
An Adaptive Evolutionary Approach to Option Pricing via
Genetic Programming

N. K. Chidambaran, Chi-Wen Jevons Lee, and Joaquin R. Trigueros*

November 1998

Please do not quote without permission

* Chidambaran is visiting at NYU, on leave from Tulane. Lee holds joint appointments at Tulane and
HKUST. Trigueros is at Tulane. We are grateful for the comments from participants at seminars at Tulane
and HKUST, the 1998 FMA meetings, and the 1998 Conference on Computational Intelligence for
Financial Engineering.

Correspondence:
N. K. Chidambaran, 44 West 4th Street, MEC 9-160, New York, NY 10012.
Phone: (212) 998-0318; Fax: (212) 995-4233; E-mail: chiddi@stern.nyu.edu

1

An Adaptive Evolutionary Approach to Option Pricing via
Genetic Programming

Abstract

We propose a methodology of Genetic Programming to approximate the relationship
between the option price, its contract terms and the properties of the underlying stock price.
An important advantage of the Genetic Programming approach is that we can incorporate
currently known formulas, such as the Black-Scholes model, in the search for the best
approximation to the true pricing formula. Using Monte Carlo simulations, we show that the
Genetic Programming model approximates the true solution better than the Black-Scholes
model when stock prices follow a jump-diffusion process. We also show that the Genetic
Programming model outperforms various other models in many different settings. Other
advantages of the Genetic Programming approach include its robustness to changing
environment, its low demand for data, and its computational speed. Since genetic programs
are flexible, self-learning and self-improving, they are an ideal tool for practitioners.

The Black-Scholes model is a landmark in contingent claim pricing theory and has found wide

acceptance in financial markets. The search for a better option pricing model continues, however,

as the Black-Scholes model was derived under strict assumptions that do not hold in the real

world and model prices exhibit systematic biases from observed option prices. While many

extensions and alternative models have been suggested, none seems to be complete (Rubinstein,

1997). We propose a new methodology of Genetic Programming for better approximating the

elusive relationship between the option price and its contract terms and properties of the

underlying stock price. This method requires minimal assumptions and can easily adapt to

changing and uncertain economic environments.

Many researchers have attempted to explain the systematic biases of the Black-Scholes

model as an artifact of its assumptions.1 The most often challenged assumption is the normality of

stock returns.2 Merton (1976) and Ball and Torous (1985) propose a Poisson jump-diffusion

returns processes. French, Schwert and Stambaugh (1987) and Ballie & DeGennaro (1990)

1 Black-Scholes pricing biases have been related to volatility, strike price, time to maturity, volume and
leverage. Black and Scholes (1972) and Galai (1977) show that it is possible to make excess returns by
buying "undervalued" (relative to the Black-Scholes price) and selling "overvalued" options. Mac Beth and
Merville (1979) find that Black-Scholes overprices out-of-the-money and underprices in-the-money
options. Rubinstein (1985) finds the same pricing biases as Mac Beth and Merville (1979) in the first half
of his data set and the opposite biases in the second half.
2 Normality of stock returns has been repeatedly rejected. Indeed, Kim and Kon (1994) have ranked
candidates for return distributions and found normality to be the least likely. Their rankings are: 1)
Intertemporal dependence models (ARCH, GARCH), 2) Student t, 3) Generalized mixture of normal
distributions, 4) Poisson jump, and 5) Stationary normal.

2

advocate GARCH (Bollerslev 1986) processes.3 While closed-form solutions for the option price

cannot be obtained for all these models, pricing formulas can be obtained numerically.

The difficulty in finding an analytical closed-form parametric solution has also led to

non-parametric approaches. Rubinstein (1997) suggests that we examine option data for the

implied binomial tree to be used for pricing options. Chidambaran and Figlewski (1995) use a

quasi-analytic approximation based on Monte Carlo simulation. Hutchinson, Lo and Poggio

(1994) build a numerical pricing model using neural networks. Our approach, using Koza’s

(1992) Genetic Programming to develop an adaptive evolutionary model of option pricing, is also

data driven and non-parametric. We show that this method is well suited to the task and offers

some advantages over learning networks. In particular, it can operate on small data sets,

circumventing the large data requirement of the neural network approach noted by Hutchinson,

Lo, and Poggio (1994).

The philosophy underlying Genetic Programming is to replicate the stochastic process by

which genetic traits evolve in offspring, through a random combination of the genes of the

parents, in the biological world. A random selection of equations of the option contract terms and

basic statistical properties of the underlying stock price will have among them some elements that

will ultimately make up the true option pricing formula. By selectively breeding the equations,

presumably these elements will be passed onto future generations of equations that can price

options more accurately. The essence of our method is the selection of equation components, i.e.

genetic traits, which parents pass on to the next generation. Since it is impossible to determine

which element is the best ex-ante, our focus is on choosing parents that seem to be the fittest.

The genes to be propagated to the next generation are thus selected on the basis of the pricing

errors of the equations.

The method of selecting equations, with their embedded “genetic traits,” to serve as

parents for the next generation can have important implications for model efficiency. In this

paper, we examine six alternative parent-selection methods: Best, Fitness, Fitness-overselection,

Random, Tournament with 4 individuals and Tournament with 7 individuals. These methods vary

in the degree to which they preserve randomness as new generations evolve. Finding the most

efficient process for selecting the best among alternative genetic traits is an empirical issue. We

find that the Fitness-overselection method seems to offer the best results for option pricing. We

3 Heston (1993) finds that a pricing formula derived under the assumption that the returns process is log-
gamma outperforms Black-Scholes.

3

also explore the effect of varying other model parameters, such as the properties of the data set

required to train the genetic programs, on model efficiency.

An important advantage of the Genetic Programming approach over other numerical

techniques is its ability to incorporate known approximate solution into the initial "gene pool" to

be used in evolving future generations. In this paper, we include the Black-Scholes model in the

initial gene pool. This approach can reach the true pricing model more efficiently as it begins the

search from a locally optimum solution. We illustrate how this approach quickly adapts the

Black-Scholes model to a jump-diffusion process, where the Black-Scholes assumption of returns

normality does not hold and for pricing options in the real world. We find that the Genetic

Programming formulas beats the Black-Scholes equation in 9 out of 10 runs when the underlying

stock prices are generated by a jump-diffusion process and in 10 out of 10 runs when we apply

the analysis to the S&P Index options. The method also outperforms the Black-Scholes model for

four out of five stocks in our sample.

The paper proceeds as follows. In Section I, we introduce genetic programming and

highlight its advantages over other non-parametric methods. In Section II, we assess the ability

of Genetic Programming in learning the Black-Scholes model, given data that are simulated

according to the assumptions of the Black-Scholes world. In Section III, we construct a non-

Black-Scholes world and show how Genetic Programming can adapt the Black-Scholes model to

its specifications. In Section IV, we show how Genetic Programming adapts Black-Scholes to the

real world. In Section V, we conclude.

I. Genetic Programming – A Brief Overview

Genetic Programming is a technique that applies the Darwinian theory of evolution to

develop efficient computer programs.4 In this section we describe the mechanics of the approach

and the various ways to improve its efficiency.

4 Genetic Programming is an offshoot of Genetic Algorithms. Genetic Algorithms have been used to
successfully develop technical trading rules by Allen and Karlajainen (1993) for the S&P 500 index and by
Neely, Weller, and Dittmar (1997) for foreign exchange markets. Genetic Programming has also been used
in heterogeneous multi-agent economies by Marimon, McGrattan and Sargent (1990), in multi-agent
financial markets by Lettau (1997), and in multi-agent games by Ho (1996).

4

A. Basic Approach

We use a variant of Genetic Programming called Genetic Regression, where the desired

program is a function that relates a set of inputs such as share price, option exercise price, etc. to

one output, the option price. The set of data on which the program operates to determine the

relationship between input parameters and the options price is called the training set. The set of

data on which the resulting formula is tested is called the test set. The procedure of the basic

approach is described as follows.

• Given a problem to be solved and a training set of matched inputs and outputs, a set of

possible formulas is randomly generated. These formulas are functions of some or all of the

independent variables and randomly generated constants. The four trees in Figure 1 shows

how a formula can be encoded as a tree of components. Each formula is an individual and

the set of individuals is called the population. The size of the population is held constant and

is a control variable for optimizing the modeling process.

• Every individual in the population is evaluated to test whether it can accurately price options

in the training data set. We assign a fitness measure to select the surviving gene. A smaller

mispricing for the training data set indicates a better fit.

• Based on a fitness measure, a subset of the population is selected to act as the parents for the

next generation of the population of formulas.

• A pair of the parents generates a pair of offspring. Components of the parent formulas are

crossed to generate offspring formulas. A random point is selected in each parent tree. The

sub-trees below that random point are switched between the two parent formulas. This

operation creates a new pair of individuals, the offspring. Figure 1 shows a pair of parents

and their offspring after crossover. It is possible that no crossover is performed and the

parents themselves are placed in the new population (a clone). The process of selection and

crossover is repeated until the new generation is completely populated.

• The individuals in the new population are tested to gauge their performance in pricing

options. The steps above are repeated for a pre-specified number of times, or generations.

Evolutionary pressure in the form of fitness-related selection combined with the crossover

operation eventually produces populations of highly fit individuals. We keep track of the

best-fit individual found throughout this process and set it as the solution to the option pricing

problem.

Insert Figure 1 Here

5

B. Parent Selection Criteria

The method of selecting parents for the next generation can affect the efficiency of

genetic programs. We examine six different selection methods: Best, Fitness, Fitness-

overselection, Random, Tournament with 4 individuals and Tournament with 7 individuals.

These methods represent various attempts to preserve a degree of randomness in the evolutionary

process.

In the Best method, individuals are ranked in terms of their fitness, ascending in the order

of magnitude of their errors. The individuals with the smallest errors are thus picked to serve as

parents of the next generation. In the Fitness method, individuals are selected randomly with a

probability that is proportional to their fitness. In the Fitness-overselection method, 400

individuals are classified into two groups. Group 1 has 320 best-fit individuals and Group 2 has

the remainder. Individuals are selected randomly with an 80% probability from Group 1 and a

20% probability from Group 2. In the Random method, the fitness of the individuals is

completely ignored and parents are chosen at random from the existing population. Finally, in

the Tournament method, n individuals are selected at random from the population and the best-fit

individual is chosen to be a parent. We examine Tournament method with n=4 and n=7.

C. Advantages of Genetic Programming

An important advantage of Genetic Programming is its capability of incorporating a

known analytical approximation to the solution into the program. In this paper, we include the

Black-Scholes model as an initial parameter, i.e. part of the initial gene pool, for the algorithm.

We can also include components of the formula instead of the entire formula. Since our method

begins with a known approximation, it increases the probability of finding the true pricing

formula and reduces computing time. Genetic Programming requires smaller training sets than

Neural Networks which is a popular alternative adaptive learning algorithm (see Hutchinson, Lo,

and Poggio (1994) and Koza (1992)). Since most options are thinly traded, Genetic Programming

is an ideal tool for option pricing,

The methodology can also be made robust to changing environmental conditions and can

operate on data sets generated over a range of possible conditions. We make the population

robust by stochastically changing the training sets in the middle of the evolution. Only

individuals with the desirable characteristics that are well adapted to changing environments will

6

survive. The problem of over-fitting, in particular, is easily resolved by this approach. Further,

new formulas can evolve out of previously optimal solutions when the data set contains structural

changes rather than requiring retraining from scratch like in learning networks. Since genetic

programs are self-learning and self-improving, they are an ideal tool for practitioners.

D. Convergence Characteristics of Genetic Algorithms and Programs

Our implementation of the Genetic Programming is effectively a search over the space of

functions that can be constructed from a user-defined set of base variables and operations. This

space of functions is generally infinite. However, the Genetic Programming algorithms are aided

by the fact that we limit the search space and that the search is a parallel search.

We control and limit the complexity of the problem by setting a maximum depth size of 175

for the trees used to represent formulas. The search space is, however, still very large and it is

computationally inefficient to examine every possible tree. The implicit parallelism of Genetic

Algorithms, however, ensures that the search is efficient. The central idea behind the parallelism

of Genetic Algorithms is that each of the formula elements define hyperplanes, i.e. sub-regions of

the search space. In the population of candidate formulas, all the elements are present, and the

fitness of each formula is a function of how many of the elements of the true pricing formula is

present in the individual being evaluated. All formulas that contain a particular element will have

similar errors and an evaluation of the formulas in the population is a parallel search for the

hyperplanes containing the elements that make up the true option pricing model. For example,

the Black-Scholes formula is:

 (1))2()1(dNXedSNC rτ−−=

where,

 τστστσ -d12 and /])2/()/[ln(1 2 =++= drXSd

N(d1) and N(d2) are the cumulative standard normal values for d1 and d2, S is the current stock

price, X is the exercise price, r is the risk free rate, τ is the option time to maturity and σ is the

volatility of the underlying stock. We can treat the formula to be the point at which the

5 A 17 deep tree is a popular number used to limit the size of tree sizes Koza(1992). Practically, we chose
the maximum depth size possible without running into excessive computer run times. Note that the Black-
Scholes formula is represented by a tree of depth size 12. A depth size of 17, therefore, is large enough to
accommodate complicated option pricing formulas and works in practice.

7

hyperplanes containing the term S N(d1) and -X e-rτ N(d2) intersect. Searching over a randomly

generated set of formulas is, therefore, a parallel search over a set of hyperplanes.

The true option pricing formula will consist of many different elements that form a set of

hyperplanes and these is called its schemata. The individual sub-regions formed by the

hyperplanes are the schema. If an individual equation contains elements that represents a

superior region of the search space, it will generally be reflected as better fitness for the equation.

This will increase the individual’s chance to reproduce and pass on its schema to the next

generation. When used to solve problems that involves a search for the sequence of elements that

make up a gene, or any problem that involves a search for a sequence of numbers, Holland (75)

and Koza (92) and show that the schemata of the Genetic Algorithm search process is extremely

efficient and the algorithm converges. In this paper, we implicitly test whether such an approach

will also work when searching for a closed-form option pricing model.

II. Genetic Programming in a Black-Scholes World

In this section, we test the capacity of Genetic Programming to learn the Black-Scholes

model, paralleling the study by Hutchinson, Lo, and Poggio (1994). Data to train the Genetic

Programming is generated through Monte-Carlo simulation. For each data set, price paths of the

underlying stock with initial value S0 =50 are simulated for 504 days (24 months * 21

days/month). Stock returns are assumed to follow a diffusion process dS(t)/S(t) = µdt + σdW(t)

with annual continuously compounded expected return µ=0.10, standard deviation σ=0.20 and

risk-free rate r=0.05. Stock price at time t is calculated as:

S t e
Zt

i

t

() =
∑

=1 ; t = 1,.., 504. (2)

We next generate a sample of call options for each stock price realization. CBOE rules

(Hull (1993)) were used to create call options with varying strikes and maturity for each day of

the simulated price path. Option prices are derived for each simulated option, using the Black-

Scholes equation. We thus have a sample of simulated options data. We adopted many of the

simplifications suggested by Hutchinson, Lo, and Poggio (1994) in generating the data sample,

for example, we hold the annual volatility σ and riskless rate r constant throughout. Figure 2

shows a stock price path generated by Geometric Brownian motion and the distribution of its

associated option prices.

8

Insert Figure 2 Here

Table I describes the specifications of the Genetic Programming model. We use the four

basic mathematical operations, the log function, the exponential function, the square root

function, and the cumulative Normal distribution. The basic division operation is protected

against division by zero and the log and square root functions are protected against negative

arguments. The current stock price, option exercise price, option intrinsic value, and option time-

to-maturity are input parameters. The functional representation of a formula is assumed to be 17-

step deep and allows sufficient variation in the complexity of the formulas without overwhelming

memory requirements. For example, the Black-Scholes model can be represented in a 17-step tree

using the operations and variables described above as shown in Appendix A. The formula

population size is set to 25,000 and we run the program for a maximum of 51 generations.

Insert Table I Here

It should be noted that the restrictions on Genetic Programming are far fewer than those required

for Neural Networks. Only the variables needed for pricing options have to be specified. We need

not make assumptions on the smoothness or complexity of the formulas beyond the maximum

allowable depth (tree size) for representing a formula.

We implement ten trial runs of genetic programs. For each run, a 5% sub-sample of

entire simulated options is used as the training set. The data set is stochastically changed in the

middle of training run to prevent over-fitting. We find that evaluating the population formulas on

such stochastic subsets of the data set resulted in reduced training times and better out-of-sample

performance. Only robust formulas can survive the constantly changing environment and pass on

their “traits” to the next generation.

The criterion for selecting the surviving formulas is a linear combination of the absolute

pricing errors and the percentage pricing errors. We found that the formulas consistently made

relatively small absolute errors when pricing out-of-the-money options and relatively large

absolute errors when pricing in-the-money options. The pattern in the magnitudes of the

percentage error was just the opposite. Linear combination of these two error measurements leads

to a more efficient selection rule. In the classic Genetic Programming fashion, we define the

fitness of a formula to be:

 (3)
1

1

1
∑

=

+
casesfitnessofnumber

i
iε

9

where εi is the training error for the ith case. This training error is defined as the sum of

percentage and dollar errors if the Black-Scholes value was greater than $0.01 and just the dollar

error if the Black-Scholes value was less than $0.01.6

The final formulas generated are complex functions of the parameters specified in Table

I. For example, a formula generated by the fitness-overselection parent selection method is:

()
()

()
(4)

)log(*)/log(

)/log(*12)log(*)/log(

)/log()0,(98774.0

)/log(98774.0*2*4

)/(*2)0,(*397548.1

*))log((*

)0,max(),,(

+++
+−+−

++−+
+−+−

+

+−=

XXS

XSXXSN

XSXSMaxN

XSN

XSXSMax

NX

XSXSC

τ
ττ

τ

where, S is the current stock price, X is the exercise price, τ is the time to maturity.

We measure the performance of Genetic Programming on an out-of-sample two-

dimensional options grid of option maturities and strike prices. Tables II and appendix A present

the absolute and percentage pricing errors respectively for the Genetic Programming formulas for

each of the six different parent selection algorithms. Each cell in the table is the average pricing

errors across ten different Genetic Programming formulas.

Insert Table II

In Table II, Figure 3, and appendices A and B, we observe a pattern of performance of

the Genetic Programming model. First, the dollar pricing errors are small for short-maturity

options as opposed to long-maturity options. However, the percentage pricing errors are just the

opposite. Obviously this is because the magnitude of option prices vary substantially across

option maturities. Second, we find that the errors vary across the option strike. Once again this is

because option prices are very small for out-of-the money options and much higher for in-the-

money options. Our fitness criterion balances the two effects by minimizing a combination of

the absolute and percentage pricing errors. We found that this allows us to control the pricing

errors for out-of-the money and in-the-money options without adversely affecting the errors for

at-the-money options. Note also that the percentage pricing errors are very large for short-

6 If, for example, the true price of an option is $2.00 and one of our Genetic Programming formulas gives a
price of $2.20, then percentage error is small (10%) but dollar error is $0.20, which is economically
significant. If, on the other hand, the true price is $0.10 and our formula gives a price of $0.07, dollar error
is small ($0.03) but the price is off by 30%. Our error measure is then 30 (10% + $0.20) in the first case
and 33 (30% + $0.03) in the second case.

10

maturity out-of-the-money options. This is because prices are very small for these options, and

any error is magnified out of proportion. Absolute pricing errors are, however, less than 2 cents

for these options.

Insert Figure 3 Here

While all the parent selection methods yield similar qualitative results, they vary widely

in efficiency. The largest pricing error is for the 122-day maturity at-the-money option and varies

from a minimum of $1.17 or 33.6% for the Fitness-overselection method to $2.34 for the Fitness

method. The smallest absolute pricing error is for short-maturity options that are out-of-the

money, e.g. the Fitness-overselection method has an error of $0.02 for a 10 day option that has a

ratio of stock price to strike price of 0.93. The same option is priced with an error of $0.01 with

the Tournament method (n=7) and an error of $0.06 for the Random method. The percentage

pricing error for this option is, however, seemingly very high at 73.4% for the Fitness-

overselection method and 285.5% for the Random method. Obviously this is because the option

price itself is quite small and magnifies the percentage pricing error. While the errors are larger

for longer maturity and in-the-money options, they are within an acceptable percentage range.

The error is within a few pennies for short-maturity and out-of-the money options. Overall, we

found the Fitness-overselection method and the Tournament method (n=7) providing the best

results and that Genetic Programming gives a good numerical approximation to the Black-

Scholes model.

 III. Performance Analysis in a Jump-Diffusion World

The Genetic Programming approach can incorporate any known analytical approximation

into its algorithm. It is flexible to adapt to changing and unknown economic environments. In this

section, we illustrate how the Genetic Programming model can adapt and outperform the Black-

Scholes model in a jump-diffusion world described by Merton (1976). Since the closed form

solution for the option prices in a jump-diffusion world is available, we can measure the pricing

errors from the Genetic Programming model and the Black-Scholes model in such a world. The

performance analysis highlights the salient features of the Genetic Programming approach to

option pricing.

The jump-diffusion process is a combination of a Geometric Brownian diffusion process

and a Poisson jump process and can be written as:

dS t S t k dt dW t dq() / () () ()= − + +µ λ σ (5)

11

where dq is the Poisson-lognormal jump process. The Poisson process determines when a jump

occurs and jump size is lognormally distributed.

We simulate the price path of daily stock prices over a 24 month period with the initial

price set at S0 =50. Each month is assumed to have 21 trading days. The diffusion parameters µ

(mean) and σ(standard deviation) were set at 10% and 20% respectively, and jump parameters

k(jump size), λ (jump rate), and δ (standard deviation of the log-jumps), were set at 0.02, 25 and

0.05 respectively.7 These values are well within the range estimated by stock price data. Thus,

504 stock prices, S(t), are simulated using random daily returns zt ~ N((µ-σ2/2-k) /252,σ/252) and

n(t)~Poisson(λt) jumps, each of magnitude Yj (where lnYj ~ N(ln(1+k)-0.5δ2, δ)), for each t in

{1…504}:

 S t e
z

Y n tS
i

i

t

() (())=
∑

=
0

1 , t = 1, ..,504 (6)

where,

Y

Y n t Y n tj
j

n t

()

(()) , ()
()

0 1

0
1

=

= >
=

Π

We use CBOE rules to create call options from the simulated stock price path. Figure 4 illustrates

a sample stock price path and its associated distribution of option prices in a jump-diffusion

world.

Insert Figure 4 Here

Options are priced using Merton’s (1976) jump diffusion formula given below, truncated

at the point when the marginal contribution of additional terms is negligible.8

7 This translates into 25 expected jumps per year, each inducing an expected percentage change of 2% on
the stock price. The variance of the log-jumps is 0.05.
8 Terms in the sum increase and then decrease in magnitude due to the distribution of the attached
probabilities. All terms in the decreasing segment of the series whose marginal contribution was less than
0.00001% were dropped, as well as all terms beyond the 1000th in the sum.

12

F S X r k

e

n
f S

n

n
n(, , , , , , ,)

(’)
!

(,)
’

σ τ λ δ λ τ τ
λ τ

=
−

=

∞

∑
0

where, (7)

λ λ
τ

λ
τ

σ δ
τ

τ

’ ()

(, , , ,)

ln()

= +
= −

= − + +

= +

=

1

1

2
2

k

f Black Scholes S X r v

r r k
n k

v
n

Time to maturity T-t

n n n

n

n

Panel A of Table IV presents the set of operations and variables used to develop the

Genetic Programs. In addition to those used in the previous section where the objective was to

learn the Black-Scholes model, we include the Black-Scholes option values as a component of the

formula tree. This provides a good starting point for finding a solution and is a way in which we

can adapt known analytical approximations to find a better approximation. We, however, correct

for the volatility estimate that the investor would have calculated using a history of observed

prices, which is a combination of the variances of the diffusion and jump processes. This reflects

the approach of a naive investor who is unaware of the true nature of the underlying stock price

process when using the Black-Scholes model to price option. The estimated call option value

with the modified Black-Scholes model is, therefore, (Merton 1976):

 C BS S X r= +(, , , ,)σ λδ τ2 2

 (8)

Panels B and C of Table III present the size of the training sets used and the algorithm

training criteria. We implement an additional step in determining the size of the population and

the number of generations. Since the Black-Scholes model is a very good approximation by itself

for option pricing in a jump-diffusion world, we can use it as a benchmark to evaluate the effect

of population size and number of generations on the efficiency of the genetic programs. Using an

independent set of 25% of the options as a training set, we determine that a minimum population

size of 5000 functions and 10 generations is needed to get a formula that outperforms the Black-

Scholes model. We use these parameters on ten new 25% subsets of the options created to

develop the genetic program for option pricing in a jump-diffusion world. We also train formulas

on a smaller 5% subset of the total options data set. We, however, do not update any algorithm

parameters.

13

Insert Table III Here

The formulas generated by the genetic program are adaptations of the Black-Scholes

model. For example, one of the runs resulted in the formula,

where, CBlack-Scholes is the Black-Scholes formula, τ is the time to maturity, and N(.) is the

cumulative normal distribution.

We examine the performance of our genetic program on ten out-of-sample test sets of

option data. Table IV shows details of the absolute and percentage pricing errors for each of the

six parent selection methods. The Fitness-overselection method gives the lowest pricing errors

and beats the modified Black-Scholes model in each of the ten out-of-sample tests. The next best

performance is the Tournament method with n=7. Clearly, the Genetic Programming model

based on Fitness-overselection outperforms the Black-Scholes model in out-of-sample tests. The

only measure in which the original Black-Scholes model ever beats the Genetic Programming

formula is in the training-set sum of percentage errors, and this occurs for only 1 out of the 10

Genetic Programming formulas. However, the error is large enough to blow up the average

percentage error. We attribute this fluke to our decision to ignore during training all percentage

errors for options worth less than $0.01. Note that the Genetic Programming formula performs

better than the Black-Scholes model for each of the 10 out-of-sample test sets.

Insert Table IV Here

We also address an important criticism usually leveled at complex numerical

methodologies. Can the method perform any better than a simple linear regression model? While

linear regression of the options price on variables such as the options strike and current stock

price can result in an equation that gives small errors within the sample, it is obvious that out-of-

the sample option values will be priced with larger errors. It is, however, a useful benchmark.

We, therefore, run single-stage and two-stage linear regressions with and without Black-Scholes

model as an independent variable. The two-stage model represents separate equations for in-the-

money and out-of-the-money options.

Table V presents the pricing errors for the Genetic Programming formulas, the Black-

Scholes equation, and for the linear models. The absolute and average errors for the Genetic

Programming formulas are the average pricing error for all options which is again averaged

across the ten Genetic Program runs. Results are presented for all six parent-selection methods

[] (9))(**95461.011734.0*),,(ττ ++= −−− ScholesBlackScholesBlackScholesBlack CCCXSC

14

considered. The modified Black-Scholes equation has the largest errors compared to all other

models. The linear models give very good results when we include the naïve Black-Scholes

model as an independent variable with the two-stage linear model giving the lowest errors.

Among the Genetic Programming formulas, the Fitness-overselection parent selection method

provides the smallest absolute pricing error and one of the smaller percentage pricing errors. The

magnitudes are comparable to the two-stage linear model with the Black-Scholes as an

independent variable.

Insert Table V Here

The linear models that have the Black-Scholes model as an independent variable,

however, have one major draw back -- the partial derivatives of the pricing equation are equal to

the Black-Scholes partial derivatives with a constant adjustment term. The true test of any option

pricing model is its performance in hedging and the constant adjustment to the option price

sensitivity with respect to the stock price, the option delta, will not work in practice. Genetic

Programming allows general adjustments to the option pricing model and is not subject to this

problem. Note that if the linear model is indeed the best model, the Genetic Program

theoretically should be able to find it and no generality is lost.

We test the hedging effectiveness of the Genetic Program formula by constructing a

hedge portfolio of the option, stock, and a riskless bond. The amount of stocks in the portfolio is

chosen as usual to be the delta amount, where delta is determined by taking the first partial of the

Genetic Programming formula with respect to the stock price. We estimate the performance of

the hedge over ten samples of 100 paths for options of varying maturities and strike prices. The

hedging performance in each path is calculated to be the deviation from zero in the portfolio

value. We also similarly determine the hedging performance of the Black-Scholes model over

the same 100 paths.

Insert Tables VI Here

Table VI reports the hedging effectiveness of the Genetic Program (with Fitness-

overselection) by calculating the fraction of the 100 price paths in which it does better than

Black-Scholes in hedging the option. Data is presented for option maturities of 1, 3, and 6

months and for strike prices of 40, 50, and 60 assuming an initial stock price of 50. The first

number in each column is the average fraction of time Genetic Programming beats the Black-

Scholes model over ten data sets. The next three numbers present statistics of the distribution of

this measure by giving the standard error, minimum, and maximum across ten test sets. Genetic

15

Programming formulas do especially well for in-the-money options. Overall, the Genetic

Program beats the Black-Scholes model in over 50% of the cases.

Insert Tables VII Here

We further evaluate the performance of the Genetic Programming formula by comparing

its pricing errors with that of the Black-Scholes model and Neural Networks9 for options of

various maturities and moneyness. The details of the Neural Networks we use are reported in

Appendix E. Of the various normalization and initialization schemes considered, results are

reported for the best neural network, i.e. the one that gives the lowest average absolute pricing

errors.

Table VII and appendix C report the absolute pricing errors and the percentage pricing

errors for the Genetic Programming formula developed with Fitness-overselection, for the Black-

Scholes model, and for the best Neural Network, on an out-of-sample two-dimensional grid.

Each cell in the table represents the average across ten out-of-sample test data sets and the value

in each cell is the average over 5 options. The Genetic Programming formula tends to do better

with in-the-money and short-maturity options whereas the Black-Scholes model seems to perform

relatively better with out-of-the money and long-term options. This result is consistent with the

notion that the jump term influences prices of short-maturity in-the-money options more, relative

to long-term and out-of-the-money options. We found that Genetic Programming beats Neural

Networks in all cases.

Figure 5 and appendix D plot the absolute pricing errors and percentage pricing errors for

the Black-Scholes equation and the Genetic Programming formulas. An interesting observation

is that the large percentage pricing errors observed for Genetic Programming formula

approximations to the Black-Scholes model as seen in Figure 3 are not observed in this case.

This is because the Black-Scholes model itself is incorporated into the Genetic Programming

formulas, as shown in the equation above, which improves the performance of the Genetic

Programming formulas in this region. The deviations for the low-priced, short-maturity, out-of-

the-money options are thus lower.

Insert Figure 5 Here

9 We chose Neural Networks for benchmarking our results as it is the closest to genetic programming in its
philosophy and is also a data-driven non-parametric methodology. Other option pricing methods such as
GARCH models require assumptions of the underlying process and parameter values.

16

To take advantage of Genetic Programming’s ability to learn with small training sets

(Koza 1992) and reduce computational time, we tested its performance using random samples of

5% and 25% of the options generated in the simulation. We found that the training formulas with

the smaller data sets resulted in only a minimal reduction in out-of-sample performance. Our

tests dramatically support the notion that Genetic Programming needs only small training sets in

order to arrive at a good solution.

IV. Applications in the Real world

In this section, we apply Genetic Programming to price real-world options data. Call

options data for the S&P 500 Index and 5 different stocks were obtained from the Berkeley

Options Data Base (BODB). BODB’s data is time stamped to the nearest second and ensures a

good match between the values of an option and its underlying asset. Raw BODB records are

screened as follows. We do not include records from the first 2,500 seconds after 8:30 am or in

the last 2,500 seconds before 3:00 pm and required at least 300 seconds within a 1% deviation for

the underlying index/equity price. We also reject data when the option bid-ask spread is more

than ¼ or 5% of the option value. The first restriction eliminates artificial pricing that may occur

due to the structure of the market at the beginning and the end of the day. The second restriction

is to allow the options market to adjust to changes in underlying asset value.10 The third gives us

a tighter handle on the option’s equilibrium price.

Option prices are set to be the average of the bid and ask prices. We calculate the risk-

free rate between two calendar dates using the Nelson-Siegel-Bliss term structure model. The

option's time to maturity is set to be the number of trading days between the trade date and the

expiration date of the option. We use a two step approach to develop the Genetic Program for

real-world options. We first determine the optimal set of algorithm parameters using a training

and validation step. We vary algorithm parameters for the genetic programs when training them

on a subset of options price data. In each iteration, we test the performance of the genetic

program on a validation data set of options prices from a later date. The algorithm parameters

that give the best results are then used in the next step where the genetic program is developed on

a separate training data set and then tested on an out-of-sample test set of options prices from a

later date. This is the training/test step.

10 Stephan and Whaley (1990) find that stock price changes lead option price changes. Finucane (1991)
finds similar results for S&P 100 index options.

17

Ten Genetic Programming formulas were developed using ten training/validation data

sets and ten training/test data sets. The training/validation data sets were created by randomly

sampling April 3-4, 1995 screened S&P 500 Index Option data.11 These data sets are used to

evaluate algorithm parameters adopted to implement the genetic program. The training/test data

sets are separately created from screened April 6-10, 1995 screened S&P 500 Index Options data.

All out-of-sample validation and test data occurred later in time than the training data. Training

sets contained a mere 50 points each and training times do not exceed 3 minutes per formula.

Insert Table VIII Here

The sets of operations, functions and variables allowed in our formulas are those used in

the jump-diffusion world, augmented by the risk-free rate and historical volatility. They are

presented in Table VIII. As in Hutchinson, Lo, and Poggio (1994), we estimate the S&P 500

Index volatility by computing the standard deviation of the 60 most recent continuously

compounded daily S&P 500 returns using 3.00pm (CST) prices. We adjusted for dividends by

subtracting the present value of actual dividends between the record date t0 and the option

maturity date T:

 S t S t D t e r t t t t

t t

T

()* () () (,)()
0 0

0 0

0

= − − −

=
∑ (10)

The formulas generated by the genetic program for the index options were adaptations of

the Black-Scholes model. For example, one of the runs resulted in the formula,

where, CBlack-Scholes is the Black-Scholes formula and τ is the time to maturity.

Table IX presents the average absolute pricing error for the 10 Genetic Programming

formulas, the Black-Scholes model, and the best neural network trained on the data. The

difference in pricing errors is also presented. The out-of-sample performance of these Genetic

Programming adaptations of Black-Scholes model is remarkable: 9 of the10 Genetic

Programming formulas beat the Black-Scholes model in both the average absolute pricing errors

and the average percentage pricing errors.

Insert Table IX Here

11 We picked April 3 at random. The data sampled for parameter search spanned April 3, 9:11 a.m. to
April 4, 9:16 a.m.

(11) 3),,(ττ += − ScholesBlackCXSC

18

Since the Black-Scholes model is a component of our Genetic Programming model and

the Black-Scholes model appears in every resulting formula, one can view our model as an

adaptation of the Black-Scholes model to the trading environment. The idea is similar to the

control variate method for controlling the variance of errors in Monte Carlo simulation.

For testing the performance of Genetic Programming in pricing equity options, we

choose five stocks that had options volume of at least 1500 contracts and which never paid cash

dividends. The stocks are: Best Buy Company Inc., Broderbund Software Inc., CompUsa Inc.,

Digital Equipment Corporation, and Novellus Systems Inc. For each stock, we develop ten

Genetic Programming formulas. The training/validation data sets are constructed using BODB

records for April 3-4, 1995. The training/test data sets are constructed from options traded during

the period April 6-13, 1995.

The formulas generated by the genetic program for the equity options were also

adaptations of the Black-Scholes model. In most cases, the formulas were of the form,

where, CBlack-Scholes is the Black-Scholes formula and τ is the time to maturity. The constant takes

values from 1 to 4 depending on the stock underlying the option that is being priced.

Table IX also presents the average absolute pricing errors for the ten Genetic

Programming formulas, the Black Scholes formula, and for the best neural networks. When there

is no difference between the errors for the Genetic Programming formula and the Black-Scholes

model, it indicates that the genetic program converged on the Black-Scholes model.

Except for Best Buy, the Genetic Programming method produced formulas that

outperform the Black-Scholes model on average, though the results are not as strong as the case

of S&P Index options. We attribute the results for Best Buy to the fact that the data set used for

the parameter search is much smaller than the data sets used for the other four stocks. The

resulting training and validation sets were thus not independent enough to yield an insight on

satisfactory parameters.

The advantages of Genetic Programming over neural networks when dealing with small

data sets is, however, dramatically illustrated. Equity options are more thinly traded and there is

less data available to train neural networks and genetic programs in comparison to the S&P 500

index option. Neural Network pricing errors are lower than those of the Genetic Programming

model for the S&P 500 index option. On the other hand, Neural Network pricing errors are a

(12) *Constant),,(ττ += − ScholesBlackCXSC

19

higher than that of the Genetic Programming model for four out five equity options. In the

remaining case (Best Buy), the magnitude of the errors of the Genetic Programming model is

only marginally higher than those for the Black-Scholes model and Neural Networks.

Note that for Broderbund and DEC, a majority of the genetic programs converge on the

Black-Scholes model as the best possible pricing formula. This highlights the advantage of the

Genetic Programming approach -- it can easily converge on existing known models, if they are

indeed the best solutions. By including known analytical solutions in the parameter set, we thus

increase the efficiency of Genetic Programming by using it to improve on existing solutions.

V. Conclusion

In this paper we have developed a procedure to apply the principles of Genetic

Programming to option pricing. Our results, from controlled simulations and real world data, are

strongly encouraging and suggest that the Genetic Programming approach works well in practice.

The Genetic Programming method has many advantages over other numerical techniques. First,

it is a non-parametric data driven approach and requires minimal assumptions. We thus avoid the

problems associated with making specific assumptions regarding the stock price process. Many

researchers attribute the systematic biases in Black-Scholes prices to the assumption that returns

are normally distributed and have developed extensions by considering other stock price

processes. However, no single model explains all of the Black-Scholes biases and closed form

solutions are elusive (Rubinstein (1997)). The Genetic Programming method uses options price

data and extracts the implied pricing equation directly.

We show that Genetic Programming formulas beat the Black-Scholes model in 10 out of

10 cases in a simulation study where the underlying stock prices were generated using a jump

diffusion process. They work almost as well in pricing S&P Index options with genetic programs

beating the Black-Scholes model in 9 out of 10 cases. The results for five equity options are not

as strong, perhaps because we use very small data sets, and genetic programs beat or match the

Black-Scholes model for 4 of the 5 stocks considered.

Second, the Genetic Programming method requires less data than other numerical

techniques such as Neural Networks (Hutchinson, Lo, and Poggio (1994)). We show this by

simulation studies that use smaller subsets of the data and by using both genetic programs and

neural networks to price relatively thinly traded equity options. Indeed, in some cases the

programs are run on as few as 50 data points. We show that Genetic Programs have much better

20

results than Neural Networks for four of the five equity options we consider, all of which have

small data sets. The time required to train and develop the genetic programming formulas is also

relatively short.

Third, the Genetic Programming method can incorporate known analytical

approximations in the solution method. For example, we use the Black-Scholes model as a

parameter in the genetic program to build the option pricing model. The final solution can then

be considered to be an adaptation of the Black-Scholes model to conditions that violate the

underlying assumptions. The flexibility in adding terms to the parameter set used to develop the

functional approximation can also be used to examine whether factors beyond those used in this

study, for example, trading volume, skewness and kurtosis of returns, and inflation, are relevant

to option pricing. The self-learning and self-improving feature also makes the method robust to

changes in the economic environment. Finally, since the Genetic Programming method is fast,

self-learning, and self-improving, it is an ideal too for practitioners.

21

REFERENCES

Allen, F. and Karjalainen, R., 1998 “Using Genetic Algorithms to find technical trading rules,”

Journal of Financial Economics, Forthcoming.

Amin, L. A. and Jarrow, R.A., 1992, “Pricing options on risky assets in a stochastic interest rate

economy.” Mathematical Finance, Vol. 2.

Ball, C.A. and Torous, W.N., 1985 “On jumps in common stock prices and their impact on call

option pricing.” Journal of Finance, Vol. 40 (March).

Ballie R. and DeGennaro, R., 1990 “Stock returns and volatility.” Journal of Financial and

Quantitative Analysis, Vol. 25 (June).

Black, F. and Scholes, M., 1972 “The valuation of option contracts and a test of market

efficiency.” Journal of Finance, Vol. 27 (May).

Black, F. and Scholes, M., 1973 “The pricing of options and corporate liabilities.” Journal of

Political Economy, Vol. 81.

Bollerslev T., 1986, “Generalized Autoregressive conditional Heteroskedasticity.” Journal of

Econometrics, Vol. 31 (April).

Chance, D. M., 1986,“Empirical tests of the pricing of index call options,” Advances in Futures

and Options Research, Vol. 1.

Chidambaran, N. K. and S. Figlewski, 1995, “Streamlining Monte Carlo Simulation with the

Quasi-Analytic Method: Analysis of a Path-Dependent Option Strategy,” Journal of

Derivatives, Winter.

Fama, E.F., 1965, “The behavior of stock market prices.” Journal of Business, Vol. 38 (January).

French, K. R., Schwert, G.W., and Stambaugh, R.F., 1987, “Expected stock returns and

volatility.” Journal of Financial Economics, Vol. 19 (September).

Galai, D., 1977, “Tests of market efficiency of the Chicago Board of Options Exchange.” Journal

of Business, Vol. 50.

Heston, S., 1993, “Invisible parameters in option prices.” Journal of Finance, Vol. 48 (July)

Ho, T. H., 1996, “Finite automata play repeated prisoner’s dilemma with information processing

costs.” Journal of Economic Dynamics and Control, Vol. 20 (January-March)

Holland, J. H. 1975, Adaptation in natural and artificial systems, The University of Michigan

Press, Ann Arbor.

22

Hull, J., 1993, Options, Futures, and Other Derivative Securities, 2nd Ed., (Prentice-Hall,

Englewood Cliffs, New Jersey).

Hutchinson, J., Lo A., and Poggio, T., 1994, “A Nonparametric approach to the Pricing and

Hedging of Derivative Securities Via Learning Networks,” Journal of Finance, Vol. 49.

(June).

Kim, D. and Kon, S.J., 1994, “Alternative models for the conditional heteroscedasticity of stock

returns.” The Journal of Business, Vol. 67 (October).

Koza, J. R., 1992, Genetic Programming, (MIT Press, Cambridge, Massachusetts).

Lettau, M., 1997, “Explaining the facts with adaptive agents.” Journal of Economic Dynamics

and Control, Vol. 21.

Macbeth, J. D. and Merville, L. J., 1979, “An empirical estimation of the Black-Scholes call

option pricing model.” Journal of Finance, Vol. 34 (December).

Macbeth, J. D. and Merville, L. J., 1980, “Tests of the Black-Scholes and Cox call option

valuation models” Journal of Finance, Vol. 35 (May).

Marimon, R., McGrattan, E., Sargent, T.J., 1990, “Money as a medium of exchange in an

economy with artificially intelligent agents.” Journal of Economic Dynamics and Control,

Vol. 14.

Merton, R.C., 1973, “Theory of rational option pricing.” Bell Journal of Economics and

Management Science, Spring.

Merton, R.C., 1976, “Option pricing when underlying stock returns are discontinuous.” Journal

of Financial Economics, Vol. 3 (January-March).

Neely, C., P. Weller, and R. Dittmar, 1997, “Is Technical Analysis in the Foreign Exchange

Market Profitable? A Genetic Programming Approach,” Journal of Financial and

Quantitative Analysis, Vol. 32(4), pp.405-426.

Rubinstein, M., 1985,“Nonparametric Tests of Alternative Option Pricing Models.” Journal of

Finance, Vol. 40 (June).

Rubinstein, M., 1997, “Implied Binomial Trees”, Journal of Finance, Vol. 49.

Stephan, J. A., and Whaley, R. E., 1990, “Intraday price change and trading volume relations in

the stock and options markets.” Journal of Finance, Vol. 45 (March).

Trigueros, J. 1997, “A Nonparametric Approach to Pricing and Hedging Derivative Securities

Via Genetic Regression,” Proceedings of the Conference on Computational Intelligence for

Financial Engineering, March.

23

Table I
Genetic Programming Model Specification in a Black-Scholes World

Panel A: Training Variables

Name Source Definition
S Option Contract Stock price
X Option Contract Exercise price
S/X Part of Black-Scholes Degree of option moneyness
� Option Contract Time to maturity (in years)
max(S-X) Boundary Condition Option intrinsic value Max (S-X,0)

+ Standard arithmetic Addition
- Standard arithmetic Subtraction
* Standard arithmetic Multiplication
% Standard arithmetic Protected Division: x%y = 1 if y = 0

 = x/y otherwise
Exp Black-Scholes component Exponent: exp(x) = ex

Plog Black-Scholes component Protected Natural log: plog(x) = ln(|x|)
Psqrt Black-Scholes component Protected Square root: psqrt(x) = sqrt(|x|)
Ncdf Black-Scholes component Normal Cumulative Distribution Function

Panel B: Size of Training Sets

For each training set (i.e. a Genetic Programming option pricing formula), the price path of a stock
with starting value S0=50 was simulated through 24 21-day months. Options were created according
to CBOE rules and valued using the Black Scholes formula. Each training set consisted of the daily
values of these options. Formula populations were exposed to dynamically sampled subsets of these
training sets.

Training
Set

1 2 3 4 5 6 7 8 9 10

Data Points 6037 5897 5609 6069 5847 6633 5980 5615 5975 6741

Panel C: Genetic Algorithm Training Parameters

The following Genetic Programming algorithm parameters were used for the training step in the
Black-Scholes world.
Fitness Criterion Sum of absolute dollar errors and percentage errors
Population Size 25,000
Number of Generations 51

24

Table II
Performance of Genetic Programming in a Black-Scholes World

-- Measured by Mean Absolute Pricing Errors--

We generate the underlying stock price to follow Geometric Brownian motion. The model specification for Genetic
Programming are specified in Table I. Pricing errors are presented for six parent-selection algorithms to evaluate the
efficiency of alternate methods for generating new populations from the previous generation of formulas. Each cell in the
table is the average value across 10 Genetic Programming formulas generated for each of the alternate methods. For each
programming formula, the error is calculated by taking the average pricing error over five options. Rows in the table
represent days-to-maturity and columns represent the degree-of-moneyness, S/X.

Parent Selection Criteria : Best
Individuals with the smallest pricing errors are selected to be in the new population.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 0.068 0.046 0.034 0.034 0.101 0.479 0.112 0.038 0.056 0.070 0.083 0.097
10 0.063 0.040 0.025 0.039 0.203 0.655 0.242 0.047 0.051 0.075 0.091 0.104
30 0.079 0.070 0.068 0.180 0.493 1.137 0.543 0.257 0.092 0.075 0.115 0.145
45 0.153 0.103 0.118 0.269 0.603 1.376 0.656 0.369 0.173 0.110 0.135 0.176
60 0.208 0.138 0.172 0.325 0.652 1.551 0.718 0.443 0.244 0.160 0.170 0.211

M
A
T
U
R
I
T
Y 90 0.320 0.239 0.257 0.386 0.679 1.806 0.768 0.534 0.356 0.268 0.269 0.310

Parent Selection Criteria : Fitness
Individuals are chosen randomly with a probability that is inversely proportional to their pricing errors.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 0.038 0.032 0.026 0.015 0.133 0.565 0.139 0.030 0.030 0.038 0.046 0.054
10 0.059 0.052 0.037 0.054 0.282 0.782 0.290 0.091 0.030 0.038 0.046 0.054
30 0.162 0.107 0.129 0.303 0.708 1.298 0.688 0.397 0.208 0.118 0.088 0.091
45 0.209 0.155 0.238 0.474 0.935 1.555 0.882 0.581 0.357 0.228 0.163 0.138
60 0.242 0.221 0.347 0.626 1.119 1.761 1.033 0.733 0.492 0.339 0.252 0.204

M
A
T
U
R
I
T
Y 90 0.342 0.368 0.553 0.882 1.410 2.083 1.265 0.975 0.722 0.545 0.429 0.354

Parent Selection Criteria : Fitness-overselection
Individuals are divided into two groups. Group 1 has the top 320 individual with the smallest pricing errors. The
remainders are placed in Group 2. Individuals are then chosen randomly with a higher probability assigned to Group 1.
In our implementation, the probability of selection was 80% for Group 1 individuals and 20% for Group 2 individuals.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 0.094 0.06 0.028 0.019 0.081 0.414 0.13 0.129 0.136 0.129 0.129 0.141
10 0.064 0.03 0.015 0.042 0.175 0.586 0.15 0.106 0.137 0.142 0.141 0.149
30 0.049 0.071 0.070 0.161 0.432 0.922 0.399 0.201 0.127 0.145 0.172 0.188
45 0.119 0.102 0.109 0.233 0.537 1.038 0.544 0.313 0.188 0.171 0.194 0.216
60 0.162 0.128 0.144 0.283 0.604 1.103 0.645 0.403 0.257 0.222 0.236 0.259

M
A
T
U
R
I
T
Y 90 0.246 0.201 0.214 0.345 0.672 1.159 0.759 0.530 0.383 0.350 0.361 0.382

25

Table II (continued)
Performance of Genetic Programming in a Black-Scholes World

-- Measured by Mean Absolute Pricing Errors--

Parent Selection Criteria : Random
Individuals are chosen randomly and their fitness errors are ignored.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 0.069 0.061 0.053 0.046 0.139 0.570 0.166 0.048 0.042 0.045 0.047 0.050
10 0.077 0.068 0.061 0.068 0.287 0.785 0.336 0.124 0.060 0.054 0.056 0.060
30 0.159 0.133 0.116 0.309 0.717 1.304 0.819 0.490 0.284 0.177 0.138 0.125
45 0.215 0.164 0.197 0.472 0.940 1.557 1.069 0.711 0.461 0.305 0.225 0.188
60 0.259 0.181 0.276 0.604 1.112 1.750 1.263 0.890 0.614 0.425 0.311 0.251

M
A
T
U
R
I
T
Y 90 0.336 0.228 0.397 0.793 1.352 2.020 1.540 1.153 0.848 0.621 0.463 0.363

Parent Selection Criteria : Tournament, n=4
Four individuals are first chosen randomly from the population. The best of the four individuals is then selected for
the next generation.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 0.035 0.023 0.016 0.030 0.088 0.455 0.194 0.171 0.127 0.103 0.106 0.123
10 0.033 0.022 0.017 0.046 0.164 0.625 0.167 0.144 0.137 0.123 0.125 0.138
30 0.039 0.033 0.049 0.165 0.401 1.068 0.297 0.161 0.132 0.150 0.174 0.191
45 0.080 0.068 0.089 0.234 0.494 1.242 0.387 0.236 0.169 0.172 0.197 0.225
60 0.131 0.111 0.122 0.274 0.544 1.344 0.449 0.301 0.221 0.204 0.228 0.265

M
A
T
U
R
I
T
Y 90 0.258 0.218 0.192 0.308 0.574 1.445 0.524 0.404 0.318 0.287 0.307 0.356

Parent Selection Criteria : Tournament, n=7
Seven individuals are first chosen randomly from the population. The best of the seven individuals is then
selected for the next generation.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 0.030 0.015 0.012 0.008 0.064 0.441 0.126 0.092 0.067 0.043 0.038 0.039
10 0.023 0.013 0.009 0.026 0.132 0.589 0.175 0.099 0.075 0.052 0.044 0.044
30 0.023 0.032 0.055 0.115 0.256 0.969 0.287 0.203 0.133 0.088 0.070 0.071
45 0.057 0.060 0.105 0.161 0.286 1.160 0.327 0.282 0.213 0.142 0.103 0.095
60 0.090 0.089 0.153 0.200 0.305 1.310 0.350 0.343 0.286 0.211 0.150 0.125

M
A
T
U
R
I
T
Y 90 0.157 0.142 0.238 0.278 0.322 1.525 0.379 0.429 0.399 0.347 0.267 0.208

26

Table III
Genetic Programming Model Specification in a Jump-Diffusion World

Panel A: Training Variables

Name Source Definition
S Option Contract Stock price
X Option Contract Exercise price
S/X Black-Scholes Parameter Degree of option moneyness
� Option Contract Time to maturity (in years)
Max(S-X) Boundary Condition Option intrinsic value Max (S-X,0)
Black-Scholes Naïve investor’s valuation Black Scholes value of option

+ Standard arithmetic Addition
- Standard arithmetic Subtraction
* Standard arithmetic Multiplication
% Standard arithmetic Protected Division: x%y = 1 , if y = 0

 = x/y , otherwise
Exp Black-Scholes component Exponent: exp(x) = ex

Plog Black-Scholes component Protected Natural log: plog(x) = ln(|x|)
Psqrt Black-Scholes component Protected Square root: psqrt(x) = sqrt(|x|)
Ncdf Black-Scholes component Normal Cumulative Distribution Function

Panel B: Size of Training Sets

For each training set (option pricing formula), the price path of a stock with beginning value S0 = 50 was
simulated through 24 21-day months. Options were created according to CBOE rules and valued using the
Black Scholes formula. Each training set consisted of the daily values of these options.

Training Set 1 2 3 4 5 6 7 8 9 10
Data Points 311 350 364 308 288 420 318 387 409 319

Panel C: Training Parameters

Genetic Programming algorithm training parameters used in the non-Black-Scholes world where stock
prices are generated by a jump diffusion process.
Fitness Criterion Sum of absolute dollar and percentage errors
Population Size 5,000
Number of Generations 10

27

Table IV
Performances of the Genetic Programming Model and the Black-Scholes Model

in a Jump-Diffusion World

We generate the underlying stock price as a jump-diffusion process. The model specifications for Genetic
Programming are specified in Table IV. Pricing errors are presented for six Genetic Programming algorithms that
use alternate methods for generating new populations from the previous generation. Each cell in the table
presents the average pricing-error over the entire sample of options generated in each sample set.

Parent Selection Criteria: Best
Mean Absolute Error Mean Percentage Error

Data Set Average
Size

Genetic
Programming

Black-
Scholes

Best Neural
Network

Genetic
Programming

Black-
Scholes

Best Neural
Network

Training
Average

347.4 0.0626 0.0875 0.5473 10.0% 16.42% 34221130.0%

GP 1 1080 0.0675 0.0888 0.2042 4.3% 7.5% 20.4%
GP 2 1080 0.0789 0.0888 0.0971 4.9% 7.5% 9.7%
GP 3 1080 0.0635 0.0888 0.2771 3.9% 7.5% 27.7%
GP 4 1080 0.0639 0.0888 0.0927 3.9% 7.5% 9.3%
GP 5 1080 0.0637 0.0888 0.0863 2.5% 7.5% 8.6%
GP 6 1080 0.0641 0.0888 0.1320 4.1% 7.5% 13.2%
GP 7 1080 0.0487 0.0888 0.0845 3.7% 7.5% 8.4%
GP 8 1080 0.0700 0.0888 0.6365 5.1% 7.5% 63.7%
GP 9 1080 0.0745 0.0888 0.1142 5.4% 7.5% 11.4%

GP 10 1080 0.0600 0.0888 0.0897 2.4% 7.5% 9.0%
Test Average 1080 0.0655 0.0888 0.1814 4.0% 7.47% 17.1%

Parent Selection Criteria: Fitness
Mean Absolute Error Mean Percentage Error

Data Set Average
Size

Genetic
Programming

Black-
Scholes

Best Neural
Network

Genetic
Programming

Black-
Scholes

Best Neural
Network

Training
Average

347.4 0.03753 0.08752 0.5473 1192610.0% 16.4% 34221130.0%

GP 1 1080 0.05401 0.0888 0.2042 3.2% 7.5% 20.4%
GP 2 1080 0.0400 0.0888 0.0971 3.1% 7.5% 9.7%
GP 3 1080 0.02415 0.0888 0.2771 2.5% 7.5% 27.7%
GP 4 1080 0.04673 0.0888 0.0927 2.9% 7.5% 9.3%
GP 5 1080 0.03602 0.0888 0.0863 2.2% 7.5% 8.6%
GP 6 1080 0.04183 0.0888 0.1320 2.9% 7.5% 13.2%
GP 7 1080 0.03476 0.0888 0.0845 2.3% 7.5% 8.4%
GP 8 1080 0.04558 0.0888 0.6365 2.8% 7.5% 63.7%
GP 9 1080 0.03499 0.0888 0.1142 2.4% 7.5% 11.4%

GP 10 1080 0.0346 0.0888 0.0897 2.8% 7.5% 9.0%
Test Average 1080 0.03927 0.0888 0.1814 2.7% 7.5% 17.1%

28

Table IV (continued)

Parent Selection Criteria: Fitness-overselection
Mean Absolute Error Mean Percentage Error

Data Set Average
Size

Genetic
Programming

Black-
Scholes

Best Neural
Network

Genetic
Programming

Black-
Scholes

Best Neural
Network

Training
Average

347.4 0.0375 0.0875 0.5473 1,192,618% 16.42% 34221130.0%

GP 1 1080 0.0540 0.0888 0.2042 3.20% 7.47% 20.4%
GP 2 1080 0.0400 0.0888 0.0971 3.12% 7.47% 9.7%
GP 3 1080 0.0242 0.0888 0.2771 2.48% 7.47% 27.7%
GP 4 1080 0.0467 0.0888 0.0927 2.86% 7.47% 9.3%
GP 5 1080 0.0360 0.0888 0.0863 2.23% 7.47% 8.6%
GP 6 1080 0.0418 0.0888 0.1320 2.90% 7.47% 13.2%
GP 7 1080 0.0348 0.0888 0.0845 2.34% 7.47% 8.4%
GP 8 1080 0.0456 0.0888 0.6365 2.81% 7.47% 63.7%
GP 9 1080 0.0350 0.0888 0.1142 2.45% 7.47% 11.4%

GP 10 1080 0.0346 0.0888 0.0897 2.79% 7.47% 9.0%
Test

Average
1080 0.0393 0.0888 0.1814 2.72% 7.47% 17.1%

Parent Selection Criteria: Random
Mean Absolute Error Mean Percentage Error

Data Set Average
Size

Genetic
Programming

Black-
Scholes

Best Neural
Network

Genetic
Programming

Black-
Scholes

Best Neural
Network

Training
Average

347.4 0.0709 0.0875 0.5473 47903300.0% 16.42% 34221130.0%

GP 1 1080 0.0716 0.0888 0.2042 5.2% 7.5% 20.4%
GP 2 1080 0.0796 0.0888 0.0971 6.1% 7.5% 9.7%
GP 3 1080 0.0854 0.0888 0.2771 7.3% 7.5% 27.7%
GP 4 1080 0.0700 0.0888 0.0927 5.1% 7.5% 9.3%
GP 5 1080 0.0676 0.0888 0.0863 5.2% 7.5% 8.6%
GP 6 1080 0.0506 0.0888 0.1320 3.8% 7.5% 13.2%
GP 7 1080 0.0716 0.0888 0.0845 5.2% 7.5% 8.4%
GP 8 1080 0.0506 0.0888 0.6365 3.8% 7.5% 63.7%
GP 9 1080 0.0709 0.0888 0.1142 5.4% 7.5% 11.4%

GP 10 1080 0.0862 0.0888 0.0897 3.5% 7.5% 9.0%
Test

Average
1080 0.0704 0.0888 0.1814 5.1% 7.47% 17.1%

29

Table IV (continued)

Parent Selection Criteria: Tournament, Size = 4
Mean Absolute Error Mean Percentage Error

Data Set Average
Size

Genetic
Programming

Black-
Scholes

Best Neural
Network

Genetic
Programming

Black-
Scholes

Best Neural
Network

Training
Average

347.4 0.0527 0.0875 0.5473 8406.4% 16.42% 34221130.0%

GP 1 1080 0.0646 0.0888 0.2042 3.9% 7.5% 20.4%
GP 2 1080 0.0515 0.0888 0.0971 4.6% 7.5% 9.7%
GP 3 1080 0.0564 0.0888 0.2771 3.3% 7.5% 27.7%
GP 4 1080 0.0651 0.0888 0.0927 4.0% 7.5% 9.3%
GP 5 1080 0.0474 0.0888 0.0863 3.6% 7.5% 8.6%
GP 6 1080 0.0545 0.0888 0.1320 2.9% 7.5% 13.2%
GP 7 1080 0.0637 0.0888 0.0845 3.8% 7.5% 8.4%
GP 8 1080 0.0351 0.0888 0.6365 3.3% 7.5% 63.7%
GP 9 1080 0.0574 0.0888 0.1142 5.5% 7.5% 11.4%

GP 10 1080 0.0387 0.0888 0.0897 3.2% 7.5% 9.0%
Test

Average
1080 0.0534 0.0888 0.1814 3.8% 7.47% 17.1%

Parent Selection Criteria: Tournament, Size=7
Mean Absolute Error Mean Percentage Error

Data Set Average
Size

Genetic
Programming

Black-
Scholes

Best Neural
Network

Genetic
Programming

Black-
Scholes

Best Neural
Network

Training
Average

347.4 0.0451 0.0875 0.5473 29234.6% 16.42% 34221130.0%

GP 1 1080 0.0578 0.0888 0.2042 3.8% 7.5% 20.4%
GP 2 1080 0.0504 0.0888 0.0971 4.4% 7.5% 9.7%
GP 3 1080 0.0316‘ 0.0888 0.2771 2.8% 7.5% 27.7%
GP 4 1080 0.0521 0.0888 0.0927 2.7% 7.5% 9.3%
GP 5 1080 0.0514 0.0888 0.0863 2.6% 7.5% 8.6%
GP 6 1080 0.0448 0.0888 0.1320 2.6% 7.5% 13.2%
GP 7 1080 0.0510 0.0888 0.0845 2.9% 7.5% 8.4%
GP 8 1080 0.0436 0.0888 0.6365 3.8% 7.5% 63.7%
GP 9 1080 0.0413 0.0888 0.1142 3.7% 7.5% 11.4%

GP 10 1080 0.0396 0.0888 0.0897 2.6% 7.5% 9.0%
Test

Average
1080 0.0464 0.0888 0.1814 3.2% 7.47% 17.1%

30

Table V
Performance of Genetic Programming Model, Black-Scholes Model, and Linear Models

in a Jump-Diffusion World

Pricing errors are presented for six Genetic Programming formulas using alternate methods for generating
new populations from the previous generation and for four linear models that are a function of the initial
stock price, exercise price, and time to maturity. Each cell in the table presents the average pricing errors
over ten sets of stock and option prices and for the entire sample of options generated in each set.
Parameter values used to generate stock price and options data and the Genetic Programming parameters
are given in Table IV.

Average absolute pricing error
Genetic

Programming
Black-
Scholes

One stage
linear with

Black-
Scholes

One stage
linear

without
Black-
Scholes

Two stage
linear with

Black-
Scholes

Two stage
linear

without
Black-
Scholes

Best 0.065481 0.088808 0.035018 0.935721 0.015809 0.404870
Fitness 0.051669 0.088808 0.035018 0.935721 0.015809 0.404870
Fitness-
Overselection

0.039272 0.088808 0.035018 0.935721 0.015809 0.404870

Random 0.070398 0.088808 0.035018 0.935721 0.015809 0.404870
Tournament,
Size = 4

0.053441 0.088808 0.035018 0.935721 0.015809 0.404870

Tournament,
Size = 7

0.046351 0.088808 0.035018 0.935721 0.015809 0.404870

Average percentage pricing error
Genetic

Programming
Black-
Scholes

One stage
linear with

Black-
Scholes

One stage
linear

without
Black-
Scholes

Two stage
linear with

Black-
Scholes

Two stage
linear

without
Black-
Scholes

Best 4.04% 7.47% 3.36% 86.98% 2.47% 34.66%
Fitness 3.81% 7.47% 3.36% 86.98% 2.47% 34.66%
Fitness-
overselection

2.72% 7.47% 3.36% 86.98% 2.47% 34.66%

Random 5.07% 7.47% 3.36% 86.98% 2.47% 34.66%
Tournament,
Size = 4

3.81% 7.47% 3.36% 86.98% 2.47% 34.66%

Tournament,
Size = 7

3.20% 7.47% 3.36% 86.98% 2.47% 34.66%

31

Table VI
Comparing Hedging Errors

for the Genetic Programming Model and the Black-Scholes Model

This table presents the fraction of 100 price paths over which hedged option portfolios formed with option
deltas calculated using Genetic Programming formulas gives a lower error as compared to portfolios where
the option deltas are calculated using the Black-Scholes equation. The first number in each column is the
mean value across ten sets of 100 price paths. The other numbers present the standard error and the
minimum and maximum values over the ten test sets. The initial stock price in all cases is S0 = 50.
Hedging errors are calculated for five option strikes (X = 40, 45, 50, 55, and 60) and 3 option maturities (1
month, 3 month, and 6 month). The model specifications for Genetic Programming are given n Table IV.

X=40 X=45 X=50 X=55 X=60

Time to maturity = 1 month
Mean 0.344 0.505 0.545 0.622 0.714
(SE) (0.071) (0.060) (0.030) (0.015) (0.015)
Minimum 0.080 0.040 0.310 0.540 0.670
Maximum 0.820 0.800 0.630 0.710 0.830

Time to maturity = 3 months
Mean 0.437 0.456 0.531 0.526 0.536
(SE) (0.046) (0.047) (0.043) (0.019) (0.019)
Minimum 0.150 0.140 0.190 0.430 0.450
Maximum 0.620 0.680 0.650 0.610 0.640

Time to maturity = 6 months
Mean 0.389 0.477 0.555 0.470 0.435
(SE) (0.071) (0.055) (0.050) (0.023) (0.021)
Minimum 0.060 0.130 0.220 0.320 0.300
Maximum 0.640 0.730 0.740 0.560 0.510

Overall Mean 0.503

32

Table VII
Performance Comparison of Genetic Programming. the
Black-Scholes Model, and Neural Networks in a Jump

Diffusion World Measured by Mean Absolute Pricing Errors

The numbers in each cell are the average pricing errors from the models across 10 test sets for the Genetic
Programming formulas, the Black-Scholes model, and Neural Networks. For each test set, the error value
for each cell is calculated by taking the average pricing errors over five options. Rows in the table represent
days-to-maturity and columns represent the degree-of-moneyness, S/X. We shade the areas where Genetic
Programming improves Black-Scholes. Genetic Programming is better than neural networks in all cases.
The model specification for Genetic Programming is given in Table IV.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

BS= 0.02 0.05 0.08 0.08 0.04 0.03 0.06 0.03 0.00 0.01 0.01 0.00
M 5 GP= 0.01 0.03 0.04 0.02 0.05 0.12 0.11 0.06 0.03 0.01 0.01 0.01

NN= 0.23 0.23 0.21 0.18 0.14 0.12 0.16 0.21 0.21 0.23 0.26 0.26
A BS= 0.05 0.08 0.10 0.09 0.05 0.00 0.03 0.04 0.03 0.01 0.00 0.00

10 GP= 0.02 0.03 0.02 0.02 0.05 0.08 0.08 0.07 0.05 0.03 0.02 0.02
T NN= 0.19 0.17 0.12 0.08 0.07 0.12 0.18 0.22 0.21 0.22 0.25 0.26

BS= 0.12 0.13 0.13 0.12 0.10 0.07 0.05 0.02 0.01 0.00 0.01 0.01
U 30 GP= 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.04 0.05 0.05 0.04

NN= 0.05 0.09 0.14 0.17 0.17 0.17 0.18 0.19 0.20 0.21 0.24 0.26
R BS= 0.14 0.15 0.15 0.14 0.12 0.10 0.08 0.06 0.04 0.03 0.01 0.01

45 GP= 0.03 0.04 0.04 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.04 0.04
I NN= 0.12 0.17 0.19 0.18 0.16 0.16 0.17 0.18 0.20 0.22 0.23 0.26

BS= 0.16 0.16 0.16 0.15 0.14 0.12 0.11 0.09 0.07 0.05 0.04 0.03
T 60 GP= 0.04 0.04 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04

NN= 0.17 0.19 0.18 0.16 0.15 0.15 0.17 0.19 0.20 0.21 0.23 0.26
Y BS= 0.19 0.19 0.19 0.18 0.17 0.16 0.15 0.13 0.11 0.10 0.08 0.07

90 GP= 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06
NN= 0.16 0.14 0.13 0.14 0.16 0.18 0.19 0.20 0.20 0.21 0.24 0.28

33

Table VIII
Real World Applications: Genetic Programming Model Specification for

S&P500 Index Option and Five Equity Options

Name Source Definition
S Option Contract Stock price
X Option Contract Exercise price
S/X Black-Scholes parameter Degree of option moneyness
R Black-Scholes parameter Risk-free rate
� Black-Scholes parameter Annualized historical volatility
� Option Contract Time to maturity (in years)
Max(S-X) Boundary Condition Option intrinsic value Max (S-X,0)
Black-Scholes Naïve investor’s valuation Black Scholes value of option

+ Standard arithmetic Addition
- Standard arithmetic Subtraction
* Standard arithmetic Multiplication
% Standard arithmetic Protected Division: x%y = 1 , if y = 0

 = x/y , otherwise
Exp Black-Scholes component Exponent: exp(x) = ex

Plog Black-Scholes component Protected Natural log: plog(x) = ln(|x|)
Psqrt Black-Scholes component Protected Square root: psqrt(x) = sqrt(|x|)
Ncdf Black-Scholes component Normal Cumulative Distribution Function

34

Table IX
 Performance in the Real World

This table shows the mean absolute pricing errors for ten Genetic Programming Formulas, the Black-
Scholes model, and Neural Networks, on ten out-of-sample data sets of the S&P 500 Index (SPX) option
and five equity options. Each formula came from a separate training set and was evaluated on a separate
test set. The parameter search was performed using April 3-4 data to find algorithm parameters that give
formulas with good out-of-sample performance. Ten training sets with these parameters were used to train
an equal number of formulas for each underlying asset. Ten additional test sets were used per underlying
asset to test their out-of-sample performance. All training and test sets for SPX came from April 6-10
BODB data and those for five equity options came from April 6-13. Each cell contains the average error
over an out-of-sample data set. The model specifications for Genetic Programming are given in Table IX.

SP 500
Training Set Size=50, Test Set Size=50

Best Buy
Training Set Size=200, Test Set Size=50

Formula/
Test Set

Genetic
Programming

Mean Absolute
Pricing Errors

Black-
Scholes

Mean Absolute
Pricing Errors

Neural Networks
Mean Absolute
Pricing Error

Genetic
Programming

Mean Absolute
Pricing Errors

Black-
Scholes

Mean Absolute
Pricing Errors

Neural Networks
Mean Absolute
Pricing Error

1 1.955458 3.230137 1.23707 0.092718 0.118118 0.05825
2 3.032258 4.673598 1.17730 0.060467 0.085869 0.06334
3 2.361709 3.324834 1.20080 0.115019 0.079415 0.07712
4 1.517703 3.288438 1.04564 0.099566 0.101912 0.05830
5 2.480248 3.544208 2.05279 0.126194 0.086824 0.07433
6 2.021971 3.011138 0.78043 0.104570 0.089499 0.06210
7 2.335770 3.180231 1.69375 0.101157 0.114478 0.05273
8 2.176582 3.315890 1.21113 0.118906 0.078582 0.07014
9 1.630518 3.284605 1.07199 0.085496 0.101072 0.06011

10 3.080306 4.180943 0.93764 0.118083 0.077998 0.07660
Average 2.259 3.503 1.24085 0.102218 0.093377 0.06530

Broderbund
Training Set Size=50, Test Set Size=50

Comp USA
Training Set Size=200, Test Set Size=50

Formula/
Test Set

Genetic
Programming

Mean Absolute
Pricing Errors

Black-
Scholes

Mean Absolute
Pricing Errors

Neural Networks
Mean Absolute
Pricing Error

Genetic
Programming

Mean Absolute
Pricing Errors

Black-
Scholes

Mean Absolute
Pricing Errors

Neural Networks
Mean Absolute
Pricing Error

1 0.134556 0.134556 0.74069 0.147540 0.189146 0.16404
2 0.125486 0.125486 0.60994 0.191933 0.185619 0.13962
3 0.107404 0.107404 0.56951 0.214485 0.148687 0.27743
4 0.141839 0.141452 0.59754 0.162178 0.186945 0.13950
5 0.144841 0.144841 0.68213 0.159190 0.165545 0.16200
6 0.127919 0.127919 0.69162 0.213317 0.184263 0.26520
7 0.125268 0.125268 0.61138 0.166541 0.185641 0.12111
8 0.121064 0.121064 0.56095 0.150210 0.188550 0.15825
9 0.147464 0.147463 0.72522 0.179620 0.192222 0.14528

10 0.107356 0.115799 0.63489 0.151901 0.186986 0.17235
Average 0.128320 0.129126 0.64239 0.173692 0.181361 0.17448

35

Table IX
Performance in the Real World (continued)
DEC

Training Set Size=50, Test Set Size=50
Novellus

Training Set Size=50, Test Set Size=50
Formula/
Test Set

Genetic
Programming

Mean Absolute
Pricing Errors

Black-
Scholes

Mean Absolute
Pricing Errors

Neural Networks
Mean Absolute
Pricing Error

Genetic
Programming

Mean Absolute
Pricing Errors

Black-
Scholes

Mean Absolute
Pricing Errors

Neural Networks
Mean Absolute
Pricing Error

1 0.159522 0.159522 0.43014 0.142276 0.253066 0.47557
2 0.146230 0.146230 0.41401 0.197596 0.284001 0.52269
3 0.143515 0.143515 0.45442 0.224893 0.284992 0.45737
4 0.114799 0.114799 0.40556 0.181735 0.269153 0.50346
5 0.087957 0.122264 0.43355 0.188179 0.277145 0.44845
6 0.125400 0.125400 0.40758 0.204846 0.234419 0.43888
7 0.123594 0.123594 0.43016 0.166795 0.321690 0.45069
8 0.128593 0.128593 0.33289 0.200639 0.197881 0.58192
9 0.145408 0.145408 0.43425 0.195321 0.309613 0.58591

10 0.106262 0.106262 0.41054 0.161740 0.297320 0.44203
Average 0.128129 0.131559 0.41531 0.186402 0.272928 0.49070

36

Figure 1. Parents and Offspring
Randomly chosen crossover points are shaded.

Parents

Offspring

 +

 T

 X
ln

 *

 S

 f =ln(S)X + T

 3
 T

 - sqrt

 *

 S

 ln

 f=sqrt(T)*(ln(s)-3)

 +

 T X

ln

 *

 S

 f =ln(S)(ln(S)-3)+T

 3

 T

 -

 sqrt

 *

 S

 ln

 f=sqrt(T)*X

37

Figure 2. The Black-Scholes world. In the Black-Scholes world, the underlying stock prices follow
Geometric Brownian motion.
A. A sample stock price path.

B. The distribution of option prices derived from the above stock price path in a Black-Scholes world.

38

Figure 3. The performance of Genetic Programming in a Black-Scholes World. The performance is
measured by mean absolute errors. This figure illustrates pricing errors generated by Genetic Programming.

39

Figure 4. The jump-diffusion world.
A. A sample stock price path.

B. The distribution of option prices derived from the above stock price path in a jump-diffusion world.

40

Figure 5. Performances of the Black-Scholes model and Genetic Programming in a jump-diffusion
world. We use the Black-Scholes model and Genetic Programming to estimate option prices when the
underlying asset prices follow a jump-diffusion process described in Figure 4.
A. Absolute pricing errors of the Black-Scholes Model in a jump-diffusion world.

B. Absolute pricing errors made by the Genetic Programming in a jump-diffusion world.

41

Appendix A

Performance of Genetic Programming in a Black-Scholes World
--Measured by Mean Percentage Pricing Errors--

We generate the underlying stock prices as Geometric Brownian motion. The model specifications for Genetic Programming
are specified in Table I. Pricing errors are presented for six parent selection algorithms to evaluate the efficiency of alternate
methods for generating new populations from the previous generation of formulas. Each cell in the table is the average value
across 10 Genetic Programming formulas generated for each of the alternate methods. For each Genetic Programming
formula, the error is calculated by taking the average pricing error over five options. Rows in the table represent days-to-
maturity and columns represent the degree-of-moneyness, S/X.

Parent Selection Criteria : Best
Individuals with the smallest pricing errors are selected to be in the new population.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 820.0% 820.0% 728.4% 171.6% 67.9% 81.5% 7.7% 1.5% 1.5% 1.4% 1.4% 1.3%
10 731.7% 728.0% 123.7% 38.9% 59.1% 77.5% 14.5% 1.7% 1.4% 1.5% 1.5% 1.4%
30 188.7% 67.4% 26.9% 33.9% 52.0% 74.0% 23.2% 7.7% 2.1% 1.5% 1.9% 2.0%
45 129.7% 43.5% 24.9% 32.2% 45.8% 71.5% 23.9% 9.9% 3.6% 2.0% 2.1% 2.3%
60 93.4% 35.2% 24.6% 29.0% 39.5% 68.4% 23.1% 10.8% 4.8% 2.7% 2.6% 2.7%

M
A
T
U
R
I
T
Y 90 68.3% 33.3% 23.1% 23.5% 30.3% 63.1% 20.5% 11.4% 6.3% 4.2% 3.7% 3.8%

Parent Selection Criteria : Fitness
Individuals are chosen randomly with a probability that is inversely proportional to their pricing errors.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 900.0% 900.0% 900.0% 75.7% 88.8% 96.3% 9.6% 1.2% 0.8% 0.8% 0.7% 0.7%
10 900.0% 841.1% 184.9% 52.9% 82.7% 92.4% 17.4% 3.3% 0.8% 0.8% 0.7% 0.7%
30 371.2% 101.2% 51.1% 58.3% 75.6% 84.8% 29.5% 12.1% 4.7% 2.1% 1.3% 1.2%
45 177.0% 62.4% 50.3% 58.0% 72.2% 81.0% 32.4% 16.0% 7.6% 3.9% 2.4% 1.7%
60 108.1% 53.9% 49.9% 57.2% 69.4% 78.0% 33.7% 18.4% 9.9% 5.6% 3.5% 2.5%

M
A
T
U
R
I
T
Y 90 71.7% 48.6% 49.1% 55.2% 64.8% 73.0% 34.5% 21.4% 13.0% 8.3% 5.6% 4.1%

42

Appendix A (continued)

Parent Selection Criteria : Fitness-overselection
Individuals are divided into two groups. Group 1 has the top 320 individual with the smallest pricing errors. The
remainders are placed in Group 2. Individuals are then chosen randomly with a higher probability assigned to Group 1.
In our implementation, the probability of selection was 80% for Group 1 individuals and 20% for Group 2 individuals.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 820.0% 787.6% 696.2% 95.6% 53.9% 69.9% 9.5% 5.3% 3.7% 2.7% 2.2% 1.9%
10 808.6% 706.2% 73.4% 41.9% 50.7% 68.8% 9.2% 4.1% 3.7% 2.9% 2.3% 2.0%
30 123.4% 66.8% 27.9% 30.4% 45.4% 59.7% 16.8% 6.1% 3.1% 2.9% 2.8% 2.5%
45 101.0% 42.4% 23.2% 28.0% 40.8% 53.5% 19.6% 8.4% 4.1% 3.1% 3.0% 2.9%
60 73.3% 32.5% 20.9% 25.3% 36.7% 48.2% 20.6% 9.9% 5.1% 3.8% 3.5% 3.3%

M
A
T
U
R
I
T
Y 90 53.0% 28.1% 19.5% 21.2% 30.3% 40.0% 20.2% 11.3% 6.9% 5.4% 4.9% 4.6%

Parent Selection Criteria : Random
Individuals are chosen randomly and their fitness errors are ignored.

Moneyness S/X
0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 820.0% 820.0% 732.0% 219.7% 92.8% 96.9% 11.4% 1.9% 1.1% 0.9% 0.8% 0.7%
10 820.0% 711.3% 294.0% 67.4% 84.2% 92.8% 20.2% 4.5% 1.5% 1.1% 0.9% 0.8%
30 384.8% 125.4% 45.9% 59.2% 76.5% 85.2% 35.4% 15.0% 6.5% 3.2% 2.1% 1.6%
45 180.4% 67.1% 41.1% 57.5% 72.6% 81.2% 39.6% 19.7% 9.9% 5.3% 3.3% 2.3%
60 115.6% 45.1% 39.1% 54.9% 68.9% 77.5% 41.6% 22.6% 12.4% 7.0% 4.3% 3.0%

M
A
T
U
R
I
T
Y 90 71.4% 30.7% 34.5% 49.1% 62.1% 70.8% 42.2% 25.4% 15.3% 9.4% 6.0% 4.1%

Parent Selection Criteria : Tournament, n=4
Four individuals are first chosen randomly from the population. The best of the four individuals is then selected for the
next generation.

Moneyness S/X

0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 740.0% 655.3% 571.7% 151.2% 58.8% 77.9% 14.0% 7.0% 3.5% 2.1% 1.7% 1.6%
10 579.6% 365.7% 82.5% 45.6% 48.0% 74.0% 10.4% 5.7% 3.7% 2.5% 2.0% 1.8%
30 99.7% 32.1% 19.6% 31.5% 42.3% 69.8% 12.4% 4.9% 3.2% 2.9% 2.7% 2.5%
45 68.4% 29.0% 18.9% 28.2% 37.5% 64.8% 13.7% 6.3% 3.7% 3.2% 3.0% 2.9%
60 59.9% 28.8% 17.9% 24.5% 33.0% 59.5% 14.1% 7.3% 4.5% 3.5% 3.3% 3.3%

M
A
T
U
R
I
T
Y

90 55.8% 30.9% 18.0% 18.8% 25.6% 50.5% 13.6% 8.5% 5.7% 4.4% 4.1% 4.2%

43

Parent Selection Criteria : Tournament, n=7
Seven individuals are first chosen randomly from the population. The best of the seven individuals is then selected for
the next generation.

Moneyness S/X

0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15

5 740.0% 739.1% 644.6% 39.9% 42.1% 75.1% 8.8% 3.7% 1.8% 0.9% 0.6% 0.6%
10 746.0% 469.0% 45.7% 25.6% 38.4% 69.5% 10.5% 3.8% 2.1% 1.1% 0.7% 0.6%
30 59.4% 31.0% 22.5% 22.3% 27.1% 63.2% 11.9% 6.1% 3.1% 1.7% 1.1% 1.0%
45 49.0% 25.0% 23.0% 20.0% 21.6% 60.4% 11.4% 7.5% 4.5% 2.5% 1.6% 1.2%
60 41.1% 22.6% 22.7% 18.5% 18.4% 57.8% 10.9% 8.4% 5.7% 3.5% 2.1% 1.5%

M
A
T
U
R
I
T
Y

90 33.8% 19.8% 21.8% 17.9% 14.7% 53.2% 10.0% 9.2% 7.1% 5.3% 3.5% 2.4%

44

Appendix B
The performance of Genetic Programming in a Black-Scholes World.

The performance is measured by mean absolute percentage errors. This figure illustrates pricing errors
generated by Genetic Programming. Errors were capped at 100% for the purposes of this figure and the
large percentage errors observed for short maturity out-of-the-money options are omitted.

45

Appendix C
Performance Comparison of Genetic Programming. the
Black-Scholes Model, and Neural Networks in a Jump

Diffusion World Measured by Absolute Percentage Pricing Errors

The numbers in each cell are the average pricing errors from the models across 10 test sets for the Genetic
Programming formulas, the Black-Scholes model, and Neural Networks. For each test set, the error value
for each cell is calculated by taking the average pricing errors over five options. Rows in the table represent
days-to-maturity and columns represent the degree-of-moneyness, S/X. We shade the areas where Genetic
Programming improves Black-Scholes. Genetic Programming is better than neural networks in all cases.
The model specification for Genetic Programming is given in Table IV.

0.875 0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125 1.15
BS= 95.6% 85.7% 65.7% 36.5% 8.7% 3.7% 3.5% 1.1% 0.1% 0.1% 0.1% 0.0%

5 GP= 58.0% 47.1% 30.9% 8.5% 11.3% 13.9% 6.9% 2.4% 0.7% 0.3% 0.2% 0.2%
NN= 862.6% 443.7% 189.5% 77.2% 30.0% 12.7% 9.5% 7.7% 5.4% 4.4% 4.1% 3.5%
BS= 71.8% 54.6% 35.8% 18.8% 6.5% 0.3% 1.5% 1.3% 0.6% 0.2% 0.0% 0.0%

10 GP= 25.8% 18.1% 8.3% 4.5% 5.8% 6.1% 4.2% 2.5% 1.3% 0.6% 0.3% 0.2%
NN= 256.9% 115.6% 45.0% 15.9% 8.6% 8.7% 8.5% 7.3% 5.2% 4.2% 3.9% 3.5%
BS= 27.3% 19.7% 13.5% 8.8% 5.3% 3.0% 1.5% 0.6% 0.2% 0.1% 0.1% 0.1%

30 GP= 5.6% 4.3% 3.0% 1.9% 1.2% 0.8% 0.6% 0.8% 0.9% 0.8% 0.7% 0.5%
NN= 10.8% 13.4% 14.9% 13.0% 9.4% 7.0% 5.7% 4.8% 4.1% 3.6% 3.4% 3.3%
BS= 19.0% 14.2% 10.4% 7.3% 5.0% 3.4% 2.1% 1.3% 0.8% 0.4% 0.2% 0.1%

45 GP= 4.5% 3.3% 2.5% 1.9% 1.3% 0.8% 0.5% 0.5% 0.5% 0.6% 0.5% 0.5%
NN= 15.9% 16.0% 13.6% 9.9% 6.9% 5.3% 4.5% 4.0% 3.7% 3.4% 3.1% 3.1%
BS= 15.1% 11.7% 8.9% 6.6% 4.9% 3.5% 2.5% 1.7% 1.2% 0.8% 0.5% 0.3%

60 GP= 3.8% 3.0% 2.5% 2.0% 1.4% 1.0% 0.7% 0.5% 0.5% 0.5% 0.5% 0.5%
NN= 15.8% 13.5% 10.1% 7.0% 5.1% 4.3% 4.0% 3.7% 3.4% 3.1% 2.9% 3.0%
BS= 11.4% 9.2% 7.4% 5.9% 4.6% 3.6% 2.8% 2.2% 1.7% 1.3% 0.9% 0.7%

90 GP= 3.4% 2.9% 2.4% 1.9% 1.5% 1.1% 0.9% 0.8% 0.7% 0.7% 0.6% 0.6%
NN= 9.5% 6.8% 4.9% 4.4% 4.4% 4.2% 3.8% 3.4% 2.9% 2.7% 2.8% 2.9%

46

Appendix D
Percentage pricing errors made by the Black-Scholes Model in a jump-diffusion world.

Percentage pricing errors made by Genetic Programming in a jump-diffusion world.

47

Appendix E
Neural networks used in the study

Following Hutchinson, Lo, and Poggio (1994), we trained a one-hidden layer multilayer-perceptron
networks (MLPs) to price options on our data set. Our networks also use the same topology. Using their
notation, the networks may be represented by the following equation:

))1
1

oioi

n

i
i xh(h()xf(δββδ +′+= ∑

=

rrr

where n is the number of hidden layers, δi,βi,j are weights, x
r

 is the vector of inputs, and h is the
logistic function

ue
uh −+

=
1

1
)(

We used four data normalization schemes and two weight initialization schemes. The number of hidden
nodes, training cycles, and training method, are as specified by Hutchinson, Lo, and Poggio (1994). Table
E.1 shows the network training parameters.

Table E.1
Neural Network Training Parameters

Input Variables Same as GP input variables, normalized to lie in [0,1]
Output Variable Call price, normalized to lie in [0,1]
Training cycles 10,0000
Training Method Gradient descent with momentum.
Initialization 1) Random βi,j, δi. Weights were chosen by neural networks

package (Matlab) according to ranges in training data values.
2) Unit weight to Black-Scholes, zero to other variables (βi,j, δi =

0 ∀ i, j , except for β11, δ1, which are set equal to (This method
almost always gave the best results).

Normalization of inputs and
outputs

1) Divide each input by the corresponding value in normalization
vector.

2) Divide all inputs by maximum value in the normalization vector.
3) Normalize as in (1) and then apply logistic function h.
4) Normalize as in (2) and then apply logistic function h.

After training each network we evaluated it on an out-of-sample data set. The results presented in the paper
are those of the network with the smallest mean absolute error on the out-of-sample data set.

