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Abstract

In this paper, we explore the features of affine term structure models that are
empirically important for explaining the joint distribution of yields on short-
and long-term interest rate swaps. We begin by showing that the family of
N-factor affine models can be classified into N + 1 non-nested sub-families of
models. For each sub-family, we derive a maximal model with the property
that every admissible member of this family is equivalent to or a nested
special case of our maximal model. Second, using our classification scheme
and maximal models, we show that many of the three-factor models in the
literature impose potentially strong over-identifying restrictions on the joint
distribution of short- and long-term rates. Third, we compute simulated-
method-of-moments estimates for several members of one of the four branches
of three-factor models, and test the over-identifying restrictions implied by
these models. We conclude that many of the extant affine models in the
literature fail to describe important features of the distribution of long- and
short- term rates. The source of the model misspecification is shown to
be overly strong restrictions on the correlations among the state variables.
Relaxing these restrictions leads to a model that passes several goodness-of-fit
tests over our sample period.






I TIntroduction

Recently, considerable attention has been focused on the “affine” class of
term structure models (ATSMs) in which the drifts and volatility coefficients
of the state-variable processes are affine functions of the underlying state vec-
tor (e.g., Duffie and Kan [13]). ATSMs accommodate potentially rich term-
structure dynamics because, in multi-factor models, the conditional variance
of each factor can be a positive affine function of all of the factors, the shocks
driving the factors may be correlated, and there may be affine dependencies
among the factors through their drifts. However, both theoretical and em-
pirical studies of affine models have focused exclusively on seemingly very
special cases. For instance, Chen and Scott [10], Pearson and Sun [25], and
Duffie and Singleton [15] assume that the short rate is a sum of a vector of
independent, univariate square-root diffusions. Alternatively, the models of
Chen [9] and Balduzzi, Das, Foresi and Sundaram [7], in which the short
rate itself is a state variable, assume zero correlations among some of the
shocks, and impose strong restrictions on the dependencies among the fac-
tors through their drifts and conditional volatilities. Therefore, we are led to
inquire:

Q1 Are these special cases restrictive, or are they the most flexible specifi-
cations of ATSMs that yield well-defined bond prices?

Q2 If they are restrictive, what are the over-identifying restrictions they
impose on yield curve dynamics?

Q3 In their least restrictive forms, are ATSMs sufficiently flexible to describe
simultaneously the historical movements in short- and long-term bond
yields?

In this paper we show that the answer to @1 is indeed yes: extant
affine term structure models have implicitly imposed potentially strong over-
identifying restrictions on the joint distributions of long- and short-term bond
yields. To show this, we provide a complete characterization of the admis-
sible, identified multi-factor ATSMs. Using the classification scheme of Dai,
Liu, and Singleton [11] for general affine diffusions, we propose a convenient
classification of N-factor ATSMs into N + 1 non-nested sub-families of mod-
els. For each of these N +1 sub-families, we derive a mazimal model with the
property that every other well-defined AT'SM within this sub-family is equiv-
alent to, or a nested special case of, the maximal model. Furthermore, all of
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the extant ATSMs cited above are shown to be restricted special cases of our
maximal models. As such, we answer @2 by providing a full characterization
of the over-identifying restrictions previously imposed.

The reason there is not an all-encompassing ATSM that nests all extant
models as special cases is that the parameter space must be constrained so
that bond prices are well-defined. This admissibility problem arises because
the volatility of the i*! factor, Y;(t), is given by /a; + 3 /(t), and, there-
fore, a; + BY (t) must be positive over the range of Y (¢) for bond prices
to be well defined (Duffie and Kan [13], Dai, Liu, and Singleton [11], Ap-
pendix A). Whether or not a parameterization is admissible depends jointly
on the characteristics of the drift and diffusion coefficients of the state vec-
tor Y(t) and one must typically trade off flexibility in specifying the drift
against the richness of the conditional volatilities and correlations of Y. We
proceed by classifying the family of N-factor ATSMs into N + 1 sub-families
in such a way that sufficient conditions for admissibility are easily verified
and the over-identifying restrictions in extant ATSMs are easily interpreted.
The classification scheme is based on the number of the factors (m) that
determine the volatilities of all NV factors.

Having classified the admissible N-factor ATSMs, we next specialize to
the case of N = 3 and describe in detail the nature of the 4 maximal models
for the 3-factor family of ATSMs. From this discussion we see that poten-
tially strong over-identifying restrictions were imposed in most ATSMs in the
literature, the primary exception being some Gaussian (Vasicek [26]) models.
Moreover, this analysis reveals several new insights into the nature of these
restrictions. Specifically, ATSMs allow for more interdependencies among
the factors through their drifts, without jeopardizing admissibility or identi-
fication, than has heretofore been recognized. For instance, we can allow for
feedback through the drifts of the stochastic central tendency and volatility
factors in the Chen [9] and Balduzzi, Das, Foresi and Sundaram [7] (here-
after BDFS) models. Similarly, there is no need to constrain the drifts of
the square-root diffusion in CIR-style models to be independent across fac-
tors — correlated square-root diffusions are not inconsistent with admissibility
or our ability to obtain (essentially) closed-form expressions for zero-coupon
bond prices. Furthermore, in the cases of the Chen and BDF'S models, sev-
eral of the zero restrictions on the correlations among the diffusions can be
relaxed. These observations lead to new, and as yet unexplored, ATSMs.

Our discussion of admissibility highlights an important trade-off between
the generality of the dependence of the conditional variance of each Y;(t)
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on Y (t) (within the affine framework) and the admissible structure of the
correlations among these state variables. Gaussian models offer complete
flexibility with regard to the signs and magnitudes of conditional and un-
conditional correlations among the Y's, but at the “cost” of the apparently
counterfactual assumption of constant conditional variances (m = 0). At
the other end of the spectrum of volatility specifications lies the correlated
square-root diffusion (CSR) model that has all three state variables driving
conditional volatilities (m = 3). However, admissibility of this model requires
that the conditional correlations of the state variables be zero and that their
unconditional correlations be non-negative. We conclude that CSR models
are theoretically incapable of generating the negative correlations among the
state variables that the historical data seems to call for. In between the
Gaussian and CSR models lie N — 1 families of ATSMs with time-varying
conditional volatilities of the state variables and unconstrained signs of (some
of) their correlations.

In light of these observations, to address @38, we consider the case of
N = 3 and focus on the two sub-families of ATSMs in which the stochastic
volatilities of the Y’s are controlled by one (m = 1) and two (m = 2) state
variables. The maximal model for the sub-family m = 1 nests the BDFS
model, while the maximal model for the m = 2 sub-family nests the Chen
model. In both of these special cases, the instantaneous short rate has a
stochastic central tendency and stochastic volatility. We show that our max-
imal models differ from these extant specifications by accommodating much
richer interdependencies among the state variables through both their drift
and diffusion coefficients.

We compute simulated method of moments (SMM) estimates (Duffie
and Singleton [14] and Gallant and Tauchen [18]) of our maximal ATSMs
using short-, intermediate-, and long-term swap yields simultaneously. The
models pass several formal goodness-of-fit tests. Moreover, the restrictions
implicit in the Chen model and BDFS are strongly rejected. The substantial
improvement in goodness-of-fit for the canonical model is traced directly
to its richer parameterization of correlations among the state variables. The
negatively correlated diffusions are central to the model’s ability to match the
volatility structure of swap rates. Finally, we analyze additional properties of
the maximal models and their nested special cases, and conclude that (a) the
maximal models are over-parameterized; (b) within the affine class of models,
the best description of the swap data is given by an intermediate model in
the branch m = 1, which extends the BDF'S model by allowing conditional



correlations between the short rate and its stochastic central tendency.

The remainder of the paper is organized as follows. Section II defines the
affine bond pricing model. Section III presents general results pertaining to
the classification, admissibility, and identification of the family of N-factor
affine term structure models. Section III.B specializes the classification re-
sults to the family of three-factor affine term structure models, and char-
acterizes explicitly the nature of the over-identifying restrictions in extant
models relative to our more flexible, maximal models. Section IV explains
our estimation strategy and data, and discusses the econometric identifica-
tion of risk premiums in affine models. Section V presents our empirical
results. Finally, Section VI concludes.



II The Affine Bond Pricing Model

Consider a frictionless economy with riskless borrowing and lending oppor-
tunities. Fix a standard Brownian motion W = (Wi, W,,...,Wy) in RY
restricted to some time interval [0, 7] on a given probability space (2, F, P).
We also fix the standard filtration F = {F; : t € [0,T]} of W, and let
F = Fp. Assume that: (a) the prices of M bonds follow the Ito process

X = (X1, Xa,...,Xy) in RM,
dX (1) = px(t)dt + ox (£)dW (2), (1)

where o (t) is an M x N matrix; (b) the instantaneous short rate process (1)
is measurable with respect to F;; and (c) there are no arbitrage opportunities.
Then, under further technical conditions (see Duffie [12] and Hansen and
Richard [20]), there exists a state price deflator 7(t), such that 7(t) X (t) is a
martingale under P; i.e., for any time ¢ and s > ¢,

m(s)

X(t) = E, {}EX(S)] . 2)

The ratio 7;:(—;) is the stochastic discount factor or pricing kernel for pricing

the M securities in the absence of arbitrage. By Ito’s lemma, it can be shown
that the pricing kernel satisfies

dr(t)
m(t)

where ox (t)A(t) = ux(t) — r(t) X ().

The preceding characterization of the pricing kernel process m(t) for pric-
ing bonds requires little more than the absence of arbitrage opportunities.
The general affine term structure model is obtained by imposing the addi-
tional assumptions that

= —r(t)dt — A(t) dW (¢), (3)

r(t) =8+ Y 6:Yi(t) = 6o + 6, Y (¢) (4)

and

Al) = VS, (5)



where, 6, = (61,...,0n), and A = (Ay,..., Ax)" are N-vectors of constants.
The state variables Y;(¢), 1 = 1,2,..., N, are assumed to follow the V-
dimensional stochastic process

dY (t) = K (6 — Y (1)) dt + £/SE)dW (¢), (6)

where Y (t) = (Y1(¢), Ya(t),- -+, Yn(2))', K and ¥ are N x N matrices, which
may be non-diagonal and asymmetric. S(t) in (5) and (6) is a diagonal
matrix with the :** diagonal element given by

[S())ii = i + BY (1). (7)

This characterization of the affine term structure model is the continuous-
time, affine counterpart to the formulations of the pricing kernels in Backus
and Zin [4] and Backus, Foresi, and Telmer [3]. Our formulation general-
izes the continuous-time pricing kernels assumed by Bakshi and Chen [5]
and Nielsen and Sai-Requejo [24], and is equivalent to that of Fisher and
Gilles [16]. Thus, the subsequent analysis of the affine term structure models
applies to all of these frameworks. Of course, it also applies to equilibrium
term structure models that lead to pricing kernels with this affine structure
such as the CIR model.

The time ¢ price P(t,7) for a zero-coupon bond with maturity 7 is given
by setting X (¢t +7) =1in (2):

m(t+7)
ol ©

which, by the Girsanov theorem, is equivalent to

P(t,T) = E, {

P(t, 7‘) _ EtQ {6_ tt+'r r(u)du] , (9)

where EZ[] = EQ[-|F;] is the expectation with respect to the “risk-neutral”
measure () conditional on the filtration at time ¢. The dynamics of the state
variables under @, which is needed in order to evaluate bond prices using
(9), is given by

dY (t) = K (é - Y(t)) dt + £1/SE)dW (¢), (10)
where W(t) is an N-dimensional independent standard Brownian motion
under Q, K = K+ X®, § = K1 (KO — T¢), the i*" row of @ is given by

AifBi, and v is a N—vector whose it" element is given by \;q;.

6



The risk-neutral drift x(¢) and diffusion o(¢) of Y(¢) have the feature that
both pu(t) and o(t)o(t)" are affine functions of Y (t). This assures that the
zero coupon bond prices are log linear in the state vector Y (¢).! Specifically,
it can be shown [see Duffie and Kan [13]] that the zero-coupon bond prices
are given by

P(t,7) = A D-BOYW®), (11)

where A(7) and B(r) satisfy the ordinary differential equations (ODEs)

d‘z(;) = -0K'B(r) + % ; [X'B(7)]; e — o, (12)
S = kB - 5 Y B Ay (13)

These ODEs can be solved easily through numerical integration, starting
from the initial conditions: A(0) = 0, B(0) = Onxi. Consequently, esti-
mation of models that simultaneously price long- and short-term rates is
computationally feasible.

Equations (4) - (9) characterize what we will refer to as the general AY
representation of a multi-factor, affine bond pricing model.*

1Our specification of the state variable dynamics under the actual measure is also affine
[see (6)]. This is not necessary for the log linearity of zero coupon bond prices, which only
requires that the risk-neutral dynamics of the state variables be affine.

2There is a different formulation of affine models in the literature that starts with
the diffusion model for r(¢) and adds state variables by allowing the drift and diffusion
coefficients of r to depend on unobserved state variables (e.g., Balduzzi, Das and Foresi [6]
and Chen [9]). See Section IILB for a proof that this alternative approach produces a
mode] that is analytically equivalent to a member of the class of affine models examined
here.



IITI A Characterization of Admissible ATSMs

Ideally, a specification analysis could be conducted with the general affine
term structure specification (6). This is not possible, however, because, for
an arbitrary choice of the parameter vector ¢ = (K, 0, %, B, ), the condi-
tional variances [S(t)]; may not be positive over the range of Y. To assure
positive variances— what we will refer to as admissibility— it appears necessary
to trade off flexibility in specifying the drift parameters (K and ©) against
generality in the diffusion coefficients (¥ and B). Accordingly, using results
in Dai, Liu, and Singleton [11], we proceed by classifying N-factor ATSMs
into N + 1 classes for which there are intuitive and easily verified sufficient
conditions for admissibility. Then we specialize to the case of N = 3 and
use our classification scheme to interpret the over-identifying restrictions im-
posed in extant ATSMs. This section focuses on the practical implications
of our characterization of admissible ATSMs. Formalities are presented in
Appendix A.

III.A A Canonical Representation of Admissible ATSMs

The admissibility problem is intimately related to the presence of stochastic
volatility in the state process: there is no admissibility problem if g; = 0
and the requirements for admissibility become increasingly stringent as the
number of state variables determining [S(¢)];; increases. More formally, we
let B = (B1,...,03y) denote the matrix of coefficients on Y in the [S(¢)]a
and introduce the index m = rank(B) of the degree of dependence of the
conditional variances on the number of state variables. We then classify
all ATSMs with the same m into the same subfamily. This classification
of ATSMs leads to N + 1 non-nested and mutually exclusive families with
intuitive and easily verifiable sufficient conditions for admissibility for each
subfamily or “branch”. The branch of admissible ATSMs with rank(B) = m
is denoted by A, (N).

To characterize the ATSMs in A, (N) we introduce the following canonical
representation of admissible N-factor models with rank(B) = m:

Definition III.1 (Canonical Representation of A, (N)) Partitioning
Y as Y(t) = (YB,Y?), where YB ism x 1 and YP is (N —m) x 1, the



canonical representation of A, (N) is the special case of (6) with

=K Qoo }
L ’C(N—m)xm IC(N—m)X(N——m)
for m > 0, and K is either upper or lower triangular for m =0,
o[ |
| Ovemyx1 |
=1,
o = [ Omxl
L 1(N——m)><1
B = [ Imxm B8\173—m)><m ] .
| ON—myxm  ON—m)x(N—m) |

with the following parametric restrictions imposed:

6 >0, m+1<i<N,

K.©

EZ’Cij@j>0, 1<1<m,

i=1

©; >

0,1<i<m,

(19)
(20)

(21)
(22)

(23)

This representation is canonical, because it serves as a basis for the ATSMs
that are known to be admissible under our sufficient conditions. More pre-
cisely, we show in Appendix A that the model (14)-(23) is mazimally flex-
ible in the sense that it imposes the known sufficient conditions for admis-
sibility (Dai, Liu, and Singleton [11]) along with minimal normalizations
for econometric identification. Starting from this canonical representation,
we let AM,,(N) denote the equivalence class of maximally flexible ATSMs
generated through invariant transformations of the state vector. Invariant



transformations, which are formally defined in Appendix A, preserve admis-
sibility and identification and leave the short rate (and hence bond prices)
* unchanged. The set A, (N) can now be characterized as the set of all AT.SMs
that are econometrically nested special cases of an ATSM in AM,,(N).> The
representation (14) — (23) was chosen as our canonical representation among
equivalent maximal models in AM,,(N), because of the relative ease with
which admissibility and identification can be verified and the parametric re-
strictions (19) — (23) can be imposed in econometric implementations.

To interpret our canonical representation, note that the conditional vari-
ance of the i component of YB(t), Y;B(t), is Y;Z(t). This feature, combined
with the assumption that the last N —m rows of B are zero (see (18)), imply
that rank(B) = m. The instantaneous conditional correlations among the
YB(t) are zero, while the instantaneous correlations among the Y (t) are
governed by the parameters B;;, because ¥ = I. All of the state variables
may be mutually correlated over any finite sampling interval due to feedback
through the drift matrix K. Since the conditional covariance matrix of Y
depends only on Y® and (23) holds, admissibility is established if Y2(t) is
strictly positive. The positivity of Y is assured by zero restrictions in the
upper right (N — m) x m block of K and the constraints (20) and (21).* In
order to assure that the state process is stationary, we need to impose an ad-
ditional constraint, namely, all of the eigen-values of K are strictly positive.
We impose this condition in our empirical estimation.

For the purposes of interpreting the state variables and the restrictions on
their dynamic properties with a particular ATSMs, it is sometimes more con-
venient to work with an equivalent model in AM,,(N). Indeed, the literature
has often chosen to parameterize ATSMs with the riskless rate r being one of
the state variables. Any such Ar (“affine in r”) representation is typically in
A, (N), for some m and N, and therefore has an equivalent representation
in which r(t) = 6y + 0, Y (t), with Y'(¢) treated as an unobserved state vector
(an AY or “affine in Y representation). In Section IIL.LB we present the
equivalent Ar and AY representations of several extant ATSMs, as well as

3Since the conditions for admissibility are sufficient, but are not known to be necessary,
we cannot rule out the possibility that there are admissible, econometrically identified
ATSMs that nest our canonical models as special cases. Importantly, all of the extant
ATSMs in the literature reside within A, (N), for some m and V.

4As discussed more formally in Appendix A, the zero-restrictions in (14) — (18) and
sign restrictions in (19) — (23) represent a complete implementation of the generalization
of the existence condition of Duffie and Kan [13] presented in Dai, Liu, and Singleton [11].
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their maximally flexible counterparts.

An implication of our classification scheme is that an exhaustive specifi-
cation analysis of the family of N-factor ATSMs requires the examination of
N + 1 non-nested canonical models.

ITI.B Three-Factor ATSMs

In this section we explore in considerably more depth the implications of
our classification scheme for the specification of ATSMs. Particular atten-
tion is given to interpreting the term-structure dynamics associated with our
canonical models, and the nature of the over-identifying restrictions imposed
in several AT'SMs in the literature. To better link up with the empirical term
structure literature, we fix N = 3 and examine the 4 associated sub-families
of admissible AT'SMs.

IILB.1  Ao(3)

If m = 0, then none of the Y (¢)s affect the volatility of Y'(¢), so the state
variables are homoskedastic and Y (¢) follows an 3-dimensional Gaussian dif-
fusion. The elements of ¢ for the canonical representation of AM,(3) are
given by

K11 0 0 1 00
K= Ko1 K29 0 y X = 010 ,
| K31 K3z ka3 0 01
0 1 0 00
o=10| a=|1], B={00 0],
K 1 000

where k11 > 0, ko9 > 0, and k33 > 0.

Gaussian ATSMs were studied theoretically by Vasicek [26] and
Langetieg [23], among many others. A recent empirical implementation of a
2-factor Gaussian model is Jegadeesh and Pennacchi [22].

N1.B.2 A (3)

The family A;(3) is characterized by the assumption that one of the Y's
determines the conditional volatility of all three state variables. One member
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of A;(3) is the BDF'S model:

dv(t) = wp(®—v(t))dt +nv/u(t)dBy(
do(t) = wv(0—6(t))dt + (dBy(1), (24)

dr(t) = k(0(t) —r(t))dt+ Vou(t)dB,(t)

with the only non-zero diffusion correlation being cov(dB, (t), dB.(t)) = prudt.
Rewriting (25) as

dr(t) = K(0(t) — r(t))dt + /o(1)dB,(t) + 070 v/v(8)dB,(2), (25)

where 0,, = pyy/n, and B,(t) and B,(t) are independent, gives the BDF'S
model in the standard notation for ATSMs. The first state variable v(t)
is a volatility factor, because it affects the short rate process only through
the conditional volatility of 7. The second state variable 6(t) is the “central
tendency” of r. The short rate mean reverts to its central tendency 0(t) at
rate K.

For interpreting the restrictions in the BDF'S and related models, it is
convenient to work with the following maximal model in AM;(3), presented
in its Ar representation:

du(t) = (@ —v(t))dt +ny/o(t)dB,y(t),

do(t) = v(8—0(t))dt + /¢ +|Bs]v(t)dBo(t)
+77VU dBv +m\/ar+v dBr(t)7 (26)

dr(t) = (@—v(t))dt+/£(9(t —r(t))dt + \/[ar] + v(t)dB:(t
+0,0MV V(t)dBy(t) + [0rg | /G + Bov(t)dBo(t

The state variable v is naturally interpreted as a volatility factor, because
it determines the conditional variances of all three state variables and, in
particular, of 7. The state variable 6, on the other hand, affects the drift of
the short rate, but not its volatility. The conditional correlation between ¢
and r (and between v and r) may be nonzero, however.

The BDFS model is the special case of (26) in which the parameters
in square boxes are set to zero. Thus, relative to this maximal model, the
BDFS model constrains the conditional correlations between 7 and @ to zero.
Additionally, it precludes the volatility shock v from affecting the volatility of
the central tendency factor . Finally, the BDF'S model constrains k,, = 0

12



so that v cannot affect the drift of r. Freeing up these restrictions gives
us a more flexible ATSM, and one in which 6 is perhaps not as naturally
interpreted as the central tendency of r. The over-identifying restrictions
imposed in the BDFS model are examined empirically in Section V.

Though (26) is convenient for interpreting the popular A, (3) models, ver-
ifying that (26) is maximal and, indeed, that it is admissible, is not straight-
forward. To check admissibility, it is much more convenient to work directly
with the following equivalent AY representation:®

r(t) = 6 +[0: Y1 (2) + Ya(t) + Ya(b), (27)

Y'l(t) K11 l 0 0 91 Y'l(t)
d = |~ = ol I el R 7
Yg(t) 0 | K99 0 0 S/Q(t)
Y3(t) 0 | 0 ks 0 Y3(¢)
1 | 0 0 Su)y | 0 0
B
T [om |1 0 | Sxwf) 0 dB((R8)
J31 039 1 0 | 0 Sgg(t)

where

Sll(t) = Yl(t),
Spa(t) = ag+|[Gh [Ya(t), (29)
Ss3(t) = + [Bs1h Y1 (2).

That this representation is in AM;(3) follows from its equivalence to our
canonical representation of AM;(3), which is easily shown by diagonalizing
¥ and by normalizing the scale of Soy and Ss3, while freeing up d, and d3 in
the expression r(t) = dg+ 61 Y1(¢) + 2 Y5(t) +03Y3(t). All three diffusions may
be conditionally correlated and all three conditional variances may depend
on Y;. However, admissibility requires that o1 = 0 and o33 = 0, in which
case Y; follows a univariate square-root process that is strictly positive.

5The equivalence of the Ar and AY representations is shown in Appendix A.5.1 where
the invariant transformations that take us from one representation to the other are given
explicitly.
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The equivalent AY representation of the BDF'S model is obtained from
(27) by setting all of the parameters in square boxes to zero in (27), except
for o3 which is set to —1. An immediate implication of this observation is
that the BDFS model unnecessarily constrains the instantaneous short rate
to be an affine function of only two of the three state variables (6; = 0). This
is an implication of the assumption that the volatility factor v(t) enters r
only through its volatility and, therefore, it affects  only indirectly through
its effects on the distribution of (Y3(¢),Y3(t)). This constraint on J, is a
feature of many of the extant models in the literature including the model
of Andersen and Lund [2].

II1.B.3 A (3)

The family Ay (3) is characterized by the assumption that the volatilities of
Y (t) are determined by affine functions of two of the three Y's. A member of
this sub-family is the model proposed by Chen [9],

dv(t) = (0 —v(t))dt + ny/v(t)dWi(t

do(t) = v(0—0(t))dt+ (/0(t)dWa(t), (30)

dr(t) = ﬁ(@(t) — r(t))dt + Vu(t)dWs(t)
with the Brownian motions assumed to be mutually independent. As in the
BDFS model, v and @ are interpreted as the stochastic volatility and central
tendency, respectively, of r. A primary difference between the Chen and
BDFS models, and the one that explains their classifications into different
subfamilies, is that 8 in the former follows a square-root diffusion, while it is

Gaussian in the latter.
A convenient maximal model for interpreting the over-identifying restric-
tions in the Chen model is

dv(t) = (U—v )dt +[Fug | (6 — O(t dt+n\/17(7dwlt

do(t) = (8 —0(t))dt +[Kay |(T — v(t))dt + (\/O(t) dWa(t

dr(t) = (v—v( ))dt — k(6 — ())dt+/¢( —r(t))dt (31)
+mn\/ﬁdwl(t)+m<\/_dw2

+ V@] + 8]0 + v(e) dWa (o).

The Chen model is obtained as a s_pec1a1 case with the parameters in square
boxes set to zero except that 7 = 6.
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Clearly, within this maximal model, § and v are no longer naturally in-
terpreted as the central tendency and volatility factors for ». There may be
feedback between 6 and v through their drifts, and both of these variables
may enter the drift of . Moreover, the volatility of » may depend on both
6 and v. Also, the Chen model unnecessarily constrains the correlations be-
tween 6(t) and r(¢) and between v(t) and r(¢) to 0. All of these restrictions
are examined empirically in Section V.

Again, we turn to the equivalent AY representation of (31) in order to
verify that it is admissible and maximal:

r(t) =[do] + [0V (2) + Ya(t) + V(1) (32)

Yi(t) ko [k2] | 0 01 Yi(t)
g1 20 | _ Ko | 0 b2 | _ | Yalt) ||
a0 0 0 | mm] Lo ¥i(t)
10 |0 Sn® 0 | 0
L0 1 [0 0 S»@) | 0 dB(t), (33)
1 0 0 | Su)
where
Su(t) = [AlhYi(),
Sn(t) = [BlaYa(t), (34)

Ss3(t) = + Y1 (t) +| [Osl2 |Ya(1).

In Appendix A.5.2, we show that how this Ar representation is linked to the
AY representation, and how the AY representation is linked to the canonical
representation for AM,(3).

With the first two state variables driving volatility, k12 and k91 must be
less than or equal to zero in order to assure that Y; and Y, remain strictly
positive. That is, (Y1(t), Y2(¢)) is a bivariate, correlated square-root diffusion.
Additionally, admissibility requires that Y; and Y; be conditionally uncorre-
lated and Y3 not enter the drift of these variables. Y3 can be conditionally
correlated with (Y7, Y5) and its variance may be an affine function of (Y3, Y5).
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The corresponding restrictions on the AY representation (32) - (34) im-
plied by the Chen model are obtained by setting the square boxes in (33) to
zero except that 030 = —1 and 6y = —616; — 03 + by = —0sk92/K33. Like the
BDFS model, in the Chen model r is constrained to be an affine function
of only two of the three state variables.

IILB.4 A(3)

The final sub-family of models has m = 3 so that all three Y's determine the
volatility structure. The canonical representation of AM3(3) has parameters

K11 K12 K13 100
K= K91 K92 HKog 5 X = 010 y
_l€31 K3z K33 0 0 ].d
[ 6 0 10 0]
=161, a=|0]|, B=]0 1 0],
| 6, 0 00 1|

where r; >0for 1 <i<3, k;; <O0for1 <i#75<3,6;>0forl1<4<3.

With both ¥ and B equal to identity matrices, the diffusion term of
this model is identical to that in the N-factor model based on independent
square-root diffusions (often referred to as the CIR model). With B di-
agonal, the requirements of admissibility preclude relaxation of assumption
that ¥ is diagonal. However, admissibility does not require that K be di-
agonal, as in the classical CIR model, but rather only that the off-diagonal
elements of K be less than or equal to zero (see (21)). Thus, the canonical
representation is a correlated, square-root (CSR) diffusion model. It follows
that the empirical implementations of multi-factor CIR-style models with
independent state variables by Chen and Scott [10], Pearson and Sun [25],
and Duffie and Singleton [15], among others, have imposed potentially strong
over-identifying restrictions by forcing K to be diagonal. In this three-factor
model, a diagonal K implies six over-identifying restrictions.

III.C Comparative Properties of Three-factor ATSMs

In concluding this section, we highlight some of the similarities and differ-
ences among ATSMs, and motivate the subsequent empirical investigation of
3-factor models.
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Positivity of the instantaneous short rate r:

As a general rule, for three-factor ATSMs, 3 — m of the state variables in
A, (3) models may take on negative values. That is, the Gaussian (m = 0)
model allows all three state variables to become negative, the A;(3) models
allows two of the three state variables to become negative, etc. Therefore,
only in the case of models in A(3) are we assured that r(¢) > 0, provided
that we constrain d; and all elements of §, be non-negative.

Conditional second moments of zero-coupon bond yields:

The conditional variances of zero-coupon bond yields are affine functions
of the state vector Y (t). It follows that bond yields may be conditionally
heteroskedastic and that the conditional variances will be determined by m
common factors. The Gaussian model (m = 0) implies that zero yields are
homoskedastic, while the CSR model (m = 3) allows all three state variables
to induce conditional heteroskedasticity.

However, because parameter restrictions must be imposed to assure ad-
missibility, models with m = 3 do not necessarily offer more flexibility in pa-
rameterizing conditional correlations than models with m < 3. The nature
of the conditional correlations accommodated within AM;,(3) can be seen
most easily by normalizing K?J\]?_m)xm to zero and ICB\I?_m)X(N_m) to a diag-
onal matrix, and concurrently freeing up % and the off-diagonal elements
of PP This gives an equivalent model to our canonical representation of
A, (N) (see Appendix A.3). It follows that the admissibility constraints ac-
commodate non-zero conditional correlations of unconstrained signs between
each element of Y'P and the entire state vector Y'().

For instance, with m = 3, the state variables are conditionally uncorre-
lated. On the other hand, with m = 2, only two state variables determine the
volatility of Y (¢), but Y;(t) may be conditionally correlated with both Y5(t)
and Y3(t). Thus, in moving from m = 0 to m = 3, there is a trade-off between
flexibility in specifying the factor structure of the conditional variances and
in allowing for non-zero conditional correlation among the factors.

Unconditional correlations among the state variables:

In the Gaussian model (m = 0), the signs of the non-zero elements of
K are unconstrained and, hence, unconditional correlations among the state
variables may be positive or negative. On the other hand, for the CSR model
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with m = 3, the unconditional correlations among the state variables must
be non-negative. This is an implication of the zero conditional correlations
and the sign restrictions on the off-diagonal elements of K required by the
admissibility conditions. The case of m = 1 is similar to the Gaussian model
in that ¥ may induce positive or negative conditional or unconditional cor-
relations among the Y's. Finally, in the case of m = 2, the first state variable
may be negatively correlated with the other two, but correlation between
Y2(t) and Y3(t) must be non-negative.

Notice that a limitation of the affine family of term structure models is
that one cannot simultaneously allow for negative correlations among the
state variables and require that r(¢) be strictly positive.

These observations motivate the focus of our subsequent empirical anal-
ysis of 3-factor ATSMs on the two branches A; (3) and Ay (3). Models with
m =1 or m = 2 allow for the widely documented, conditional heteroskedas-
ticity and excess kurtosis in zero-coupon bond yields, while being flexible with
regard to both the magnitudes and signs of the admissible correlations among
the state variables. In contrast, models in the branch Ag(3) imply that zero
yields are conditionally normal with constant conditional second moments.
Though the signs of the unconditional correlations are unrestricted in Gaus-
sian models, conditional correlations are also constants. Finally, models in
A3(3) do not accommodate negative correlations among the state variables.
We will see subsequently that such flexibility is helpful for fitting the histor-
ical behavior of swap yields.
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IV Simulated Method of Moments Estima-
tion of ATSMs

The conditional likelihood function of the state vector Y'(¢) is not known
for general affine models. Therefore, we pursue the method of simulated
moments (SM M) proposed by Duffie and Singleton [14] and Gallant and
Tauchen [18]. Our estimation strategy can be outlined as follows:

(i) select N (LIBOR and swap) yields and a set of moments of these yields
to be used in estimation, and choose an initial value for the parameter
vector ¢;

(ii) simulate a long time series of observations on the state vector Y (t) using
the chosen value of ¢; compute the associated time series of model-
implied zero-coupon bond prices by solving the Ricatti equations (12)
and (13) and substituting these weights into (11); then use the simu-
lated zero-coupon prices to compute the N bond yields;

(iii) compute sample versions of the selected moments using both the actual
historical yields and simulated yields, and compute a measure of the
distance between them;

(iv) finally, adjust ¢ and then repeat these steps until the historical and
simulated moments are made as close to each other as possible.

IV.A The SMM Objective Function

A key issue for the SM M estimation strategy is the selection of moments
in Step (i). Following Gallant and Tauchen [18], we use the scores of the
likelihood function from an auxiliary model that describes the time series
properties of bond yields as the moment conditions for the SM M estimator.
More precisely, let y; denote a vector of yields on bonds with different maturi-
ties, = (YL, ¥i_1,- -+, ¥i_g), and f(y|zi—1,7) denote the conditional density
of y associated with the auxiliary description of the yield data. The score
of the log-likelihood function evaluated at the maximum likelihood (ML)
estimator yp with sample size T satisfies

liﬁm Felzer, vr) = 0 (35)
thl EN g J\Yt|Tt—1, yT) = U.
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Under suitable regularity conditions (see Duffie and Singleton [14] and Gal-
lant and Tauchen [18]), as sample size gets large the sample mean in (35)
converges to E[0log f(y:|zi—1,70)/07] = 0, where 7y is the probability limit
of ~7. Tt follows that, if the asset pricing model is correctly specified, then
the score computed with log f(y:|x:—1,yr) evaluated at y?s simulated from
the asset pricing model using the true model parameters ¢,

T
1 0 0,90
'7—~ t:Z1 % log f(yt |33t—1, ’)’T)7 (36)

where 7 is the simulation size, should also be approximately zero. The
particular f(y¢|x:_1, ) used is described subsequently.

Having selected the moment conditions, we proceed using the standard
GM M criterion function (Hansen [19], Duffie and Singleton [14]), a quadratic
form in the sample moments (36). The distance matrix in this criterion
function is chosen optimally to give the most efficient GM M estimators based
on the moment conditions (36). The requirements for this SMM estimator
to be consistent for ¢, beyond the requirement that the auxiliary model have
at least as many unknown parameters as the dimension of ¢, will be met by
many descriptive time series models of bond yields. In particular, consistency
of the SMM estimator does not require that the auxiliary model describe
the true joint distribution of the discretely sampled bond yields. Efficiency
considerations, on the other hand, lead us to choose an f(y|2:—1,7) that
might reasonably be assumed to nest the true conditional density of the
bond yields y. Specifically, the auxiliary model is constructed using the Semi-
Non-Parametric (SNP) framework proposed by Gallant and Tauchen [18].
The analysis in Gallant and Long [17] implies that, for our term structure
model and selection strategy for an auxiliary density f(y¢|z:-1,7), our SMM
estimator is asymptotically efficient.® That is, we achieve the efficiency of
the maximum likelihood estimators for the true conditional distributions of
(discretely sampled) bond yields implied by the ATSMs.

Gallant and Tauchen [18] showed that the simulated SN P scores, evalu-
ated at the ML estimates of v and the SMM estimates ¢, are asymptotically

8More precisely if, for a given order of the polynomial terms in the SN P approximation
to the density f described subsequently, sample size is increased to infinity, and then
the order of the polynomial is increased, the resulting SM M estimator approaches the
efficiency of the maximum likelihood estimator. It follows that our SM M estimator is
more efficient (asymptotically) than the quasi-maximum likelihood estimator proposed
recently by Fisher and Gilles [16].
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normally distributed with zero mean. Thus, individual scores can be tested
by forming t—statistics that have a standard normal asymptotic distribution.
The minimized value of the GM M criterion function serves as an overall
goodness-of-fit statistic with an asymptotic x? distribution and degrees of
freedom equal to the difference between the number of SN P parameters and
the number of structural parameters.

For our empirical analysis, the observed data y was chosen to be the yields
on six-month LIBOR and two-year and ten-year fixed-for-variable rate swaps
sampled weekly from April 3, 1987 to August 23, 1996 (see Figure 1 for a
time series plot of the LIBOR and swap yields). The length of the sample
period was determined in part by the unavailability of reliable swap data
for years prior to 1987. The yields are ordered in y according to increasing
maturity (i.e., y; is the six-month LIBOR rate, etc.).

We use the “explicit order-two weak scheme” (see Gallant and Long [17])
to simulate the state variables from the stochastic differential equation gov-
erning the state dynamics. The simulated bond prices or yields are then
computed from the simulated state variables using (11). We use five subin-
tervals for each week, and take every fifth simulated observation to construct
a simulated data set of size 50000.

IV.B The SNP Auxiliary Model

In selecting an SN P approximation to the conditional density of swap yields,
we started with a conditional normal distribution for the three bond yields
with a linear conditional mean and ARCH specifications of the conditional
variances. Then we scaled this conditional normal distribution by polyno-
mial functions of the yields in order to accommodate non-normality of the
conditional distribution. We obtained the best SN P model for our dataset
through an extensive search along numerous model expansion paths, guided
by a model selection criterion, as outlined in Gallant and Tauchen [18]. The
resulting SN P model has the following conditional density:

Fyelmemr, ) = c(@i-1) [eo + [Plze]xi1)]?] n(z), (37)

where n(-) is the density function of the standard normal distribution, € is
a small positive number,” h(z|z) is a Hermite polynomial in z, c¢(z:—1) is a

7"Our implementation of SMM with an SN P auxiliary model differs from many pre-
vious implementations by our inclusion of the constant ¢y in the SN.P density function.
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normalization constant, and z;_; is the conditioning set. We let 2, be the
normalized version of y;, defined by

Rt = R;,%—l(yt - Mz,t—l)- (38)

In the terminology of Gallant and Tauchen [18], the SN P model may be

described as “Non-Gaussian, VAR(1), ARCH(2), Homogeneous-Innovation”.

“VAR(1)” refers to the fact that the shift vector i, ;1 is linear with elements
that are functions of L, = 1 lags of y, in that

Y1 + Yayre-1 + Y7 Y21 + V1o Ys,i—1
Pri—1= | Y2 +V¥syis—1+VYsyo-1+¥Yr1yss-1 |- (39)
Y3 + VY6 Y1,0-1 + Yo Yo,—1 + V12 Y3 -1
“ARCH(2)” refers to the fact that the scale transformation R;; ; is taken
to be of the ARCH(L,)-form, with L, = 2,

T+ 77 |€1,e-1] P T4
+725 |€1,1-2|
0 T3 + Ti5 |€2,4—1] Ts
Ry, 1= ’ 40
i1 +733 |€2,4—2] (40)
0 0 T6 + Toa |€3,4-1]
+T42 |63,t——2|7

where €; = y; — pzs—1. Thus, the starting point for our SNP conditional
density for y is a first-order vector autoregression (VAR), with innovations
that are conditionally normal and follow an ARCH process of order two:
n(y|pe, z), where Xgy 1 = Ry 1 Ry g

“Non-Gaussian” refers to the fact that the conditional density is obtained
by scaling the normal density n(z;) (the “Gaussian, VAR (1), ARCH(2)” part)
by the square of the Hermite polynomial h(z¢|z:—1), where h is a polynomial
of order K, = 4 in z, i.e.,

4 3
h(z|we-1) = AL+ Z Z As(-1)114i 71 g0 (41)

=1 i=1

Though ¢ is identified if the scale of h(z|z) is fixed, Gallant and Long [17] encountered
numerical instability in estimating SNP models with € treated as a free parameter.
Therefore, we chose to fix both ¢y and the constant term of h(z|z) at non-zero constants.
With ¢g = 0, we often found that some of the simulated observations were close to the
zeros in the density function. In such cases, the SN P scores were nearly singular and this,
in turn, caused spurious random spikes in the SM M objective function. This problem
was eliminated by setting €y = .01 in our empirical analysis. The estimated parameters of
our auxiliary model were essentially unchanged by setting € = .01 instead of at zero.

22



Finally, “Homogeneous-Innovation” refers to the fact that the coefficients in
the Hermite polynomial h(z;|z;_1) are constants, independent of the condi-
tioning information.®

With A; normalized to 1, the free parameters of the SN P model are:

v o= (A2 <13 1<) <1
71j=1,2,...,7,15,24,25,33,42). (42)

IV.C Identification of the Market Prices of Risk

In Gaussian and square-root diffusion models of Y (t), the parameters A gov-
erning the term premiums enter the A(7) and B(7) in (11) symmetrically
with other parameters, and this leads naturally to the question of under
what circumstances A is identified in ATSMs. This section argues that A
is generally identified, outside of certain Gaussian models, and clarifies the
source of this identification.

The “identification condition” in GM M estimation is the assumption that
the expected value of the derivative of the moment equations with respect
to the model parameters have full rank (Hansen [19)’s Assumption 3.4). To
simplify notation in our setting, we let z, = (y;, z,_;), and f(z:,y) denote
the auxiliary, SINP conditional density function used to construct moment
conditions. Using this notation, the rank condition for our SM M estimation
problem is that the matrix

d*log f, 4 } *log f, 4 0z)°
Do=E | L% 0 )| = E (280, 43
0 [ 8’)’8(]5' (Zt 70) 8’)’azt (Zt 70) ad)/ ( )

has full rank. The rank of Dy is at most min(dim(vy), dim(¢)), so clearly a
necessary condition for identification is that dim(y) > dim(¢), where dim
denotes the dimension of the vector.

Consider first the case where y; consists of a single yield on a 7-year
zero-coupon bond and N = 1. In this case,

y¢ = a(r) + b(1)Y?, (44)

where a(7) = —A(7)/7 and b(7) = B(7)/7. The simulated value of the state
vector Y? does not depend on ), because the simulation is done under the

8Note that the term “Homogeneous-Innovation” does not imply that the conditional
variances of the yields are constants (because of the “ARCH(2)” terms).
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actual probability measure for Y. Thus, for all ATSMs, (‘3Y;¢/8)\ =0. It
follows that identification of A using zero coupon bond yields hinges on the
dependence of the a(7) and b(7) on A.

In the Gaussian model (m = 0), b(7) depends only on the scalar K, so that
db(r)/0X = 0 and 9y /0N = Da(r)/O). Furthermore, Ayl /88y = da(T)/0,.
Both of these derivatives are state-independent. Hence, two of the columns
of 8z /8¢’ are colinear and Dy has less than full rank. We conclude that the
market prices of risk are not identified in Gaussian models estimated using
zero-coupon bond yields.

Next, consider the case where N = 1 and Y; follows a square-root diffusion
(a one-factor CI R model). Though K and X enter b(7) symmetrically as x-+A,
these parameters are separately identified. This follows from the observations
that y? /O is state-dependent; and da/ON # da/OK and 9b/OX = Ob/OK.
Furthermore, 8Y;? /0K is a stochastic process that does not asymptote to a
constant, so 8z /OK and 8z? /&) are not colinear.

Turning to the general case of estimation with /V factors and zero-coupon
bond yields, consider a model in AM,,(N). If m < N, then there are N—m >
0 “Gaussian” factors in that, conditional on the first m state variables, the
last N —m state variables are Gaussian. Following the logic of the one-factor
cases, the \’s associated with the first m factors will generally be identified.
Whether the \’s associated with the N —m “Gaussian” factors are identified
depends on the correlations among the state variables. If &g is free, then the
N —m @’s associated with the “Gaussian” factors are normalized to zero in
the canonical representation so, with N > 1 and N —m > 0, the issue 1s
whether §; and the last N — m A’s are identified. All of these parameters
can indeed be indentified. For example, if the volatility of N** state variable
depends on the first m state variables, then the b;(7),1 < ¢ < m depend on
An. Consequently, ayf/a)\N is state-dependent. On the other hand, ay? /96,
is state-independent, because &y only affects the a;(7). Thus, the derivatives
of zf with respect to d; and Ay are not colinear. However, if the §; are zero,
for m+1 < k < N, then the first-order conditions with respect to dy and Ay
will be colinear. Consequently d, and Ay are not separately identified.

If estimation is based on coupon-bond yields, then an additional source
of nonlinearity associated with the nonlinear state-variable to yield mapping
is introduced. For the case of swap yields, Duffie and Singleton [15] showed
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that this nonlinear mapping is given by

ZT:I P(ta k/Q)

(45)

where the P(t,7) = eA(D=BOY’ are the (credit-risk adjusted) zero-coupon
prices implicit in the swap market. In this case, the partial derivatives
dyr® /O and dy]? /D, are stochastic, and are not proportional to each other.
Therefore, for all ATSMs, A and &, are separately identified.
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V  Empirical Analysis of Swap Yield Curves

We estimated six ATSMs in A (3) and A;(3) and report the overall goodness-
of-fit, chi-square tests for these models in Table I. Both the Chen and BDF'S
models, denoted by A;(3)pprs and Ag(3)chen respectively, have large chi-
square statistics relative to their degrees of freedom. In contrast, the cor-
responding mazimal models, denoted by A, (3)aas, for m = 1,2, are not
rejected at conventional significance levels. However, the improved fits of of
A1 (3)rraz (compared to A; (3)pprs) and Ay (3)arex (compared to Ay (3)Chen)
were achieved with six and eight additional degrees of freedom, so we were
concerned about overfitting. This concern was reinforced by the relatively
large standard errors for most of the estimated parameters in the Maz mod-
els, displayed in the second columns of Tables II and III. Therefore, we also
present the results for the two intermediate models, A;(3)ps and Ay (3)ps
(the DS indicating that these are our preferred models). The DS models are
not rejected at conventional significance levels, have fewer parameters than
the Maz models, and most of the estimated parameters are statistically sig-
nificant at conventional levels. Therefore, we will focus primarily on the DS
models in subsequent discussion.

The key reason that the DS models do a better job “explaining” the
swap dynamics, in terms of x? statistics, than the A; (3)gprs and Ay (3)chen
models is that the former allow a more flexible correlation structure of the
state variables. In the A;(3) branch, the A;(3)gprs model only allows a
nonzero conditional correlation between the short rate and its stochastic
volatility (o, # 0). The A;(3)ps model also allows the short rate and
its stochastic central tendency to be conditionally correlated (o, # 0 and
oor # 0). (Recall, from (26), that relaxing these constraints affects the
diffusion for both #(t) and 7(¢).) In the Ay(3) branch, the As(3)chren model
assumes that r(t), 6(¢), and v(t) are all pairwise, conditionally uncorrelated.
In contrast, the model Ay(3)ps allows the short rate to be conditionally
correlated with its stochastic volatility (o,, # 0), and allows the stochastic
volatility to influence the conditional mean of the short rate (k,, # 0) and
its stochastic central tendency (kg, # 0).°

Moreover, in both branches, it is the introduction of negative conditional
correlations among the state variables that seems to be important (see the

9Though we relax three constraints, this amounts to two additional degrees of freedom,
because kg, and k,, are controlled by the single parameter 21 in the AY representation,
given the constraint §; = 0. See (73) - (74).
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third columns of Tables IT and IIT). Such negative correlations are ruled
out a priori in the CSR models (family A3(3) in Section III). Hence, these
findings support our focus on the branches A; (3) and A;(3) in attempting to
describe the conditional distribution of swap yields.

Figure 2 displays the t-ratios for testing whether the fitted SIN P scores of
the auxiliary model (see Section IV), computed from the models A; (3)pprs,
A1 (3)ps, A2(3)chen, and Az (3)ps, are zero. For a correctly specified model
(and assuming that asymptotic approximations to distributions are reliable),
the sample scores should be small relative to their standard errors. The
graphs for models A; (3)pprs and Az (3)chen show that about half of the
fitted scores have large-sample t-ratios larger than 2. In contrast, only two
of the t-ratios are larger than 2 for model A; (3)ps, and none are larger than
2 for model Ay (3)ps.

The first 12 scores of the auxiliary model, marked by “A” near the hori-
zontal axis, are associated with parameters that govern the non-normality of
the conditional distribution of the swap yields. The second 12 scores, marked
by “U”, are related to parameters describing the conditional first moments,
and the last 12 scores, marked by “7”, are related to the parameters of the
conditional covariance matrix. A notable feature of the ¢-ratios for the indi-
vidual scores is that they are often large for models A; (3) sprs and Az (3)chen
for all three groups A, ¥, and 7. Thus, the additional nonzero conditional
correlations in the DS models help explain not only the conditional second
moments of swap yields, but also their persistence and non-normality as well.

The estimated values of the parameters for the Ar representations of the
models are displayed in Tables II and III. Though perhaps not immediately
evident from the Ar representations, the DS models maintain the constraint
from the A;(3)pprs and Az (3)chen models that 6, = 0. That is, in the AY
representation, the instantaneous riskless rate is an affine function of only
the second and third state variables. The test statistics in Table I suggest
that this constraint is not inconsistent with the data.

The estimates of the mean reversion parameters (u, v, k) of the state vari-
ables (v(t), 8(t), 7(t)) are (.37,.23,17.4) and (.64, .10, 2.7) for models A; (3)ps
and Ay (3)ps, respectively. As in previous empirical studies (e.g., Balduzzi,
Das, Foresi and Sundaram [7] and Andersen and Lund [2]), the “central ten-
dency” factor 0(t) shows much slower mean reversion (smaller ) than the
rate at which gaps between § and 7 are closed in the short rate equation ().
Put differently, in model A; (3) ps, () reverts relatively quickly to a process
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0(t) that is itself reverting slowly to a constant long-run mean 6.1 In both
DS models, the “volatility” factor v(t) has the fastest rate of mean reversion
(w)-

An important cautionary note at this juncture is that comparisons across
models of mean reversion coefficients (or, more generally, coefficients of the
drifts) may not be meaningful even if the models are nested. The reason is
that changing the correlations among the state variables can be thought of as
a “rotation” of the unobserved states Y (¢). Therefore, the meaning of labels
like “central tendency” or “volatility” in terms of yield curve movements may
not be the same across models. To illustrate this point, consider the models
in A;(3). In the model A;(3)pprs, the correlation between changes in 6(t)
and changes in the ten-year swap rate is .98. The close association between
the long-term swap rate and central tendency is intuitive, since r(t) mean
reverts to A(t). Nevertheless, this interpretation is not invariant to relaxation
of the constraints oy, = 0 and 0,9 = 0, which gives model A; (3)ps. In the
latter model, changes in (t) are most highly correlated with changes in the
two-year swap rate (correlation = .95). This explains the larger value of v
(faster mean reversion of §(t)) in model A (3)ps than in model A (3)pprs-
The conditional distributions of the two- and ten-year swap rates are not the
same.*!

Does the evidence recommend one of the intermediate models, A (3)ps
or Ay(3)ps, over the other? Ultimately, the answer to this question must de-
pend on how the models will be used (e.g., risk management, pricing options,
etc.). Even within the term structure context, these models are non-nested
so formal assessments of relative fit are non-trivial. However, we offer several
observations that suggest that, focusing on term structure dynamics within
the affine family, model A, (3)ps provides a somewhat better fit. Consider
first the properties of the time series of pricing errors. Table IV presents
the within-sample means, standard deviations, and first-order autocorrela-
tions of the pricing error for the yields on swaps with the three intermediate
maturities 3, 5, and 7 years, none of which were used in estimating the pa-
rameters.’2 Model A; (3)ps has notably smaller average pricing errors than

10This interpretation does not hold exactly in model A;(3)ps, because ., is nonzero.

UGimilar observations apply to the volatility factor v(¢). In both models, v(t) is well
proxied by a butterfly position that is long ten-year swap and LIBOR contracts and short
two-year contracts. However, the weights in these butterflies turn out to be quite different
across the models.

12These pricing errors were computed by inverting the models for the implied values
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model Ay (3)ps, though both models have a tendency to imply higher yields
than what we observed.

Second, the feedback effect in the drift due to k., # 0 and kg, # 0
in model Ay(3)ps is also accommodated by model A;(3)ps. However, the
results for model A, (3)ps suggest that nonzero values of these x’s are not
essential for fitting the moments of swap yields used in estimation, once oy,
and o,y are allowed to be nonzero.

Related to this point, within model Ay (3)ps, the admissibility condition
precludes relaxation of the constraint oy, = 0, because of the richer for-
mulation of conditional volatility. Admissibility also requires that xg, (and
therefore k,,) be negative. Consequently, the stochastic central tendency and
the stochastic volatility must have a positive unconditional correlation. Yet,
the results from Duffie and Singleton [15] suggest that, in order to explain
the two-year and ten-year swap yields, the stochastic central tendency and
the stochastic volatility factors should be negatively correlated. More pre-
cisely, Duffie and Singleton [15] estimated an ATSM of swap yields with two
(N = 2) independent square-root diffusions as state variables. The implied
state variables should be approximately uncorrelated if their model is cor-
rectly specified.’® In fact, the sample correlation between the implied Y ()
and Y,(¢) is approximately -.5.

Fourth, we also examined the shapes of the implied term structures of
(unconditional) swap yield volatilities. The solid, uppermost line in Fig-
ure 3 displays the historical sample standard deviations of differences in (log)
yields. The other lines display the sample variances computed by simulat-
ing long time series of swap yields, using the estimated parameter values,
and then computing sample standard deviations with the simulated data.
Notably, the term structure of historical sample volatilities is hump-shaped,

of the state variables, using the six-month and two- and ten-year swap yields, and then
computing the differences between the actual and model-implied swap rates for the inter-
mediate maturities, with the latter evaluated at the implied state variables.

3Duffie and Singleton [15] assumed that the two- and ten-year swap yields were priced
perfectly by their two-factor model. Thus, using their pricing model evaluated at the
maximum likelihood estimates of the parameters, implied state variables were computed
as functions of these two swap yields.

14%We stress that the model-implied volatilities were computed by simulation and not
from yields computed with the implied state variables. Thus, Figure 3 displays the pop-
ulation volatilities implied by the models, conditional on the estimated parameter values.
We have found that using implied swap yields to compute sample moments often leads to
substantially biased estimates the population values.
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with a peak around two years. Hump-shaped volatility curves can be induced
in ATSMs either through negative correlation among the state variables,'® or
by hump-shaped loadings B(7) on Y (¢) in (11). Models in A;(3) and Ay(3)
can exploit both of these mechanisms to match historical volatilities (whereas
models in As (3) only have the latter mechanism'®). All of the model-implied,
volatility term structures in Figure 3 have a hump. However, model A; (3)ps
appears to fit the volatility of swap yields much better than model A;(3)ps.

Finally, when we computed the implied yield curves from model A3 (3)ps,
we found that there were often pronounced “kinks” at the short end of the
yield curve, whereas those implied by model A; (3) ps were generally smooth.

We were puzzled by the frequency of kinks in yield curves, the large
average pricing errors, and the underestimation of yield volatilities implied
by model Ay (3)ps, especially given its small goodness-of-fit statistics. The
preceding discussion of the constraints on the conditional correlations implied
by the admissibility conditions, together with inspection of the form of the
risk-neutral drifts, lead us to the following conjecture: The market prices of
risk were set, in part, to replicate the effects of a non-zero oy, (which cannot
be done directly) at the expense of sensible shapes of implied yield curves and
smaller pricing errors. To explore the validity of this conjecture, we simply
reduced the market prices of risk by 20% in absolute value in model Ay (3)ps
and found that the implied yield curves were essentially free of kinks and,
equally importantly, seemed to line up well with the historical yield curves.!”

15The intuition for this lies in the interplay between the negative correlations among
the shocks to the risk factors and different speeds of mean reversion of the state variables.
For expository ease, consider the case of two factors where the first factor has a faster
rate of mean reversion (larger ) than the second. In affine models, x plays a critical
role in the rate at which the factor weights (the B(r) in (13)) tend to zero as maturity
7 is increased. At short maturities, the volatilities of both factors will typically affect
overall yield volatility. As 7 increases, the influence of the first factor will die out at
a faster rate than that of the second factor. Thus, for long maturities, yield volatility
will be driven primarily by the second factor and volatility will decline with maturity. A
hump can occur, because the negative correlation contributes to a lower yield volatility
at the shorter maturities. As maturity increases, the negative contribution of correlation
to yield volatility declines as the importance of the first factor declines. That models
with independent, mean-reverting state variables cannot induce a hump can be seen from
inspection of the loadings implied by the CIR model.

16These observations provide further motivation for our interest in the branches A (3)
and Az (3).

17The criterion function used in estimation does not impose a penalty for kinks in spot
curves or choppy forward-rate curves. Such penalties could, of course, be introduced in
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There is also evidence that all of the models examined fail to capture some
aspects of swap yield distributions. In particular, in Table IV, columns 5 and
6, we report the average pricing errors for dates when the slope of the swap
curve was in the lowest (“Q-Invert”) and highest (“Q-Steep”) quartiles of
the historically observed slopes.'® In the case of model A; (3)pg, the average
pricing errors are larger when the swap curve is steeply upward sloping than
when it is inverted. The reverse is true for model Ay (3)ps. This suggests
that there may be some omitted nonlinearity in the these affine models."
Also, though the standard deviations of the pricing errors are small relative
to those of the swap yields themselves, the errors are highly persistent (see
column 4 of Table IV). Such persistence points to some misspecification of
the model for intermediate maturities.

practice. Nor does the criterion function force the means of the swap rates observed
historically and simulated from the models to be the same.

18GSlope is the difference between the ten- and two-year swap yields.

19Tn a one-factor setting, Ait-Sahalia [1] found evidence for non-linearity in the drifts
of short rates. Boudoukh, Richardson, Stanton, and Whitelaw [8] provide evidence for a
nonlinear relationship between slope and level in a two-factor setting.
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VI Conclusion

In this paper we presented a complete characterization of the admissible and
identified affine term structure models, according to the most general known
sufficient conditions for admissibility. For N-factor models, there are N + 1
non-nested classes of admissible models. For each class, we characterized
the “maximally flexible” canonical model and the nature of the admissible
factor correlations and conditional volatilities that these canonical models
can accommodate. We then applied this classification scheme to the family
of three-factor affine term structure models in order to characterize the over-
identifying restrictions implicit in several of the more popular affine term
structure models in the literature.

A thorough empirical investigation of two of the four branches of the
three-factor family of affine models was carried out to evaluate the goodness-
of-fit of models with the central tendency and volatility of the short rate
following independent affine diffusions. We found that correlation restrictions
implicit in these models were strongly rejected by the data. One reason this
may not have been apparent from previous studies is that empirical studies
of affine models of the short rate have typically used data on the short rate
alone to estimate multi-factor models. In contrast, we fit our models using
data on bonds with three different maturities.

Finally, the empirical evidence suggests that the combinations of correla-
tion and volatility specifications allowable within the affine family of models,
given the requirements of admissibility, do not fully describe the conditional
distributions of swap rates. In particular, further exploration of the pa-
rameterization of the risk premiums seems warranted along two dimensions.
First, within the family A;(3), the evidence suggests that many features of
the distributions of yields would be better fit with smaller market prices of
risk. Future research will explore what is lost in terms of fit by reducing A.
And within both of the families A; (3) and A (3), it would be informative to
explore nonlinear specifications of the risk premiums. So long as the state
variables follow affine diffusions under the risk-neutral distribution, nonlinear
risk premiums can be handled directly within the valuation and estimation
frameworks exploited in this paper.
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A Appendix to Section III

The main purpose of this appendix is to provide some technical details to
the discussion in Section III. The emphasis is on intuitive understanding
of the issues rather than on formal proofs. Toward this end, the appendix
does two things. First, it explains why our canonical model satisfies the
known (minimal) sufficient conditions for admissibility of an affine diffusion
and describes the normalizations imposed to achieve a just identified model.
More formal treatments of these issues for affine asset pricing models are
presented in Duffie and Kan [13] and Dai, Liu, and Singleton [11]. Second,
for the three-factor models in A;(3) and Ay(3) discussed in Section III, we
establish the equivalence of the canonical, AY, and Ar representations.

A.1 Invariant Transformations

In addressing both of these issues we will have frequent need to transform
and rescale the state and parameter vectors in ways that leave the instan-
taneous short rate, and hence bond prices, unchanged. We refer to such
transformations as “invariant transformations.” More precisely, consider an
ATSM with state vector Y (¢), Brownian motions W (¢), and parameter vector
¢ = (60,04, K,0,%, {;, B : 1 < i < N} A). A transformation of the model
is represented by an operator T such that 7Y (t), TW(t) and T¢ are the
state vector, the vector of Brownian motions, and the parameter vector, re-
spectively, for the transformed model. Invariant transformations are defined
as follows:

Definition A.1 (Invariant Transformation) An invariant transformation
T of an N-factor ATSM is an arbitrary combination of affine transformations
Ta, diffusion rescalings 7p, Brownian motion rotations 7o, and permutations
Tp, such that,

o IfT =Ta, then

TY(t) = LY (t) +9, TW(t) = W(t),
T¢ = (6 — 6,L7"9,L'"16,, LKL™", 9 + LO, LY,
{ai - /H'L{L_llga Ll_lﬁi 01 S 7’ S N}7 A)y

where L is an N x N non-singular matriz, and ¥ is an N X 1 vector.
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o If T =7Tp, then

TY(t) =Y (), TW(t) =W(),
T¢ - (5076y7lc7®72D_1a {D%azaDzzzﬁl .1 S i <£ N}yD)\)7

where D is an N x N non-singular diagonal matriz.

o IfT =170, then

TY (1) = Y(t), TW(t) = OW (1),
T¢ — (50a5y7’Ca@’ZOT7{aiaﬂi 1 _<._ ? S N},()A),

where O is an Nx N orthogonal matriz (i.e., O~' = OT) that commutes
with S(t).

o If T =7Tp, then

TY(t) = PY(t), TW(t) = PW(t),
T¢ = (Pdy, P5,, PKPT, PO, PLPT, Pa, PBPT, P)),

where P 1s an N x N permutation matriz.

Invariant affine transformations 7, are generally possible, because of the
linear structure of ATSMs and the fact that the state variables are not ob-
served. For instance, if r(¢) = d + 4,Y(t), then an example of a T4 is a
transformation of Y (t) — LY (t) and 6, — L~V'6, with L a non-singular
matrix. A diffusion rescaling 7p rescales the parameters of [S(t)];; and the
i entry of A by the same constant. Such rescalings may be possible, be-
cause only the combinations £S5 (¢)X' and £.5(t) A enter the pricing equations
(11), (12), and (13). A Brownian motion rotation 7o takes a vector of unob-
served, independent Brownian motions and rotates it into another vector of
independent Brownian motions. Finally, a permutation 7p simply reorders
the state variables which has no observable consequences. It is easily checked
that any two ATSMs linked by an invariant transformation are equivalent in
the sense that the implied bond prices (including the short rate) and their
distributions are exactly the same.
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A.2 Admissibility of the Canonical Model

For an arbitrary affine model, deriving sufficient conditions for admissibility
is complicated by the fact that admissibility is a joint property of the drift
(K and ©) and diffusion (£ and B) parameters in (6). A key motivation
for our choice of canonical representations is that we can treat the drift and
diffusion coefficients separately in deriving sufficient conditions for admissi-
bility. Therefore, verification of admissibility is typically straightforward. In
this appendix, we provide sufficient conditions for our canonical represention
of A,,,(N) to be well-defined.

The canonical representation of A, (N) has the conditional variances of
the state variables controlled by the first m state variables:

Su(t) = Yi(t), 1<i<m, (46)
Sjj(t) = Gy + Z[ﬂj]kYk(t)a m+1 S] < N, (47)
k=1

where a; > 0, [3;]; > 0.2 Therefore, as long as Y2(t) = (Y1,Y,..., Yn)'

is non-negative with probability one, the canonical representation of Y'(¢) =

(Y®' (1), YP' (), where YP(t) = (Yit1, Y2, - - -, Yn), will be admissible.
In general, Y'B follows the diffusion

dYB(t) = KB(O — Y (£))dt + SB/S(H)dW (1). (48)

To assure that YB(t) is bounded at zero from below, the drift of Y®(t) must
be non-negative and its diffusion must vanish at the zero boundary. Sufficient
conditions for this are:

Condition 1 KPP = 0, (v-m),
Condition 2 ¥PP = Omx(N—m)>
Condition 3 ¥,; =0, 1 <1 #j <m,
Condition 4 K;; <0, 1<i#7<m,

Condition 5 KBBOB > 0.

20 Any model within A, (V) can be transformed to an equivalent model with this volatil-
ity structure through an invariant transformation.
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Condition 1 is imposed because otherwise there would be a positive prob-
ability that the drift of Y® at the zero boundary becomes negative (since
YD (t) is not bounded from below). Conditions 2 and 3 are imposed to pre-
vent YB(t) from diffusing across zero due to non-zero correlation between
YB(¢) and YP(¢). Condition 4 (same as (21)) is imposed because otherwise,
with YB > 0, there is a positive probability that large values of Y;(t) will
induce a negative drift in Y;(¢) at its zero boundary, for 1 < ¢ # j < m.
Together, Conditions 4 and 5 assure that the drift condition

K:i©i + i Kij(0; = Yj(t)) = 0 (49)

J=Lj#i

holds for all ¢, 1 <1 < m.

Under Conditions 1 — 5, the existence of an (almost surely) non-negative
and non-explosive solution to our canonical representation of (6) is assured
because its drift and diffusion functions are continuous and satisfy a growth
condition (sec Ikeda and Watanabe [21], Chapter IV, Theorem 2.4). The
uniqueness of the solution is assured because the drift satisfies a Lipschitz
condition and the diffusion function satisfies the Yamada condition (see The-
orem 1 of Yamada and Watanabe [27]).2! The state space for the solution is
R” @ RY—™.

+

Finally, Condition 5 implies that the zero-boundary of Y® is at least
reflecting. This is because, under Conditions 1 — 3, the sub-vector Y®(t) is
an autonomous multi-variate correlated square-root process governed by

dYB(t) = KBB(O8 — YB(t))dt + /SBB(t)dWP(t). (50)

If the off-diagonal elements of KB are zero, then (50) is an m-dimensional
independent square-root process. That the zero boundary is reflecting is
trivial in this case. Under Condition 4, the drift of the correlated square root
process dominates that of the independent square-root process. By appealing
to Lemma A.3 of Duffie and Kan [13], we conclude that the zero-boundary
for the correlated square-root process is at least reflecting.

21To appeal to Yamada and Watanabe [27], we note that, without loss of generality, ¥
may be normalized to the identity matrix (see Section A.3). This normalization is imposed
in our canonical model.

22Condition 5 may be replaced by the stronger condition KBBOB > 1/2, as in Duffie
and Kan [13]. The stronger condition, under which the zero boundary for YB is entrance,
is the multi-variate generalization of the Feller condition.
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A.3 Normalizations on The Canonical Representation

The preceding restrictions assure admissibility, but the resulting model is
econometrically underidentified. The canonical representation in Definition
IT1.1 results from one particular set of normalizations to achieve a just-
identified model. The normalizations imposed on the canonical represen-
tation of branch A, (N) are as follows:

Scale of the State Variables B; =1,1<:<m,a; =1, m+1<: <N,
and 3; = 1, 1 <4 < N. Fixing the scale of Y (¢) in this way allows 4,
to be treated as a free parameter vector.

Level of the State Vector o; = 0,1 <:<m, ©; =0m+1 <¢ < N.
Fixing the level of the state vector in this way allows dy and ©® to be
treated as free parameters.

Inter-dependencies of the State Variables Three considerations arise:

e The upper-diagonal blocks of K, ¥, and B, which control the
inter-dependencies among the elements of Y'® are not separately
identified. This indeterminacy is eliminated by normalizing the
upper-diagonal block of B to be diagonal.

o The lower-diagonal blocks of X and X, which determine the inter-
dependencies among the elements of Y'°, are not separately iden-
tified. This indeterminacy is eliminated by normalizing the lower-
diagonal block of ¥ to be diagonal.

e The lower-left blocks of K and X, which determine the inter-
dependencies between the elements of YB and YP, are not sepa-
rately identified. We are free to normalize either XP® or £P® to
zero. We choose to set ©PB = 0 in our canonical representation.?®

Signs The signs of 6, and Y (¢) are indeterminate if B is free. Normalizing
the diagonal elements of the upper-diagonal block of B to 1 has the
effect of fixing the sign of Y2, and consequently ©; and 6;, 1 < i < m.

23Starting from a model with non-zero TDB the affine transformation with

Lnxm 0m><(N-m) )
L=
( —2?1\113_m)><m I(N—m)x(N—m)

transforms the model to an equivalent model with ¥PB = O(N—m)xm-
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The sign of YP is determined once we impose the normalization that
6; >0,m+1<i<N.

Brownian Motion Rotations The possibility that a Brownian motion ro-
tation To can be applied to obtain an equivalent model gives rise to a
more subtle form of under-identification. For the case of m = 0, not all
elements of /C are identified. An orthogonal transformation can make
K either upper or lower triangular. Second, even in cases with m # 0,
if S; and S;; are proportional for ¢ # j, then the parameters K;; and
Kj; are not separately identified. One of them may be normalized to
Zero.

A.4 Generating A, (N) from the Canonical Represen-
tation

These normalizations ensure that the only invariant transformation that
takes a canonical model to another canonical model (with the above restric-
tions and normalizations preserved) is the identity transformation. However,
starting with the canonical representation of A, (), we can generate an
infinite number of equivalent “maximal” models by application of invariant
transformations with coefficients that are either known constants or functions
of the parameters of the canonical model. Thus, the canonical representation
is the basis for an equivalence class of maximal ATSMs. And we can alterna-
tively define A, (N) as the set of admissible models that are econometrically
nested within one of the maximal models in this equivalence class. As shown
in Section III, all of the extant ATSMs examined in the literature reside in
one of these A,, (N). Therefore, our classification scheme allows us to derive
the most flexible, admissible generalizations of extant models.

A.5 Alternative Representations

In the canonical representation, the admissibility conditions are intuitive and
easily verified. In practical applications, however, it is often convenient to
work with alternative but equivalent representations. The following subsec-
tions derive the equivalent AY and Ar representations of the AM,(3) and

AM>(3) models discussed in Section III.
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A.5.1 Equivalent Representations of AM;(3) Models

As mentioned in Section IIL1.B, (27 - 29) is an equivalent AY representation
of the canonical representation.

The Ar form of this maximal model is obtained by the following steps.
Starting from (27 — 29), we apply the affine transformation (74 : (L, 9)) with

[53]1(1 =+ 0'23)2 0 0 0
L= 0 q 0 y 9= (50 + 6191 5 (51)
5 11 5

and the diffusion rescaling (7p : D) with

[ﬂg,]l(l -+ 0'23)2 0 0
D= 0 g 0 : (52)
0 0 1+ 093

where ¢ = (k33 — ko2)/k33. Then, re-labeling the new state variables as v(t),
0(t) and r(t) respectively, and re-defining the free parameters, we obtain (26),
where

(1, v, "E) = (K11, ko2, K33), 593
(7,0) = ([Bshor(1 +023)2,50+5191), 54
1<) = (VIBsh(1+02)% Ve o), 55

O = (61 + 00 +03)/[B3],/(1 + 023)?, 56
Fro] = O1(k11 — Kas)/[Bs] /(1 + 023)?, a7
0oy = qon/[Bs],/(1 + 023)7,

[}
e

q o33/ (1 + 093),

(1+032)/q,

¢* [62],/[Bs), /(1 + 023)%,

= a3(l + o),

= ([Bs],(1 4 023)* A1, gAa, (1 + 023) As).

Finally, it is easily verified that the the constraints on the AM;(3) canon-
ical model that give the BDF'S model are

Q
®
|

o
=}

Q
3

N AN TN TN N TN TN N TN TN TN
D ot
— co

N N v e e e e S S S S

o}
%)

(=]
[\)

HS
Il

()\v; )\95

>
|

61 =0, (021, 093,032) = (0,0,0), a3 = 0, B12 = 0. (64)
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A.5.2 Equivalent Representations of AM;(3) Models

The AY representation (32) — (34) can be transformed into the canonical
representation by diagonalizing ¥, normalizing [#]o = 1 so that &, is free,
normalizing a3 = 1 so that &3 is free, and normalizing [3,]; = 1 so that [83],
is free.

To transform this AY model into its Ar representation we apply the affine
transformation

1 00 0
L= 0 ¢go0],9={ 0], (65)
6 1 1 5o

coupled with a diffusion rescaling that sets the diagonal elements of ¥ to 1:

100
D=|0q 0], (66)
00 1

where ¢ = (k33 — K22 — 01K12)/k33. The resulting Ar model is (31), where

( Uy H) = (/‘ﬂu, K22, f‘633) (67)
(0,0) = (61,962), (68)
(n,¢Q) = \/_ﬁT \/ ¢ [B2],) (69)

T = 0p+ 06,01 + 0y, (70)
Koo = Ki2/4, (71)
Koy = 4K, (72)
Kpy = Ko1 =+ 01(K11 — K33), (73)
o = (031 +61), (74)
o9 = (1+032)/q, (75)
o, = O3, (76)
B = [53]2/% (77)
s Aas Ar) = (A1, @02, As). (78)

In order to transform this AY model in Ay(3) to a sensible Ar model,
we must require that ¢ be positive. This is because if ¢ is negative, then the
short rate would be mean-reverting to a central tendency factor which is the
negative of a CIR process. This does not make sense. Suppose 61 = 0, as in
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the Chen model, then ¢ > 0 implies that k33 > kg2, so the central tendency
has a slower mean reversion than the volatility factor, which makes sense.
A model with ¢ < 0 can not nest the Chen model. The requirement that a
more general model nest the Chen model puts an implicit restriction on how
general the nesting model can be. This creates a possibility that the most
general model estimated from the data may not nest the Chen model (i.e.,
the maximal model may have the property that ¢ < 0).
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