx

is a convex functional (since it is linear ), which satis�es �0 jM� �

since �0 jM=  jM :

Proof of Theorem 2.4: The pricing rule �r is l.s.c. by construction and is
lower than or equal to � since the sequences mn include the constant sequences.
Moreover, it is the largest l.s.c. pricing rule that is lower than or equal to �:
Indeed, if ~� is l.s.c. and is lower than or equal to � then ~�(y) � infflim inf

n
f~�(mn) :

(mn) � M and converges to yg for all y 2 M and since we have ~�(mn) � �(mn)
we obtain ~�(y) � �r(y): Therefore any pair of bid-ask prices for x consistent with
(M;�) must be included in the closed interval [��r(�x); �r(x)]:

Proof of Theorem 3.1: If (M;�) is viable, then we can apply the result of
Theorem 2.2 and we have that cone(C�(R�X)+)\(R�X)+ = ;: Since C is now a
cone, this last condition is equivalent to (C � (R �X)+)\(R�X)+ = ;: If we take
the intersection with f0g �X we then have fx 2 M : �(x) � 0g �X+ \X+ = ;:

Conversely, if fx 2M : �(x) � 0g �X+\X+ = ;, then let (r�; m�) in (C � (R�X)+)\
(R�X)+; it is easy to see that r

�+m� is then in fx 2M : �(x) � 0g �X+ \X+

which is impossible. We then have that cone(C� (R�X)+)\ (R�X)+ = ; and
(M;�) is viable according to Theorem 2.2.

Finally, ifM �X+ � M and if � is nondecreasing, then fx 2M : �(x) � 0g�
X+ = fx 2M : �(x) � 0g which is closed by the lower semi-continuity of �: The
condition then becomes fx 2M : �(x) � 0g \X+ = ;

Proof of Theorem 3.2: First, we shall prove that, for all x 2 X, the set C(x) is
closed. Indeed, let (Qn; Pn) be a sequence in C(x) that converges to some (Q;P ).
There exists a sequence �0n of sublinear functions de�ned on M + Rx such that
�0n jM� �, �0n(x) = Pn and �0n(�x) = �Qn; for all n. Since the sequences (Pn)
and (Qn) converge, they are bounded respectively by some real numbers P and
Q. Let y be in M + Rx, there exists m 2 M and two real numbers � and � in
R+ such that y = m + (� � �)x. We then have �0n(y) � �(m) + �Pn � �Qn �
�(m) + �P + �Q and analogously �0n(�y) � �(�m) + �P + �Q. Since �0n(0) = 0
and hence ��0n(�y) � �0n(y), we have j�

0
n(y)j � j�(m)j+ j�(�m)j+�P+�Q. The

sequence �0n(y) is then bounded and we can de�ne a function �0 on M + Rx by
�0 = supn supt�n �

0
t. It is easy to show that �0 is well de�ned, sublinear and such

that �0 jM� �, �0(x) = P and �0(�x) = �Q. This proves that (Q;P ) 2 C(x) and
that C(x) is closed.

The theorem is then a consequence of the following lemma.
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Lemma : Let (M;�) be a viable price system.

(i) If Q and P are in �(x) with Q � P then (Q;P ) 2 C(x)

(ii) Conversely, assuming that �X+ � M and that �(�y) � 0 for all y 2 X+;

if (Q;P ) 2 C(x), then Q and P are included in �(x):

Proof of the Lemma: Since C(x) is closed, it su�ces to prove (i) when Q and
P are in �(x): If Q and P are in �(x) with Q < P; then there exist functionals
 P and  Q in 	 such that  P jM� �,  Q jM� �,  P (x) = P and  Q(x) = Q.
Then consider the functional �0 de�ned for all x0 2 M + Rx; with x0 = m + �x

for some (m; �) 2 M � R+; by �
0(x0) = max[ P (x

0);  Q(x
0)]g: It is easy to check

that �0 is l.s.c. and sublinear and that (M + Rx; �0) is a viable (since �0 �  P )
price system satisfying �0 jM� �; and hence that (Q;P ) is a bid-ask price pair of
x consistent with (M;�).

If P 2 �(x); then there exists  2 	 such that  jM� � and  (x) = P: Let
now �0 : M + Rx ! R be de�ned for all x0 2 M + Rx with x0 = m + �x for
some (m; �) 2 M � R+; by �

0(x0) =  (x0): It is easy to see that �0 is a sublinear
functional and we have that  jM+Rx� �0: Consequently, (M + Rx; �0) is viable
and (P; P ) is then a bid-ask price pair for x consistent with (M;�):

Conversely, assume �X+ � M and �(�y) � 0 for all y 2 X+ and let (Q;P );
with Q < P , be a bid-ask price pair for x consistent with (M;�): Then there exists
a convex functional �0 on M +Rx such that �0(x) = P , �0(�x) = �Q, �0 jM� �

and (M +Rx; �0) is viable. Let A = f(x0; �) 2M +Rx�R : � � �0(x0)g; since �0

is l.s.c. then A is a closed convex set and for all " > 0, (x; P � ") 6 2A. By a strict
separation Theorem and for some " > 0, there exists a continuous linear functional
� de�ned on X �R and � 2 R such that �(x; P � ") < � and �(x0; �) > � for all
(x0; �) 2 A. Then there exists a continuous linear functional ' on X and � 2 R

such that �(y; �) = '(y) + ��; for all (y; �) 2 X � R and we must have, for all
(x0; �) 2 A, '(x0) + �� > � and '(x) + �(P � ") < �. Noting that (0; 0) 2 A and
(x; �) 2 A for all � � �0(x) it is easy to see that � > 0 and � � 0. Furthermore,
since A is a cone we have, for all (x0; �) 2 A, '(x0) + �� � 0.

Let us consider the continuous linear functional � de�ned by �(y) = � 1
�
'(y);

for all y 2 X: Since (x0; �0(x0)) 2 A for all x0 2 M + Rx we clearly have, �(x0) �
�0(x0) for all x0 2 M + Rx and �(x) > p � ". In particular, for all y 2 X+ we
must have �(�y) � �0(�y) � 0 and hence, �(y) � 0: Let now  0 be a linear
positive functional such that  0 jM+Rx� �0 as guaranteed by the viability of
(M+Rx; �0) and by Theorem 2.1. Let us de�ne for  2 (0; 1) the linear functional
 by  (y) =  0(y) + (1 � )�(y) for y 2 X. We clearly have that  2 	,
 jM� � and for  su�ciently small we also must have P � " �  (x) � P .
A symmetric argument gives the existence of � 2 	 such that � jM� � and
�Q� " � � (�x) � �Q which implies that Q � � (x) � Q+ ". Therefore, P and
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Q are in �(x):
Now let P such that (P; P ) is a bid-ask price of x consistent with (M;�), then

there exists a l.s.c. convex functional �0 de�ned on M + Rx such that �0 jM� �,
�0(x) = ��0(�x) = P and (M +Rx; �0) is viable. By Theorem 2.2 there exists a
positive continuous linear functional  on X such that  jM+Rx� �0. By linearity
of  we must have  (x) = P and hence P 2 �(x).

Proof of Theorem 3.3: To prove (i) it su�ces to separate the convex sets J
and K as in the proof of Theorem 2.2.

To prove (ii); let �" be a sublinear extension of � toM+Rx such that �" jM� �

and such that �"(x) < �0(x); where �0(x) = sup
 02	: 0jM��

f 0(x)g: Then there exists

 2 	 such that  jM� � and �"(x) <  (x): Hence, we can de�ne the preorder
of preferences � 2 C by (r0; y0) � (r; y) if r0 +  (y0) � r +  (y): Then let r" be
the real number that solves r"+�"(x) = 0: It also must satisfy r"+ (x) > 0; i.e.
(0; 0) � (r"; x); since �"(x) <  (x): Hence (M + Rx; �") is not an equilibrium
price system in an economy populated by agents with a preorder of preferences
� although (M;�) is.

Proof of Theorem 4.1 : Let x 2 X such that P �(x) =  0(x) for some  0 in
K�: Then there exist sequences (�n) in �; (xn) in X converging to x and (hn)
in X+ such that R(�n) = xn + hn and c(�n) converges to  0(x). Let �n = 1
if k hn k� 1 and �n = 1

khnk
otherwise. If p < 1; then X is reexive and

X++ \ fx 2 X :k x k� 1g is a compact set for the weak-topology, where X++

denotes the subset of nonnegative elements of X: Therefore, we can assume that
�nhn converges to some h in X++. We then have R(�n) = xn+�nhn+(1��n)hn
where xn + �nhn converges to x+ h and (1� �n)hn is in X++. We then have, by
de�nition of P �; P �(x + h) � limn!1 c(�n) = P �(x). Furthermore, P �(x + h) �
 0(x + h) = P �(x) +  0(h); and h must be equal to 0 which implies that hn
converges to 0 and R(�n) converges to x.

If p = 1; the sequence (hn) is nonnegative and bounded. Following Del-

baen and Schachermayer (1994a, Lemma A.1.1) there exists a sequence (fhn) 2
conv(hn; hn+1; :::) converging almost surely (and therefore in the sense of the
� (L1; L1) topology), to a �nite nonnegative function h: Let us denote by (fxn) and
(f�n) the sequences obtained by convex combination from (xn) and (�n) with the

same weights as (fhn): It is easy to see that (fxn) converges to x; R(f�n) =fxn +fhn
converges to x + h and lim inf c(f�n) �  0(x): We then obtain that P �(x + h) �
 0(x):We also know that P �(x+h) �  0(x+h) = P �(x)+ 0(h): Hence we have
that h = 0 and x 2 Im(R):

Proof of Theorem 4.2 : If there exists  0 2 K such that P �(x) =  0(x) then
by Theorem 4.1, x 2 Im(R). By de�nition of P � it is easy to show that, for all
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� 2 �, P �(R(�)) � c(�). Using the fact that c is a linear form and that P ��R is
sublinear, we obtain P � �R = c and the restriction of P � to Im(R) is a continuous
linear form. Consequently, for all y 2 Im(R) we have P �(y) = �P �(�y) and
this last result is also true for x 2 Im(R). Since P �(x) � sup 2K�  (x) and
�P �(�x) � inf 2K� sup 2K�  (x), it is clear that f (x) :  2 Kg is reduced to a
unique element. The converse is immediate.
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