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Abstract

This paper attempts to link the agency literature (concerned with whether debt will trigger

underinvestment incentives or risk-shifting behavior) with the one dealing with temporal

resolution of uncertainty. To the best of our knowledge, apart from one article by John and

Ronen (1990), there is no research article linking the two literatures.

We are concerned here with how the product/input market influences deviations from the

optimal investment policy, in particular to what extent the speed of resolution of uncertainty

of the industry in which a given firm operates affects the risk-shifting behavior of a

shareholder-aligned manager. We assume that investors are risk neutral and that the return on

the risky technology is normally distributed. It is then shown that the pattern of temporal

resolution of uncertainty monotonically affects risk shifting as well as bond yields, even after

contracts mitigating deviations from optimal investment policy have been written; empirical

implications are derived and discussed.

Temporal Resolution of Uncertainty, the Investment Policy of

Leveraged Firms and Corporate Debt Yields
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1. Introduction

A recent review of the work done in the field of corporate finance over the last twenty five years ends with the

conclusion that one of the biggest challenges facing theorists and empiricists alike is the valuation of "firms

whose major asset consists of human rather than physical capital, prominent examples being in computer

software and film production, […] for the paradigm example underlying most of our theoretical models is the

manufacturing firm which dominated the growth of the economy around mid-century"1. This is a very large

task, and we plan on tackling but one aspect of it: how the speed at which uncertainty is resolved for a

firm/industry may affect its capital structure and the yield demanded on corporate debt.

The relevance of the concept of temporal resolution of uncertainty for corporate finance becomes intuitive as

soon as one realizes that both sides of the balance sheet will depend heavily on it: the capital budgeting process

will have to take into account whether more uncertainty affects short term or long term cash flows to figure out

the right discount rates to use. It will also have to consider whether an expected value is a sufficient statistic to

estimate future cash flows: if a discounted cash flow analysis seems appropriate for, say, a paper or lumber

company, it is certainly not the case for a software or biotech firm, which will have to rely on other valuation

techniques, for instance derived from option pricing theory. This, in turn, will determine the extent to which a

firm can rely on debt and the type of debt the firm will use2. In this paper, however, we are not so much

concerned about security design as about how the speed at which uncertainty is resolved will affect a firm's

capital structure and the distortions between the optimal investment policy and the policy of a shareholder

aligned manager.

The relation between capital structure and agency problems has been extensively studied. For the last thirty

years3, researchers in the field of finance have realized that leverage differs in a statistically significant manner

across industries. Such a systematic and persistent variation across industries was surprising in light of

Modigliani and Miller’s (1958) Capital Structure Irrelevance Theorem and much work was done to reconcile

theory and evidence. Agency as well as signalling games were called on to explain the determinants of capital

structure differences across industries and across firms within industries.

Agency theory focuses on problems where there is asymmetric information between managers/insiders and

outsiders, in particular when managers can decide whether to undertake a risky project or a riskless one based

on an experiment that they can privately observe. The central question in these papers is whether the presence

of debt triggers risk-shifting (overinvesting in a risky technology or even investing in a negative net present

                                                       
1 Brennan (1995), p.18.
2 See Goswami, Noe and Rebello (1995) for an attempt to design the type of debt a firm should use depending on whether

more uncertainty surrounds short term or long term cash flows.
3 Beginning with Schwartz and Aronson (1967).
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value project) or underinvestment (Myers (1977) argued that if the risky debt outstanding matures after

valuable investment opportunities, shareholder-aligned managers might consider that any positive result of an

investment will go to bondholders and decide to strategically default instead of investing).

Two intuitions are at play here when one tries to figure out the effect of risky debt on the investment policy of

a firm: on the one hand, considerations about the nature of the investment, or what I would call the “soccer”

intuition4: a soccer team that is one or two goals behind will think only about attacking (possible positive

returns) and be far more aggressive than is commonly deemed “reasonable” (NPV maximizing behavior); if it

gives up one or two more goals, the situation is not much worse anyway: losing by two or four goals doesn’t

make a difference (for a shareholder, just defaulting or being badly in the red has the same effect: she loses her

initial stake and nothing more due to the limited liability feature). Hence, appealing to the option pricing

literature and realizing that the shareholders have sold the assets of the firm to the bondholders but have the

option to buy it back for the face value of the debt (“strike price” of the option), it makes sense for them to

maximize the value of this option by raising the volatility of the underlying assets5. Brito (1999), however,

argues that the presence of (unrealized) growth opportunities known only to the manager will trigger an

investment policy that is too conservative (not risky enough), since being driven into bankruptcy by lenders

who do not observe those growth opportunities would simply mean losing them. As a consequence, growth-

oriented firms might lean towards a lower debt/equity ratio so as to be able to invest freely in proprietary

technologies. Finally, the manager may not be totally shareholder-aligned and may be concerned about the loss

of control benefits or of reputation (especially if it is hard to tell whether a firm went bankrupt because of bad

luck or bad management). This imperfect alignment between the manager and shareholders might lead her to

be overly conservative in her investment policy and adopt a risk-avoiding behavior.

On the other hand, considerations arise about the level of investment expenditures. For instance, it has been

argued that the manager of a corporation that issued debt will tend not to invest as much as would be optimal.

This is due to the fact that returns have to be shared with bondholders, and that in the worst states of the world

where the firm is still solvent, all of the returns go to bondholders (this is the debt underinvestment problem of

Myers (1977) cited earlier). In other words, heavily levered firms may lower their level of physical capital

investments in order to minimize the salvageable assets that would be lost to debtholders in the event of

bankruptcy.

However, the agency literature has focused on very concrete industry characteristics (and understandably so,

since it was the only way to obtain clear-cut empirical implications), and has left the effect of some concepts,

such as temporal resolution of uncertainty (in the sequel: TRU), a yet… unresolved issue. We argue that if an

                                                       
4 The reader will understand that this paper was partly written during the soccer World Cup of 1998, and that the author

didn’t think of much else during that period.
5 We remind the reader that the option price is increasing in the volatility of the underlying asset.
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optimal capital structure or investment policy indeed exists, it will depend on the particular industry in which

the firm operates, not only because of differences in expected bankruptcy costs or debt-related tax shields, but

also because of the speed at which uncertainty is resolved in that particular industry. When making investment

and employment decisions, a firm invests in specialized physical and human capital, which results in a cross-

sectional variation in investment opportunity sets (i.e. prospective investment opportunities and associated

payoff distributions). This should in turn help us understand cross-sectional variation in capital structure: the

(private) release of new information might well affect cash flows due to agency games or adverse selection

problems and “a simultaneous combination of optimal information generation and dissemination along with

optimal financial contracts”6 is to be determined: the financial structure of a firm has to be designed based on

the pattern of resolution of uncertainty this firm faces. This explains why projects in their initial phase are

often financed differently from projects in more advanced phases. It also sheds some new insight into why

growth firms use a larger component of retained earnings for their financing than mature firms (which tend to

generate more free cash flows), and why project financing (incorporated as legally segregated entities) is often

used for the start-up phase of some ventures to switch later to more conventional modes.

The literature dealing with temporal resolution of uncertainty, however, is very sparse: the pioneering work by

Epstein and Turnbull (1980) showed that when the uncertainty about a cash flow is resolved earlier (in the

sense that more information is available about it at an intermediate date), the return demanded by investors

who have a CARA utility function in an environment where returns are multivariate normal is higher than the

riskless rate: the expected release of information has rendered the holdings risky. However, Epstein and

Turnbull’s discussion is restricted to studying the effect of temporal resolution of uncertainty on equilibrium

market prices and on the optimal production of information. In their model, after the manager has conducted

the experiment that yields some early resolution of uncertainty, “the firm communicates the [result of the

experiment] truthfully” and “no production decisions are taken after the experiment results become known” (p.

628). They are aware that there might be “a moral hazard in that actions by management may not be in the best

interest of the owners and will decrease the market value of their holding” and that the firm may release

spurious information, but consider that insisting upon monitoring of managerial activities will minimize the

associated costs. Hence, their conclusion that “the firm that maximizes market value will produce too little risk

[insofar as] too little investment will be taken” (p. 638) has to be understood as totally independent of

shareholders/bondholders conflicts.

Nabar, Stapleton and Subrahmanyam (1988) took the issue into the realm of corporate finance by studying

how the value of corporate debt (and hence its yield) is affected when the speed of uncertainty resolution

varies. However, their model assumes a context in which “the assets of the firm are in place and future risky

investment decisions have already been taken by the firm” (p. 224). As a consequence, the Modigliani-Miller

theorem still holds and “hence the leverage employed by the firm merely determines the split of total value

                                                       
6 John and Ronen (1990), p. 93.
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between debt and equity and not the total value of the firm itself” (p. 225). Their model thus ignores agency

problems and their effect on debt value and investment policy.

To the best of our knowledge, only two articles (John (1987) and John & Ronen (1990)) have tried to combine

both literatures and examine agency problems under the light of temporal resolution of uncertainty. These two

papers assume a discrete distribution for the outcome of the risky investment (a high outcome H and a low

outcome L), look only at a few particular patterns of temporal uncertainty and thus can only offer a very

limited idea of how temporal resolution of uncertainty affects risk-shifting incentives7; hence, the only

conclusion they can draw is that “the financing choices and the investment policy can be materially affected by

the timing of financing and investment vis à vis crucial resolutions of uncertainty in the underlying

technology”8. We don’t know of any research article trying to shift from such a qualitative statement to a

quantitative comparative statics analysis, letting the pattern of temporal resolution of uncertainty be arbitrary.

Our goal here is to generalize the models discussed in the previous paragraph as well as to combine both the

agency and the TRU literatures to analyze how different speeds of resolution of uncertainty influence the

investment policy of the firm (i.e. risk-shifting or underinvestment) as well as the corporate debt yield. Our

setup is different in that the managers don’t observe the probability of success or the magnitude of final cash

flows (as in most of the agency problems literature), but observe at t=1 the signal X1, which gives them partial

information about the return on the risky technology in which they can invest. This will lead us to various

empirical implications, explaining, at least partially, why leverage and corporate bond yields differ consistently

across industries.

The article is organized as follows: Section 2 posits the model and states the assumptions. Section 3 solves the

problem when outsiders are not allowed to contract. It is shown in Section 4 that all our results carry over

when bond covenants are written based on the outsiders observing a noisy signal. Section 5 derives empirical

implications and confront them to the existing literature and Section 6 concludes. All proofs beyond the most

trivial ones are relegated to the Appendix and numerical simulations appear in the end.

                                                       
7 In the same framework as the articles just quoted, John and Chidambaran (1998) combine an agency model with temporal

resolution of uncertainty, but their model considers an all-equity firm and how much outside monitoring is needed to

alleviate the problem of the manager investing suboptimally to maximize his compensation. Hence their model elaborates

on the discrepancy between shareholders’ and the manager’s interests, and does not consider capital structure at all. On the

other hand, we decided not to cut the umbilical cord that ties managers’ acts to stockholders interests and to concentrate on

the effect of a given pattern of temporal resolution of uncertainty on the debt ratio of the firm and the yield returned by this

debt.
8 John (1987), p. 638.
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2. Model and Assumptions

We consider here a three-date (t=0,1 or2), two-period model9. The sequence of events is as follows:

• At t=0, the entrepreneur, who owns the rights to a firm but does not have enough capital to finance it, sells

claims consisting of debt and equity to outside investors. The debt is sold entirely to outsiders, while the

entrepreneur may retain some of the equity10.

• At t=1, the manager of a firm with cash resources of I is faced with two possible investments: a riskless

one, yielding the riskfree rate r2-1 (known at t=1) and a risky project that yields the stochastic rate θ-1.

She makes her investment decision based on the observation of a signal X1. This signal is assumed to be

bivariate normally distributed with the return available on the risky technology and hence gives some

information to the manager about the probabilistic properties of the latter (we will denote ρ the correlation

between X1 and θ). Based on the observation of a particular realization x1, the manager, a Bayesian

decision maker, allocates her cash between the risky technology (in which she invests a fraction Q) and

riskless Treasury bills in which she puts the remainder I-Q.

• At t=2, the realization of the risky technology θ is revealed to everybody and the firm is liquidated

(proceeds are distributed according to the prewritten financial agreement).

The signal X1 is not observed by outsiders, which precludes any contracting11 (either managerial contracts or

debt covenants) contingent on the value of X1. This asymmetry of information creates a problem of incomplete

contracting in relation to the entrepreneur’s risk choices. Imperfect observability of private action (and

resulting incomplete contracting) is at the heart of the agency problem. In Section 4, we will relax this

assumption and allow outsiders to contract based on the observation of a noisy estimate of X1.

Our model can be summarized schematically as in figure 1:

                                                       
9 This discrete finite-period model is used not only to retain parsimony and elegance in a multi-period model, but also to

have more flexibility in the correlation structure of cash flows: using a continuous time diffusion-type process would force

us into a situation where we could not distinguish between the “pure” correlation element ρ and the time element t t/ '

that enters the covariance between two cash flows happening at different points in time t an t', t<t’.
10 This insider contribution could be endogenized by trading off the reduction in contracting costs with the opportunity

costs of supplying this capital, but we will abstain from it in this paper.
11 X1 could be the result of a performance test on a prototype or a marketing survey, accounting or market statistics, such as

growth of sales or of net income, or a reflection of production efficiency; alternatively, it could be a t=1 cash flow, but we

would have to impose the restriction that it is not contractible (or at least not verifiable by an outside court). We further

assume that dividends are not allowed, in which case the shareholder-aligned manager would distribute as much as possible

at t=1.
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Shareholder-aligned manager
observes signal X1 and
updates her beliefs about the
return on the risky project, θ.
Based on this, she decides
what fraction to invest in

the risky project.

Final cash flow is
realized and proceeds
are distributed according
to the prewritten
financial contracts.

The entrepreneur
issues financial
claims on the
firm’s cash flows.

t=0 t=1 t=2

Figure 1

“Temporal resolution of uncertainty” is defined in much the same way as in Epstein (1980): we say that the

more (less) informative the experiment concerning the final cash flows is, the earlier (later) the prior

uncertainty about cash flows is resolved. Epstein and Turnbull (1980) show that in the case of jointly normal

distributions, an experiment X1 is said to be more informative about θ than about θ’ if corr(X1,θ)≥corr(X1,θ’).

In our model, we shall say that there is earlier resolution of uncertainty the larger (in absolute value) ρ, the

correlation coefficient between X1 and θ. This role of ρ is best seen if we consider the proportion of the

uncertainty of θ that is resolved by observing X1: 
2

11 var( | ) / var( )Xθ θ ρ− = .

In other words, if ρ is high, there is little more to be learnt at t=2 and most of the uncertainty has indeed been

resolved at t=1 (var(θ) is assumed to be a fixed parameter of the risky technology). We will consider only

positive values of ρ, since we look at it as the correlation coefficient between θ and a random variable that is

perfectly correlated to X1 and which tells you how informative X1 is about θ (for instance, a signal that has a -

0.9 correlation with θ would be extremely informative; in our model, this case would be summarized with

ρ=0.9).

We need here to clarify a few assumptions of our model:

• Assumption 1: Investors are risk-neutral. This stems either from the presence of complete markets12, or

from the combination of certain preferences and distribution properties for the underlying variables13.

                                                       
12 To ensure the existence of a risk-neutral measure, we only need to assume away arbitrage.
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As a consequence, the firm’s securities are priced on the basis of the relevant conditional expectation

of the cash flows (say, with respect to the state price density function).

• Assumption 2: The firm has two types of marketed claims outstanding, debt and equity. The debt has the

form of a pure discount bond of promised payment F which matures at t=2. Note that since the return

on the investment is normally distributed, it has a positive probability of being arbitrarily negative and

therefore any amount of outstanding debt is risky. Once the final cash flow is realized, the firm is

obliged to pay debt claims, if possible. If the cash flow is insufficient to meet debt obligations, the

firm goes bankrupt and its assets are turned over to bondholders. We will abstain from considering

bankruptcy costs or the tax advantage of debt financing.

• Assumption 3: It is not possible for the manager to issue further debt at t=1 after observing the result of the

experiment, nor is it allowed to invest a negative amount in the risky project, putting the proceeds in

the risk-free asset (“short-selling” the risky project). We also assume that E(θ)>r2, which we believe

corresponds to the majority of situations.

• Assumption 4: The information available to the manager at t=1 is restricted to a signal X1
14.

• Assumption 5: The manager acts to maximize the wealth of current shareholders (i.e., under asymmetric

information, the true value of their claims conditional on the private information). In a rational

expectations equilibrium, debtholders as well as stockholders will correctly anticipate, at t=0, the

effect of debt structure and temporal resolution of uncertainty on the chosen risk strategy and the

effect of this strategy on security pricing; in consequence, the entrepreneur bears the agency costs of

debt when he sells securities at t=0. Note here that we implicitly assume that outsiders have all the

information about the firm’s characteristics (in particular about the firm’s investment opportunity set)

and insiders’ preferences15, which is necessary for them to rationally price their claims.

A few comments on those assumptions are necessary. Assumption 2 may not be as inocuous as it seems. In our

model, the outcome of the risky project may be arbitrarily negative. Since in the United States (as in most

                                                                                                                                                                         
13 Stapleton and Subrahmanyam (1984) show that in a discrete time framework, the combinations of negative exponential

(CARA) utilities and normally distributed variables or power (CRRA or HARA) utilities and lognormally distributed

variables yield a risk-neutral valuation relationship (RNVR) after a shift of the original parameters. See also Ross (1978)

for why we do not lose any generality assuming risk neutrality if markets are “reasonably complete”. In our model, the

reader can consider that we look at the case where investors display constant absolute risk-aversion and returns are normal,

but that all results are derived with parameters already shifted in such a way as to be able to use the tools of risk-neutral

valuation.
14 If one wants to relax this assumption, then all we need to assume is that if there were two different projects yielding θ

and θ’ respectively, all elements of the t=1 information set ℑ1 apart from X1 are equally informative about θ and θ’. In

other words, the manager considers only X1 as a source of information for choosing how much she will invest in the risky

technology.
15 In other words, insiders’ optimal private actions are common knowledge.
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developed countries) equity has limited liability, we have to introduce a third claim. This claim is a purely

negative one, borne by the government: if the firm faces hard times (i.e. a negative realization of θ), the

government steps in to absorb the negative result (as, for instance, in the case of an environmental catastrophe

where the state has to bear the cleanup costs)16. We will refer to the combined value of debt and equity as the

“market value of the firm” since this is the amount for which the firm can be sold to the public at t=0. If we

add to this the negative claim, we'll refer to it as the “social value of the firm”.

Assumption 3 tells us that the firm chooses to issue outside claims (debt in our case) when it is common

knowledge that there is no asymmetric information between the manager of the firm and outsiders. It is not

clear whether it would be possible to issue further debt at t=1, when aymmetric information may lead to a

“lemons” problem (see Akerlof (1970)), at an acceptable rate. This is an issue we are considering in a

companion paper.

Finally, Assumption 5 clarifies what is known by everybody and what is private information: apart from the

realization x1 that only the manager observes, everything else is publicly known; in particular: ρ, the speed of

resolution of uncertainty for the particular firm/industry, E(θ), Var(θ), E(X1), Var(X1) and all other parameters,

as well as the preferences of the manager, the firm's characteristics and the fact that the manager privately

observes x1, thus enabling bondholders to rationally price their claim. All other assumptions are standard and

do not affect crucially our results.

The problem here is to determine to what extent the industry in which the firm operates, or more precisely how

quickly uncertainty is resolved in that particular industry, will affect the manager’s deviation from the optimal

investment policy and, as a result, the yield demanded on corporate debt.

3. Solving the Problem

3.1. Investment Policy of an All-Equity Firm

In this section, the investment policy of an all-equity firm with a managerial contract that perfectly aligns

managerial incentives with shareholder interests is characterized. It defines the ideal benchmark, which would

be obtained with complete conracting. At t=1, the manager seeks to

                                                       
16 Alternatively, this third claim could be an insurance policy for which the firm would have to pay a premium upfront.

This complicates the model unduly, so we'll assume that the government steps in in case of a negative final cash flow but

ensure in choosing our simulation parameters that the probability of this event happening is virtually zero.
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max ( ) |
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where (w)+ stands for max(w,0). We will characterize this investment policy more fully once we have looked

at the levered firm case, since the problem at hand can be seen as a particular case of a levered firm investment

decision when the amount of outstanding debt F is 0. The analysis concerning the levered firm will then also

apply to the case of the unlevered firm, replacing F by 0.

3.2. Investment Policy of a Levered Firm

Imagine now that the manager of the levered firm is shareholder-aligned. Her goal, when she decides at t=1

how much to invest in the risky technology based on the observed x1, is now to:

{ }[ ]112
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],0[
|)(

1
max xXFrQIQE

rIQ
=−−+ +

∈
θ .

Now the payoff to the shareholders is positive if and only if Qθ+(I-Q)r2>F or

θ θ≥
− −

≡
F I Q r

Q

( ) *2

(note here the circularity of the problem: θ* will determine the shareholders’ optimal Q, but Q enters the

formula for θ*)17. The fact that θ* increases with F reflects the fact that as the amount of promised debt

increases, the range of “states” where the firm defaults, (-∞,θ*], expands18.

The problem then becomes, denoting P(θ|X1) the probability distribution function of θ conditional on X1,

max ( ) ( | ) max ( , , , )
[ , ] [ , ]

*
Q I Q I

Q I Q r F dP X U Q x F
∈

∞

∈
+ − − ⇔z0

2 1
0

1θ θ ρ
θ

(1)

                                                       
17 If the manager chooses to invest very little money in the risky technology (Q tends to 0), two possible cases arise: i) if

Ir2≥F, θ* tends to -∞: the firm will be solvent in all states of nature since its final wealth will be Ir2, which is enough to

cover its debt obligation of F; ii) if Ir2<F, θ* tends to +∞: the firm will never be solvent since its final wealth, Ir2, is

insufficient to cover its debt obligation.

Now, it is hard to imagine that any bank or individual would lend money with a face value greater than Ir2 to our firm

(which, in order to be solvent, would have to invest a positive Q in the risky technology, no matter how negative x1 is,

triggering obvious risk shifting behavior; no rational bondholder would force shareholder-aligned managers, who, as we'll

see shortly, already have a tendency to increase the volatility of the firm beyond what debtholders would find optimal, in a

desperate situation where investing in the risky technology even if E(θ|X1)<r2 is the only way to have a positive probability

of avoiding bankruptcy). Therefore, in the sequel we shall assume that F≤Ir2.
18 Unless otherwise stated, we call “state of the world” a particular x1 if we are sitting at time 1, a particular θ or more

generally a particular couple (x1, θ) if we are sitting at t=2.
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where we have underscored the dependence of this indirect utility function on ρ and the particular x1 observed

at t=1. It is shown in Appendix 2 that this is equivalent to maximizing the following expression over Q∈[0,I]:

[ ]1 1 1 2 1 1( , , , ) ( | ) ( ) ( ) var( | ) ( )U Q x F QE X x I Q r F B Q X x Bρ θ θ ϕ= = + − − Φ + = (2)

where B

E X x
F I Q r

Q

X x
=

= −
− −

=

( | )
( )

var( | )

θ

θ

1 1
2

1 1

and Φ and ϕ denote the standard normal cumulative probability

function and density function respectively.

The expression (2) is the expected cash flows to the shareholders at t=2 and has to be discounted at the riskless

rate r2 to yield the share price at t=1, as a function of the quantity invested Q, the particular “state of the world”

x1 and the particular pattern of resolution of uncertainty (ρ shows up as well in E(θ|X1=x1) as in

var(θ|X1=x1)).We can interpret this as follows: the first term tells us that the shareholders get whatever is left

of the cash flows to the firm after bondholders have been repaid if the firm is solvent (which happens with a

probability of Φ(B)); the second term tells us that shareholders should be concerned not only with whether

they finish “in-the-money”, but by how much (some people will call it a "convexity correction" factor19).

The manager will then maximize the function (2) over Q (given a certain pattern of temporal resolution of

uncertainty ρ and after observing a particular x1). In Appendix 3, the first and second derivatives with respect

to Q are shown to be:

[ ] )()|var()()|(
),,,(
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1 BxXBrxXE
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Since 2 2
1( , , , ) / 0U Q x F Qρ∂ ∂ > , the quantity that maximizes the expression (2) is a corner solution. Whether

Q=0 or Q=I will depend on the particular x1 observed by the manager. This is due to the facts that the

derivative (3) is increasing in Q and that lim
( , , , )

x
Q

U Q x F

Q1
0

1

→−∞
→

∂
∂

= −∞
ρ

: for low values of x1, investing

everything in riskless bills may yield a higher value for the objective function.

Here is a quick synopsis of what U(Q,ρ,x1,F) will look like (these are sections of the response surface

U(Q,ρ,x1,F) for various x1’s, but we realized that these cuts were more informative than showing the surface):

                                                       
19 Once the investment in the risky technology is made, the firm is long an asset that bears a normal return and thus has to

cope with this feature of convexity. This is the same reason why, in the Black-Scholes (1973) option pricing formula, d1 is

bigger than d2: it is not only about whether one ends up in the money, which happens with probability Φ(d2), but also by

how much.
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Figure 2

Our goal is to discover a range of x1 values for which a full equity firm will not invest, but for which a levered

firm will invest (i.e. a range of x1 such that U(I,ρ,x1,F)>U(0,ρ,x1,F) whereas U(I,ρ,x1,0)-U(0,ρ,x1,0)≤0). Then,

we will be able to talk about full-fledged overinvestment (risk-shifting).

3.3. Characterizing the Risk-Shifting Incentives of a Shareholder-Aligned Manager

The first task is to find out whether there is an easy characterization of the x1’s that will trigger investment by

the firm (i.e. a cutoff value X1
F above which the firm will invest, below which the firm will not invest). It turns

out we can answer this question positively.

Lemma 1: Given a certain pattern of temporal resolution of uncertainty, there exists a unique cutoff value

X1
0 (resp. X1

F) above which the manager of an all-equity(resp. levered) firm will invest in the

risky technology.
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Proof: see Appendix 4.

The following definition facilitates the discussion and comparison of various investment policies:

Definition 1: An investment policy of investing in the risky technology for all x1≥X1
F will be denoted as

investment policy [X1
F].

Note that the investment policy [X1
0] is the one that could have been achieved if the realization x1 was

perfectly observed by all parties and if a complete set of enforceable contracts specifying any investment

policy could have been written.

The next step is to show that a levered firm will never invest less that an all-equity one in the sense that

whenever the all-equity firm will invest, so will the levered one20. This is the first important result of our

paper:

Lemma 2: The manager of a levered firm will have a strictly riskier investment policy than the manager of

an all-equity firm in the sense that X1
F<X1

0. Hence, the investment policy [X1
F] gives rise to

a cash flow distribution at t=2 that is riskier, in the sense of Rothschild and Stiglitz (1970,

1971), than the t=2 cash flow distribution from the investment policy [X1
0].

Proof: see Appendix 5 for a proof that X1
F<X1

0. It then suffices to notice that over the range [X1
F,X1

0], a

strictly larger quantity will be invested in the risky technology by the levered firm, raising the

variance of the final cash flows (while for any x1∈[X1
F,X1

0], E(θ|X1=x1)<E(θ|X1=X1
0)).

Corollary 1: The ex-ante probability of investing in the risky technology is strictly greater for a levered

firm than for an all-equity one.

Proof: this follows trivially from Lemma 2 and the normality of X1: the probability that a firm with an

investment policy [ξ] will invest is 1 1 1
− −Φ(( ) / )ξ σX X ; the fact that X1

F<X1
0 yields the corollary.

We therefore decide to call the quantity X1
0-X1

F the extent of risk-shifting, since it tells us how bad a signal x1

can be relative to the cutoff X1
0 that an all-equity firm will use while still seeing the manager of the levered

firm investing in the risky technology. The following figure will help us clarify the situation:

                                                       
20 In other words, the X1-range that triggers investment by the levered firm will contain the one that triggers investment by

the full equity firm.
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Figure 3

The obvious question that arises is about the relation between the extent of risk-shifting and the pattern of

temporal resolution of uncertainty. This will be analyzed shortly and yield one of the central results of this

study. But before that, a last preliminary result has to be stated:

Lemma 3: For a given ρ, the extent of risk shifting is strictly increasing in the face value F of the firm's

debt. Hence, given lemma 2, the terminal cash flow distribution resulting from the

investment policy [X1
F] implemented by the manager is strictly increasing in risk for

increasing F.

Proof: in order to prove Lemma 2, we showed in the appendix that X1
F is decreasing in F. Since X1

0

doesn’t depend on F, the quantity X1
0-X1

F, which was previously shown to be positive for any

positive F, is therefore increasing in F. The lower cutoff value X1
F resulting from an increase in the

amount of outstanding debt yields the added riskiness. QED.

This corresponds to the intuition that the higher the probability of insolvency, the higher the incentive to

increase the risk of the firm. It is also consistent with John and John (1993) and Brito (1999), as well as with

the early intuitition of Jensen and Meckling (1976).

3.4. Risk-Shifting Incentives and the Pattern of Temporal Resolution of Uncertainty

We have just seen that the higher the amount of risky debt outstanding, the more pronouced the distortion in

the investment policy of a shareholder-aligned manager. This is hardly a new result, although it is interesting

to realize that it still holds in our model. However, a far more interesting task is to find out how risk shifting
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incentives vary with the pattern of temporal resolution of uncertainty. Several results will be proven here.

Theorem 1: (a) The cutoffs X1
0 and X1

F are strictly increasing in ρ.

(b) As a result, the riskiness of the the firm's t=2 cash flow distribution is decreasing in ρ.

Proof: see Appendix 6 for a proof of (a). As for (b), it follows directly from Lemma 2: if a higher ρ

triggers a higher cutoff value X1
0 (resp. X1

F), then the terminal cash flow distribution resulting from

the investment policy [X1
0] (resp. [X1

F]) implemented by the manager is strictly less risky.

This yields a directly testable implication we will talk about later: firms operating in industries where

uncertainty is resolved only late have more risky operations. Heuristically, firms with later temporal resolution

of uncertainty (lower ρ) will typically rely more on growth projects, developing a new drug or software, with

the risk that a competitor achieves it before them or that a regulatory agency prevents them from selling their

product; those projects are inherently more risky than the operations of well established firms operating in a

field where the outcome of operations are quite forecastable. But our model says a little more: the added

riskiness comes not only from the nature (σθ) of the firm's operations, but also from the speed at which the

uncertainty of its operations is resolved: when the intrinsic riskiness of a project is held constant at σθ (i.e.

even when we compare two firms in the same industry), the firm for which uncertainty is resolved later will

invest over a larger X1-region than the firm for which uncertainty is resolved earlier. In other words, if a given

firm decides to invest for a certain value of x1, so will a firm facing more delayed uncertainty21. This is due to

the fact that when ρ is small, X1 is less reliable in forecasting θ; hence the manager is ready to take the risk of

investing in the risky project even for relatively low values of x1. On the contrary, when ρ is larger, X1 is more

reliable in forecasting θ and she is not ready to take as much risk in her investment policy if the state of the

world as of t=1, x1, is mediocre; hence she sets her cutoff higher. Our results apply therefore primarily in the

comparison of two otherwise identical firms (i.e. facing the same investment opportunity set, in particular a

same σθ) but facing different patterns of temporal resolution of uncertainty. Of course if we let σθ vary and be

greater for firms with more delayed resolution of uncertainty (which corresponds to our intuition), our results

would only be reinforced22.

The previous result holds for all-equity as well as levered firms. However, it seems a far more interesting

question to find out how the extent of debt-induced risk shifting (the difference between X1
0 and X1

F, both of

which increase with ρ) depends on how quickly the uncertainty is resolved, or in other words to talk about the

interaction of the product market and the capital structure of the firm. This is done in the following theorem:

                                                       
21 Alternatively, a firm facing more delayed resolution of uncertainty invests more often in a probabilistic sense since

1 1 1
− −Φ(( ) / )ξ σX X , the probability of investing, is decreasing in ρ for ξ≤X1

0.

22 It is easily proved that ∂X1
0/∂σθ<0 and ∂X1

F/∂σθ<0 (proof available from the author on request).
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Theorem 2: The extent of risk shifting X1
0-X1

F is strictly decreasing in the informativeness ρ of the

experiment.

Proof: see Appendix 7.

The intuition is the following: the manager of a firm operating in an industry where uncertainty is resolved

only late will find it a simple matter to deviate significantly from the optimal investment policy; the results of

such a deviation would take years (in a model allowing for the uncertainty to linger beyond t=2) to be noticed

by creditors, by which time the value of the firm might be eroded beyond repair. Potential creditors will shy

away from a situation they could neither monitor nor control and we would expect the level of debt in such an

industry to be lower than in industries where uncertainty is resolved earlier (where the extent of risk-shifting is

not only lower as we have just proved, but also more effectively monitorable)23. As a matter of fact, as we will

see later, this is supported by empirical evidence.

Note that our results are consistent with the existing research predicting that “companies whose value consists

primarily of “growth options” as opposed to “assets in place” are likely to find debt financing very costly”

(Myers (1977), p. 161). Intuitively “assets in place” are more numerous in industries where uncertainty is

resolved earlier. Our paper, however, is the first one to uncover the functional dependence between the pattern

of temporal resolution of uncertainty and both the overall risk of the firm and the investment policy distortions.

Although our conclusions apply primarily to firms facing the same investment opportunity set but differing

only through the speed at which they expect uncertainty to be resolved, a generalization to a cross-industries

conclusion is straightforward24.

Our conclusion about how firms with delayed uncertainty will find debt financing costly is also in line with

DeAngelo and Masulis (1980): tax shields due to the deductibility of debt interest and non debt-related tax

shields are substitutes and hence should be traded off against each other. R&D and advertising expenses

(generally considered a good proxy for how late uncertainty is resolved) are investments that provide a greater

tax shield than capital spending, because the entire outlay can be expensed for tax purposes in the year

                                                       
23 This is reinforced by Theorem 1, which states that the lower ρ is, the higher the variance of the t=2 cash flow

distribution, decreasing in turn the debt capacity of the firm.
24 It is easily shown that the extent of risk-shifting is increasing in σθ (proof available from the author upon request): a

shareholder aligned manager who knows that the risky technology has become riskier considers only the fact that the

probability of default has increased and will “go for broke”; in other words, she has an incentive to increase the risk of the

firm to maximize the return in the states of the world where the firm is solvent. Therefore the “temporal resolution of

uncertainty effect” would only be reinforced by the “risk effect” given that firms operating in fields where uncertainty is

resolved only later also typically face a riskier investment opportunity set (higher σθ).
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incurred instead of being amortized over time. Hence, they effectively diminish the benefit of the interest

deductibility of debt because they reduce the number of states of the world in which there is unsheltered

income remaining after these deductions are considered. One would therefore expect firms with high levels of

R&D and advertising expenses to rely less heavily on debt25.

It can also be shown that the extent of risk shifting is convex in ρ. It therefore goes very quickly to zero and in

the limit, when ρ tends to 1, there is no risk shifting anymore: observing x1 fully reveals θ and whether the

firm is levered or not, the risky project will be chosen if and only if θ θ σ σθ( ) /x x X rX1 1 1 21
= + − ≥d i 26.

However, this feature of continuity does not hold when ρ tends to 0: when ρ=0, any particular x1 is irrelevant

in forecasting θ and the best estimate of θ is the unconditional mean, E(θ). Hence, following the same

argument as in the footnote 26, both managers will invest under the same condition, i.e if E(θ)≥r2 regardless of

the particular realization x1 and the extent of risk shifting is zero. However, when ρ tends to 0, we show in

Appendix 7 that the extent of risk shifting tends to infinity. Hence, there is a discontinuity in the extent of risk

shifting in ρ=0, but as we will see later, this does not create a discontinuity in the agency costs of debt in the

neighborhood of ρ=027.

                                                       
25 There is an obvious argument against this: older, more mature firms will have higher levels of capital investment and

hence higher depreciation (non debt-related tax shields), which is a substitute for debt-related tax shields. However, we

believe that the fact that R&D expenses can be totally expensed instead of amortized will dominate the fact that R&D

intensive firms will have lower levels of depreciation. Another element that supports our theory is that investments in firm-

specific human capital can also be 100% expensed in the year they are incurred, and these non-debt tax shields are of

course expected to be higher in a firm with late temporal resolution of uncertainty. See our section on empirical

implications and evidence.
26 When θ is revealed as of t=1, it is obvious that the manager of the full equity firm invests in the risky project if and only

if θ(x1)≥r2 where θ(x1) is the θ revealed by the realization of the particular x1. However, the manager of the levered firm

wants to maximize [Qθ(x1)+(I-Q)r2-F]+. If the expression in the square brackets is positive, then she will also seek to

maximize Qθ(x1)+(I-Q)r2, i.e. invest in the risky project if and only if θ(x1)≥r2; any lower realization x1, and the manager is

better off investing in riskless bonds, securing a payoff of Ir2-F for shareholders.
27 The fact that the extent of risk shifting tends to infinity when ρ approaches 0 does not have any impact on agency costs

for two reasons: i) both X1
0 and X1

F tend to -∞ (when E(θ)>r2), and for all relevant purposes, we can consider that both

managers have the same investment policy (investing for all x1's): the distortion in investment policy triggered by the

presence of risky debt is negligible (in this most extreme case, it might be of more relevance to consider the probability of

falling in this region, Φ Φ(( ) / ) (( ) / )X X X XX
F

X1
0

11 1
− − −σ σ , which indeed tends to 0); ii) when ρ is very low, X1 is of

very little relevance for predicting θ and even a significant distortion between the two investment policies would not yield

significant agency costs.



19

3.5. Firm Value, Agency Costs and Temporal Resolution of Uncertainty

The fact that the extent of risk shifting X1
0-X1

F is strictly decreasing in the informativeness of the experiment is

not enough per se to come to the conclusion that agency costs are also decreasing in ρ. As a matter of fact, it is

not true. However, it is still of interest to briefly study the agency costs of debt in our model.

We show in Appendix 8 that the t=0 market value (i.e. the value of both debt and equity) of a firm with an

investment policy of [ξ] (i.e. [X1
0] for the all-equity firm, [X1

F] for the levered one) is equal to:
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where A stands for E X X( | ) / |θ σ θ1 1
 and is a function of X1 and r1 denotes the discount rate to be used from

t=0 to t=1 (we would not lose any generality assuming that it is equal to 0)28.

It is interesting to note that the value of both the all-equity and the levered firm is increasing in ρ (see

Appendix 8). We can see ∂V0(ρ,ξ)/∂ρ>0 as the marginal increase in firm value that a marginally more

“educated” choice by the manager will bring (marginal value of information) 29. If the model allowed the

manager to buy more information given a certain cost, this increase in marginal value would have to be

                                                       
28 Note that the above is different from the social value of the firm, which is equal to:
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NB: This social value can be decomposed in three terms: the first one, IE(θ)/(r1r2), tells us that as of t=0, the firm’s cash is

expected to appreciate at the unconditionally expected rate on the risky technology, E(θ); the second one, I(r2-θ)Φ((ξ-

X1)/σX)/(r1r2), can be seen as a “negative risk premium”: with probability Φ((ξ-X1)/σX), i.e. for all x1<ξ, the firm will not

invest in the risky technology and will therefore, on average, earn r2 instead of E(θ) on its cash, losing the risk premium

θ-r2; finally the third term represent a kind of “convexity adjustment”.

The difference is accounted by the third negative claim, i.e. the responsibility to cover a negative realization of θ (e.g.

environmental clean up costs) which we denote G0(ρ,ξ):
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29 An unfortunate feature of our model is that ρ is as well the pattern of resolution of uncertainty as the extent of

asymmetric information the manager has at t=1 (how reliable the x1 observed only by her is). Considering this, we might

expect an increase in the amount of asymmetric information ρ to trigger an increase in the extent of risk-shifting and a

decrease in firm value as is the case in the existing literature; however we find the contrary: the temporal resolution of

uncertainty effect overwhelms any opposite asymmetric information effect, and disentangling the two roles of ρ would only

make our results stronger. This is investigated in a later section of this paper.
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equated to the marginal cost of buying more information to find the optimal level of information30. Note finally

that the increase in firm value due to an increase in ρ does not only happen through a less significant deviation

from optimal investment policy, since V X0 1
0( , )ρ  is also increasing in ρ: the increase in firm value comes as

well from a better investment policy (lower deviation X X F
1
0

1− ) (“reduction in agency games effect”) as from

a lower residual uncertainty facing the manager: var(θ|X1)=σθ
2(1-ρ2) (“total firm value effect”). Given the

increasingness of firm value in ρ, it is therefore bounded below by V X V X F
0 1

0
0 10 0( , ) ( , )= , both of which are

greater than IE(θ)/r1r2
31.

Since in our model E(θ)>r2, this lower bound for the firm's value is strictly greater than I/r1, the t=0 present

value of the I dollars invested at t=1. The difference can be seen as the “growth options” of the firm (value of

the opportunity to invest in a technology with E(θ)>r2). Alternatively, it can be seen as the surplus of the

entrepreneur when he sells the firm to outside shareholders and bondholders at t=0.

The agency costs of debt in our framework are thus equal to:
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We show in Appendix 8 that these agency costs are strictly increasing in the amount of outstanding risky debt

F, which is in line with most of the existing literature but in contradiction with the earlier work of Gavish and

Kalay (1983).

What is more interesting is that we get, in our numerical simulations, a bell-type curve, with very low agency

costs for low and high values of ρ. Overall, agency costs are not very large: for I=100, r2=5%, E(θ)=15%, and

σθ=0.6, agency costs represent up to 0.23% of firm value for F=50 (market value of debt/equity ratio: 0.675)

and 1.16% for F=75 (market value of D/E ratio: 1.375). This is consistent with Leland (1998), who finds

agency costs ranging from 0.32% to 1.22% of firm value depending on the risk management policy of the firm.

The explanation for such low agency costs (especially for extreme values of ρ) is the following:

• When ρ is low, the extent of risk shifting X1
0-X1

F might be high, but the realization of θ given a

low x1 might still be decent since the signal X1 is of so poor forecasting ability. Hence, agency

                                                       
30 That is, if her goal was to maximize firm value. If she is shareholder-aligned, as in our model, she would only be ready

to pay the marginal increase in equity value due to an increase in ρ. It can indeed be shown that share value (as well as the

value of the claim unwillingly held by society at large) is also increasing in ρ.
31 When ρ=0, there is no discrepancy between X1

0 and X1
F: X1 gives no information about θ, both managers compare the

unconditional E(θ) to r2 and always invest. The market value of the firm in that case is IE(θ|θ≥0)/r1r2 =

I r r I r rθ θ σ σ ϕ θ σ θθ θ θΦ( / ) ( / ) / /+ >1 2 1 2 , this last number being the social value of the firm for ρ=0.
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costs do not suffer too much from a low ρ (mathematically, E(θ|x1) =θ+ρσθ(x1-X1)/σX, and

even if x1-E(X1) is very negative, E(θ|X1=x1) will be close to E(θ) for very low ρ). Another way

of looking at it is to say that bondholders know at t=0 that managers won’t have a lot of

information at t=1 (ρ is public knowledge since it summarizes either the investment opportunity

set of the firm or the industry in which the firm operates) and hence are not too worried about the

consequences of asymmetric information32; in the limit, when ρ=0, X1
0 and X1

F tend to -∞ (since

X1 does not give any information on θ, the manager compares the unconditional expectation of θ

with r2 and always invests since θ>r2), agency costs are equal to 0 and the firm market value is

equal to IE r r( | ) /θ θ ≥ 0 1 2 , a lower bound for the market value of the firm, as seen previously.

• When ρ is very high, a very negative x1 will be a good hint that θ will be low, but as we saw

earlier, the extent of risk-shifting X1
0-X1

F will be very low, so that the manager of a levered firm

will have an investment policy very similar to the one of an all-equity manager. Another way of

looking at it is to say that bondholders are not worried about extensive asymmetric information as

they know that the manager will have a policy very similar to the one they would undertake if

they were in charge; moreover, the fact that the manager knows so much limits the residual risk

of the firm. In the limit, when ρ=1,
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The intuition is the same as before, the probability, ex ante, that x1 will fall short of X1
0=X1

F

tending to Φ(( ) / )r2 − θ σ θ .

• The highest agency costs are achieved for intermediate values of ρ: if the extent of risk-shifting is

smaller than for lower values of ρ, it also causes much more harm since a mediocre x1 is a good

hint that the final realization of θ will indeed be poor. The reason why the magnitude of agency

costs in this region is still modest is that managers do not observe, as opposed to previous studies,

any future parameter (e.g. future cash flows in case of success), but a signal that give them some

partial information about future cash flows. Hence i) the magnitude of the asymmetric

information is much smaller, and ii) if the policy conducted by the manager is much different in

terms of X1-cutoff from the one value-maximizers would choose, it does not ensure in any way

that the final outcome of θ will make this deviation of consequence. Our agency costs are also

rendered smaller by the fact that we do not consider the costs of financial distress (not only

bankruptcy costs but also the impossibility to react freely to strategic moves by competitors if the

firm is in the process of reorganization).

                                                       
32 As noted before, ρ also measures the extent of asymmetric information.
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Now, the fact that agency costs are always positive would hint at an easy solution to the agency problem:

regardless of the pattern of temporal resolution of uncertainty, firms should be all equity financed, thereby

avoiding suboptimal managerial behavior. This reasoning is wrong given that we have abstracted, in our

model, from considering the different benefits of debt (tax deductibility of interest, disciplinary and signalling

role of debt) as well as agency costs of equity. However, these benefits cannot be traded off against the agency

costs of debt independently of the pattern of temporal resolution of uncertainty, upon which the optimal capital

structure of the firm will depend. For instance, the tax bracket of a given firm certainly depends on the

investment set of that firm, i.e. on the industry in which it operates. Moreover, the dollar amount for which

insiders can sell at t=0 the promise to repay F dollars at t=2 if the firm is solvent depends on the speed at which

the uncertainty is resolved for the firm.

3.6. Temporal Resolution of Uncertainty and Corporate Debt Yield

We have shown that the earlier the resolution of uncertainty, the lower the overall riskiness of the firm

(Theorem 1) and the extent of risk-shifting (Theorem 2). We would therefore expect rational bondholders to

anticipate this and to pay a lower price (or, equivalently, demand a higher risk premium) for the bonds of a

firm operating in a field where uncertainty is resolved later. This is actually something that we prove in

Appendix 9, after computing the t=0 value of bonds:
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Theorem 3: The equilibrium prices of corporate bonds are increasing in ρ, the pattern of temporal

resolution of uncertainty. Equivalently, the default premium demanded on corporate bonds

is decreasing in ρ.

Note that this stems from two effects:

i) a higher ρ increases overall firm value (as seen earlier) through the fact that the manager can carry out

a more “educated” investment policy (alternatively, the residual variance of the risky project, if it is

entered into, is lower for a higher value of ρ: var(θ|X1)=σθ
2(1-ρ2)); bondholders share this benefit with

shareholders (“total firm value effect”);

ii) as ρ increases, the extent of risk-shifting X1
0-X1

F decreases, and bondholders benefit from a lower

deviation from socially optimal investment policy (“reduction in agency games effect”).

Now, this result was to be expected: as shown in Theorem 1, the riskiness of the firm’s t=2 distribution of cash

flows is decreasing in ρ. Hence the decreasingness of the yield premium in ρ could be due solely to the fact

that as ρ increases, the probability of bankruptcy decreases. We however bring something new to the old
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wisdom that the riskier a firm is, the higher the yield demanded by bondholders: in our model, both the added

riskiness of the firm’s cash flows and the added extent of risk shifting (the other reason for higher yields) are

due to the uncertainty being resolved later. In a companion empirical paper (Reisz (1999)), we investigate

whether temporal resolution of uncertainty still has some power explaining the cross-sectional variation in

yields demanded on bonds, once risk has been controlled for. The results of this empirical investigation leads

us to answer positively33, but more empirical work is warranted at this point to confirm our simulations: using

the same parameter values as before, the yield premium is as high as 383 basis points for F=50 (market

debt/equity ratio of 0.675) and 628 basis points for F=75 (market D/E ratio of 1.375). This is consistent with

Leland (1998) for instance.

We also prove in Appendix 9 that as ρ tends to 1, bond prices tend to the price of a risk-free bond (the default

yield premium tends to 0). The intuition is straightforward: when ρ is equal to 1, θ is revealed as of t=1 and the

manager invests in the risky project if and only if θ(x1)>r2 (see footnote 26). Since Ir2>F, the firm will always

be solvent.

It is finally worth noting that, as was the case for firm value, the temporal resolution of uncertainty effect

overwhelms any opposite asymmetric information effect: if ρ represented only the amount of information

asymmetry between insiders and outsiders, we would expect rational bondholders to demand a higher yield for

a higher ρ, as well as shareholder-aligned managers to risk-shift over a wider X1-region. The fact that we find

the opposite result tells us that the latter effect is dominated by the temporal resolution of uncertainty effect,

and outsiders are willing to accept a higher level of information asymmetry if that means that the residual risk

of the firm is lower. However, it would be nice to somehow disentangle the two effects of ρ and allow

outsiders to contract (at least partially) so as to mitigate the extent of risk-shifting. This is done in the next

section.

4. Mitigating Risk-Shifting with Partial Contracting

4.1. The Framework

So far, we considered that insiders had information as of t=1 about the t=2 outcome of the risky technology,

but that outsiders had no information whatsoever. A more general model would allow for outsiders to also

                                                       
33 We also find in our empirical work that firms with more delayed resolution of uncertainty issue shorter bonds This was

to be expected, since firms operating in a low ρ environment may want to keep the flexibility of refinancing under much

better terms (lower interest rate) at t=1 if no investment is made. For firms with earlier resolution of uncertainty, this is less

of an issue since their default premium is quite low.
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have some information as of t=1, albeit less precise than the insiders’ signal. This is done by letting the

outsiders observe at t=1 a signal Y1, which is a noisy version of the signal X1 observed by managers:

Y X N1 1
20= + ε ε σ ε     where    ~ ( , )  is white noise, independent of X1 and θ34.

Proposition 1: Y1 and θ are bivariate normal random variables with correlation coefficient

ρ ρ ρb m XY= where ρXY is the correlation coefficient between X1 and Y1 and ρm is the

correlation coefficient between X1 and θ (informativeness of manager’s signal).

Proof: ρ
θ

σ σ
θ ε
σ σ

σ σ ρ

σ σ
ρ

σ

σθ θ

θ

θ
b

Y Y

X m

Y
m

X

Y

Y X
= =

+
= =

cov( , ) cov( , )1 1

1 1

1

1

1

1

. Now ρ
ε

σ σ

σ

σXY
X Y

X

Y

X X
=

+
=

cov( , )1 1

1 1

1

1

.

Hence ρ ρ ρb m XY= . QED.

Given that var( | ) ( )Y X Y XY1 1
2 2 2

1
1= ≡ −σ σ ρε , it becomes clear that Y1 is a more noisy estimate of X1 (larger σε)

if and only if ρXY is smaller. It becomes in turn a less reliable predictor of θ (smaller ρb) and leaves outsiders

with a higher residual uncertainty σ σ ρθ θ| ( )Y b1

2 2 21= − . Hence, the larger ρ ρm b
2 2−  and σ ε

2 or the smaller ρXY, the

larger the extent of asymmetric information.

A useful way to think about it is as follows: ρm is the informativeness of the manager’s signal and is the true

speed of temporal resolution of uncertainty in a given industry; it affects, as we have seen before, the extent of

risk-shifting, firm value and corporate bond yields. It therefore gives us inter-industry comparative statics

(once we have controlled for the intrinsic project risk σθ). However, within a given industry, disclosure

requirements vary (due to size differences or the stock exchange on which a stock is traded) and therefore

outsiders will be more or less able to monitor actions by insiders. Typically, large firms listed on the NYSE

will have stricter disclosure requirements (higher ρXY or equivalently lower σε) than smaller firms listed on the

NASDAQ, leaving outsiders with a higher “signal precision” ρb
35. This ρb cannot, however, be seen as any

                                                       
34 ε is assumed to be added by “nature” and not by the insiders. They may have some control over its distribution (i.e. σε),

but they cannot pick a certain realization ε1 to add to x1. For such a model in the context of “earnings management”, see

Degeorge, Patel and Zeckhauser (1999).
35 ρb thus measures the speed of resolution of uncertainty “tainted” by asymmetric information. Note also that

when we talk about “disclosure requirements”, we are in effect considering only the verifiable information the

manager releases. Big firms will probably enjoy fewer information asymmetries because more analysts follow

them rather than due to significant differences in disclosure requirements between, say, the NYSE and the

NASDAQ markets.
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kind of measure of the speed at which uncertainty is resolved, since it is the correlation coefficient between the

return on the risky technology θ and a signal which can be more or less noisy irrespective of the industry (or

firm) considered. Outsiders, who know the value of ρm (but do not observe X1), are aware that the ρb based on

which they will make decisions is only the product of ρm and ρXY; hence they rely on it to set a cutoff value

Y1
0, to be enforced once a particular realization y1 has happened, but accept the fact that the manager has more

accurate information and that true values are to be computed using ρm (which is common knowledge). The

whole Section 3 can be seen as a particular case of this framework when ρXY=0: outsiders are fed no

information whatsoever.

4.2 Designing the Contractual Terms

As of t=0, the entrepreneur can write covenants that will be attached to the securities he sells. As we discussed

before, his goal is to maximize the sale price of bonds plus the value of the equity. He may keep all of it, or

may sell some or all of it to outside equityholders. In both cases, he has an incentive to maximize the market

value of the firm (to minimize the agency costs he will bear). This is equivalent to saying that he will minimize

at t=1 the deviation from the optimal investment policy.

The goal of the covenant is then to max ( ) |
[ , ]Q I r

E Q I Q r Y y
∈

+
+ − =

0
2

2 1 1

1
θl q  at t=1. This is done by investing in

the risky technology if and only if y Y1 1
0>  defined, as in the previous section, by: U I Y U Yb b( , , ) ( , , )ρ ρ1

0
1
00= :

at y Y1 1
0= , the firm as a whole is indifferent between investing in the risky technology or in riskless bonds.

However, the decision is made here based on the observation of the signal Y1, i.e. using the parameters

ρb=ρXYρm and σ σ σ εY X1 1

2 2 2= +  instead of ρm and σ X1

2 . Since the cutoff value is increasing in ρ (Theorem 1)

and decreasing in the variance of the signal (i.e. σ X1
 for X1

0 , σ Y1
 for Y1

0 )36, Y X1
0

1
0< : the presence of the

noise ε makes perfect contracting (and the total elimination of agency costs) not possible.

The problem now is to figure out the terms on which bondholders will contract. We assume here that contracts

based on ex-post realizations are ruled out by legal structures. Since lim lim
ρ ρXY m

Y X
→ →

= = −∞
0

1
0

0
1
0 , forcing the

manager to invest in the risky project if y Y1 1
0>  may in certain cases (i.e. for low values of ρXY) add very little

value or even be counter-productive, creating new agency costs37. At first sight, the following contract could

be written by bondholders at t=0:

                                                       
36 Proof available upon request from the author.
37 We remind the reader that in the Myers (1977) framework, enforcing a minimum level of investment may create new

agency costs due to forced investment in negative NPV states.
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• if Y X F
1
0

1≥ , impose an investment cutoff of Y1
0 : if y Y1 1

0≤ , the manager will have to invest

in riskless bonds and if y Y1 1
0> , the risky technology will be chosen.

• if Y X F
1
0

1< , bondholders will let the shareholder-aligned manager do as she pleases.

However, we can achieve the same result by merely stating that the manager is not allowed to invest below a

certain cutoff Y1
0 , whatever the value of the parameters. Moreover, covenants in our framework usually do not

specify what the manager has to do above a certain cutoff but merely state what she cannot do38. Our two cases

hence become:

• if Y X F
1
0

1≥ , the interdiction of investing in the risky technology below Y1
0  is binding: the

shareholder-aligned manager would want to go down to X F
1  when making her investment

decision but is prevented from doing so by the bond covenants;

• if Y X F
1
0

1< , the interdiction of investing in the risky technology below Y1
0  is still in effect,

but the manager will choose on her own not to invest below X F
1 .

The reason for modifying such a contract is the following: insiders observe both realizations x1 and ε1 (the

subscript on ε is added to denote a particular realization). Forcing the manager to invest above Y1
0  (when

Y X F
1
0

1≥ ) means that she will invest in the risky technology if and only if y x Y1 1 1 1
0= + >ε , i.e. x Y1 1

0
1> − ε .

Now, in the case where ε1>0 and Y1
0  is only slightly larger than X F

1 , Y X YF
1
0

1 1 1
0− < <ε . For

x Y X F
1 1

0
1 1∈ −[ , ]ε , neither shareholders nor bondholders would invest if complete contracting was possible

(i.e. if outsiders could observe x1) and hence both are worse off if the covenant forces investment whenever

y Y1 1
0> , even when Y X F

1
0

1≥ .

This problem is solved if the covenant only states that the manager cannot invest below a certain cutoff Y1
0  but

does not specify what she has to do above the cutoff. The extent of residual risk-shifting after this partial

contracting is therefore X Y X X Y X XF F
1
0

1
0

1 1
0

1
0

1
0

1− = − −max( , ) min( , ) , and in the sequel we will refer to

                                                       
38 We are grateful to Professor Amihud for pointing this out.
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optimal contracting as the bondholders imposing the interdiction to invest whenever their observation y1 falls

short of the cutoff Y1
0 , no matter how the latter compares to X F

1
39.

One may think that new agency costs may be created by contracting under those terms. This is the case if Y1
0

is very close to X1
0  and ε1<0. In that case, bondholders will rule out investing in the risky technology if

y Y1 1
0< , i.e. if x Y1 1

0
1< − ε . However, for x X Y1 1

0
1
0

1∈ −[ , ]ε  (remember that we are considering the case

where ε1<0), one should really invest, but the covenant will not allow it. This, however, is not a problem: Y1
0

tends to X1
0  only when ρXY tends to 1 (we'll shortly show that ∂ ∂ >Y XY1

0 0/ ρ ; it should be obvious that

lim
ρ XY

Y X
→

=
1

1
0

1
0 ), in which case σε tends to 0 (σ σ ρ ρε

2 2 2 2

1
1= −X XY XY( ) / ). The probability of a realization ε1 such

that X Y1
0

1
0

1< − ε , Φ(( ) / )Y X1
0

1
0− σ ε , becomes in turn arbitrarily small.

The terms of our covenant, i.e. forbidding investment when the realization y1 falls short of a certain cutoff Y1
0 ,

regardless of whether Y X F
1
0

1>  or Y X F
1
0

1≤ , thus minimizes the remaining agency costs which are due to the

fact that Y X1
0

1
0< 40.

Proposition 2: The optimal covenant is the one specifying that investment in the risky technology is

forbidden for y1≤Y1
0.

Proof: this follows from the earlier discussion and the fact that ε is a zero-mean random variable.

Figure 4 shows the two possible cases, i.e. when contracting is interesting and when bondholders cannot

reduce the extent of risk-shifting:

                                                       
39 It is still of interest to know under what parameters such a contracting is useful (binding), i.e. when Y X F

1
0

1≥ . Since

neither Y X F
1
0

1 nor  admits a closed-form representation, the particular ρ m
*  that equates Y X F

1
0

1 and  for a given σε or ρXY

will have to be solved for numerically.
40 See also Amihud, Garbade and Kahan (1999) and Smith and Warner (1979).
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4.3. A Few Preliminary Results

We will now state a few propositions that are more or less obvious, but which are useful both for later results

and for intuition's sake.

Proposition 3: The benefit from contracting is non-decreasing in the face value of the debt outstanding.

Proof: w if Y X F
1
0

1≥  for all F∈[0,Ir2], the average improvement in terms of X1-region due to contracting

is Y X F
1
0

1− . Since 
∂
∂

=
∂
∂

<
Y

F

X

F

F
1
0

10 0 and , this improvement is strictly increasing in F.
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w if Y X F
1
0

1< , the extent of residual risk-shifting is X X F
1
0

1− , the same as the original one.

However, as F increases, X F
1 decreases and might cross to the left of Y1

0 , yielding a positive

improvement. �

The intuition for that is pretty straightforward: the precision of the signal is independent of how much debt the

firm has issued41, but risk-shifting becomes more severe the higher the amount of debt outstanding; hence the

improvement brought by contracting has to be at least as large for higher debt levels. In particular, there might

be no improvement at all for relatively small amounts of debt (Y1 is too noisy an estimate of X1), but as the

proportion of debt in the capital structure becomes more significant, the improvement becomes positive (Y1 is

still as noisy, but given the extent of the deviation from optimal investment policy, outsiders think twice before

discarding the information y1; in other words, X1
F crosses to the left of Y1

0 ).

Proposition 4: For a given firm/industry characterized by ρm, improvement in risk-shifting is non-

decreasing in ρXY (nonincreasing in σε).

Proof: 
∂ −

∂
=

∂
∂

>
( )Y X YF

XY XY

1
0

1 1
0

0
ρ ρ

 (see Appendix 10) or, equivalently, 
∂ −

∂
=

∂
∂

<
( )Y X YF

1
0

1
2

1
0

2
0

σ σε ε

.

Therefore, if Y X F
1
0

1≥  for a given F∈[0,Ir2], the improvement increases with ρXY (decreases with

σε); if Y X F
1
0

1< , the improvement is independent of ρXY and σε, but as ρXY increases (as σε

decreases), Y1
0  increases and might cross to the right of X F

1 , yielding a positive improvement. The

existence of a unique ρXY such that Y X F
1
0

1= comes from the facts that lim
ρ XY

Y
→

= −∞
0

1
0  and

lim
ρ XY

Y X X F

→
= >

1
1
0

1
0

1  (see Appendix 10), combined with the Intermediate Value Theorem.�

The idea behind this is that if the signal observed by outsiders is very noisy, they will be aware of the fact that

a good realization of θ might still follow a bad y1 and prefer to let shareholders conduct a more educated

choice than the one they can enforce. As Y1 becomes more correlated with X1, outsiders know that they know

more and are in a better situation to monitor effectively the investment policy of the firm.

                                                       
41 This might not be completely true: there is a secondary effect linked to size: larger firms are likely to issue more debt,

and at the same time, as seen previously, to have stricter disclosure requirements (or to be more closely followed by

analysts). The precision of the signal is then increasing in the amount of debt issued. But since this is not a direct effect, we

decide to ignore it for the time being.
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4.4. On the Extent of Residual Risk-Shifting After Optimal Contracting

We can now turn to the question behind our Theorem 2: is it the case that, after optimal contracting, the extent

of risk-shifting is decreasing in the speed of resolution of uncertainty? In other words, is it the case that a firm

whose uncertainty is resolved only late will have more of a tendency to overinvest than a firm whose

information comes quickly, once they both have satisfied their disclosure requirements and respected bond

covenants? We can indeed answer positively to this question. But before that, we’ll show that the benefit at t=1

from contracting, max( , )Y X F
1
0

1 0− , is non-increasing in ρm:

Theorem 4: at t=1, the benefit from contracting, i.e. the reduction in the extent of risk-shifiting, is non-

increasing in the pattern of resolution of uncertainty ρm. More precisely, for ρXY not too

small, i.e. for ρ ρXY XY≥  (or, equivalently, for σ σ σ ρ ρε ε≤ ≡ −X XY XY1

2 2 21( ) / ), there

exists a unique ρm
*  such that Y X F

1
0

1>  for ρ ρm < m
*  and Y X F

1
0

1≤  for ρ ρm ≥ m
* . The

reduction in the extent of risk-shifting is then decreasing on [ , ]*0 ρm  and 0 on [ , ]*ρm 1 .

Proof: see Appendix 10. If ρ ρXY XY< , we set ρm
* = 0 : no industry benefits from contracting42.

The fact that contracting is more interesting the lower ρm is pretty intuitive: a levered firm operating in a field

where uncertainty is resolved early does not have, as seen earlier, an investment policy significantly different

from its all-equity equivalent. It therefore comes as no surprise that, for a fixed level of disclosure requirement

ρXY, it benefits less from contracting than a firm operating in a field where uncertainty is resolved later and

which will have a tendency to risk-shift more significantly. Hence the following corollary:

Corollary 4: Given a certain strictness of disclosure requirements ρ ρXY XY≥ , if a firm/industry benefits

from contracting, so will a firm/industry for which uncertainty is resolved only later.

Proof: this comes directly from Theorem 4 and the fact that for ρ ρXY XY≥ , it will be interesting for any

firm below ρm
*  (i.e. for which Y X F

1
0

1> ) to contract. The decreasingness of Y X F
1
0

1−  in ρm

over the region [0, ρm
* ] ensures that on this region, the lower ρm, the higher the reduction in

the extent of risk-shifting.

                                                       
42 As we noted earlier, a lower ρXY (signal Y1 is less correlated to signal X1) is equivalent to a higher σε (signal Y is a more

noisy version of X1). In the sequel, we’ll mainly do comparative statics with respect to ρXY, since we have a more intuitive

feeling for it (strictness of disclosure requirements), and also because σε has to be compared to σ X1
to have any sense at

all.
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The following figure illustrates the case where ρ ρXY XY≥ :

ρm

Extent of
risk-shifting

ρm
*

Residual risk-Residual risk-

shifting: Xshifting: X11
00-Y-Y11

00

Original risk-Original risk-
shifting: Xshifting: X11

00-X-X11
FF

Improvement in risk-Improvement in risk-
shifting=benefit from contractingshifting=benefit from contracting

Figure 5

Corollary 4 yields a ρ ρXY m/ *  “frontier” that will give us the ρm
*  cutoff (below which firms benefit from

contracting, above which contracting is useless) as a function of ρXY. Since ρm
*  is shown in Appendix 10 to be

increasing in ρXY, we get the following corollary as a bonus:

Corollary 4 bis: The economy as a whole is better off, i.e. more industries benefit from contracting, the

higher ρXY.

This is not as trivial as it may seem: it is pretty intuitive that the stricter the disclosure requirements, the more

each firm/industry benefits from contracting. However, we state that on top of that, an increase in ρXY will

bring new industries to contract; these are the industries that were just a little bit too mature (ρm too high) to

benefit from a disclosure of quality ρXY, but who can gain from writing contracts based on information of

quality ρXY+∆ρXY. In the limit, when ρXY tends to 1 (outsiders know as much as insiders), the optimal cutoff
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X1
0  can be imposed by bondholders, leaving zero agency costs: regardless of the amount of debt outstanding

and the industry in which it operates, a firm will benefit from contracting. At the opposite end of the spectrum,

when ρXY crosses ρ XY  to the left, no firm will benefit from contracting, no matter how large the amount of

debt outstanding and regardless of the industry in which it operates.

However, if we keep ρXY constant, we are still left with the equivalent of Theorem 2, once optimal contracting

has been written:

Theorem 2 bis: The extent of residual risk-shifting X Y X F
1
0

1
0

1− max( , )  is decreasing in the speed of

resolution of uncertainty ρm.

Proof: i) for firms with ρ ρm m< * , we want to show that ∂ − ∂ <( ) /X Y m1
0

1
0 0ρ ; since X Y

XY
1
0

1
1
0=

→
lim

ρ
,

one way of doing it is to show that ∂ ∂ ∂ <2
1
0 0Y XY m/ ρ ρ , thereby ensuring that 

∂
∂

>
∂
∂

Y X

m

F

m

1
0

1

ρ ρ
.

This proof is cumbersome and is not reported in the Appendix, but is available upon request

from the author;

ii) for firms with ρ ρm m≥ * , ∂ − ∂ <( ) /X X F
m1

0
1 0ρ  as seen in Theorem 243.

Partial contracting will thus mitigate risk-shifting, but will not destroy the decreasingness of the extent of risk-

shifting in the pattern of temporal resolution of uncertainty. Thus all our discussion following Theorem 2 is

still valid after bondholders contract as well as they can.

The reduction in agency costs is not monotonic in ρm. This is due, as we saw before, to the fact that for low

values of ρm, the manager might deviate a lot at t=1 from the optimal investment policy, but the quality of his

information is so poor that this will not have serious consequences in terms of agency costs as of t=0. Agency

costs are then virtually equal to zero and cannot be reduced by contracting. At the opposite end of the ρm

spectrum, when ρm tends to 1, the manager’s policy is essentially the same as the value-maximizing one.

However, we argue that our comparative statics on the residual extent of risk-shifting at t=1,

min ( , )X Y X X F
1
0

1
0

1
0

1− − , are still of interest: the goal of a contract is to make sure that the investment policy

of the firm will not deviate consequently from the optimal one, and any reduction in this deviation at t=1 will

reduce agency costs, albeit not monotonically, at t=0.

                                                       

43 For ρ ρm m= * , the fact that ∂ − ∂( ) /Y X F
m1

0
1 ρ  is still negative when Y X F

1
0

1=  (see Appendix 10) implies that the

residual risk-shifting, min ( , )X Y X X F
1
0

1
0

1
0

1− − , is not differentiable in ρm at ρ ρm m= * ; however, we are not worried

about non-differentiability on a set of measure zero.
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4.5. On Bond Yields After Contracting

Our last task is to investigate how bond yields evolve with the temporal resolution of uncertainty after

bondholders impose the optimal cutoff max( , )X YF
1 1

0 . It should be clear from the discussion in Appendix 11

that the way we compute bond prices remains the same44, with the difference that the cutoff Y1
0  is substituted

for X F
1  whenever it is greater. We show there the following:

Theorem 3 bis: Once bondholders have contracted as well as they can, the equilibrium prices of

corporate bonds are still increasing in ρm, the pattern of temporal resolution of uncertainty.

Equivalently, the default premium demanded on corporate bonds is still decreasing in ρm.

As before, this stems from two effects: i) the “total firm effect” remains, i.e. the manager can carry out a more

“educated” investment policy (alternatively, the residual variance of the risky project, if it is entered into, is

lower: var( | ) ( )θ σ ρθX x m1 1
2 21= = − ), the higher ρm; bondholders share this benefit with shareholders45 and ii)

as ρm increases, the extent of risk-shifting X X YF
1
0

1 1
0− max( , )  decreases (see Theorem 2 bis), and

bondholders benefit from a lower deviation from the socially optimal investment policy.

Finally, bond yields evolve monotonically in the strictness of disclosure requirements:

Theorem 5: Bond prices are non-decreasing in the strictness of disclosure requirements ρXY (non-

increasing in the report noise σε). Equivalently, the default premium demanded on corporate

bonds is non-increasing in ρXY (non-decreasing in the report noise46). More precisely, for ρXY

not too small, i.e. for ρ ρXY XY≥ , bond yields are decreasing in ρXY on [ , ]*0 ρm  and

independent of ρXY  on [ , ]*ρm 1 .

Proof: see Appendix 11.

                                                       
44 As we noted earlier, bondholders will use ρm, which is public knowledge, to price all assets.
45 As noted in Section 4 and proved in Appendix 8, firm value is increasing in ρm as long as the cutoff the firm uses for

investment is no larger than X1
0. Since this is the case for both X1

F and Y1
0, it is also the case for max(X1

F, Y1
0) and firm

value is still increasing in ρm.
46 or, equivalently, non-decreasing in the amount of asymmetric information.
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Here, there is no “total firm value effect”: the decrease in bond yields accompanying an increase in ρXY is

solely due to the fact that the extent of residual risk shifting X X YF
1
0

1 1
0− max( , )  is decreasing in ρXY whenever

Y X F
1
0

1> , i.e. when ρ ρXY XY≥  and ρ ρm m< *  (following Proposition 4) and bondholders, rationally

anticipating a lower deviation from optimal investment policy, demand a lower yield premium.

This feature of our model is consistent with the existing literature on the effect of accounting reports on

security prices. Most recently, Duffie and Lando (1998) refine the Leland (1994) model of default and allow

for “imperfect information”, i.e. outsiders observe only at discrete times a noisy accounting report on the value

of assets, and survivorship. Their conclusion is that the zero-coupon credit spread is strictly increasing in the

reporting noise level a (see their Figure 7). In our model, reports could be not only about accounting data, but

also about the investment opportunity set facing the firm (how encouraging a signal observed at t=1 is). Since

the quantity that characterizes the noisiness of this report in our model is σε, our conclusion is very similar to

Duffie and Lando’s one.

It is worth noting that share prices are decreasing in ρXY (see Appendix 11): although an increase in ρXY will

increase firm value, this benefits bondholders and hurts shareholders, prevented from investing on the region

[ , ]Y X1
0

1
0 . Equityholders rationally anticipate that their manager won't have the freedom to maximize the price

of their claim and will drive the latter down. Note finally that we constrained ρXY to be the same across

industries (hence our intuition that varying ρXY will yield intra-industry comparative statics). It would be of

interest to let ρXY vary across industries. For instance, by positing that ρ ρXY m
n= −1  or, equivalently, ρ ρb m

n=

for n≥2, we are in effect imposing the restriction that there is more information asymmetry in industries where

uncertainty is resolved later, which seems to be the intuitive case. We looked at the matter but did not report

our results, which remain essentially unchanged, here.

5. Empirical Implications and Empirical Evidence

The different lemmas and theorems derived in this paper have empirical implications, some of which are more

readily testable than others. The main problem will be of course to find a good proxy for the speed at which

uncertainty is resolved. It could be the time-series correlation between forecasted earnings and realized

earnings (or between innovations in earnings Et-Et-1 and forecasted innovations Ft-1,t), the average forecasting

error (or more precisely a root mean square error) or the dispersion in the earnings forecasts across analysts. Of

course, all these proxies should estimate how much more difficult it is to forecast the long-term than it is to

forecast the short term. We refer the reader to our companion paper (Reisz (1999)), which uses those proxies.

It seems that related proxies (in the existing literature) are the amount of R&D and advertising expenses
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(scaled by sales or market value of assets) as well as how job-specific the skills of the workers employed by

the firm are47. The empirical implications are presented in the order in which they appear in our paper.

a) From Theorem 1, b), we would expect firms operating in fields where uncertainty is resolved later to have

more risky cash flows. This effect should be translated as well in the variance of earnings as in the

variance of total assets in place (although firms that rely heavily on R&D and goodwill will have a lot of

assets that do not appear in the books) or even in the unlevered beta48. We also expect these firms to invest

more (for instance through setting a lower hurdle rate for their investments) on a size-corrected basis. It is

worth noting that Bradley, Jarrel and Kim (1984) as well as Titman and Wessels (1988) found a non-

significant negative correlation between R&D expenses and the volatility of the firm, which contradicts

not only our Theorem 1, but our basic intuition as well. This may be due to the proxy for the volatility of a

firm's operations used in those studies. Bradley, Jarrell and Kim (1984) look at the standard deviation of

the first differences in annual earnings before depreciation, interest and taxes, while Titman and Wessels

(1988) look at the standard deviation of the percentage change in operating income. Both proxies ignore

the effect of taxes on cash flows (it could be argued that firms with more delayed resolution of uncertainty

pay fewer taxes since a larger fraction of their value is accounted by growth options), as well as the widely

reported phenomenon of “earnings management”.

b) Since risk shifting as of t=1 is a more severe problem for a lower ρ (i.e. the later the temporal resolution of

uncertainty) according to both our Theorem 2 and Theorem 2 bis, we would expect to observe the

following empirical evidence: firms operating in a field where uncertainty is resolved quite late in the life

of the project (e.g. R&D intensive firms) should be reluctant to issuing risky debt, since investors will

rationally anticipate severe risk shifting, as opposed to firms operating in fields where uncertainty is

resolved very quickly (e.g. a timber firm whose investment in a forest may experience great uncertainty in

the early years of the trees’ growth, but once this uncertainty is resolved, the future cash flows may be

more or less predictable) and where risk shifting will not be so severe. This effect is reinforced by the fact

that firms facing late temporal resolution of uncertainty have more risky operations (Theorem 1), and this

added variance decreases the debt capacity of the firm.

• This is consistent with Bradley, Jarrell and Kim (1984) who report a “strong finding of intra-industry

similarities in firm leverage ratios and of persistent inter-industry differences” in a way that supports

our model: “54% of the cross-sectional variance in firm leverage ratios can be explained by industrial

                                                       
47 With the problem that those proxies control also for other effects, such as the importance of growth options in the

investment opportunity set of a particular firm.
48 The unlevered beta proxies for the systematic risk of the firm; why a firm operating in a field where uncertainty is

resolved only late should have a higher systematic (and not only overall) risk comes from the fact that we assumed in our

model that all firms have the same risky technology available (see it as a market risk) and that the ones with low ρ will tend

to invest more often.
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classification, with more variation in mean leverage ratios across industries than there is in firm

leverage ratio within industries”. Industries like “Drugs and Cosmetics”, “Electronics” or “Petroleum

Exploration”, which we would heuristically characterize as having later temporal resolution of

uncertainty, have significantly lower debt levels than industries like “Steel”, “Telephone”, “Electricity

and Gas Utilities” or “Airlines”, which seem to have earlier temporal resolution of uncertainty.49.

There is an argument that could be made against these results: the firms that we characterize as

having later temporal resolution of uncertainty are also firms that seem to have higher overall risk

(and that do, according to our first theorem) and therefore their lower debt levels could only be due to

this higher risk. However, Bradley, Jarrell and Kim (1984) regress debt to value ratio on firm

volatility, non-debt tax shields and R&D and advertising expenses (their Table III), thereby

controlling for the overall volatility of assets as well as for the non debt tax shield due to R&D

expenses. The coefficient on R&D and advertising expenses is significantly negative, as our model

predicted (firms that have high R&D expenses are usually firms in a late temporal resolution of

uncertainty field and should therefore be more reluctant to issuing debt).

• A more comprehensive test is carried out by Long and Malitz (1986) who look at 545 manufacturing

firms, grouped into portfolios in order to hold the operating or business risk (as measured by

unlevered betas) of all firms constant. The quartile with highest R&D expenses is the one with lowest

leverage and the one with lowest R&D expenses is the one with highest leverage. The negative

relationship between R&D (and advertising) expenses and leverage remains when the latter is

regressed on the former, controlling for the firm systematic and residual risk and non-debt tax

shields50. This is a summary of previous work of theirs where they looked at 63 industries classified

by a four-digit SIC code; of the five industries with the lowest leverage, four have the highest R&D

and advertising expenditures, while the five industries with the highest leverage show the lowest

percentage of these intangible investments.

• Similar results are reported by Titman and Wessels (1988) who use a factor-analytic technique, linear

structural modeling, that mitigates the measurement problem encountered when working with proxy

variables. They report that firms that are more “unique” tend to have lower debt/equity ratios. They

define “uniqueness” as higher R&D and advertising expenses and lower quit ratios (“firms that sell

products with close substitutes are likely to do less research and development since their innovations

can be more easily duplicated” whereas “firms with relatively unique products are expected to

advertise more and, in general, spend more in promoting and selling their products” and “employ

workers with high levels of job-specific human capital who will thus find it costly to leave their

jobs”51). Intuition dictates us that firms that operate in an industry where uncertainty is resolved late

                                                       
49 See their Table I p. 870. Their results are robust to the exclusion of regulated industries.
50 Their results carry over as well for portfolios as for individual firms.
51 p. 5. They also control for the tax deductibility of R&D and some selling expenses. Titman (1984) also finds that “firms

that can potentially impose high costs on their customers, workers and suppliers in the event of liquidation have lower debt
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are, in a Titman and Wessels sense, more “unique”52 and in that heuristic sense, our model is

supported by their empirical evidence.

• Finally, this discrepancy of capital structure across industries is in no way particular to the United

States. Kester (1986), for example, reports that industry dummies are highly significant in the case of

Japanese capital structure, especially for “debt-equity ratios in the upper quartile of the sample. Most

of these are mature, heavy industries and include steel, general chemicals, nonferrous metals, paper

and petroleum refining” (p. 12), all of which correspond to fields where uncertainty is resolved

relatively early. Bronte (1982) reports that after netting out debt refinancing, internal sources

accounted for 50.5% of net capital invested in Japan in 1970 and 102.4% in 1979, indicating that

internally generated cash was being used to retire debt over that period, with the trend “most

pronounced in such high technology industries as electronics, pharmaceuticals and communication

equipment”53.

It is worth mentioning that the negative relation between leverage and TRU is still present when more

direct proxies for TRU are used (see Reisz (1999)).

c) If firms operating in a low ρ environment have already decided to take on debt (for instance because

insiders could not bring enough capital on their own or because the opportunity cost of inside funds or

outside equity are even higher), we should see more representatives of creditors (bondholders or lending

banks) sitting on the board of directors -- so as to prevent shareholders from indulging too much in their

risk shifting incentives -- than for firms operating in a higher ρ environment. Now, since the latter will

typically have more risky debt outstanding, tests should control for it and investigate whether low ρ firms

have more creditors, per dollar lent, on the board of directors.

d) Bondholders, supposed to rationally anticipate risk shifting incentives, will demand a higher yield from a

corporation in a low ρ industry than from a corporation in a high ρ field (Theorems 3 and 3 bis). It should

be investigated whether it is the case once risk is already accounted for, since as we showed in Theorem 1,

firms for which uncertainty is resolved later are also riskier. Our companion paper (Reisz (1999)) answers

positively to the question of whether temporal resolution of uncertainty still has some power in explaining

cross-sectional variation in bonds yields once risk is controlled for.

                                                                                                                                                                         

ratios”. This definition corresponds, once more heuristically, to our perception of a late temporal resolution of uncertainty

pattern.
52 As, for instance, computer or pharmaceutical firms, whereas firms that operate in a field where uncertainty is resolved

earlier tend to offer products that are more substitutable and less characteristic of a given firm and to rely less heavily on

human capital.
53 Ibid, p. 15. See also Exhibit 2, p. 9.
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e) Since risk-shifting is more of a problem for firms facing delayed resolution of uncertainty, a solution may

be to shorten debt maturity for those firms, rendering suboptimal investment by a shareholder-aligned

manager impossible. This is also in the best interest of the firms with most delayed resolution of

uncertainty, which may be able to refinance on better terms at the intermediate date (in the limit, when no

investment is made, lenders will charge the riskless rate). We therefore expect firms with more delayed

resolution of uncertainty to issue shorter debt. This is documented by Stohs and Mauer (1996) and Guedes

and Opler (1996) if we are willing to see R&D sclaed by market value of assets as a proxy for TRU, and

by Reisz (1999) who uses more direct proxies.

f) All of the above empirical implications should be mitigated when the existing regulation enforces

verifiable disclosure requirements. In particular, this means that larger firms (or, more generally, firms

listed on a stock exchange enforcing stricter disclosure regulations) should display a lower extent of risk-

shifting than smaller firms and bondholders should demand lower yield premia from them54. This gives us

therefore intra-industry empirical implications. It is also worth noting that it might as well yield inter-

country comparative statics: since the accounting and reporting standards are typically stricter in the US

than in other countries, one might believe that the aforementioned empirical implications would be more

obviously displayed in other countries55. Tests designed at checking whether the aforementioned empirical

implications hold should therefore control for firm size, the stock exchange on which a particular stock is

quoted or the country where a particular corporation is registered.

The main difficulty in all future tests to be conducted will be to single out the effect of earlier or later temporal

resolution of uncertainty from other effects: firms that have high R&D expenses or low quit ratios, i.e. firms

we heuristically perceived as operating in a field where uncertainty is resolved later, are also firms

• that have more intangible assets and therefore higher expected bankruptcy costs (if they go

bankrupt, they have more to lose, including the opportunity to further invest in R&D);

• that are more risky, and therefore have not only higher bankruptcy costs in case of default, but

also a higher probability of default and, following, higher risk-shifting incentives;

• the value of which is mainly accounted for by expected future earnings (their current earnings

might even be negative!), and therefore finding themselves in lower tax brackets.

All these effects contribute in predicting lower debt ratios and higher bond yields for firms operating in fields

where uncertainty is resolved only late (i.e. firms having high R&D expenses) based only on existing theories

of bankruptcy costs and tax considerations as determinants of capital structures56. Further empirical work will

                                                       
54 With the problem that size may proxy for the liquidity of the firm's bonds as well.
55 We thank David Yermack for pointing out this inter-country implication.
56 For instance, our conclusion that firms in a lower ρ field should rely less heavily on debt could be merely due to tax

effects: progressivity in the tax structure implies that greater volatility in taxable income raises the firm’s expected tax
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therefore have to tackle the non-trivial problem of isolating the effect of temporal resolution of uncertainty on

capital structure, once the effect of classical determinants has been singled out. This will be done by choosing

a direct proxy for TRU.

However, this does not undermine the validity of our theoretical model and its empirical implications: we

come to the same conclusions as existing theories of bankruptcy costs and tax considerations, but without even

considering these effects, therefore in effect singling out the effect of temporal resolution of uncertainty on

investment policies and bond yields: we offer a new element of explanation to the existing empirical evidence,

and once we add the aforementioned considerations, our results will only be reinforced. Temporal resolution of

uncertainty is thus to be added to tax-related benefits of debt and expected bankruptcy costs in any further

analysis of capital structure and corporate debt yields to acquire a fuller understanding of the available

empirical evidence.

6. Discussion and Concluding Remarks

In the tradition of papers dealing with the interactions between product markets and financial decisions, we

argued that a firm’s financial decisions cannot be independent of how quickly uncertainty is resolved in the

field in which the firm operates. It was already a well-known fact that a firm which has risky debt outstanding

will suffer from the risk-shifting incentives of a shareholder-aligned manager (with the extent to which the

levered firm will overinvest being increasing in the amount of risky debt outstanding). Our paper’s innovation

is to show that firms for which uncertainty will be resolved later will suffer far more from those

overinvestment tendencies. As a result, the yield premium demanded on corporate bonds will be higher the

later the uncertainty is resolved. This is only mitigated by partial contracting, but the qualitative conclusions

remain the same.

These results add a new insight to the conclusions of classical bankruptcy costs / tax clientele theories and

should therefore only be reinforced by the inclusion of those considerations in a more general model.

Nonetheless, we see the inclusion of offsetting agency costs of equity as a more interesting task to undertake in

order to determine an optimal capital structure as a function of temporal resolution of uncertainty.

The fact that firm value as well as bond prices are higher the earlier the uncertainty is resolved does not,

however, invalidate Ross’ (1989) theory of resolution irrelevancy since the difference in prices in our model

                                                                                                                                                                         

liabilities (see Smith and Stulz (1985)). Our Theorem 1, stating that firms with lower ρ have a higher variance of final cash

flows, implies that theses firms have an incentive to reduce the amount of debt in their capital structure over the range of

progressivity.
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are due to the anticipation of different managerial behaviors that can lead to different cash flows. In Ross’

words, changing the pattern of temporal resolution of uncertainty alters the no-arbitrage martingale pricing

operator (which is equivalent to changing the state space spanning). As a result, we do not even need risk-

aversion for the speed of resolution of uncertainty to affect security prices.

Further work should investigate the optimal financing of different projects based on how quickly uncertainty is

resolved. This encompasses as well the nature of the claims to be used as their maturity; a richer menu of

contractual forms for outside claims (for instance convertible debt) should also be introduced. It should also try

to explain the cross-sectional differences in dividend policies and add a “temporal” explanation to why mature

firms differ markedly in this respect from growth firms. Another avenue for further research is to investigate

how the compensation package offered to the top officers of levered corporations should depend on the pattern

of resolution of uncertainty in the field in which the firm operates57, as well as to design binding commitments

with suppliers and contractors that would impose a financial penalty upon the firm if the better project is not

undertaken. This should not only document the wide differences in managerial compensation across industries,

but also suggest a way of driving managerial decisions closer to the optimal investment choices as a function

of the industry in which the firm operates.

                                                       
57 Keeping in mind that the manager might not be shareholder-aligned in the first place. This may be due, for instance, to

the fact that the executive’s time horizon is relatively short while the value of the stock is the present value of dividends

stretching to infinity. See Chidambaran and John (1998).
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Appendix

1. A Reminder on Multivariate Normal Distributions

Let Y and X be vector random variables normally distributed with mean vector [EX EY]’ and variance-

covariance matrix Ω. We will partition Ω as:

Ω
Ω Ω
Ω Ω

=
L
NM

O
QP

XX XY

YX YY

Then Y conditional on X=x is also normally distributed with mean EX+ΩYXΩXX
-1(x-EX) and variance-

covariance matrix ΩYY-ΩYXΩXX
-1ΩXY. In particular, if two scalar random variables X and θ are jointly

normally distributed, then the distribution of θ conditional on X is also normal with the following parameters:
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where ρ stands for the correlation between X and θ and σθ and σX are the respective standard deviations of θ

and X. For more details, see Feller (1976) or Goldberger (1964).

2. Computing the Objective Function

From here on, to simplify notations, we will write E(θ|X1) for E(θ|X1=x1) and var(θ|X1) for var(θ|X1=x1);

however, our expressions, as for instance U(I,ρ,X1,F), depend on a particular realization x1. Equation (1) can

be expressed as:
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Now, the second term is equal to, after a change of variable making z a standard normal variate:
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A final arrangement yields the expression in the text.

3. Computing the First and Second Derivatives

From equation (2),
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Differentiating this once more yields:

∂
∂

= −
−

−
−

=
−

− − − −
−L

NM
O
QP

=
−

>

2
1

2 1 2
2

2
1

1
2

2
1

2

2
1

1 2 1 2
2

2

2

3
1

0

U Q X F

Q
E X r B

F Ir

Q X
X B B

F Ir

Q X

B
F Ir

Q X
E X r E X r

Ir F

Q

B
F Ir

Q X

( , , , )
( | ) ( )

var( | )
var( | ) ( )

var( | )

( )
var( | )

( | ) ( | )

( )
var( | )

ρ
θ ϕ

θ
θ ϕ

θ

ϕ
θ

θ θ

ϕ
θ

b g



43

4. Proof of Lemma 1

As we saw in section 3.2, the manager of a levered firm will essentially compare U(I,ρ,X1,F) with U(0,ρ,X1,F)

in deciding whether to invest or not. We therefore consider here the quantity ∆U(ρ,X1,F)≡U(I,ρ,X1,F)-

U(0,ρ,X1,F). Now limQ→0B=+∞; hence limQ→0U(Q,ρ,X1,F)=Ir2-F (note the continuity of U when Q tends to 0:

as we noted earlier, if Q=0, the shareholders are left with Ir2-F after investing everything in riskless Treasury

bills and repaying bondholders) and
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NB: It is worth saying a few words on this expression C (which is the expression B when Q=I):

conditional on investing in the risky technology, Φ(C) is nothing else than the t=1 probability of being

solvent at t=2: after investing in the risky technology, bankruptcy occurs if the final cash flow Iθ is less

then the promised payment F, which happens with the probability dP X
F I
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z ; this in turn is equal to
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1  given that θ, conditional on X1, follows a normal law with mean

E(θ|X1) and variance σ θ |X1

2 .

Differentiating ∆U(ρ,X1,F) with respect to X1 yields:
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Therefore ∆U(ρ,X1) is strictly increasing in X1. Since lim ( , )
X

U X Ir F
1

1 2 0
→−∞

= − + <∆ ρ and

lim ( , )
X

U X
1

1→+∞
= +∞∆ ρ and given the continuity of ∆U(ρ,X1) in X1, there is a unique X1

F satisfying

∆U(ρ,X1
F)=0 by the Intermediate Value Theorem. QED.

5. Proof of Lemma 2
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To prove that X1
0>X1

F for any positive amount of risky debt F2, it suffices to show that X1
F is decreasing in F.

Hence any positive value of F will yield a cutoff X1
F strictly smaller than X1

0. Now, X1
F is defined as the value

of X1 for which ∆U(X1,ρ,F)=0. Implicit differentiation yields, keeping ∆U(X1
F,ρ,F) equal to 0:
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hence, using equation (A2) and (A3), we get:
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where C X F
1  denotes the expression C taken in x1=X1

F. QED.

6. Proof of Theorem 1

We will prove here that the earlier the temporal resolution of uncertainty (i.e. the higher ρ), the higher the

cutoff value X1
0 (resp. X1

F) the manager of an all-equity (resp. levered) firm uses. In the sequel, in order to

make equations more readable, we will adopt the following notations: E X X E( ) , ( )1 1= =  θ θ ,

var( )X X1 1
= σ  and var( )θ σ θ=  .

Following the same argument as before, we keep ∆U(X1
F,ρ,F) equal to 0 and implicit differentiation yields:

∂
∂

=
−

∂∆
∂

∂∆
∂

O

Q

PPPP
=

X

U X F

U X F

X

F

X X F

1

1

1

1
1 1

ρ

ρ
ρ

ρ

( , , )

( , , )

Now, 
∂∆

∂
= − − + + −

∂
∂

L
NM

O
QP

−U X F
I C C C I

C
C

( , , )
( ) ( ) ( )

ρ
ρ

σ ρ ρ ϕ σ ρ
ρθ θ

1 2 1/2 2 1/2
1 1d i d iΦ Φ  and since

∂
∂

=
−

−
+

−

−

C X X I F

IX
ρ σ ρ

ρ θ

σ ρθ

1 1

2 3 2 2 3 2

1
1 1d i d i/ /

,        (A5)



45
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It suffices now to use equations (A2) and (A6) to get:
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To prove that this expression is positive, we need to show that X XF
1 1≤  for all values of F. For that purpose,

we introduce the quantity X1
*  such that E X X r( | )*θ 1 1 2= = : X X r X

1 1 2
1* ( )≡ + −θ

σ

ρσ θ

. Then

ρρσ

σ
θ

ρ θ

*
11

22

*
1 1

.)( 1
XX

r
X X −

=−=
∂
∂  and our (realistic) assumption that E(θ)>r2 ensures that X X1 1

* < . Now, the

last step is that, according to equation (3) in the text,

0
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),,,(
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X

Q

FXQU

θ
ϕθ

ρ

for all Q∈[0,I] since E X X r( | )*θ 1 1 2= = . Therefore ∆U(ρ,X1
*,F)=U(I,ρ,X1

*,F)-U(0,ρ,X1
*,F)>0. Now

∆U(ρ,X1
F,F2)=0 by definition of X1

F. The strict increasingness of ∆U in X1 ensures that X1
*>X1

F for all

F∈[0,Ir2).

We have proved our result: X X XF
1 1 1< <*  and the expression (A7) becomes obviously positive.

7. Proof of Theorem 2
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We will prove here that the earlier uncertainty is resolved (i.e. the higher ρ), the lower the extent of risk

shifting X1
0-X1

F. To do that, it suffices to show that ∂(X1
0-X1

F)/∂ρ<0, i.e. ∂X1
0/∂ρ<∂X1

F/∂ρ. One way to show

that is to prove that ∂2X1
F/∂ρ∂F>0.

Now, drawing from the results in the previous section and differentiating (A7) with respect to F,
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where we took the expression for ∂X1
F/∂F from (A4) and
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It now suffices to remember that by definition of X1
F, ∆U(ρ,X1

F,F)=0 or, from looking at (A1),
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. Hence, the expression above is obviously positive. QED.

Finally, when ρ tends to 0, X1 does not give any information on θ and the managers of an all-equity firm and a

levered firm will compare the unconditional expectation of θ with r2. Since E(θ)>r2, they will always invest in

the risky technology, regardless of the particular realization x1: lim lim
ρ ρ→ →

= = −∞
0

1
0

0
1X X F . However, from (A7)

we infer that

∂ −
∂

=
−

−
L
N
MM

O
Q
PP+

−( )

( )

( )

( )

( )

( )

X X C

C

C

C

X XF
X

X

X

X

X

FF

F

1
0

1
2 1/2

1 1
0

1
1
0

1
0

1

11ρ

σ

ρ
ϕ ϕ

ρΦ Φ

so that lim ( ) /
ρ

ρ
→

∂ − ∂ = −∞
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0

1X X F  (for ρ close to 0, C X1
0

and C X F
1  tend to finite constants). This is enough to

ensure that lim( )
ρ→

− = +∞
0

1
0

1X X F : the extent of risk shifting is discontinuous in ρ=0.
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8. Computing the t=0 Market Value of the Firm

We will here, for the sake of generality, consider a firm with an investment policy of [ξ]: at t=1: if x1<ξ, the

manager invests everything in riskless bonds and V1(ρ)=I; if x1≥ξ, everything gets invested in the risky

technology θ so that the t=1 market value of the firm conditional on investment is:

V x x
r

I dP X
r

IE X
E X

I
E X

X
X

X
1 1 1

2
1

0 2
1

1 11 1

1

1

1

( , | ) ( | ) ( | )
( | ) ( | )

|
|

|

ρ ξ θ θ θ
θ

σ
σ ϕ

θ
σθ

θ
θ

> = =
F
HG

I
KJ+

F
HG

I
KJ

L
N
MM

O
Q
PP

∞z Φ ,

so that the t=0 market value of the firm is:
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where A stands for E X X( | ) / |θ σ θ1 1
 and is a function of a particular x1 (note that it is nothing else than the

expression C when F=0). The above is different from the social value of the firm, which is equal to:
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The difference is accounted by the third negative claim, i.e. the responsibility to cover a negative realization of

θ (e.g. environmental clean up costs) which we denote G0(ρ,ξ):
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The all-equity (resp. levered) firm will then substitute X1
0 (resp. X1

F) for ξ. Now,
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HG
I
KJ  denotes the probability density function of X1 taken in x1 = ξ  and, as

before, the superscript ξ on A means that this expression is also taken in x1 = ξ . We then have to remember

that

• σ ρ ϕθ 1 2 1/2

2
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1
0

− + =d i A A A rX X XΦ( ) ( )   (when taken in x X1 1
0= , the expressions A and C are equal);
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• the functions f x x x x: ( ) ( )a Φ + ϕ  and g x E X x: ( | )a θ =  are increasing in x; hence
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and the expression (A9) becomes strictly greater than zero: now, since by (A4) ∂X1
F/∂F<0, applying the chain

rule ensures that ∂V0(ρ,X1
F)/∂F<0: agency costs are strictly increasing in the amount of risky debt outstanding.

It is also interesting to note that the value of the firm (all-equity as well as levered) is increasing in ρ: from the

value of the firm as given by (A8),
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  and   are constants and z is a standard normal variate. Using

equations (15) and (26) from Carr and Rubinstein (1995) to integrate the above normals and simplifying, the

above expression is equal to
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Firm value is thus bounded below by
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The difference between this and I/r1, the t=0 present value of investing I dollars at t=1, is the surplus of the

entrepreneur when he sells the firm to shareholders and bondholders at t=0. Alternatively, it can be seen as the

“option value” of the firm, i.e. the value of the opportunity to invest in a technology with E(θ)>r2.

9. Temporal Resolution of Uncertainty and Bond Yields.

We will here price the bonds of the firm in terms of an arbitrary X1-cutoff ξ for the sake of generality (we’ll

use this formula later for an X1-cutoff different from X F
1  when we consider partial contracting).

w As of t=1, if x1<ξ, the manager will invest in riskless bills and the bond will be worth F at t=2 (since Ir2>F);

if x1≥ξ, the manager will invest in the risky technology and the bond will be worth max[0,min(Iθ,F)] 58 at t=2.

So conditional on investing in the riskless technology, the t=1 value of the bond is F/r2. Conditional of

investing in the risky technology, the value of the bond as of t=1, denoted B1(ρ,F,x1), is:
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 and C A F I X= − / |σ θ 1
; once more, it is obvious from the derivation that

Φ(C), which is a function of the particular realization x1 that occurred, is nothing else than the t=1 probability

of being solvent and that Φ(A) is the probability of θ being positive.

NB: in the same line of thought as before, note that the next-to-last line in the expression of B1(ρ,F,x1)

tells us the following: at t=1, bondholders expect the firm to be solvent (and to receive F) with probability

Φ(C) and believe that with a probability of Φ(A)-Φ(C) the firm will not be solvent but still have positive

                                                       
58 Since the return on the risky technology is normally distributed, it can assume an arbitrarily negative value. As stated in

the text, we consider in that case that the society at large has to bear the consequences of a negative realization of θ

(product liability suit, environmental catastrophe etc.). However, we can choose the parameters so as to make the



50

value, in which case they will take over, receiving on average IE(θ|X1=x1); the last term is a convexity

adjustment.

w So as of t=0, the bond price is equal to:
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as stated in the text.

We are more interested, however, in how the yield premium evolves with ρ, the pattern of temporal resolution

of uncertainty. Now, since the debt has the form of a zero-coupon bond, we define the per period yield

premium demanded on the debt as 
F

r r B F1 2 0 ( , )ρ
-1 (we remind the reader here that the bond has a maturity of

two periods). Proving that this yield premium is decreasing in ρ is therefore equivalent to proving that bond

prices are increasing in ρ. Then, from (A10),
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Here, we need to come back to our particular case where the cutoff is X1
F. We then have to remember that
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and the expression above becomes strictly greater than:
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 arbitrarily small. With our parameters (E(θ)=1.15,

σθ=0.6), it is never larger than 2.76% for any value of ρ.
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where, as in the derivation of ∂V0(ρ)/∂ρ, we used the expression (A5) for ∂C/∂ρ and ∂A/∂ρ and

a a a
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     are all constants and z is a standard

normal variate. Using equations (15) and (26) from Carr and Rubinstein (1995) to integrate the above normals

and simplifying, the above expression is equal to
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which is positive since for any x1 (in particular X1
F), C A F I AX= − </ |σ θ 1

. QED.

It is also of interest to notice the continuity of bond prices when ρ tends to 1: the price of the debt tends to

F/r1r2 (the yield premium tends to 0): as we saw earlier in the text, when x1 reveals θ, the manager of a levered

firm adopts the same cutoff policy as the manager of an all-equity firm: the cutoff X1
F is such that E(θ|X1

F)=r2

and since Ir2>F, C tends to infinity for all x1 greater than X1
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It now suffices to replace the above in equation (A10) to obtain the desired result: lim ( , , )
ρ

ρ
→

=
1

0 1
1 2

B F X
F

r r
F .

The intuition is as explained in the text: when x1 reveals θ, the firm is always solvent and the debt is riskless.

Finally, in much the same way as we did for bond prices, it can be shown that share price as well as the value

of the claim held (unwillingly) by taxpayers are increasing in ρ: an earlier resolution of uncertainty is Pareto-

improving.

10. Mitigating Risk-Shifting through Partial Contracting
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Our first task is to prove Proposition 4, i.e. 
∂

∂
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1
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0
ρ

. This is done in much the same way as in Appendix 6

and we'll go quickly through the proof. Keeping ÄU(Y1,ρ,0) constant at 0 (this is the implicit definition of Y1
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using the same notation as earlier), total differentiation yields:
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1<  (we introduced the quantity X1
*  in Appendix 6 and proved that X X XF

1 1 1< <*  for all values of

F∈[0,Ir2), in particular F=0). Finally, the increasingness of the cutoff in ρ and its decreasingness in the

variance of the signal (i.e. σ X1
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The next step is to prove Theorem 4. As we saw in the text, the new cutoff will be max( , ).X YF
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Now, since the function h x x x: ( ) / ( )a ϕ Φ  is decreasing, it suffices to show that A CY X F
1
0

1>  to prove the

negativity of ∂ − ∂( ) /Y X F
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On [ , ]*0 ρm , the improvement Y1
0-X1

F in terms of risk-shifting is decreasing in ρm, and on [ , ]*ρm 1  the

improvement is constant at 0.

                                                       

59 Attention: we stated earlier that C A F I= − −/ ( ( ) )σ ρθ 1 2 1/2 . However, here AY1
0

 uses σY and ρb=ρmρXY, while

C X F
1  uses σX and ρm.
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Finally, we show that this ρm
*  is increasing in ρXY: an implicit differentiation at ρ ρm m= *  yields, as Y X F
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*  is decreasing in σε.

11. Partial Contracting, Temporal Resolution of Uncertainty and Bond
Yields

w For a given ρXY, if Y X F
XY XY m1
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1≤ ≤ ≥ (i.e.  for all  if   or  for   otherwisem mρ ρ ρ ρ ρ* ) , nothing is changed

and we refer the reader to Appendix 9 for a proof that bond yields are decreasing in ρm.

w if ρ ρm m< * , shareholders will invest, on average60, for all x Y1 1
0> . This yields a bond price similar to the

one in (A10), with Y1
0  used to replace the generic cutoff ξ. This in turn yields the expression (A11) for the first

derivative of bond prices with respect to ρm, but with Y1
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σθ Φ Φ . Hence bond prices are still increasing in ρm after

optimal contracting; equivalently, the yield premium demanded is lower the quicker uncertainty is resolved.

QED.

                                                       
60 As we noted in the text, shareholders will really invest for all realizations of X1 greater than Y1

0-ε1. But since

bondholders do not observe ε1, they will price securities using E(ε)=0 for ε1.
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It can also be shown that this yield premium is non-increasing in ρXY, the accuracy of the information Y1

available to outsiders. As before, we will do that through looking at comparative statics involving bond prices:
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0 / ρ , yields the desired result: bond yields are decreasing in ρXY on [ , ]*0 ρm  and independent of ρXY

on [ , ]*ρm 1 . QED.

This effect is reinforced by the increasingness of ρm
*  in ρXY (see previous Appendix): as the latter increases,

the region where bond yields are strictly decreasing in ρXY widens.

Finally, the price of the equity S0(ρ,ξ) can be expressed as the difference between the market value of the

firm (A8) and the price of bonds (A10):
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 Simulations

The investment cutoff as a function of the pattern of temporal resolution of uncertainty
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The extent of residual risk-shifting, once optimal contracting has been written, as a function
of temporal resolution of uncertainty
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Agency costs as a function of the speed of resolution of uncertainty
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Residual agency costs after optimal contracting
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The maximum ρρm
*  for which contracting still presents benefits
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Yield premium demanded on corporate bonds as a function of the pattern of temporal
resolution of uncertainty
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Yield premium demanded on bonds as a function of the pattern of temporal resolution of
uncertainty
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