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Liquidity in the Futures Pits:

Inferring Market Dynamics from Incomplete Data

Abstract

Motivated by economic models of sequential trade, empirical analyses of market

dynamics in the U.S. equities market frequently estimate liquidity from regressions of

price changes on transaction volumes, where the latter are signed (positive for buyer-

initiated trades; negative for seller-initiated trades).  This paper estimates these

specifications for transaction data from pit trading at the Chicago Mercantile Exchange.

To deal with the absence of timely bid and ask quotes (generally used to sign trades in the

equity market studies), this paper proposes new techniques based on Markov chain

Monte Carlo estimation.

As in the corresponding equity market specifications, the model structure implies

a decomposition for long-run price volatility into trade- and non-trade-related

components.  For the S&P contract, trades have a negligible contribution to volatility.

Trades in the pork belly contract account for twenty percent of the (long-term) price

volatility.  Trades in the DM contract account for forty percent of the volatility.  This last

finding may indicate that although the futures market in the DM is dwarfed in volume by

the interbank spot/forward market, the latter’s relative lack of transparency causes

significant price discover to occur in the futures market.
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1. Introduction

The Chicago Mercantile Exchange (CME, “Merc”) is a major and representative

U.S. futures exchange, where most trading occurs face-to-face in physically-centralized

arenas (“pits”) on the Exchange floor.  As a trading mechanism, the pit presently faces

strong competition from electronic limit order book systems.  Many of the Merc

contracts, for example, are traded off-[floor]-hours on the Globex (and recently

introduced Globex2) systems.  In some contracts (e.g., the E-mini), floor and Globex

trading occurs simultaneously.   Although many observers feel that electronic trading will

eventually predominate, the floor mechanism possesses a reputation for excellent

liquidity and operational efficiency.  Against this institutional backdrop, the present study

aims at an improved characterization of the pit market mechanism.

By way of economic motivation, empirical market microstructure research seeks

to measure factors thought to be important in market design and operation.  Foremost

among these factors are the direct costs paid by demanders of immediacy in the market

and the impacts their trades have on the security price.  These are often jointly (and

loosely) held to summarize the market’s “liquidity”.

Economic models of sequential trade are, in this context, particularly important.1

In these models a quote-setter (often a dealer or market-maker) posts bid and ask quotes;

potential traders arrive one-by-one and buy or sell.  After the trader has departed, the bid

and ask are updated.  These models are relatively mathematically tractable and flexible.

Significantly (for empirical purposes), they also bear a passing resemblance to a wide

range of actual markets, including the futures pits.

The empirical studies derived from these models typically estimate regressions of

price changes against incoming signed order flows.  A buy order, for example,  is

                                                
1 See Glosten and Milgrom (1985), Easley and O'Hara (1987); Easley and O'Hara (1991);
Easley and O'Hara (1992a); Easley and O'Hara (1992b) and O'Hara (1995).
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positively signed and hits (“lifts”) the prevailing ask quote.  Generally the transaction

price will exceed the expected value of the security (conditional on all information

available prior to the order arrival).  This excess reflects in part a transient cost paid by

the buyer for immediacy, and in part a permanent revaluation of the security.  These

analyses have become standard in studies of U.S. equities markets.2   The present paper

seeks to implement them for data from floor trading at the Merc.

 The standard implementation of the price/signed trade regression requires both

transaction (price and volume) and quote (bid and ask) data.  The latter are necessary to

assign a direction to the trade, usually by comparing the trade price to the quote midpoint.

Bids and asks in futures pits, however, expire (unless hit) virtually instantaneously.  In

consequence, a contemporaneous record of these quotes comparable to that available for

the equity markets does not exist.

Excellent prior studies of futures market liquidity are available.  Those based on

transaction-level data include Laux and Senchack (1992) and Ma, Peterson, and Sears

(1992).  These analyses employ return-autocovariance-based estimates of the bid-ask

spread, however.  This approach assumes that the direction of the trade is independent of

the price movement, and cannot therefore measure informational price impacts.

Manaster and Mann (1996) use Computerized Trade Reconstruction (CTR) data.  These

data (which are not in the public domain) establish trader identity, permit tracking of

trader positions, and so support a range of interesting analyses concerning inventory

control.  Manaster and Mann also estimate order impacts contingent on class of trader.

Identification of a buyer and seller does not, however, establish who initiated the trade (in

the sense of the sequential trade models), i.e., which party hit or lifted the bid or ask

exposed by the other.

                                                
2  See, for example, Hasbrouck (1991a); Hasbrouck (1996a) and Madhavan, Richardson,
and Roomans (1997).
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It is emphasized that the absence of bid and ask data in the futures market studies

is due to limitations in observation and collection procedures.  Bids and asks are in fact

continually being conveyed within the trading crowd.  Trades occur when liquidity

demanders hit these quotes.  To this extent, the market structure fits the framework of the

sequential trade models.  But data normally essential to the estimation of these models

are missing.

It is nevertheless possible to perform estimation without a complete data record,

provided that one is willing to let the model structure and observed data bear the full

weight of the statistical inference.  In the present applications, the bid, ask and, most

importantly, the direction (sign) of a given trade are viewed as latent, unobserved

variables.  We sign a trade, or, (more accurately) derive a probability density for the sign

of the trade, conditional on the model and all observed data.

In modeling perspective, the analysis of Glosten and Harris (1988) stands as an

important precursor.  There, as in the present paper, transaction price and volume are

observed and the order sign and efficient security price are unobserved.  Glosten and

Harris numerically approximate the probability density functions for these variables

(conditional on the observed data) and the likelihood function for the observations.

Estimation proceeds by maximum likelihood.  The analysis falls within the general

approach to nonlinear state-space model described by Kitagawa (1987).  Glosten and

Harris apply the technique to a sample of NYSE transaction data.

The empirical model in the present paper generalizes on Glosten-Harris in

allowing a more flexible treatment of discreteness, clustering and trade-price impacts.  A

more fundamental difference, however, lies in estimation methodology.  The present
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paper employs a Markov chain Monte Carlo (MCMC) estimator, the Gibbs sampler,

which is attractive both analytically and computationally.3

The models and methods presented here also differ from the usual empirical

market microstructure analyses in that they are cast in a Bayesian framework.  Bayesian

methods are usually employed to incorporate prior beliefs about model structure or

parameters.  Indeed, this consideration has not received proper attention in market

microstructure.  For example, despite our strong priors that the bid-ask spread is positive,

moment-based sample estimates using the Roll (1984) procedure are frequently

“negative” (or undefined).  But the more compelling motivation for the use of Bayesian

methods here lies in the analytical and computational ease with which latent variables

(such as the unobserved trade direction) may be incorporated.

The paper begins with a summary of the trading procedure and descriptive

statistics of the price and volume series.  This serves to establish features of the data that

arise in modeling.  The paper then turns to issues of modeling, estimation and economic

interpretation.  This part of the paper is organized around a series of models of increasing

richness and complexity, beginning with a reworking of the Roll model (Section 3), and

continuing through models that incorporate discreteness (Section 4), clustering (Section

5) and asymmetric information (Section 6).  The sequential presentation of the models

serves to illustrate Bayesian modeling and estimation principles that are, although well-

established and standard in other contexts, relatively unfamiliar in empirical

microstructure.  The reader uninterested in methodology may prefer to skip these sections

(3-6).  A comprehensive model is presented and estimated in Section 7.  A brief summary

concludes the paper in Section 8.

                                                
3 Useful introductory references in this field include Gilks, Richardson, and Spiegelhalter
(1996) (for a concise overview of MCMC techniques), Casella and George (1992) (for
the Gibbs sampler) and Chib and Greenberg (1996) (for applications in econometrics).
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2. Data overview

This section describes the futures transaction data with a view to illuminating the

distinctive features of the data that an empirical model should account for, or at least

accommodate.

The Chicago Mercantile Exchange is a major U.S. futures exchange.  Their web

site (at www.cme.com) provides a comprehensive description of the Exchange,

instruments, trading mechanisms and data (including that used in the present study).  The

trading arrangements at the CME are typical of U.S. futures exchanges.  Traders interact

face-to-face on the exchange floor. They compete by shouting and signing acceptable

price/trade combinations.  Thus, bids and offers are transient, options that vanish unless

exercised immediately.  They are frequently refreshed, as a trader may continually repeat

a bid or offer.  But unlike the U.S. equity markets, there is no presumption that a bid or

offer is good until explicitly canceled or modified.  This transience does not, however,

invalidate the sequential trade framework, since we are still in a world where the quote

setter moves first and the (potential) “market order” trader follows.

An observer on the floor sees bids, offers and trades.  In real time, however, off-

floor participants must rely on the electronically disseminated tick data.  The reported

price is the most current trade price.  This is updated only when a trade at a new price

occurs.  This differs, of course, from the last sale reporting practices in U.S. equities

markets, wherein a trade is reported even if it is at the same price as the previous trade.

Smith and Whaley (1994) discuss estimators of the Roll bid-ask spread using time and

sales data.

The data used in the present study, however, are drawn from the CME’s volume-

tick files.  These data consist of time-stamped trade prices and volumes, i.e., a record

essentially similar to what one receives from the U.S. equity market’s Consolidated

Transaction System.  These data are synthesized (based in part on audit trail data) after
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the close of trading, however, and are not available to market participants in real time.

The sample is drawn from the volume-tick files for the first full two weeks of January

1998.4   This section summarizes characteristics of sixteen heavily-traded contracts.  In

subsequent sections, detailed time series analyses are described for three representative

contracts (pork bellies, the Deutschemark and the S&P composite index).

Table 1 describes various features of the analyzed contracts.  Of particular

relevance for the paper are the tick sizes.  As a proportion of the contract price, they are

often dramatically lower than those commonly encountered in equity markets.  A tick of

$1/16 is 0.125% of a $50 stock.  This is at least an order of magnitude greater than that of

any of the futures contracts.

Table 2 reports trade characteristics. These suggest the scale and timing of the

transactions.  For sheer pace of trading activity, the S&P composite contract stands out.

It exhibits an average intertransaction time of only four seconds.  Trades frequently

occurred within the same second.  The economic framework of the sequential trade

models generally assumes that trade reports are instantaneously disseminated and

evaluated.  In the S&P index pit, at least, an individual trader’s information set is unlikely

to be this current.

Table 3 reports standard deviations and first-order autocorrelations of the

intertransaction returns.  The returns are measured alternatively as difference in log price

and as difference in price level (measured in ticks).   The results for the level prices

suggest that intertransaction return volatility is not large relative to the tick size, and

therefore that discreteness may be an important consideration in assessing a contract’s

volatility.   The first-order autocorrelations are negative, presumably reflecting bid-ask

bounce.  This feature is discussed more completely in Section 3.

                                                
4 The data files used are those from the CME’s website with a prefix “vt” (for volume-
tick).
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A phenomenon closely related to discreteness is clustering, the tendency of trades

(and presumably quotes) to cluster on “natural” multiples of the minimum tick.  There are

various ways of describing clustering.  In the NYSE data examined by Harris (1991), the

$1/8 tick clearly motivates “two-based” clustering on whole numbers, halves and

quarters.  The tick size across futures contracts, however, is not uniform.  A preliminary

look at the data suggests that more generality is needed.  Accordingly, this study

examines both two- and five-based clustering, i.e., the incidence of prices that fall on κ-

multiples of the minimum tick, where ji52=κ for small nonnegative integers i and j.

Letting 30 ≤≤ i and 20 ≤≤ j  generates a set of possible values for κ:

{ }200,100,50,40,25,20,10,8,5,4,2,1=Κ∈κ .

We invoke no economic or mathematical laws here.  This approach merely seems

to give rise to a set of numbers that many people would regard as natural or convenient.

The method of construction does imply, however, an (incomplete) ordering of its

members.  For example, if traders are observing an implicit tick size of κ=5, and seek to

establish a coarser tick, the “natural” choice is κ=10 (rather than κ=8).  In this sense, all

κ>1 have a finer predecessor. 5

Two descriptive measures are useful here.  Let fκ be the sample frequency of

prices that lie on a κ-multiple.  The clustering frequency is simply the excess above

expectation: ( )κκκ 1−= ff C .  It is also helpful to describe the incremental change in

clustering associated with moving from a finer to coarser κ  (in the sense of the ordering

above).  For example, clustering on multiples of two will elevate the incidence of four-

multiples.  The incremental clustering is defined in such a way as to correct for clustering

at the next finer level.  That is, 2244 fff C −=∆ , and so on.

                                                
5 More precisely (letting “f ” denote “is preceded by”): 200f 100, 100f 50, 50f 25,
40f 20, 25f 5, 20f 10, 10f 5, 8f 4, 5f 1, 4f 2, 2f 1.   As a formalism, the predecessor
for κ is Max[κ/2,κ/5] restricted to the set K; the ordering is incomplete because we can’t
assert 8f 5 or 5f 8.
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Table 4 reports clustering frequency percentages for the sample contracts;

incremental clustering frequencies are given in Table 5.  The interaction between the two

measures may be illustrated for the feeder cattle contract.  The raw frequencies (not

reported in the table) are f2=76% and f4=39%.  In a large random sample, we would

expect 50% of prices to lie on even tick-multiples, so the clustering percentage at κ=2 is

%262 =Cf .  Given that 76% of prices lie on two-tick multiples, we would expect 38% to

lie on four-tick multiples.  The observed frequency exceeds this by 1% (the incremental

clustering Cf4∆  for this contract).

Table 4 implies that many (but not all) of the contracts exhibit clustering.

Clustering at multiple levels is in most cases a consequence of clustering at a relatively

fine level.  (Compare, for example, the clustering and marginal clustering percentages for

pork bellies and feeder cattle.)  A notable exception is the Nasdaq 100 contract, for which

there is pronounced marginal clustering at ten-multiples.

Economic explanations for clustering are varied.  Harris (1991); Harris (1994)

suggests that negotiating parties may adopt a supra-minimum tick convention as a device

for reducing the number of rounds of bargaining, and therefore the bargaining cost.  In

this view, the coarser rounding randomly works for and against a trader, tending to

average out to zero.  Traders economize on their bargaining time.  This cost savings is

presumably passed on to off-floor traders via competition in the market for broker

services.

It is also suggested, however, that when there are barriers to entry in the provision

of liquidity services, clustering may serve as an implicit collusive coordination

mechanism (see Kandel and Marx (1997) and Dutta and Madhavan (1997)).  This has

been most strongly alleged for the Nasdaq dealer market prior to the recent reforms.6

                                                
6 The literature on clustering at Nasdaq is large.  Key references include Christie, Harris,
and Schultz (1994); Schwert (1997).
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Although the trading mechanism in the futures markets differs profoundly from

the dealer market structure of Nasdaq, there are also some striking similarities.  In their

study of the CTR data, Manaster and Mann (1996) note that “The most frequent

combination is a customer order . . . filled by a market maker . . . or local.” (p. 956).

Essentially, most liquidity seems supplied by dealers or quasi-dealers, rather than outside

customers.  Furthermore, the Nasdaq order preferencing arrangements that keep order

execution within a subset of dealers are mirrored by the futures exchanges’ Brokers’

Associations (U. S. Commodities Futures Trading Commission (1997)).  This paper does

not attempt to resolve the underlying reasons for clustering, however, which remain an

important topic for further research.

As a guide for modeling strategy, the analysis suggests to this point the following

considerations.  First, motivated by the economic sequential trade models, it seems

desirable (as in the equity market studies) to allow for trade-driven price impacts of both

a transient (cost-related) and permanent (informational) nature.  The results of this

section suggest that in addition, discreteness is important because the tick size is

generally on the same scale as intertransaction volatility.  Transaction prices furthermore

exhibit a tendency to clustering that is for some contracts highly pronounced.  With these

features in mind, we proceed to discuss a series of empirical specifications.

3. The Roll model of the spread

Roll (1984) presents a model that is, by reason of its simplicity and ease of

implementation, a useful starting point.  In this model, transaction prices behave as a

random-walk-plus-noise, wherein the random-walk is the efficient price of security and

the noise is “bid-ask bounce”.  Throughout this paper, the term “efficient price” will be

used in a sense common to the sequential trade models, the expected terminal value of the

security conditional on all public information (including the trade history).



Page 10

a. The basic model

A variant of the Roll model is as follows.  Let the efficient price be denoted Mt.

Its logarithm ( )tt Mm log=  is assumed to evolve as a random walk:

ttt umm += −1 (1)

where the ut are zero-mean innovations stemming from the arrival of new public

information.  The (log) bid and ask prices are given as

cma

cmb

tt

tt

+=
−=

(2)

where c is the half-spread, presumed to reflect the quote-setter’s cost of market-making.

The direction of the incoming order is given by the Bernoulli random variable

{ }1,1 +−∈tq , where 1−  indicates an order to sell (to the quote-setter) and +1 indicates an

order to buy (from the quote-setter).  That is, qt specifies which side of the trade is, in

terminology sometimes encountered, the trade initiator or trade aggressor.  In security

markets we usually assume the Bernoulli outcomes equally likely, which implies a

symmetry in the order flow.  For expositional convenience, it will be assumed throughout

that the unconditional probabilities of either qt outcome is one-half.  This restriction can

easily be relaxed, and there are some markets (e.g., the real estate market) where it would

not be appropriate.

Most implementations of the Roll model assume that qt is independent of

tt um =∆ , i.e., that the direction of the trade is independent of the efficient price

movement.  This rules out the asymmetric information aspects of the sequential trade

models, and so is not an innocuous assumption.  For the sake of expositional clarity, we

initially adopt the assumption.  But it is not, in this paper’s approach, an essential

requirement, and is relaxed in Section 6.  Depending on qt, the (log) transaction price is

either at the bid or the ask:





+=
−=

=
1 if 

1 if 

tt

tt
t qa

qb
p (3)
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We typically possess a record of trade prices and seek to estimate the two model

parameters.

Estimation usually proceeds via method of moments.  The model implies a

variance and first-order autocovariance for the log price changes of:

( )
( ) 2

1

22

,

2

cppCov

cpVar

tt

ut

−=∆∆
+=∆

−

σ
(4)

The corresponding sample moments imply estimates for 2
uσ  and c that possess all the

usual properties of GMM estimators, including consistency and asymptotic normality.

The model forces the first-order autocovariance to be nonpositive irrespective of

the sign of c.  In sample data, however, this property is often violated. In his examination

of U.S. stock data, for example, Roll finds that autocovariance estimates based on 21

daily returns are positive roughly half the time.  In discussing the sampling properties of

this estimator, Harris (1990b) concludes that noise in typical applications will frequently

lead to positive autocovariances, even if the model is correctly specified.

b. Bayesian estimation

Our conviction that the spread must be positive is a prior belief, and as such is

most naturally incorporated in a Bayesian framework.  To illustrate, we augment the

model with a distributional assumption: ( )2,0~ ut Nu σ .  The model parameter set is

{ }cu ,2σ=Θ .  Denote the prior parameter density as ( )Θπ .  We seek the parameter

posterior ( ) ( ) ( ) ( )pfpfpf ΘΘ=Θ π  where { }Tppp ,,1 K=  is the vector of observed

prices.

Direct evaluation of this posterior is beset by difficulties from the outset.  The

data likelihood function ( )Θpf  involves the unobserved { }Tqqq ,,1 K= .  No tractable

closed-form representation exists, and one is left with numerical approximations (Harris

(1990a)).  Incorporating the parameter prior complicates matters still further.

Surprisingly, the situation is simplified if we bring the unobserved (latent)

variables into the problem explicitly, writing the posterior as a joint conditional
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distribution over these latent variables as well as the parameters.  If we possessed this

posterior, ( )pqf ,Θ , we could obtain the parameter posterior by integrating out q.  It is

not immediately clear, however, that this would help matters.  The expanded posterior

( )pqf ,Θ  has substantially greater dimensionality and complexity than the one we

originally sought ( )Θpf .  Nor does the task of integrating out q (to obtain the parameter

posterior) appear trivial.

The MCMC approach neatly solves both problems.  In the first place, it works

with simulated samples.  If we possess a sample of draws from ( )pqf ,Θ  denoted

( ) ( ) Niq ii ,,1for  , K=Θ , then we can view the ( )iΘ  as originating from the marginal

( )pf Θ .   (Essentially we integrate out the q by discarding them.)  These draws can be

used to characterize all features of the posterior distribution.

Sampling, in turn, is facilitated by the Gibbs principle, wherein a draw from a

complicated joint pdf is built by cycling over (simpler) conditional pdfs.  The steps in this

sampling are:

0.  Initialize q.

1.  The conditional parameter draw: draw Θ from ( )qpf ,Θ .

2.  The conditional latent variable draw: draw q from ( )Θ,pqf .

We then generate the required sequence of draws by iterating between steps 1 and 2.  We

discuss the details of these conditional draws below, but it is first useful to summarize a

few general considerations.

Firstly, the technique of treating latent data and parameters equivalently is a

hallmark of modern Bayesian analysis (Tanner (1996)).  In this problem the latent data

arise naturally in the structural model, but in some situations latent variables of a more

artificial nature may be introduced as simplification devices.  As in the present instance,

however, this approach greatly expands the dimensionality of the problem, necessitating

numerical methods substantially more powerful than the numerical integration
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computations traditionally used.  Markov chain Monte Carlo (MCMC) methods

(including the Gibbs sampler) have proven particularly useful in this respect.

The steps enumerated above describe a Gibbs sampler used at the top level of the

problem, iterating between parameters and latent data.  As will shortly be seen, however,

Gibbs samplers are used more pervasively here, within the parameter and latent data

simulations.  In fact, whenever possible, I rely in this paper on single-step Gibbs

samplers, in which each conditional draw is of a single random variable (parameter or

latent datum).  Among the various possibilities, these are usually the most tractable

analytically and most amenable to exposition (although they are frequently not the most

computationally efficient).  Finally, although the Gibbs sampler is valid under fairly

general conditions, these must not be taken for granted.  It will be seen that even for some

of the simple models considered in the present paper, certain single-step Gibbs samplers

that initially appear attractive fail.  Fortunately in these situations, there are usually

tractable alternatives (most commonly involving joint conditional draws).

This model (and all models discussed in this paper) can be written as nonlinear

(and non-Gaussian) state-space models.  Carlin, Polson, and Stoffer (1992) proposed

estimating such models with Gibbs samplers that single-step through time.  All of the

estimation strategies discussed in this paper are of this form.  (The joint draws used in

some models are joint across state variables at a single point in time.)  The nonlinear,

non-Gaussian framework is sufficiently general to encompass many modifications for

which single-step samplers may be computationally inefficient.  In such situations, when

a model can be expressed in a fashion that retains a high degree of Gaussian structure, the

blocked samplers proposed by Shephard (1994) and Carter and Kohn (1994) may be
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more useful. Manrique (1997); Shephard and Manrique (1997); Manrique and Shephard

(1998) discuss estimation when the observations are discrete.7

Conditional parameter draws.

The model implies

ttt uqcp +∆=∆ , (5)

i.e., a regression in which c appears as a coefficient.  This is easily handled within a

Bayesian linear regression framework.  (See the summary in the appendix.)  It is

convenient to apply the Gibbs principle again, breaking step 1 above into

1a.  Draw 2
uσ  from ( )qpcf u ,,2σ

1b.  Draw c from ( )qpcf u ,,2σ

Note that it is not necessary to cycle between 1a and 1b “to convergence” before moving

on to step 2.   It is convenient to use a prior ( ) ( )2,σµπ += Nc , where ( )2,σµ+N  the

normal density with mean µ and variance σ2 truncated to the nonnegative real line.  (Note

that µ and σ2 serve as formal parameters only: the mean and variance of the truncated

density are not µ and σ2.)  A convenient prior for the variance parameter is the inverse

gamma.

Conditional latent data draws.

To execute the conditional latent draws, we invoke the Gibbs principle again,

making successive draws from the distribution defined by [ ]Θ,,Pr / pqq tt  where

{ }Ttttt qqqqq KK ,,,, 11/ +−= .  All of the Gibbs samplers described in this paper proceed in

this fashion.

                                                
7 The evolution of approaches to MCMC estimation of stochastic volatility models is a
useful guide here.  See Shephard (1993); Jacquier, Polson, and Rossi (1994); Shephard
(1994); Shephard and Pitt (1997b); Kim, Shephard, and Chib (1998).
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Note first that the structure of the model implies that [ ]pqq tt ,Pr / =

[ ]tttt pmmq ,,Pr 11 +− .   (When discussing the data draws, we will notationally suppress the

parameter vector as a conditioning argument.)  From Bayes rule,

[ ] [ ] [ ] [ ]( )21,,Pr,Pr,,Pr,,Pr 11111111 ttttttttttttttt qmmpmmqqmmppmmq +−+−+−+− =∝ .

Furthermore, [ ] ( )1111 ,,,Pr +−+− ∝ ttttttt mmmfqmmp  where the latter is evaluated at

ttt cqpm −= .  The conditional distribution of mt is:

( ) ( )
( )

( ) ( )2
11

2
11

11

2
221

,

1,,2for  ,
2

,
2

,

,|

uTTT

utt
ttt

u

mNmmf

Tt
mm

Nmmmf

mNmmf

σ

σ
σ

−−

+−
+−

=

−=




 +=

=

K (6)

To proceed, we compute ( )11, +− ttt mmmf  at ttt cqpm −=  for { }1,1 +−∈tq , normalize to

obtain the l.h.s. probabilities, and make the Bernoulli draw of qt.

Identification

In discussing the conditional coefficient draws, we imposed a prior belief of

nonnegativity on the half-spread parameter c.  While economically reasonable and

statistically desirable, this restriction (or something like it) is actually required to identify

the model.   This requirement derives from the two related conventions involving the

signs of qt and c.  It is customary to take 1+=tq and –1 to indicate incoming buy and sell

orders and c>0 to reflect the cost of market-making.  Yet since the two quantities appear

only in the product cqt, the model is observationally equivalent to one in which the order

signing is reversed (e.g., purchases are signed negatively) and c<0.  Without the

restriction that c>0, the posterior draws will (in time) cycle over both possibilities.  We

would expect to see posteriors (both for c and the qt) symmetric about zero (and quite

possibly bimodal).  Simulations verified that this indeed occurs.  The analyst examining

only the posterior means or medians would conclude that the data possessed no power in

assigning trade direction and that trading costs were zero.
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Monitoring and summarizing the estimation process

The output from the Gibbs sampler described above is a sequence of parameter

estimates ( ) .,,1for  , Nii K=Θ  where N is the number of simulations.  After the process

has mixed sufficiently that the influence of the starting values is negligible (the “burn in”

period), this sequence may be viewed as a set of dependent draws from the desired

posterior.  The matters of judgement here involve deciding the size of N and the length of

the burn-in period (i.e., portion of the initial N draws to be discarded).  There are no

universally accepted tests here, but all sources recommend visual (graphical) assessment

of the individual parameter draws.  In summarizing the parameter posteriors, we report

here means, together with standard errors corrected for serial dependence, and standard

deviations.

It is often convenient to discuss transformations of the model parameters (σu

rather than 2
uσ , for example.   It is easy to analyze the posterior distribution of an

arbitrary transformation, say ( )Θ= Fθ , since the sequence ( ) ( )( )ii F Θ=θ  is a sequence of

draws from this distribution.

Model Comparisons and Specification Analysis

Model comparison in a Bayesian framework is performed using the posterior odds

ratio, or (as the number of observations becomes asymptotically large) the Schwarz

information criterion.  The necessary numerical likelihoods could be computed using the

auxiliary particle filter approach of Shephard and Pitt (1997a).  These are used in

Hasbrouck (1998b), but have not yet been implemented for the present models.

Although the models discussed in this paper do not in general possess “estimated

residuals”, it may be useful to examine related quantities.  In forming parameter estimates

with the Gibbs sampler described above, we “discarded” the simulated latent data, the

( )i
tq  for t=1,…,T and i=1,…,N.  In fact, these are in principle drawn from the smoothed
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distribution: ( ) ( )Tt
i

t ppqfq ,,~ 1 K , and the average (over i) ( ) Nqq i
tt ∑=ˆ is an estimate

of the expectation of this smoothed distribution.

Smoothed quantities are useful in assessing the ability of the estimation procedure

to recover latent data.  In the present model, the trade direction variable has the property

that ( ) 1Var =tq .  If the data and model parameters are such that the smoothed estimates

tq̂ are always close to –1 or +1, we would conclude that that the model and data are

signing the trades reliably.  With a little more structure, we can derive a more intuitive

measure.  Let πC be the probability that a trade is correctly classified on a given draw, i.e.,
( )[ ]11Pr +=+== i
tt

C qqπ  = ( )[ ]11Pr −=−= i
tt qq .  Given the assumed symmetry of the

trades, ( )[ ]11Pr +=+== t
i

t
C qqπ  = ( )[ ]11Pr −=−= t

i
t qq .  It follows that

[ ] [ ]( )
( ) ( )( )[ ] ( ) ( )( )[ ]( )

( )2

22

222

12

111111
2

1

1ˆ1ˆ
2

1
ˆ

−=

+−+−+−−++=

−=++==

C

CCCC

ttttt qqEqqEqE

π

ππππ (7)

This in turn suggests that πC may be estimated by

( )( ) 2ˆ1ˆ t
C qVar+=π (8)

It must be emphasized that this estimate measures the classification accuracy only in a

conditional sense, assuming that the model is correctly specified.  It is not an overall

measure of model fit.  At best it suggests the ability of the model and data to support

inference about a key latent variable.

c. Application to the futures market data

The model discussed in this section is naïve in many respects, some of which will

be remedied later.  Its tractability nevertheless recommends it as a starting point for

analysis.  First, by way of preliminaries, Table 6 reports moment estimates of the Roll

model for each contract.  In all cases, the sample first-order return and price change

autocovariances are negative, so the problem of imputing a negative or undefined spread

mentioned above does not arise.



Page 18

The model discussed above was estimated for the three representative contracts

for the first 1,000 trades in the sample using 10,000 draws of the Gibbs sampler.8

Convergence and mixing were monitored visually.  While space considerations preclude

full presentation of these results, the graphical output for the pork belly contract (Figure

1) is typical.  For both parameters, there are three graphs.  The left-most graphs depict the

draws themselves, which evince no obvious large persistent components.  The

autocorrelations of the draws are low (middle graphs) and the histograms of the draws

(right-most graphs) suggest well-defined densities.

Table 7 presents summary statistics for the (simulated) model posterior

distributions.  We focus here primarily on the posterior means of the c (log-half-spread)

parameters.  In comparing these estimates with the moment-based estimates in Table 7,

one might expect substantial agreement, since both are based on the same model and

sample.  Differences exist, however (most strikingly for the pork belly contract).

The discrepancies in the estimates appear to arise from differences in how the two

approaches use sample information.  For example, with the moment approach, all of the

negative autocovariance is attributed to the trading cost parameter c.  In the Gibbs

approach, c is a coefficient in a regression that assumes (but does not enforce)

independence of residuals.  To further explore the sources of differences would serve

little purpose, however.   Construction of a more realistic more stands as a more pressing

concern.

                                                
8 The models in this paper were investigated with both diffuse proper priors and
noninformative (frequently improper) priors.  Although it is generally impossible to
verify that improper priors lead to proper posteriors in Gibbs samplers, the results in the
present case were substantially similar.  For brevity, only the results based on the
noninformative priors are reported.
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d. Further perspectives on signing trades

Given the importance attached by the sequential trade models to order direction, it

is not surprising that this has arisen as a perennial concern in microstructure modeling.  In

the NYSE’s unusually-detailed TORQ dataset (Hasbrouck (1992); Hasbrouck (1996b)), it

is possible to associate many trades with the actual underlying orders.  More commonly,

however, trade direction is inferred from related price data.  As noted in the introduction,

the usual practice is to sign trades by reference to the prevailing quotes (see Hasbrouck

and Ho (1987),  Hasbrouck (1988), Lee and Ready (1991) and Odders-White (1997)).

Consider the following hypothetical analysis.  In a sample of transaction price

data, we adopt the following rule.  If a price pt occurs on an uptick (or zero-uptick), we

set qt=+1; on a downtick (or zero-downtick), we set qt=–1.  We then estimate equation (5)

using the constructed qt as regressors.    This analysis is highly improper because our

classification rule induces correlation between measurement errors in qt and the model

disturbance.  Yet in the present framework, we seem to be drawing inferences about trade

direction that are very similar.  A pattern of successive price upticks, for example, will be

viewed as a procession of “buy” orders.  It might therefore appear that the present

analysis falls to the same objections as the proposed naïve one.

There are, however, two crucial differences.  First, the present procedure does not

assign to a trade a single direction that is used in all subsequent computations.  Instead, it

imputes a probability density over both (buy and sell) alternatives.  In this sense, the

procedure explicitly models the measurement error (uncertainty) concerning trade

direction.  In the second place, the trade directions and model parameters are estimated

jointly.  This essentially allows uncertainty about model parameters to affect uncertainty

about trade direction.  We are still, of course, assuming that the model is correctly

specified.  But we do not assume “full knowledge” (i.e., correct parameter estimates) of

the model in the process of assigning trade direction.
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e. Random costs of market making

The model discussed to this point assumes a constant half-spread c. Because

market conditions are likely to be changing, it is a useful generalization to permit this

cost to vary randomly.  This modification corresponds to letting c in equation (2) be

replaced by ct, an iid nonnegative random variable. This modification adds T new latent

random variables: Ttct ,,1 , K= .  One might be tempted to modify the above Gibbs

strategy by reasoning as follows.  At the conditional latent data draw step we need to

simulate the ct, but this simulation consists of a trivial calculation: given ttt qmp  and , ,

( ) tttt qmpc /−=  (an identity).  We then proceed to draw qt as previously described.  A

moments reflection will confirm, however, that with this procedure ct can’t move.

There are two ways to remedy matters.  First, we can replace the improper

sequential Gibbs draw with a (joint) draw from the joint conditional distribution

( )K,,, tttt pqcmf .  This is slightly involved due to the conditioning on the identity.  An

alternative approach, perhaps surprisingly, is to abandon the model in favor of one that is

more complicated (and realistic).  The next section describes such a model.  Among other

things, the incorporation of discreteness introduces a freedom of motion for ct that

simplifies the sampling.

4. Discreteness.

In the original Roll model, bids, asks and transaction prices are considered to be

continuous random variables.  In fact, virtually all markets constrain the support of these

quotes to a discrete lattice defined as integer multiples of the “tick” or “pip”.  The tick

size is of economic interest because it is related to the cost of achieving time priority, and

therefore to the supply of liquidity (Harris (1997a); Harris (1997b)).  From a data-

modeling perspective, the tick size is important because it is often of magnitude similar to

that of the spread and short-term price movements.  Harris (1990a) suggests a latent-
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variable model of rounded transaction prices.  Hasbrouck (1998a) surveys this and other

approaches taken to modeling discreteness, and proposes the model used below.

a. The model and associated Gibbs sampler

Taking the previous model as a starting point, equation (2) is modified to reflect a

rounding transformation:
[ ]

[ ]ttt

ttt

CMA

CMB

+=
−=

Ceiling

Floor
(9)

where B and A are the level bid and ask and ( )tt mM exp= .   []⋅Floor  and []⋅Ceiling  round

their arguments asymmetrically, down and up (respectively) to the next grid point.  (It is

assumed that the data are scaled so that the tick size is unity.)  The price dynamics for the

implicit efficient price are the same as in the previous model, the log random walk given

in equation (1).  Quote discreteness in the model is (as in reality) imposed on the levels.

The cost variable Ct is now stated in level terms.  It is considered to be a nonnegative

random variable.  From an economic perspective, Ct may most conveniently be

interpreted as the marginal cost of market-making.  The asymmetric rounding ensures

that the dealer faces no expected loss.  Hasbrouck discusses further economic aspects of

this model.

Conditional parameter draws

Economic theory gives little guidance in choice of distribution for Ct , other than

the presumption that it must be nonnegative.9  Two obvious candidate distributions are

the lognormal (used in Hasbrouck (1998b)) and exponential.  Both are easy to draw from,

and both are easily parameterized within a Bayesian framework.  As in the previous

model, the inverted gamma distribution is a convenient prior for 2
uσ .  The update and

                                                
9 While the “dealer cost” interpretation of Ct suggested above makes nonnegativity
appear reasonable.  Broader interpretations may render it questionable (see Hasbrouck
(1998a)).
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posterior draw are slightly different, however.  The ut employed for the update are no

longer regression residuals (as in equation (5)).  They are instead computed from the

simulated mt: 1−−= ttt mmu .

Conditional latent data draw

The procedure employed in the last section must be modified as follow.  At each

point in time, the model now possesses three unobserved (latent) state variables: mt (or

equivalently Mt) , qt and Ct.  It might be supposed that simulation of these three variables

could be achieved by a succession of Gibbs draws.  This turns out to be only partially

true, however.

The cost parameter Ct may indeed be drawn from its full conditional distribution

( )tttt PqMCf ,, .  (For notational simplicity, the parameters of the unconditional

distribution of Ct have been suppressed.)  Given Mt and qt we know whether the trade

price was the bid or the ask.  From equation (9), this imposes truncation bounds on Ct:

1 if ,1

1 if ,1

−=−<<−−
+=−<<−−

qPMCPM

qMPCMP

ttttt

tttttt (10)

We may simply draw Ct from its unconditional distribution, subject to these bounds.

These bounds give Ct a latitude of motion, in contrast to the random-cost model

suggested in Section 3 prior to our consideration of discreteness.

Matters are not so simple for the other two variables.  In the model of Section 3,

knowledge of pt, c and qt suffices to determine mt.  This is no longer true.  Even if we

condition on Ct , the discreteness transformation only serves to bound Mt.  Suppose that

we attempt to construct a Gibbs sampler along the following lines.  We will first draw Mt

from ( )tttttt CqPMMMf ,,,, 11 +−  and then draw qt from ( )tttttt CPMMMqf ,,,, 11 +− .

Suppose that going into the first Mt draw we have qt=+1 (“a buy order”).  This means that

the transaction price is equal to the implicit ask quote, which implies (from the bounds in

(9)) that ttt CPM −< .  When we move to the qt draw, this last restriction implies qt=+1.
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For an MCMC simulator to work, it must be capable of reaching all points in the support

of the density.  In this example, the Gibbs sampler fails because  qt=–1 can never be

realized.

Fortunately it is easy to draw from the joint bivariate conditional density

( )tttttt Cpmmqmf ,,,, 11 +− .  First note that ( )11, +− ttt mmmf  is unchanged from equation (6)

Given Ct equation (9) imposes truncation bounds.  In terms of the level variable Mt:

1 if ,1

1 if ,1

−=++<<+
+=−<<−−

tttttt

tttttt

qCPMCP

qCPMCP
(11)

For notational convenience, denote the set of mt that satisfies the appropriate restriction as

( )ttt qCP ,1− .  The conditional probability that Pt is at the ask is:

[ ] ( )
( )∫ −∈ +−+− ∝

tttt qCPm ttttttttt dmmmmfCPmmq
, 1111 1

,,,,Pr (12)

We only need to compute this for qt=1±, normalize, and draw qt from the implied

Bernoulli distribution.  Next, note that ( )ttttt qPmmmf ,,, 11 +−  is proportional to

( )11, +− ttt mmmf  truncated to the region implied by qt in equation (11), so we may simply

make the truncated draw.10

b. Application to the futures data

The discreteness model was implemented for the three representative contracts for

cost distributions assumed to be either lognormal or exponential  Over a wide range of

priors and starting values, however, the convergence properties of the estimators was

poor.  The results for the exponential-cost model of the pork belly contract (Figure 2) are

                                                
10 It might be supposed that a simpler model would result by forcing Ct to be constant
over time (as in the original Roll model).  Although this simplifies the model in a
conceptual sense, it leads to a major degradation of the Gibbs sampler outlined above.  If

CCt = is regarded as fixed over time, a new value of C must be drawn subject to the

intersection of the bounds given in (10) for all t.  This severely restricts the extent to
which C can change in successive draws.  The problem is aggravated in large samples.
Simulations confirmed that the sampled values of C exhibited extremely large
persistence.
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typical.  The two model parameters are the mean of the exponential distribution

(“Mu_C”) and σu (“SD_u”).   The draws (particularly for the cost parameter) manifest

poor mixing and large persistent deviations.  Autocorrelations are high.

In fixing the cause of this disappointing performance, suspicion must first fall on

the estimation methodology.  The Gibbs sampler used here is a single-step procedure.  It

is known that when parameters and/or latent data are highly correlated, such samplers are

prone to poor convergence, and should be avoided in favor of “block” samplers.  The

convergence problem did not generally arise, however, in simulated data sets.  Thus,

although this possibility cannot be excluded entirely, it does not seem to be arising from

the limitations of the sampler.

It is more reasonable to conjecture that model misspecification and data

limitations preclude reliable identification of the cost parameters. Even if we could

observe the actual bid and ask quotes, inference about the cost parameters would be

based on grouped data (where the grouping is driven by discreteness).  If the grouping is

coarse (as seems likely) in the present application, the inference is severely impaired.

Matters are further aggravated here because the bid and ask are not observed.

Furthermore, in studies where the bid and ask are observed, the lognormal distribution

appears to imply large-spread occurrence frequencies that are higher than those found in

the data.  (Manrique and Shephard (1997)) note this for an NYSE stock; Hasbrouck

(1998b), for Deutschemark/US dollar quotes in the interbank FX market.)

Correct modeling of implicit quote exposure costs thus remains as an important

area of further research.  For present purposes, however, the apparent lack of

identification of this cost will be handled by suppressing this cost entirely, that is, by

setting Ct=0.  This does not, of course, force the spread to zero: the rounding mechanism

specified in (9) ensures a one-tick spread.  Spreads larger than this will be assumed

generated by clustering (as described in the next section), and we defer further

estimations to then.
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From a methodological viewpoint, the decision to set the implicit continuous cost

to zero does not arise from a belief that these costs are economically zero.  It is, rather, a

frank admission that these costs cannot be reliably estimated.  In models that ignore

discreteness and clustering, apparently well-behaved estimates will arise (as in the

previous section).   These estimates are, however, artifacts of discreteness and clustering

transformations that are more properly modeled directly.

5. Clustering

As noted in Section 2, futures transaction prices frequently exhibit pronounced

clustering.  Hasbrouck (1998b) suggests that clustering in bid and ask quotes be modeled

as a consequence of an implicit tick, a natural multiple of the minimum tick, that arises as

a trading convention or from individual preference.  Clustering in bid and ask quotes

naturally gives rise to clustering in the transactions that occur at these quotes.  The results

presented in Table 4 suggest that pork belly prices exhibit a strong tendency to cluster on

even (“two-multiple”) prices.  S&P contract prices have a modest preference for

multiples of five.  The Deutschemark contract prices are not strongly clustered.

a. The model and associated Gibbs sampler

Clustering is imposed on the (unobserved) bid and ask quotes by using

generalized rounding functions:
[ ]

[ ]tttt

tttt

KCMA

KCMB

,Ceiling

,Floor

+=
−=

(13)

where Kt denotes the tick-multiple to which rounding will occur.  In economic terms, Kt

is the implicit tick size.  While Kt might modeled in a very general fashion, the

specifications estimated here will allow for only two possible values: one (that is, the

regular tick increment) and κ, a single dominant multiple.  In the present analyses, κ=2

for the pork belly contract and κ=5 for the S&P contract.  Although the Deutschemark

contract prices are not strongly clustered, for the sake of estimating all specifications in
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parallel, clustering with κ=2 will be allowed.  As in Hasbrouck (1998b), it is convenient

to assume an i.i.d. Bernoulli distribution:

( )


 −

=
k

k
Kt  prob.  w.,

1 prob.  w.,1

κ
(14)

The Bernoulli probability parameter k may be interpreted as the clustering intensity.

Hasbrouck (1998b) uses this framework in modeling foreign exchange bids and

asks that are actually observed.  The present situation is more challenging in that we do

not observe these quotes directly, only transaction prices.  The Gibbs procedure proposed

in the last section must be modified in two respects.  There is, firstly, one more parameter

to be estimated (k) in the parameter draw step.  Secondly, the latent data draw at each

time t now involves four latent state variables: Mt , Ct , qt and Kt.

Conditional parameter draw

The parameter draw is uncomplicated.  The number of “hits” (instances of Kt=κ)

in a sample of T observations is a binomial random variable.  A conjugate prior for the hit

probability is the Beta distribution.  The posterior is updated on the basis of the

(simulated) Kt, and a random value of k is drawn.  (See the appendix.)

Conditional data draw

The latent data draw is slightly more involved.  The draw for Ct is subject to

truncation bounds derived from (13) (cf. equation (10) for the nonclustered case):

1 if ,

1 if ,

−=−<<−−
+=−<<−−

ttttttt

ttttttt

qPMCKPM

qMPCMKP
(15)

As before, we may draw from the unconditional distribution of Ct subject to the relevant

truncation bound.

As in the previous model, Mt (or mt) and qt must be drawn jointly.  It is also

convenient (and computationally efficient) to draw Kt jointly as well.  Given Pt , Kt and qt,

the bounds on Mt implied by (13) are:
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1 if ,

1 if ,

−=++<<+
+=−<<−−

ttttttt

ttttttt

qKCPMCP

qCPMKCP
(16)

As above, denote the set of mt that satisfies this restriction as ( )tttt qCKP ,,1− .

If the transaction price Pt does not lie on a κ-multiple, we can’t have clustering.

In this case Kt=1 and we may make the joint draw of Mt and qt exactly as in the previous

model.  On the other hand,  the observation that Pt does lie on a κ-multiple does not

imply Kt=κ.  (It might be the case that Kt=1 and the configuration of the other variables

maps to a transaction price that just happens to be a κ-multiple.)

In drawing qt and Kt here there are four possibilities: ( )∈tt Kq ,

{ } { }κ==×−=+= tttt KKqq ,11,1 .  Although qt and Kt are unconditionally independent

(by assumption), they are dependent conditional on other model variables.  The joint

conditional distribution of qt and Kt therefore has probabilities:

[ ] [ ] [ ] ( )[ ]
[ ] [ ] ( )

( )∫ −∈ +−

−
+−

=

∈∝

tqtCtKtPtm tttttt

ttttttttttttt

dmmmmfKq

qCKPmKqmmCPKq

,,1 11

1
11

,PrPr                                          

,,PrPrPr,,,|,Pr
(17)

where [ ]tqPr  and [ ]tKPr  are the unconditional probabilities and the conditional density

for mt is given in equation (6).  To proceed, we compute the r.h.s. of (17) for all values of

qt and Kt, normalize to obtain the l.h.s. conditional probabilities, and make the joint draw

of qt and Kt.  Finally, given qt and Kt we draw mt from the conditional distribution

( )11, +− ttt mmmf  subject to the truncation ( )ttttt qCKPm ,,1−∈ .

b. Application to the futures data

The model with discreteness and clustering was estimated for the three

representative contracts.  Following the remarks in the last section, the quote exposure

cost Ct was fixed at zero, thus forcing discreteness and clustering to account for all of the

market’s bid-ask spread.  Visual monitoring of convergence suggested that that the Gibbs

sampler performed well.

Table 8 summarizes the results.  Most importantly, estimates of the clustering

probability parameters (the k’s) are consistent with the tick-multiple statistics in Table 4.
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For the pork belly contract, k=74%.  The S&P contract exhibits low, but discernible

clustering.  For the Deutschemark contract, k is virtually indistinguishable from zero.  For

all three contracts, the estimated sign classification accuracy (πC) is high.  In the case of

the pork belly contract, this represents a significant improvement from the value

associated with the model absent discreteness and clustering (cf. Table 7).

6. Asymmetric information

The basic model and the variants presented above assume that the innovation to

the efficient price is independent of the incoming order, i.e., that the quote setter infers

nothing from this order.  This is particularly restrictive given the modern view that a

security market should function as an aggregator of diverse private information.  An

essential characteristic of the sequential trade models is the possibility that the incoming

trade is a signal for the traders private information, and that the quote setter will make

optimal use of this signal in updating her bid and ask.

The introduction of asymmetric information complicates the model’s conditional

distributional in certain respects.  Although the full model eventually estimated will allow

for the imperfections discussed in earlier sections, it is best for expositional purposes to

examine asymmetric information apart from discrete, clustering and random costs of

quote exposure.  Accordingly, the simplified model discussed below is a straightforward

modification of the basic Roll model discussed in Section 3.

A modification of equation (1) that permits the incoming trade to affect the

efficient price evolution is

ttttt uvqmm ++= − λ1 (18)

where vt is the unsigned transaction volume (e.g., 100 shares, contracts or whatever), qt is

(as before) the direction of the trade, and λ is an impact coefficient (sometimes termed

the “liquidity” parameter).  This interpretation of the ttvqλ  term is intuitively useful, but

the following developments are considerably more general.  If we only know that a trade
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has occurred, but are ignorant of its size, the term can be replaced by “tqλ ”, in which

case λ will reflect the directional impact of a trade of unknown size.  Alternatively, vt

may be a vector-valued transformation of the trade size (possibly including an intercept,

linear and quadratic terms as in Hasbrouck (1991a)), in which case λ is a coefficient

vector.  Although this formulation presumes that buys and sells affect the price in a

symmetric fashion, this too could be generalized.

From an economic perspective, ttvqλ reflects the price adjustment based on the

signal of private information that the quote-setter infers from the trade.  The disturbance

ut plays a narrower role than before.  It now solely reflects non-trade public information,

and is assumed independent of qt and vt.  It is provisionally assumed that trades take place

exactly at the efficient prices, i.e., tt mp = .  This is along the lines of the Glosten and

Milgrom (1985) model, with no trading costs (aside from those associated with the

informational asymmetry).

Equation (18) may be written as the regression:

ttttt uvqmp +=∆=∆ λ (19)

This implies a variance decomposition for the log efficient price changes:

( ) ( )
( )
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+=
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(20)

This decomposition has economic content in that it highlights the relative importance of

trading for the price discovery process (Hasbrouck (1991b)).

Estimation is based on a data record of prices and volumes for each trade:

Ttvp tt ,,1for   and K= .  There are two model parameters, 2 and uσλ ; the latent variables

are Ttqt ,,1, K= .
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Conditional parameter draw

The conditional parameter draws (assuming that the qt are known) are

straightforward and similar to those for the original Roll model. We simply estimate

equation (19) in a Bayesian regression framework, subject to the identification restriction

0≥λ .

Conditional data draw

Conditional simulation of the latent trade direction qt proceeds as follows.  First

note that the conditional distribution of mt is:
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( ) ( )
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In contrast to all of the earlier models the conditional density for mt generally depends

(via the mean) on qt.

The conditional probability of the trade sign is:

    [ ] [ ] ( ) [ ]111111111/ ,,Pr,,,,,,Pr,Pr ++−++−++− ∝= tttttttttttttttt mqmqqmqmmfpqmmqpqq (22)

evaluated at tt pm = .  In contrast to the earlier analyses, however,

[ ] [ ] 21Pr,,Pr 111 =≠++− ttttt qmqmq , so a further computation is required.

[ ] ( )∫
+∞

∞− +−+++− ∝ tttttttttt dmqqmmmfmqmq 111111 ,,,,,Pr (23)

where ( ) ( ) ( )ttttttttttt qmmfqmmfqqmmmf ,,,,, 111111 −+++−+ = , given the structure of the

model.

We proceed by first computing the r.h.s. of (23) for 1+=tq  and 1−=tq .  (The

integration is trivial given the normality of ut.)  We normalize to obtain the l.h.s.

probabilities.  We plug the latter into the r.h.s. of (22) (for 1+=tq  and 1−=tq ) and

normalize (again) to obtain the l.h.s. probabilities.  The latter are the conditional
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Bernoulli probabilities necessary to make the draw of qt.  Given qt, we draw mt from

( )111 ,,, ++− ttttt mqqmmf  or its variant given in equation (21).

When we incorporate discrete, clustering and random costs of market making, the

first set of computations (those related to (23)) are unaffected.  The conditional density

for mt on the r.h.s. of (22), however, is replaced by the integration of this density over the

relevant feasible region for mt.

7. A generalized asymmetric information model

The model presented and estimated in this section combines features discussed

above.   The log efficient price dynamics are:

( )2
11101 ,0~  where utttttttt Nuuvqvqmm σλλ +++= −−−

where qt is the trade direction indicator.  In this model, vt is a bivariate function of the

trade volume: [ ]′= tt Volumev 1 .  The square-root transformation motivated by trade-

price impact studies in equity markets that generally find concavity in the relation.  An

intercept is included to allow for non-size-related directional effects.  The λ’s are

conformable coefficient vectors: [ ]
,, iConstii λλλ =  for i=0,1. Identification is ensured by

requiring all elements of the λ’s to be nonnegative.

The specification permits dependence on lagged trades, effectively allowing the

impact of a trade to be distributed over time.  The theoretical sequential trade models

generally assume that adjustment is instantaneous, but delays in information transmission

(even across a trading pit) and trader reaction times may quite plausibly result in lagged

adjustment.  Lags have also been found useful in the corresponding equity market

specifications.

The remaining elements of the model define the clustering:

( )


 −

=
k

k
Kt  prob.  w.,

1 prob.  w.,1

κ

quote formation:
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where ( )tt mM exp= , and transaction price formation:
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1 if 

tt

tt
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qB
P

As in the implementations of the previous models with discreteness and clustering, the

rounding is assumed based directly on Mt, with no additional implicit cost of market

making.

The Gibbs samplers for this model for the three representative contracts were

generally well-behaved.  Table 9 summarizes the coefficient posteriors (based on diffuse

priors).  The clustering probabilities k and direction classification probabilities πC  are

similar to those from the simpler model of discreteness and clustering found earlier.

Are the trade impact coefficients statistically significantly different from zero?

Since they are estimated from priors with nonnegative support, the answer is, “Yes, by

assumption”.  It is perhaps more useful to gauge the implied economic significance of

these estimates.  We offer two approaches

First, Figure 3 graphs the price impact functions implied by the estimates.  The

vertical scale (change in log price times one hundred) is approximately “percentage price

change” associated with a purchase of a given number of contracts.  Each graph reports

two curves, corresponding to the lag zero and (cumulative) lag one impacts.  For a trade

of, say, ten contracts, the price impact is largest for the pork belly contract

(approximately 11 basis points), lower for the Deutschemark contract (0.7 basis points)

and lowest for the S&P contract (0.3 basis points).

Secondly, it was suggested in Section 6 that (by way of comparison to the equity

studies) it is useful to compare the magnitudes of trade- and non-trade-related sources of

volatility.  Table 10 summarizes these calculations.  In accounting for total volatility,

trades appear most important for the Deutschemark contract (roughly forty percent), of
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lesser importance for the pork belly contract (twenty percent), and markedly less

important for the S&P contract (three percent).  A corresponding figure for an NYSE

equity might be around twenty percent (Hasbrouck (1991b)), i.e., close to the middle of

the three futures contracts considered here.

The economic models of sequential trade identify permanent trade price impacts

with asymmetric information, private information that can be revealed in the price only

through trade.  From this perspective, it is perhaps not surprising that a significant

proportion of volatility in the pork belly market originates from trades.  There are, for this

contract, few alternative sources of price discovery.

For the Deutschemark, on the other hand, the volume of trade that occurs in the

futures market is small relative to that occurring in the interbank spot and forward

markets.11  The conventional view is that price discovery occurs in the interbank market.

The futures contract is often supposed to serve as a hedging and speculation vehicle for

participants too small to obtain easy access to the larger market.   One would therefore

expect DM futures prices to follow passively the path established in the interbank market.

The contribution of futures trades to price discovery implied by the present model (forty

percent) seems implausibly high.

To explore this further, we consider absolute trade impacts.  One hundred DM

contracts in the futures market, a fairly substantial trade, corresponds to DM 12.5 million

(roughly $7 million).  By the scale of the interbank market, however, this is a very

modest trade.  The permanent price impact implied by the present estimates is 0.00014,

i.e., 1.4 basis points.  The interbank market conventionally quotes in DM per U.S. dollar

(the reverse of the futures convention).  At the sample average price, this corresponds to

roughly 1.8 DM/$.  At this level, the 1.4 basis point shift would imply a movement of

                                                
11 Recent microstructure studies of the latter include Lyons (1995); Goodhart, Ito, and
Payne (1996); Lyons (1997) and Evans (1998).



Page 34

0.000025.  This large, but not grossly out of line with trade/price movements found on

the electronic limit order books systems (EBS and Reuters D2000-2).

An important consideration here is that transparency in the interbank market is

low. The public record of the interbank market is limited to indicative (nonfirm) bids and

offers. Trades that occur on the electronic book systems are visible only to other

subscribers, a essentially the large intermarket banks themselves.  Neither trades

occurring directly between two participants nor those mediated by brokers are publicly

reported.

In the interbank market, the tick (pip) size is 0.0001 DM/$.  On a relative value

basis, this is about half the 0.0001 $/DM tick for the futures contract. Hasbrouck (1998b)

nevertheless finds that in 1996, the average spread is roughly six  ticks (pips),  and the

quotes are highly clustered at five-tick multiples.  Thus, the implied price impact of the

futures trade estimated above falls well within the typical spread.   The usefulness of the

Reuters indicative quotes as a timely, high-resolution signal for futures price discovery

appears doubtful.  It seems reasonable to hypothesize that trades in the futures market are

driven by information that may well have originated in the interbank market, but is

“private” in the sense of not being widely reported.  Far from being a subsidiary player in

this market, the futures market may be serving as the primary public forum of price

discovery.

We turn now to discussion of the trade impacts for the S&P contract.  In absolute

terms (Figure 3) and especially in relative terms (Table 1) these are extremely, perhaps

implausibly, low.  While the cash market exists as a meaningful alternative for price

discovery, the stock index futures market is customarily viewed as originating the

primary signals of common factor equity movements.  Both the numerous studies

documenting index price leadership in the futures markets, and the studies that address

regulatory concerns support this view.
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In considering model adequacy, it is noteworthy that the index futures market is

substantially more active than the other two contracts.  Section 2 noted an average

intertrade time of four seconds and raised the possibility of associated informational

delays.  It is highly likely that for this contract, the one lag allowed in the model for the

trade impact is much too abbreviated.  This possibility bears further investigation.

8. Conclusions

This paper proposes and implements powerful strategies to estimate empirical

microstructure models in the absence of a full data record.  The centerpiece model is a

structural model of bid and ask quotes and trades that incorporates discreteness,

clustering and asymmetric information.  Yet for all its richness, it can be estimated solely

from reported transaction (price and volume) data.  The analysis is made possible by

recent advances in Markov chain Monte Carlo estimation, which simplify inference in

latent-data models.

The paper presents a preliminary analysis of a dozen high-volume contracts, and a

more detailed study of three representative contracts: pork bellies, the Deutschemark and

the S&P Composite Index.

Preliminary analysis of futures transaction price data suggests price clustering

(affinity for natural multiples of the minimum tick) that is, for certain contracts, quite

pronounced.  Clustering is very strong for the pork belly contract; small for the S&P

contract and negligible for the DM contract.  It is not determined whether this clustering

arises from negotiation-cost minimization or market power of floor traders.

The model also provides evidence on trade-price impacts and the importance of

trades as sources of permanent price movements.  For the S&P contract, the price impact

of a trade is low: a hypothetical ten-contract purchase order moves the price by only 0.3

basis points (0.00003%).  Of the total permanent volatility, only three percent is

attributed to trades.  Taken at face value, this implies a minimal informational role for the
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S&P index futures market.  The estimated specification, however, permits only the

current and most recent lagged trade to drive the price change.  The pace of trading in the

S&P contract is sufficiently high that price impacts may be distributed over a greater

number of lagged trades.

For the pork belly contract, the estimated impact of a 10-contract purchase is 11

basis points, and roughly twenty percent of the long-term price volatility is attributed to

trades.  The latter figure is comparable to that found in equity market studies and suggests

a strong informational role for trading.

The estimated impact of ten-contract purchase in the DM contract is low (0.7

basis points), but the share of long-term volatility attributed to trades is, at forty percent,

the highest.  The latter figure implies that futures market trading contributes significantly

to the price discovery process.  This runs counter to the conventional wisdom that price

determination in foreign exchange occurs in the interbank spot/forward market.

Transparency in the interbank market, however, is low.  Given that interbank trades are

not reported, it is perhaps not surprising that the publicly-reported (though smaller)

futures trades play a substantial role in price discovery.
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Appendix: Standard Bayesian Results

For the reader’s convenience, this appendix summarizes some key Bayesian

results used in the body of the paper.  They are fairly standard (see, for example, Carlin

and Louis (1996), Tanner (1996), Press (1989) or Zellner (1971)).

a. Univariate normal random variables.

Suppose that a random variable ( )2,~ σµNx , and that we possess a sample of

independent observations nixi ,,1 , K= .  A convenient (conjugate) prior for the mean

parameter is ( ) ( )2,τµµπ priorN= .  Suppose that the variance σ2 is known.  Then the

posterior is ( ) ( ) ( )postpostNxfxf ,2,τµµµ == , where

22

22
,2

22

22

  ;
τσ

τστ
τσ

τµσµ
nn

xn post
prior

post

+
=

+
+= (24)

In the limit as ∞→τ , we arrive at the uninformative (improper) prior with

corresponding posterior parameters nx postpost 2,2  ; στµ == .  In any case, a random

posterior draw consists of a draw from a normal density.

Some model parameters in this paper have truncated priors.  (Most commonly, a

parameter is asserted to be nonnegative.)  Denote by ( )2,τµTN  the normal density with

mean µ and variance τ2 truncated to some region of the real line.  The truncation changes

the normalization of the density.  Furthermore if ( )2,~ τµTNx , µ≠Ex and ( ) 2Var τ≠x .

Nevertheless, the above results go through as before. That is, if our prior

is ( ) ( )2,τµµπ prior
TN= , then the posterior is ( ) ( ) ( )postpost

TNxfxf ,2,τµµµ == , i.e., a

density with the same posterior parameters and a truncation region that is identical to the

truncation of the prior.  NB: this result goes through because the truncation region is not

data-dependent.

With normal observations, a convenient prior for the variance parameter is

( ) ( )priorpriorIG βασπ ,2 = , the inverse gamma distribution. Based on a sample of

observations iid normal with known mean µ, the posterior is ( ) ( )postpostIGxf βασ ,2 =

where
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The improper prior ( ) 22 1 σσπ ∝ is obtained by letting 0== priorprior βα .  The posterior

is then proportional to the inverse chi-square density: ( ) 222 ~ −
=∑ − ndfixx χµσ

b. The Bayesian Gaussian linear model

The model is iii uxy += β  where xi is a row vector of known data, β is a column

coefficient vector and ( )2,0~ u

iid

i Nu σ .  A conjugate prior for the coefficient vector is the

multivariate normal: ( ) ( )priorpriorN Σ= ,µβπ .  Assuming 2
uσ  known, the posterior is

( ) ( )postpostNyf Σ= ,µβ  where

( ) ( ) ( )

( ) 
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(26)

The improper coefficient prior is obtained by letting priorΣ  become “large” (while

remaining positive definite).  If the prior is truncated to some region, the posterior is also

truncated.  Assuming β known, the variance parameter 2
uσ  may be handled exactly as in

the normal univariate case above, using the model residuals βiii xyu −= in lieu of the

deviations from the mean.

c. The Bernoulli/Binomial Model

Suppose xi is a Bernoulli random variable:

( )



−
=

k

k
xi 1 prob.  w.,0

 prob.  w.,1
(27)

A convenience prior for the probability parameter k is the beta distribution, denoted

( )priorpriorB βα , .  Setting 1== priorprior βα  gives the uniform prior; the Jeffreys

(noninformative) prior is obtained with 21== priorprior βα .  Suppose that we possess a

sample of N observations, of which n are “hits” (instances of xi=1).  The posterior for k is

( )postpostB βα ,  where npriorpost += αα  and nNpriorpost −+= ββ .
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Table 1.  Contract Descriptions.

Notes: Contracts traded on the Chicago Mercantile Exchange for the indicated underlying and maturity.  Averages are computed over
all trades from January 5 to January 16, 1998.  The units of the average contract value for the Euroyen contract are Y1,000.

Underlying
Maturity,

1998
Average

Price Units Tick Size Contract Size

Average
Contract

Value
($1,000)

Tick Size as
% of

Average
Price

Feeder Cattle Mar 76.17 Cents/Lb 0.025 50,000 Lb 38 0.033

Live Cattle Feb 64.64 Cents/Lb 0.025 40,000 Lb 26 0.039

Pork Bellies Feb 49.48 Cents/Lb 0.025 40,000 Lb 20 0.051

Australian Dollar Mar 0.65 US$/AD 0.0001 100,000 AD 65 0.015

Canadian Dollar Mar 0.70 US$/CD 0.0001 100,000 CD 70 0.014

Deutsche Mark Mar 0.55 US$/DM 0.0001 125,000 DM 69 0.018

Japanese Yen Mar 0.77 $.01US/JY 0.0001 12.5 MillionY 96 0.013

Swiss Franc Mar 0.68 US$/SF 0.0001 125,000 SF 85 0.015

13wk Treasury Bill Mar 95.22 Pts of 100% 0.005 $1 Million 952 0.005

Eurodollar Mar 94.42 Pts of 100% 0.005 $1 Million 944 0.005

Euroyen Mar 99.12 Pts of 100% 0.005 100 MillionY 99,124 0.005

One-Month LIBOR Jan 94.39 Pts of 100% 0.005 $3 Million 2,832 0.005

Nasdaq 100 Mar 1,000.76 Index Pts 0.05 $100 x Index 100 0.005

Nikkei 225 Index Mar 15,016.08 Index Pts 5 $5 x Index 75 0.033

S&P 500 Index Mar 961.65 Index Pts 0.1 $250 x Index 240 0.010

S&P Midcap 400 Index Mar 324.01 Index Pts 0.05 $500 x Index 162 0.015
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Table 2.  Trading Statistics

Trading activity in the indicated CME contracts from January 5, 1998 to January 16,

1998.

Contracts per Trade

Avg.
Trades

Per Day Min 25%’ile Median 50%’ile Max

Avg. Inter-
trade time
(seconds)

Feeder Cattle 301 1 1 3 7 179 47

Live Cattle 604 1 2 5 11 414 23

Pork Bellies 300 1 1 2 4 188 45

Australian Dollar 105 1 1 2 7 296 224

Canadian Dollar 503 1 1 3 10 485 47

Deutsche Mark 895 1 2 6 16 864 26

Japanese Yen 1,211 1 2 5 11 1,550 19

Swiss Franc 908 1 2 4 10 619 26

13wk Treasury Bill 34 1 1 5 25 1,525 686

Eurodollar 492 1 40 100 280 3,587 49

Euroyen 42 1 2 5 27 510 565

One-Month LIBOR 33 1 12 40 80 700 738

Nasdaq 100 484 1 1 4 10 250 50

Nikkei 225 Index 129 1 2 5 10 133 204

S&P 500 Index 5,526 1 3 9 22 805 4

S&P Midcap 400 Index 109 1 2 3 7 52 225
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Table 3.  Intertransaction Price Properties

Sample of contracts traded on the Chicago Mercantile Exchange; all trades from January

5 to January 16, 1998.  Standard deviations and first-order autocorrelations of

intertransaction price changes.  The price is alternatively measured in logs or levels (for

the levels, the units are “ticks”).

Price Variable

Log: Level (Ticks):

( )( )Plog∆σ
x10,000 ( )( )Plog1 ∆ρ ( )P∆σ ( )P∆1ρ

Feeder Cattle 6.01 -0.18 1.83 -0.18

Live Cattle 4.57 -0.28 1.18 -0.28

Pork Bellies 14.44 -0.10 2.85 -0.10

Australian Dollar 7.12 -0.08 4.60 -0.08

Canadian Dollar 1.51 -0.27 1.06 -0.27

Deutschemark 1.76 -0.19 0.97 -0.19

Japanese Yen 2.04 -0.18 1.56 -0.18

Swiss Franc 1.86 -0.19 1.26 -0.19

13wk Treasury Bill 1.34 -0.04 2.55 -0.04

Eurodollar 0.37 -0.33 0.71 -0.33

Euroyen 0.37 -0.16 0.74 -0.16

One-Month LIBOR 0.38 -0.04 0.72 -0.04

Nasdaq 100 7.83 -0.09 15.61 -0.09

Nikkei 225 Index 11.98 -0.18 3.58 -0.18

S&P 500 Index 1.85 -0.28 1.81 -0.28

S&P Midcap 400 Index 9.92 -0.03 6.36 -0.03
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Table 4.  Clustering Frequencies ( )Cfκ

Sample of contracts traded on the Chicago Mercantile Exchange; all trades from January

5 to January 16, 1998.  The clustering frequency is ( )κκκ 1−= ff C  where fκ is the sample

frequency of trades prices that fall on a κ-multiple of the minimum tick.   (Since 1/κ  is

the expected value under the null hypothesis of uniformly distributed prices, Cfκ measures

“excess” clustering.)

Tick Multiple κ
2 4 5 8 10 20 25 40 50 100

Feeder Cattle 26% 14% -1% 6% 4% 3% -1% 2% 0% 0%

Live Cattle 9 6 0 3 1 1 0 0 0 0

Pork Bellies 36 24 1 12 8 6 0 2 2 2

Australian Dollar 5 4 23 3 13 8 5 5 2 0

Canadian Dollar 2 0 1 0 2 1 1 1 1 2

Deutsche Mark 1 1 2 0 1 0 1 0 0 1

Japanese Yen 2 1 4 0 3 1 1 0 1 0

Swiss Franc 1 1 1 0 2 2 1 1 0 0

13wk Treasury Bill 25 8 3 3 8 3 0 2 2 -1

Eurodollar 2 1 1 1 2 -1 -2 -1 -2 -1

Euroyen 9 -7 -1 -6 6 3 -4 0 -2 -1

One-Month LIBOR 9 11 0 1 2 5 3 8 -2 -1

Nasdaq 100 44 40 78 20 82 59 16 29 16 12

Nikkei 225 Index 28 20 12 11 15 9 2 4 1 2

S&P 500 Index 2 1 12 0 7 4 2 2 1 0

S&P Midcap 400 Index 42 22 18 11 23 13 4 5 5 3
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Table 5.  Incremental Clustering Frequencies ( )Cfκ∆

Sample of contracts traded on the Chicago Mercantile Exchange; all trades from January

5 to January 16, 1998.  The incremental clustering frequency is constructed to measure

clustering after controlling for clustering at the next finer level of resolution:

( ) CC fff 222 21 =−=∆ ; 2244 fff C −=∆ ; ( ) CC fff 555 51 =−=∆ ; 2488 fff C −=∆ ;

251010 fff C −=∆ ; 2102020 fff C −=∆ ; 552525 fff C −=∆ ; 2204040 fff C −=∆ ;

2255050 fff C −=∆ ; 250100100 fff C −=∆ , where fκ is the sample frequency of trades prices

that fall on a κ-multiple of the minimum tick.

Tick Multiple κ
2 4 5 8 10 20 25 40 50 100

Feeder Cattle 26% 1% -1% -1% 5% 1% -1% 0% 1% 0%

Live Cattle 9 2 0 0 2 0 0 -1 0 0

Pork Bellies 36 6 1 -1 8 1 0 0 2 1

Australian Dollar 5 1 23 1 2 1 0 1 0 -1

Canadian Dollar 2 -1 1 0 1 0 1 0 0 1

Deutsche Mark 1 0 2 0 0 0 0 0 0 1

Japanese Yen 2 0 4 -1 1 0 0 -1 0 0

Swiss Franc 1 1 1 0 1 1 1 0 -1 0

13wk Treasury Bill 25 -4 3 -1 6 -1 0 0 2 -2

Eurodollar 2 -1 1 1 1 -2 -2 0 -1 0

Euroyen 9 -11 -1 -3 6 0 -4 -2 0 0

One-Month LIBOR 9 6 0 -5 2 4 3 5 -4 0

Nasdaq 100 44 18 78 0 43 18 0 0 9 3

Nikkei 225 Index 28 6 12 1 9 2 -1 0 1 1

S&P 500 Index 2 0 12 0 1 0 -1 0 0 0

S&P Midcap 400 Index 42 1 18 0 15 1 0 -1 3 0



Page 49

Table 6.  Moment Estimates of the Roll Model

Sample of contracts traded on the Chicago Mercantile Exchange; all trades from January

5 to January 16, 1998.  Standard deviations and first-order autocorrelations of

intertransaction price changes.  The price is alternatively measured in logs or levels (for

the levels, the units are “ticks”).  uσ  is the standard deviation of the random-walk

(“efficient price”) component in the model; c is the half-spread.

Price Variable

Log: Level (Ticks):

000,10×uσ 000,10×c uσ c

Feeder Cattle 4.78 2.58 1.46 0.79

Live Cattle 3.02 2.43 0.78 0.63

Pork Bellies 12.97 4.49 2.56 0.88

Australian Dollar 6.54 1.99 4.22 1.29

Canadian Dollar 1.03 0.78 0.72 0.54

Deutschemark 1.40 0.76 0.77 0.42

Japanese Yen 1.64 0.86 1.26 0.65

Swiss Franc 1.47 0.80 1.00 0.54

13wk Treasury Bill 1.28 0.28 2.43 0.53

Eurodollar 0.22 0.22 0.41 0.41

Euroyen 0.31 0.15 0.62 0.29

One-Month LIBOR 0.36 0.08 0.69 0.14

Nasdaq 100 7.13 2.29 14.22 4.56

Nikkei 225 Index 9.65 5.03 2.87 1.51

S&P 500 Index 1.23 0.98 1.20 0.96

S&P Midcap 400 Index 9.63 1.70 6.15 1.16
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Table 7.  Gibbs Sampler Estimates of the Roll Model.

Gibbs-sampler estimates of price dynamics for the indicated CME contracts,  first 1,000

observations in the two-week sample January 5, 1998 through January 16, 1998. σu is the

implicit efficient price (random-walk) variance; c is the (log) half-spread; Cπ̂ is the

probability that a given trade is correctly classified (buy vs. sell).  “Mean”, “Mode” and

“Std.Dev.” refer to the posterior distribution; “SEM” is the standard error of the mean,

corrected for autocorrelation in the draws.

Pork Belly Mean Mode SEM Std.Dev.

000,10×uσ 13.484 13.456 0.005 0.310

000,10×c 1.092 1.142 0.007 0.426

%55ˆ =Cπ
Deutschemark Mean Mode SEM Std.Dev.

000,10×uσ 1.080 1.080 0.001 0.031

000,10×c 0.881 0.885 0.001 0.029

%86ˆ =Cπ
S&P Mean Mode SEM Std.Dev.

000,10×uσ 1.629 1.633 0.001 0.045

000,10×c 0.849 0.842 0.001 0.048

%77ˆ =Cπ
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Table 8.  Estimation Results for the Discrete, Clustered Price Model

Notes: Gibbs-sampler estimates of price dynamics for the indicated CME contracts,  first
1,000 observations in the two-week sample January 5, 1998 through January 16, 1998. σu

is the implicit efficient price (random-walk) variance; κ  is the (preset) clustering
multiple; k is the probability that a transaction price is clustered; Cπ̂ is the probability that
a given trade is correctly classified (buy vs. sell).  “Mean” , “Mode” and “Std.Dev.” refer
to the posterior distribution; “SEM” is the standard error of the mean, corrected for
autocorrelation in the draws.

Pork Belly Mean Mode SEM Std.Dev.

410×uσ 11.595 11.570 0.008 0.327

k 0.739 0.743 0.001 0.021

%71ˆ =Cπ ; κ=2

Deutschemark Mean Mode SEM Std.Dev.

410×uσ 1.017 1.014 0.001 0.037

k 0.003 0.000 0.000 0.004

%81ˆ =Cπ ; κ=2

S&P Mean Mode SEM Std.Dev.

410×uσ 1.545 1.532 0.001 0.049

k 0.043 0.040 0.000 0.011

%70ˆ =Cπ ; κ=5
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Table 9.  Estimation Results for the Asymmetric Information Model

Notes: Gibbs-sampler estimates of price dynamics for the indicated CME contracts,  first
1,000 observations in the two-week sample January 5, 1998 through January 16, 1998. σu

is the residual (non trade) variance; κ  is the (preset) clustering multiple; k is the
probability that a transaction price is clustered; the λ’s are trade impact coefficients; Cπ̂ is
the probability that a given trade is correctly classified (buy vs. sell).  “Mean”, “Mode”
and “Std.Dev.” refer to the posterior distribution; “SEM” is the standard error of the
mean, corrected for autocorrelation in the draws.

Pork Belly Mean Mode SEM Std.Dev.
2%;81ˆ == κπ C 410×uσ 9.8113 9.7544 0.0216 0.4751

k 0.7396 0.7417 0.0006 0.0209
4

,0 10×Constλ 0.0490 0.0141 0.0010 0.0427
4

,0
10×λ 0.1875 0.1926 0.0011 0.0329

4
,1 10×Constλ 0.0558 0.0169 0.0014 0.0512

4

,1
10×λ 0.1208 0.1190 0.0009 0.0322

Deutschemark Mean Mode SEM Std.Dev.
2%;88ˆ == κπ C 410×uσ 0.7921 0.7831 0.0018 0.0401

k 0.0038 0.0007 0.0002 0.0050
4

,0 10×Constλ 0.0051 0.0018 0.0001 0.0038
4

,0
10×λ 0.0048 0.0051 0.0000 0.0010

4
,1 10×Constλ 0.0341 0.0347 0.0004 0.0088

4

,1
10×λ 0.0050 0.0048 0.0001 0.0017

S&P Mean Mode SEM Std.Dev.
5%;72ˆ == κπ C 410×uσ 1.5271 1.5287 0.0014 0.0570

k 0.0417 0.0382 0.0004 0.0112
4

,0 10×Constλ 0.0107 0.0032 0.0002 0.0081
4

,0
10×λ 0.0019 0.0005 0.0000 0.0016

4
,1 10×Constλ 0.0058 0.0017 0.0001 0.0053

4

,1
10×λ 0.0022 0.0019 0.0000 0.0015
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Table 10.  Derived Statistics for Asymmetric Information Model

Notes: Gibbs-sampler estimates of price dynamics for the indicated CME contracts,  first

1,000 observations in the two-week sample January 5, 1998 through January 16, 1998.  In

the model m is the implicit (log) efficient price; the table summarizes the sources of its

variance. “Mean”, “Mode” and “Std.Dev.” refer to the posterior distribution; “SEM” is

the standard error of the mean, corrected for autocorrelation in the draws.

Pork Belly Contribution to
( ) 610×∆ tmVar Mean Mode SEM Std.Dev.

Non-trade 0.9649 0.9441 0.0043 0.0940

Trade 0.2604 0.2655 0.0019 0.0515

Total 1.2252 1.2011 0.0031 0.0821

Deutschemark Contribution to
( ) 610×∆ tmVar Mean Mode SEM Std.Dev.

Non-trade 0.0063 0.0061 0.0000 0.0006

Trade 0.0039 0.0039 0.0000 0.0006

Total 0.0101 0.0100 0.0000 0.0007

S&P Contribution to
( ) 610×∆ tmVar Mean Mode SEM Std.Dev.

Non-trade 0.0234 0.0233 0.0000 0.0017

Trade 0.0007 0.0005 0.0000 0.0004

Total 0.0241 0.0239 0.0000 0.0017
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Figure 1.  Gibbs Sampler Results for the Basic Roll Model, Pork Belly Contract.

Gibbs-sampler estimates of price dynamics for the pork belly contract,  first 1,000

observations in the two-week sample January 5, 1998 through January 16, 1998.  The

estimated model has two parameters, the log random-walk standard deviation,

000,10×uσ  (“SD_u”) and the log half-spread 000,10×c .   The left-most graph plots the

actual draws (every tenth draw); the center graph is the autocorrelogram; the right-most

graph is the distribution histogram.
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Figure 2. Gibbs Sampler Results for the Discrete Price Model, Pork Belly Contract

Gibbs-sampler estimates of price dynamics for the pork belly contract,  first 1,000

observations in the two-week sample January 5, 1998 through January 16, 1998.  The

estimated model has two parameters, the log random-walk standard deviation,

000,10×uσ  (“SD_u”) and the mean of the half-spread c.   The left-most graph plots the

actual draws (every tenth draw); the center graph is the autocorrelogram; the right-most

graph is the distribution histogram.
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Figure 3.  Implied Trade Price Impacts

Notes: Figures are based Gibbs-sampler estimates of price dynamics for the indicated

contracts,  first 1,000 observations in the two-week sample January 5, 1998 through

January 16, 1998.  Each figure depicts the contemporaneous and cumulative (through the

first lag) impact of a purchase on the implicit log efficient price x 100 (i.e.,  the vertical

units are approximately percentage changes).


