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Abstract

This paper develops a structural model of intraday price formation
that embodies both public information shocks and microstructure effects in
an internally consistent, unified setting. The model allows us to better un-
derstand the observed intra-day patterns in bid-ask spreads, price volatility,
transaction costs, as well as the autocorrelations of transaction returns and
quote revisions. For example, the model simultaneously sheds light on why,
over the day, (i) the variance of transaction price changes is U-shaped while
the variance of ask price changes is declining, (ii) the bid-ask spread is U-
shaped although information asymmetry and uncertainty over fundamentals
is decreasing, and (iii) the autocorrelations of transaction price changes are
large and negative, yet the autocorrelations of ask price changes are small
and negative. In addition, the model’s parameters also provide a natural
metric of price discovery and effective trading costs, which may prove useful
in future studies.
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1. Introduction

Why do security prices change?

In the classical model of an efficient security market, prices move in response to new
public information that causes traders to simultaneously revise their beliefs. Alternatively,
the process of trading itself may generate price movements because of various market im-
perfections and frictions. A realistic description of intraday security price movements must
capture both these elements.

Understanding the process of intraday price formation is important for several reasons.
First, intraday prices and quotes exhibit several patterns that are not well understood. For
example, it is well-known (see, for example, Harris (1986), Jain and Joh (1988) and Mcln-
ish and Wood (1992)) that quoted bid-ask spreads and volume exhibit U-shaped patterns
over the day. This finding is difficult to reconcile with evidence from theoretical mod-
els (Easley and O’Hara (1992), Madhavan (1992)) and laboratory experiments (Bloomfield
(1996), Bloomfield and O’Hara (1996)) where information asymmetry and uncertainty over
fundamentals, and hence bid-ask spreads, decline monotonically over the day as market par-
ticipants learn from the trading process. Second, an examination of how much new public
information flows or particular market frictions contribute to intraday price volatility is of
great interest from a public policy viewpoint. Third, a better understanding of intraday
price formation may also shed light on the magnitude, determinants, and composition of
execution costs, a topic of considerable interest to portfolio managers, exchange officials,
and traders.

Previous research has examined various microstructure phenomena (such as intraday
bid-ask spreads, execution costs, and autocorrelation and volatility patterns of transaction
prices and quotes) either individually or through generalized reduced-form investigations.
By contrast, this paper develops and estimates a structural model of price formation which
captures many of these frictions in a unified setting. Our model incorporates both public
information shocks and microstructure effects. The microstructure phenomena modeled
include the possibility of crosses within the quoted bid-ask spread, autocorrelation of order
flow, as well as trading frictions arising from asymmetric information, dealer costs, and price

discreteness.



The structural model described in this paper links two important areas of the litéra-
ture. The first area examines the sources of intraday price volatility. While theoretical
and laboratory experiments indicate that the trading process generates information which
reduces pricing errors, the empirical evidence suggests otherwise. For example, French and
Roll (1986) find that return volatility is significantly higher during trading hours than dur-
ing non-trading hours, and attribute this to noise generated by the trading process. More
recently, Hasbrouck (1991b) uses time-series techniques to decompose the random-walk com-
ponent of returns using a VAR approach, while Hasbrouck (1993) decomposes the variance
of the stationary component of returns. Like Hasbrouck, we decompose intraday volatility
into components attributable to public information shocks and trading frictions, but our
work differs in that our model is structural by nature. Thus, we can relate the decomposi-
tion one-to-one with the underlying economic parameters of the model, although we lose the
generality of Hasbrouck’s approach.

The second related area concerns the measurement of the components of the bid-ask
spread. An extensive theoretical literature shows that the costs of trading, as represented by
the effective bid-ask spread, consist of three components: asymmetric information, inventory
carrying costs, and order processing costs. The relative importance of these components isa
topic of considerable practical and academic interest, especially since it may provide insights
into the why execution costs vary across markets and stocks.! More recently, Huang and
Stoll (1996) develop a general model to investigate the components of the bid-ask spreads.
Although their model (which was independently derived) is closely related to ours, it de-
composes the non-information part of the spread into the inventory and order processing
components. By contrast, our focus is more on explaining the effect of information flows on
stock prices over the day, i.e., is complementary. In this sense, our work is also related to
Huang and Stoll (1994), who examine the predictability of returns over very short horizons
while controlling for various microstructure effects.

We estimate the model using transaction-level data for a number of stocks listed on the
New York Stock Exchange (NYSE). Because the model is so simple, the parameters are

estimated in a setting which provides a high comfort level in terms of estimation, though not

1See, e.g., Roll (1984), Glosten (1987), Glosten and Harris (1988), Choi, Salandro, and Shastri (1988),
Stoll (1989), George, Kaul, and Nimalendran (1991), and Huang and Stoll (1994).



necessarily model, error, i.e., OLS normal equations plus some augmented direct estimates
of order flow behavior and crossing probabilities. There are several interesting features of
the model estimation. First, though the model captures many interesting microstructure
effects, only transactions data is required for estimation purposes. Second, other than the
model structure itself, very weak assumptions are placed on the transactions price generating
process in estimating the parameters. Third, we cam interpret our model parameters in
terms of quote data (e.g., bid-ask spreads, volatility and autocorrelation) and transaction
price changes-based moment restrictions not used in estimation (e.g., autocorrelations).

Several interesting results emerge from our analysis:

e Both information flows and trading frictions are important factors in explaining intra-

day price volatility in individual stocks.

o Information asymmetry decreases steadily throughout the day, consistent with theoret-
ical models (Schreiber and Schwartz (1985), Handa and Schwartz (1‘991), and Madha-
van (1992)) where market makers learn from order flow, as well as with evidence from
experimental markets (Bloomfield (1996), Bloomfield and O’Hara (1996)). However,
dealer costs increase over the day (possibly reflecting the costs of carrying inventory
overnight), so that bid-ask spreads exhibit the U-shaped pattern noted in previous

research.

e We provide an estimator of execution costs that takes into account the possibility that
orders may execute within the bid-ask spread as well as information and inventory
effects. The cost of transacting is significantly smaller than the bid-ask spread once
the probability of executing within the quotes is considered. In contrast to the bid-
ask spread, this measure of execution costs increases over the day. This result is
consistent with® concentrated trading at the open by discretionary liquidity traders

who can selectively time their trades.

o The model provides insights into the determinants of the autocorrelations of quotes and
returns, as well as other moments, such as the variance of quote changes. In particular,
the autocorrelation of quote returns implied by our model may be positive or negative,

even though beliefs follow a martingale and there are no lagged inventory effects.
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Additionally, the pattern in return and quote autocorrelations implied by our model
closely resemble the actual autocorrelations of the data. For example, in our sample,
autocorrelations of price changes average approximately -0.219 on a transactions level

basis, while our model implies an average of -0.211.

The paper proceeds as follows: In section 2, we develop a structural model of price
formation, and describe the procedure for estimating this model. Section 3 provides a brief
description of the data and estimates of the model’s underlying parameters over the day.
Section 4 discusses the economic implications of the model’s parameters for execution costs,
price discovery, and the autocorrelation of price changes and quote revisions. Section 5
provides a discussion of the model’s limitations, suggestions for extensions to correct these

failures, and Section 6 summarizes.

2. A Structural Model of Price Formation

2.1. Bid-Ask Quotes and Transaction Prices

We begin by examining a prototypical microstructure model of the quote and return gener-
ating mechanism.? Consider the market for a risky security whose fundamental value (which
can be thought of as the present value of future dividends) evolves through time. The secu-
rity is traded in an auction-dealer mechanism where liquidity providers (who may be traders
using limit orders or designated market makers such as NYSE specialists) quote bid and ask
prices at which they are willing to trade. An order also may be executed within the quotes.?

Let p; denote the transaction price of the security at time ¢t. Denote by z; an indicator
variable for trade initiation, where z; = +1 if trade ¢ is buyer-initiated and —1 if the trade
is seller-initiated. Some trades (such as pre-negotiated crosses within the prevailing bid-ask

spread) can be viewed as both buyer- and seller-initiated, and in this case z; = 0. Let A

2The model incorporates a variety of microstructure effects discussed individually. In particular, the
models of Garbade and Silber (1979), Roll (1984), Glosten and Milgrom (1985), Choi, Salandro, and Shastri
(1988), and Stoll (1989) can be viewed as special cases of our model.

30n the NYSE, such price improvement may occur because of limit orders or through the actions of floor
traders or the specialist. In this paper we do not explicitly incorporate the limit order book. However, we
can interpret a limit order trader as another market maker, and to this extent the bid and ask quotes may
be thought of as arising not necessarily from the exchange floor. Such an approach is pursued by Greene
(1996), who extends our model in this direction.



denote the unconditional probability the transaction occurs within the quoted spread, i.e.,
A = Prfz; = 0]. We assume that buys and sells are (unconditionally) equally likely, so that
E[z;] = 0 and Var[z,] = (1 — A).

Before describing how quotes and transaction prices are determined, we first discuss
the evolution of public beliefs. Changes in beliefs arise from two sources: (i) New public
information announcements which are not associated with trading, and (ii) Order flow, which
may provide a noisy signal about future asset values.

Public news announcements may cause revisions in beliefs without any trading volumes.
Denote by ¢; the innovation in beliefs between times t—1 and ¢ due to new public information.
We assume that ¢, is an independent and identically distributed random variable with mean
zero and variance o2. In addition, if market makers’ believe that some traders may possess
private information about fundamental asset value, a buy (sell) order is associated with an
upward (downward) revision of beliefs. We assume, following Glosten and Milgrom (1985),
that the revision in beliefs is positively correlated with the innovation in the order flow.
Formally, the change in beliefs due to order flow is 8(z: — Elx4|zs-1]), where (z¢ — E{ze|ze-1])
is the surprise in order flow and § > 0 measures the degree of information asymmetry or the
so-called permanent impact of the order flow innovation. Higher values of ¢ indicate larger
revisions for a given innovation in order flow; in the absence of information asymmetry, the
parameter 6 = 0.

Our assumption of a fixed order size is consistent with much of the previous literature.®
Alternatively, following Glosten and Harris (1988) and Madhavan and Smidt (1991), the
revision in beliefs could be modeled as proportional to the net order imbalance in a particular
period. Although it is possible to extend the model to incorporate such volume effects (as
discussed below), there are several arguments in favor of a constant order size model. First,
and most importantly, the simplifying assumptions regarding volume permit us to estimate a
parsimonious model and compute closed-form solutions for the estimators of interest. Second,

the assumption facilitates comparisons of our results with much of the previous literature on

4In Glosten and Milgrom (1985), the revision in beliefs is directly proportional to the actual order flow
because it is implicitly assumed that order flow is uncorrelated.

3See, e.g., Roll (1984), Glosten and Milgrom (1985) Stoll (1989), Choi, Salandro, and Shastri (1988),
George, Kaul, and Nimalendran (1991), Huang and Stoll (1994), and Huang and Stoll (1996).



intra-day price movements. Third, previous empirical studies find that the effect of order size
is economically small relative to the indicator variables, suggesting that the gain in efficiency
from modeling volume may be relatively modest.® Extensions to a volume-based model are
discussed in more detail in Section 5.

Let y, denote the post-trade expected value of the stock conditional upon public infor-
mation and the trade initiation variable. The revision in beliefs is the sum of the change in

beliefs due to new public information and order flow innovations, so that
pt = pie—1 + 0(ze — Elze|ze-1]) + €. (1)

Market maker bid and ask quotations are ez post rational (see, e.g., Glosten and Milgrom
(1985)) so that the ask (bid) price is conditioned on a trade being buyer-initiated (seller-
initiated). Let p? denote the (pre-trade) ask price at time ¢ and similarly define the bid price,
p?. Market maker quotations also reflect their compensation for their service in providing
liquidity on demand. Let ¢ > O represent market makers’ cost per share for supplying
liquidity. We can interpret ¢ as dealers’ compensation for transaction costs, inventory costs,
risk bearing, and poésibly the return to their unique position.” It follows that the ask price
(ie., the price if z; = +1) is p} = 1 +6(1 — E[zt|zt-1]) + ¢ + €. Similarly, the bid price is
P = pi_1 — 0(1 + E[z¢|z1—1]) — ¢ + €. Thus, ¢ captures the temporary (or transitory) effect
of order flow on prices.

Not all orders are executed at the quoted bid or ask prices. For example, floor brokers
or upstairs market makers may negotiate trades within the bid-ask spread. In this case,
transactions are assumed to execute at the midquote, m., where m, = (p¢ + p?)/2 = pe—1 +
¢; — OE[z¢|z;—1]. The transaction price can be expressed as the ez post belief plus (minus)
the dealer cost for a buy (sell) order. Formally, we write p; = u: + ¢z¢ + &, where &; is an

independent and identically distributed random variable with mean zero that captures the

6The small coefficients on volume may be explained by the fact that large-block trades often originate in
the upstairs market. In the upstairs market, intermediaries or block brokers search for counter-parties to the
trade, and typically arrange a transaction at or within the prevailing bid-ask spread. Further, if the floor
market is truly anonymous, informed traders will break-up their large trades, so that trade direction may
have more explanatory power than trade size.

"Demsetz (1968) examines the nature of transaction costs in determining bid-ask spreads; Amihud and
Mendelson (1980) and Ho and Stoll (1983) develop models of inventory control and show that the bid-ask
spread may reflect the dealers’ carrying costs and risk aversion.



effect of stochastic rounding errors induced by price discreteness or possibly time-varying
returns.® Observe that any systematic deviation from zero in the rounding error (arising
perhaps from a tendency to round up on buys and down on sells) is captured in the dealer
cost component ¢.

Using equation (1), we obtain
Pt = Hg—1 + H(It - E[(L‘tll't__]_]) + ¢$t + € + Et' (2)

- To estimate equation (2), we must describe the temporal behavior of order flow. We assume
a general Markov process for the trade initiation variable. Let v denote the probability
that a transaction at the ask (bid) follows a transaction at the ask (bid), i.e., v = Prlz, =
zi_1|zi—1 # 0]. As large traders typically breakup their orders into smaller components for
easier execution, continuations are more likely than reversals, so that v > 3.9

Let p denote the first-order autocorrelation of the trade initiation variable, ie., p =
%L%‘;‘:ﬁ]l. It is straightforward to prove that p = 2y — (1 — A), so that the autocorrelation of
order flow is an increasing function of the probability of a continuation, v, and the probability
of a midquote execution, A. Observe that when there is no possibility of transacting within
the quotes (i.e., A = 0) and order flow is independent (i.e., v = %), order flow is serially
uncorrelated and p = 0.0

Next, we need to compute the conditional expectation of the trade initiation variable
given public information. Observe that if 7,1 = 0, E[z¢|ze—1] = 0. If 2,1 = 1, Efzs|ze-1 =
1] = Prfz; = l|z4—y = 1] = Prlz; = —1ljzey = 1] = v = (1 =y = A) = p. Similarly, If
211 = —1, E[z4|zs—y = —1] = —p. Thus, the conditional expectation E[z:|z:—1] = pze-1.

To transform equation (2) into a testable equation, we need to substitute out the unob-
servable prior belief, u;_;. Using the fact that gy = ps—1 — ¢zt—1 — &1 and E(zilz—1] =

pTi_1, We can express equation (2) as

Pt — pi-1= (@ +0)zs — (¢ + pO)xi_1 + € + & — &1 (3)

8The assumption that the rounding error is serially uncorrelated is made for simplicity; since the rounding
error is, on average, one-sixteenth of a dollar (i.e., half the minimum variation), the effects on our estimates
of any serial correlation are unlikely to be significant.

9This may also occur because of price continuity rules, trade reporting practices, and other institutional
factors.

19Tn our model, midquote transactions are informative because these transactions lead to innovations in
market maker beliefs when order flow is autocorrelated.




Equation (3) forms the basis for our investigation of intraday price movements. In the ab-
sence of market frictions, the model reduces to the classical description of an efficient market
where prices follow a random walk. However, in the presence of frictions (i.e., transaction
costs and information asymmetries), transaction price movements reflect order flow and noise

induced by price discreteness, as well as public information shocks.

2.2. Model Estimation

The four parameters governing the behavior of transaction prices and quotes are: (i) 0,
the asymmetric information parameter, (ii) ¢, the cost of supplying liquidity, (iii) A, the
‘probability a transaction takes place inside the spread, and (iv) p, the autocorrelation of the
order flow. Let 8 = (6,9, A, p) denote the vector of price and quote parameters.

Equation (3) expresses transaction price changes as a linear function of contemporaneous
and past order flows. Thus, with adjustments to the standard errors for serial covariance
of the errors induced by price discreteness (i.e., & — &-1), equation (3) can be estimated
via ordinary least squares. Unfortunately, not all of the parameters in the vector § can
be identified this way. However, using a time-series of T observations on transaction price
changes and trade initiation, the model’s parameters can be estimated using maximum
likelihood or a similar nonlinear estimation procedure. The drawback to this approach is that
it requires strong distributional assumptions on the processes generating public information
which may be far from reality.

We adopt an alternative estimation procedure based on the Generalized Method of Mo-
ments (GMM) procedure of Hansen (1982). GMM is a natural approach to estimate jointly
the system of equations governing the transaction and quoted price processes. This tech-
nique is particularly appropriate here because it does not require strong assumptions for the
stochastic process generating the data. Indeed, Huang and Stoll (1994, 1996) use GMM
to test their models which closely resemble ours. Unlike maximum likelihood, the GMM
procedure yields consistent parameter estimates of the nonlinear model without specific dis-
tributional assumptions. Further, given the growing literature on non-normality of stock
returns (manifested in the conditional variance of returns), we can adjust for conditional

heteroskedasticity using the results of Newey and West (1987). Below, we describe briefly



the GMM approach to estimating the unknown parameters of the model.

The GMM procedure consists of choosing parameter values for 3 that minimize a cri-
terion function based on the orthogonality restrictions (or moment conditions) implied by
the model. Because of the model’s implied linearity between the observable variables, the
moment conditions correspond to the normal equations of OLS, with some additional re-
strictions which help decompose the OLS coefficients. SpeciﬁcaH;r, let us = py — pr—1 — (& +
8)z; + (¢ + pf)z:—1. Then, the following population moments implied by the model exactly

identify the parameter vector 8 and a constant (drift) a:

T1Zt-1 — 37?/’
|z¢] = (1= A)
E U — o = Q.
(ut - a)mt

(us — @)z
The first equation is simply the definition of the autocorrelation in trade initiation, the
second equation defines the crossing probability, the third equation defines the drift term as
the average pricing error, and the last two equations are the OLS normal equations.

The idea behind GMM is to choose parameter values for § such that the sample moments,
denoted by gr(8), closely approximate these underlying population moments. Hansen (1982)
proves that the GMM estimates, 8, are consistent and asymptotically normally distributed.
In particular, the variance-covariance matrix of B equals V3 = [DBSO' 1Do]‘l, where Dy =
E [Q%’é@] and Sp = SI=*% E[f,fi-1], where f: is the vector of arguments in the expectation

that defines the moment conditions.!?

3. Empirical Results

8.1. Data Sources and Methods

The data are drawn from a file of bid and ask quotations, transaction prices and volumes
for equities in 1990, obtained from the Institute for the Study of Securities Markets (ISSM).

Our initial sample is based on the first 750 stocks in the file. From the initial sample, we

Un practice, we estimate Sg using the Newey-West procedure to obtain a heteroskedasticity consistent
covariance matrix.



include only NYSE-listed common stocks trading in eighths which did not have any stock
splits in the calendar year 1990.

As our objective is to understand the process by which security prices impound informa-
tion, it is important to examine the evolution of the information parameters over the trading
day.}? Following Hasbrouck (1991b), we estimate the model for five intervals of the day:
9:30-10:00, 10:00-11:30, 11:30-2:00, 2:00-3:30, and 3:30-4:00. To ensure there are sufficient
observations for model estimation, we consider only those stocks for which there are at least
250 observations per interval over the year 1990. These criteria reduce the sample to 274
stocks.

On a transaction basis, we impose filters on the data to eliminate outliers or recording
errors.!® For the opening period (9:30-10:00), overnight returns are eliminated since recent
evidence (see, e.g., Amihud and Mendelson (1987)) indicates that they are likely to come
from a different distribution. The opening transaction (which, in active stocks, is usually
arranged in a batch or auction market), is eliminated.

To sign the trade initiation variable we must determine the quote prevailing at the time of
the transaction. Although transactions and quotations in the ISSM data are time-stamped
to the second, this presents a problem because there are often delays in the reporting of
transactions resulting in a misaligned sequence of quotes and transactions. Thus, it is possible
for a quote with the same time stamp as a transaction to represent the quote after the
transaction. Accordingly, it has been common to use only those quotes which have been in
existence for some time prior to the transaction as the quotes referring to the transaction.
Lee and Ready (1991) suggest identifying a quote as prevailing at the time of the transaction
if it was the latest quote for the stock and was at least five seconds old. More recent research
by Blume and Goldstein (1992) suggests a 16 second lag may be more appropriate, and we
adopt their procedure to determine the times of quotes.

Another consideration is whether to measure quote revisions in calendar or transaction

12This is especially relevant given empirical evidence (e.g., Harris (1989)) documenting temporal patterns
in intraday returns and volatility.

B3 The filters are as follows: any trades below $1 or above $200 are excluded; and bid (ask) quote or
transaction more than 50 percent away from the previous bid (ask) or transaction is eliminated; trades more
than $5 from the midquote are eliminated; and for stocks trading above $10, any quote with a percentage
spread above 20 percent is eliminated while for stocks below $10 any quote implying spreads over $2 is
eliminated.

10



time. In general, because dealers may provide multiple quotations even if the security’s price
is unchanged, we measure quote revisions in transaction time. Thus, the revision in the ask
quotes is defined as the change in the ask prices computed using the ask quotation just prior

to a transaction.

3.2. Descriptive Statistics

Table 1 presents descriptive statistics for the sample of stocks. Panel A of the table provides
details on the variance of transaction price and quote changes, number of transactions per
day, market capitalization at year-end 1989, and stock price for the 274 stocks in the sample.
The stocks are actively traded (the median number of transactions per day is 66), and have a
relatively high level of market capitalization (the median size is $2.2 billion which corresponds
roughly to the average size of NYSE- listed firms). Nonetheless, the stocks exhibit a wide
range in terms of size and activity, and all variables are skewed to the right.

Panel B of Table 1 provides a breakdown of price volatility, transaction frequency, bid-
ask spreads, and share volume in five intraday time intervals, for 1990. On an hourly
basis, it is clear that share volume and trading frequency exhibit the U-shaped pattern
documented by previous research. For example, while the number of transactions per hour
equal approximately 17 during the opening and closing hours of trading, only 11 transactions
occur during midday. Interestingly, for this sample, the volume per transaction is not U-
shaped. Instead, the volume per trade is approximately 2,200 plus shares for the first two
hours of trading, 1,900 plus shares over the next four hours, and then 1,600 during the last
hour. Finally, the bid-ask spread displays the usual U-shaped pattern, ranging from 22.8
cents at the open to 20.4 cents midday back to 21 cents at the close.

More interesting, while the volatility of transaction price changes follows a U-shaped
pattern, the variance of ask price changes declines throughout the day. This is especially
true during the opening interval in which the standard deviation of quote changes drops

from 7.8 cents to 6.9 cents.
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8.8. Parameter Estimates

Table 2 presents summary statistics on the individual parameter estimates governing the
stochastic process for transaction price changes and quote revisions across the 274 stocks.
The table presents the mean coefficient estimate, mean standard error, the standard deviation
of the estimates and the median estimates of the parameter vector 3 for the 274 stocks in each
of the five intraday trading intervals. The parameter estimates have, in general, economically
reasonable values.'

The extent of information asymmetry (i.e., 8) is the main parameter of interest. From
Table 2, it is clear that the degree of this asymmetry drops sharply after the opening half-
hour interval. The mean value of 8 falls by over a third from the opening to the middle
of the day (from 4.15 to 2.75 cents) and remains at this level until the final period where
it increases slightly. To gauge how reliable these estimates are, Table 2 also provides the
average standard error across the 274 stocks. The standard errors are quite tight, and range
from 0.19 cents to 0.57 cents at different times of the day.

The decline in 9 has a clear economic interpretation. Recall that 8 represents the mag-
nitude of the revision in the market maker’s beliefs concerning the security’s value induced
by order flow. A decline in 6, therefore, represents less reliance on the signal content of
order low. The greater reliance on prior beliefs is consistent with either (i) market makers
learning about fundamental asset values (i.e., price discovery) through the trading process,
or (ii) a larger percentage of liquidity traders (or equivalently, less information asymmetry)
at the end of the day. However, the monotonicity in the parameter estimates suggests to us
that the former interpretation is more reasonable. From a theoretical viewpoint, it is also
unlikely that the percentage _of uninformed traders may be systematically higher at certain
points of the day, since this would attract informed traders who seek to disguise their trades
as in Admati and Pfleiderer (1988).

The transaction cost element ¢ is approximately 3.4 cents in the first half hour and
increases steadily over the day to 4.6 cents in the final half hour interval, a rise of about 30
percent. Similar to the estimates of 6, the standard errors around these values tend to be

relatively small, ranging from 0.17 cents to 0.53 cents at various times during the day. Taking

14Gince the estimated drift « is essentially zero, its estimates are not reported in the table.
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these results as given, the increase in ¢ over the day is consistent with inventory control
models of market making. In our model, ¢ represents the economic costs of market making,
and the increase in this parameter over the day may reflect the increasing risks associated
with carrying inventory overnight. Previous studies of inventory control by market makers
(see, e.g., Hasbrouck (1988), Madhavan and Smidt (1991), and Hasbrouck and Sofianos
(1993b)) find relatively weak evidence of intraday inventory effects, although Madhavan and
Smidt (1993) suggest that these effects may be apparent at lower frequencies. If inventory
effects are manifested towards the end of the day, the conclusions of these studies may be
worth reinvestigating.

The autocorrelation of order flow, p, also lies in a fairly narrow range. From Table 2,
the mean value of the autocorrelation lies between 0.367 and 0.407. While the pattern is
mildly U- shaped, the average standard errors and lack of supporting theory suggest there is
no systematic pattern in the parameter over the day.!® Nevertheless, as expected, the mean
estimate is positive and the size of the implied autocorrelation suggests that ignoring this
effect may have importance economic consequences.

The probability that a trade occurs within the quotes, A, declines monotonically over the
day. The mean estimates drop from 34 percent in the opening interval to 28 percent at the
close. With average standard errors of around 1-2%, the drop is arguably large. Moreover,
from a theoretical viewpoint, the steady decline in A over the day is consistent with increased
incentives by liquidity providers to place limit orders when spreads are wide and a higher

probability of a cross in intervals of high activity.

4. Economic Implications of the Model

4.1. Assessing the Cost of Trading
4.1.1. The Bid-Ask Spread

Recent allegations of collusion among Nasdaq dealers in setting bid-ask quotes (see, e.g.,

Christie and Schultz (1994) and Christie, Harris, and Schultz (1994)) have focused renewed

15This figure is higher than those reported in previous studies because we explicitly model mid-quote
executions; these occurrences are relatively high in our sample of actively traded stocks.
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attention on the accurate measurement of transaction costs. We show in this section that
the bid-ask spread is a misleading measure of the true costs of trading, and use the model
to provide more accurate estimates.

The implied bid-ask spread at time t (i.e., p§ — pf) is a random variable with mean
2(8 + ¢). Let s denote the expected implied bid-ask spread. As s is a function of identifi-
able parameters, and the GMM estimators of these parameters have well-known asymptotic
distributions, s can be estimated in a straightforward manner from the data. Specifically, it
can be shown that the estimator of s, 2((13 + é), is consistent and asymptotically normal with

variance
2
2, 2]V54 [ 5 } ,

where 8 and ¢ denote the sample estimates of the parameters 6 and ¢ and Vj 3 is the estimated
covariance matrix of the GMM estimators.6

Table 3 presents the mean coefficient estimate, mean standard error, the standard devi-
ation of the coefficient estimate, and the median estimate of the bid-ask spread measure for
974 stocks in each of the five time intervals. Note that the spread is a function of the un-
derlying parameters of the structural econometric model described in 2.1. Thus, its patterns
can be interpreted economically within the model’s framework.

The implied spread exhibits the familiar U-shaped pattern over the course of the day
(see, for example, Table 1). In particular, the mean spread in the initial period is 15.2 cents,
drops to 14.3 cents during the day and rises to 14.7 cents at the end of the day. However,
the difference between the spread at the beginning (end) of the day and the spread at the
middle of the day is small because our sample consists of actively traded stocks for whom
the U-shaped pattern is less pronounced. In terms of the reliability of these results, note
that the average standard error varies from 0.24 cents to 0.66 cents over the day.

Nevertheless, standard errors aside, it is important to point out that our model provides
an explanation for this U-shaped pattern. In particular, the intraday patterns of the asym-

~metric information cost, 6, and the dealer cost, ¢, govern the spread’s behavior. At the

start of the day, information asymmetries are large, so that the spread is wide. Over the

161 our discussion below, we use this notation to describe all parameter estimates and associated covari-
ance matrices.
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day, asymmetries are resolved through price discovery causing spreads to narrow. Toward
the end of the day, the asymmetric information component is small but high transaction
costs (possibly reflecting the risks of carrying inventory overnight) cause the spread to widen
again.

On the positive side, these structural estimates of the spread do not rely on bid quotations
data but are inferred from the autocovariance and other moment conditions of transaction
price changes. Thus, one advantage of our structural framework is that, given the transac-
tions data, the U -shé.ped pattern is implied by the model. On the negative side, however,
because we do not use quotations data directly in estimation, the model’s spread need not
equal the actual (sample) quoted spread. Indeed, our estimates of the bid- ask spread are
lower than the actual quoted spread. Part of the difference may reflect the increased proba-
bility of a midquote transaction when the spread is wide.!” This systematic tendency could
explain the deviation between the spreads implied by our model and the actual sample
spreads. This is a topic for further research, and is discussed more in Section 5 below.

For further evidence of the relation between the model’s structural parameters and the
bid-ask spread, we can also estimate the fraction of the implied spread attributable to asym-
metric information. Define by r the ratio of the information component of the spread (i.e.,
26) to the total implied spread. If r = 0, the spread is entirely attributable to the costs of
supplying liquidity, and if r = 1, direct liquidity costs are negligible and adverse selection

costs constitute the entire bid-ask spread. Then, the estimate of r has mean

9
¢+6’

and asymptotic variance

6+¢-1 -6 ], T
0+0)2 (0+02] ™| wrae |

o
An examination of the proportion of the spread due to asymmetric information r over
the course of the day supports this hypothesis for the U-shaped pattern in spreads. As

shown in Table 3, r is 51 percent in the initial period, and falls steadily to 36 percent in the

17We do indeed find that spreads are wide when midquote trades occur. Moreover, using NYSE reported
statistics, about 30% of NYSE transactions occur at the midquote, but in transactions where the spread is
larger than $-§-, the figure increases to 70%. These stylized facts are consistent with our results.
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third period and remains at about this level for the rest of the day.'® Note that the average
standard errors range between 1%-3%. Thus, these results over the day suggest a fairly large

drop both economically and statistically.

4.1.2. The Effective Cost of Trading

An alternative measure of trading costs is the effective bid-ask spread measured by the
expected price difference between a notional purchase at timé t and a notional sale at some
future time ¢t + k. Recognizing the potential for a cross at either time, the potential changes
are from ask to bid, ask to the midpoint, midpoint to bid, and midpoint to midpoint. If
the notional sale takes place several transactions after the notional purchase (ie., if & is
sufficiently large), we can ignore the effect of the autocorrelation of order flow (which is of
the order p*).

Accordingly, we assume that, at the time of the notional sale, market makers, on aver-
age, expect buys and sells to be equally likely. In this case, the round-trip expected costs
associated with each of the four possibilities are 2(¢ + ), ¢, (¢ + 8), and 0, respectively.
Under our assumptions, the conditional probability of executing at the midquote given the
trade is buyer-initiated is /\; so the probabilities associated with each of the four possible
price paths are, respectively, (1 — )2, (1=A)A, (1= A)A, and A% It follows that the effective
spread, denoted by sE, takes the form sZ = (1 — X)(2¢ + 9).

The effective spread, sZ, can be consistently estimated via (1 — ))(2¢ + ), with corre-

sponding asymptotic variance given by

—(2¢ + 6)
[—(26 +8),2(1 = A), 1 = N Va5 | 2(1—A)
1— A

The solution for the effective spread shows that the bid-ask spread overstates the true cost of
trading for two reasons. First, a transaction on the NYSE may execute between the quoted
bid and ask prices (see, e.g., Lee and Ready (1991) and Blume and Goldstein (1992)), so that
the higher the probability of mid-quote execution A, the lower the cost of trading. Second,

18By contrast, Huang and Stoll (1996) find that the majority of the bid-ask spread is due to dealer costs.
The differences in our results may partly be explained by the sample stocks, since they focuse on the Major
Market Index stocks which are heavily traded.

16



the bid-ask spread overstates the cost of a round-trip transaction because prices tend to rise .
following a purchase and fall after a sell, as noted by Stoll (1985) and Glosten and Harris
(1988).

To see how our estimates of s® compare to the implied bid-ask spread we compute
the ratio of the effective spread to the implied spread. The ratio r¥ depends both on the
probability of executing within the quotes and the relative magnitudes of the information

E

and cost components of the spread. The statistic 7 can be estimated by

5 (1= +0)
2(¢ + 6)

)

with the following asymptotic variance,

— (2046)

_(2646) (1-N(E6+30) (1-NBe+20)] | aoxtusrd)
20+9) 20+ 20+9¢)? | M| (BRI,

Table 3 shows that the estimates of the effective spread, sg, are substantially smaller than

the implied spread, s. In particular, the ratio of the effective spread to the implied spread
(r®) is, on average, 50 percent at the beginning of the day and increases monotonically to 60
percent at the end of the day. Moreover, while this pattern is less reliable as measured by the
average standard error estimates of 2-4.7%, there is a consistent theoretical explanation for
the monotonicity result. Specifically, unlike the implied spread, the effective spread does not
exhibit a U-shaped pattern. Indeed, the effective spread increases monotonically over the
day, from 7.3 cents in the opening interval to 8.6 cents at the close, with average standard
errors ranging from 0.19 to 0.50 cents at various times.

Thus, there is some evidence to suggest that the U-shaped pattern in implied spreads
does not carry through to the effective spread measure. In fact, our result seems surprising
because the implied spread S is actually highest in the opening period. This result reflects
two factors. First, the effective spread takes into account the probability of execution within
the quotes, and this probability decreases over the day (see Table 2). Second, the asymmetric
information parameter is largest in the opening period, and this parameter has more impact
on the implied spread than on the effective spread. This is because the effective spread takes

into account the systematic tendency for prices to rise (fall) following a transaction at the
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ask (bid). In contrast, the market maker’s transaction costs increase over the day, and this
has relatively more impact on the effective spread.

The fact that the effective spread is smallest at the open has interesting implications for
theoretical models (e.g., Admati and Pfleiderer (1988)) which predict that trading should
concentrate at certain periods of the day. Our results suggest a natural explanation for
why this concentration should occur at the beginning of the day rather than at other times.
Intuitively, discretionary liquidity traders will migrate to periods where their effective costs
of trading are lowest. Discretionary traders find it cheapest to trade at the start of the day,
even though the degree of information asymmetry is highest; the high value of 4 is balanced
against the market maker’s transaction costs which increase over the course of the day. In
turn, the concentration of trading by such traders increases the probability that a transaction

occurs within the spread, which also sustains a small effective spread.

4.2.  The Determinants of Price Volatility

The model can be used to decompose transaction price volatility into its components. Using

equation (3), the variance of stock price changes is
Var[Apy] = o2 + 207 + (1 = N[0 + )2+ (6p + 6)% = 2(8 + ¢)(8p + ¢)p). (4)

Volatility reflects the variance in public news shocks uncorrelated with trading activity. In
equation (4), the portion of volatility arising only from news shocks is measured by ¢2. In
addition, volatility reflects various microstructure induced noise.

Microstructure noise, in turn, arises from several sources including price discreteness
(measured by the term 20?), and terms involving the asymmetric information and cost
components and their interaction. The portion of price volatility attributable to asymmetric
information, denoted by A, is measured by the terms in equation (4) involving only the
parameter 6, i.e., (1—\)(1—p2)§%. Similarly, the portion of volatility arising from transaction
costs alone is B = 2(1 — \)(1 — p)¢2. Finally, the variance of prices in equation (4) also
includes an interaction term, C = 248(1 — A)(1 — p?). This decomposition shows that,
other things being equal, asymmetric information and transaction costs increase volatility.

However, the magnitude of their effects is inversely related to the autocorrelation of order
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flow. Intuitively, the bid-ask bounce is a source of transaction price volatility, and this effect
is strongest when order flow is uncorrelated. A similar result carries through for the effect
of changes in the market maker’s economic rents (i.e., his execution and liquidity costs)
measured by ¢. Interestingly, there is an interaction between the asymmetric information
and cost components; these two elements reinforce each other.

Hasbrouck (1991a, 1991b) uses a vector autoregression of quotes and returns to infer the
proportion of price volatility attributable to trading. We build on this idea to distinguish
the relative importance of public information and various market frictions on price volatility.
The fraction of variance attributable to trading frictions is m, where

__ 20+ (-6~ $)2 + (8p + 6)* — 2(8 + ¢)(9p + ¢)p]
T o2+ 202+ (L= N)[(6+¢)2+ (6p+ ) = 2(8 +¢)(6p + )]

()

To estimate m we need to identify two additional model parameters governing the volatility
of prices, o2 and og. To do this, we need two additional moment conditions. One condition
is suggested by equation (4) which places restrictions on the variance of transaction price
changes. In addition, the serial covariance between successive pricing errors in equation (3)
is —a?, providing a second orthogonality restriction. Then, we can estimate the additional
parameters using the moment conditions discussed in Section 2.2 together with the following

moments
(us — a)? - (02 + 202) )
E € ¢, =0,
((ut - a)(ue-1 — @) + of

where u; is defined as Ap; — (8 + ¢)z; + (8p + ¢)z:—; and a is the estimated drift term.'

We can further decompose = into four parts: (i) the effect of price discreteness, (ii) the
asymmetric information effect, (iii) the trading cost effect, and (iv) the interaction between
these effects, as measured by the ratio of the terms 202, A, B, and C, respectively, to the
variance of price changes. These measures allow us to assess the relative contributions of the
microstructure frictions to price volatility.

Table 4 provides summary statistics on the individual parameter estimates and the per-
centage of the variance in price changes attributable to (i) public information, (ii) price
discreteness, (iii) asymmetric information, (iv) trading costs, and (v) the interaction be-

tween the asymmetric information and cost components.

19The estimates of the other parameters are unaffected by the addition of these moment conditions.
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For each component, the table displays the average proportional contribution to total
price volatility, the mean coefficient estimate of this component, its standard deviation, and
its median estimate over the 274 stocks, by time of day.

The public information component of volatility, o2, declines by about a third over the
day. The decline is monotonic except for the last half hour interval where there is a small
increase in the variance. As the variance decreases, the fraction of variance attributable to
market frictions (i.e., 7) increases steadily from 54 percent at the open to 65 percent at the
close. This result is consistent with evidence provided by French and Roll (1986) who find
that prices are more variable during trading hours than during non-trading hours. This can
be explained if public information events are more likely to occur during business hours or if
the process of trading creates volatility. Our estimates suggest that both public information
shocks and noise generated by the trading process are important sources of intraday volatility,
but that the relative importance of public information declines over the day.

The decline in o2 over the day may reflect more frequent occurrences of public information
events (such as corporate earnings or dividend announcements) early in the day or the
overnight accumulation of news. The result is also consistent with price discovery. In this
interpretation, the high variance of public information shocks at the open reflects investor
disagreement about the interpretation of public news events whose ‘fundamental’ volatility
may actually be constant over time. As market participants learn about market clearing
prices through the process of price discovery, a consensus emerges that narrows the dispersion
in beliefs and hence volatility.

Table 4 provides a detailed breakdown of the contribution of market frictions to volatility
for various subperiods of the day. The variance of the rounding error, a?, is, as expected,
very small in magnitude and in many cases is not significantly different from zero. Inter-
estingly, this term tends to increase over the day, possibly because it captures a variety of
microstructure noise, and the variance of these omitted noise terms is positively related to
the magnitude of dealer costs, ¢.

The impact of asymmetric information on volatility is small and actually declines over
the day. In the 9:30-10:00 a.m. period, asymmetric information (measured by A) captures,

across the 274 stocks, 13.5 percent of the price change volatility. By the end of trading,
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however, this component has been reduced to 7.6 percent.

In contrast, the part of the bid-ask bounce due to market maker trading costs, B, is large
and increases steadily over the day. As a result, the effect of dealer costs on volatility also
increases from 22 percent at the open to 35 percent at the close. The interaction effect, C, is
also relatively important, and accounts for approximately 17 to 19 percent of the volatility.

To summarize, the volatility attributable to public information shocks and asymmetric
information declines over the day, but this decline is offset by steady increases in the portion
of volatility attributable to transaction costs and price discreteness. The net effect is that

volatility is highest at the open and close and is smallest at midday.

4.8. Autocorrelation of Price Changes and Quote Revisions

In the absence of market frictions, our model implies that prices follow a random walk and
thus transaction returns will not be autocorrelated. However, in the presence of frictions
(which in fact exist), this will no longer be the case. Given the estimated frictions (ie., 6,

#,...), what are the implications for time variation in transaction returns and quote revisions?

4.3.1. Transaction Prices

Using equation (3), we obtain
Cov(Apy, Aps-1) = —a2 + p(L = N[(8+¢)2+ (6p+ )71 — (1= X)(6p+8)(0 +¢)(1+5°)- (6)

Simplifying this expression, we can show that Cov(Apg, Ap;—1) < 0. Stock price changes are
negatively autocorrelated if there are costs to providing liquidity (i.e., ¢ > 0) or if there are
rounding errors induced by price discreteness (i.e., ag), as these frictions generate bid-ask
bounce. Larger frictions and greater information asymmetry increase the absolute magnitude
of the serial covariance term. The absolute size of the covariance term is a decreasing
function of the probability of executing within the spread, A, because this mitigates the
bid-ask bounce. The autocorrelation of order flow, however, has an ambiguous effect on the
serial covariance term.

The above theoretical results provide explicit representations for the serial covariances

of transaction price changes. We can, therefore, use the parameter estimates of Table 2 to
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generate implied autocorrelations of transaction price changes. Of some interest, these auto-
correlations are using estimates of (6, ¢, p, A, ag) derived from different moment conditions.
Table 5 presents, for the five intraday time intervals, the mean implied autocorrelation (from
the model and estimated parameters) for the 274 stocks in the sample. Note that these im-
plied estimates are computed on a stock-by-stock basis using equations (4) and (6). The
average implied autocorrelations are -.0972,-.2026,-.2501,-.2588, and -.2525 respectively over
the five trading intervals. The two most important factors for explaining this autocorrela-
tion pattern are the increase in the costs to providing liquidity over the day and the general
decline in the level of the volatility of the public information flow between 9:30AM and
2:00PM.

It is interesting to relate the implied correlations with the actual correlations present in
the data. If these implied autocorrelations capture some of the characteristics of the data,
the structural model may provide clues as to what drives the short-horizon time-variation of
returns. Including the results above, Table 5 also presents the mean sample autocorrelation
of transaction price changes, the standard deviation of these estimates and the standard
deviation of the difference between the actual and implied estimates across the 274 stocks.

There is a close correspondence between the actual and implied autocorrelation of trans-
action price changes, especially after the 9:30-10:00 period. For example, the sample autocor-
relations after this period equal (-.2166,-.2433,-.2484,-.2197) respectively which matches the
average implied autocorrelations pattern and magnitude described above. This is especially
interesting because the autocorrelation moments were not used to estimate the underlying
parameters of the model. Thus, the similarity between the actual and implied estimates
suggests that the structural model does have information for the source of the autocorrela-
tion of transaction returns. However, the implied autocovariances are more dispersed than
the actual sample estimates, possibly because the parameters are estimated with noise. As
predicted, the actual and implied autocovariances are negative (and fairly substantially so)

in all time periods.
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4.3.2. Quote Revisions

The autocorrelation between successive ask revisions implied by our model may be positive

or negative.?’ To show this, note that the definition of the ask price implies that
Pt —piy =0(1 = p)ria + e+ & — &Ly, (7)

where £ is the rounding error on the ask side. A similar equation holds for the revision in bid
prices. Equation (7) shows that the change in the ask price is related to the previous trade,
but the greater the autocorrelation in order flow, the less the revision in beliefs. Intuitively,
if order flow is highly correlated, successive transactions at the ask are more likely than a
reversal from ask to bid, and the revision in beliefs reflects this fact.

Using equation (7), we obtain
Cov(Apf, Apf;) = =0 +6%(L = Mp(L = p)%, 8)

where we assume that £¢ is distributed independently with mean zero and variance aga.
This expression is not generally equal to zero, even though (taking expectations in equation
(1)), market makers’ beliefs follow a martingale. Indeed, the autocorrelation of ask revisions
is zero only in the special case where: (i) there are no rounding errors arising from price
discreteness (i.e., 02 = 0), and (ii) there is no information asymmetry (i.e., § = 0) or the
autocorrelation of order flow is zero (i.e., p = 0) or the trivial case where all trades occur at
the midquote. The covariance of ask price revisions does not depend on the cost parameter
¢, because this parameter affects transaction prices, not ask prices or the midquote.

While price discreteness induces negative covariance in ask revisions, the overall covari-
ance in equation (8) may be positive or negative depending on the sign of the autocorrelation
order flow and the relative magnitudes of the parameters.?! Intuitively, if order flow is posi-
tively correlated, successive transactions at the bid or the ask are more likely than reversals.

Market makers take this effect into account in forming their beliefs, so that the expected

20Models of inventory control (Madhavan and Smidt (1993), Huang and Stoll (1994), and Huang and
Stoll (1996)) allow quote revisions to be positively autocorrelated, but we do not explicitly model inventory
considerations here.

21This is consistent with recent empirical studies which find ask-to-ask returns and mid-quote returns do
not follow martingales. See, e.g., Hasbrouck and Ho (1987) and Handa (1991). The autocorrelation may
also represent time-varying expected returns as in Conrad, Kaul, and Nimalendran (1991).
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revision in beliefs is zero. However, successive transactions at the bid or the ask will still lead
to quote revisions unless they are fully anticipated, and this creates positive serial correlation
in ask price revisions.?? The larger the information asymmetry component and the lower the
probability of a cross within the quotes, the stronger this effect. By contrast, if the auto-
correlation in order flow is negative, the covariance term in equation (8) is unambiguously
negative, because reversals are more likely than continuations and quotes are revised in the
direction of order flow. Thus, ask price changes may contain important information about
the underlying determinants of security price movements.

Table 5 shows that the actual serial correlation of successive ask price revisions is negative
(as in Huang and Stoll (1994)), but is small in magnitude. The model’s implied serial
correlation of quote revisions is of similar magnitude. However, our implied estimates are,
on average, closer to zero than the actual estimates and become more negative over the
day, so that the deviations become steadily smaller over the day. Recall that the theoretical
autocovariance of ask price revisions is negative if the variance in the rounding error, ag is
sufficiently large. The fact that our implied estimates are, on average, slightly larger than the
actual estimates, suggests that the variance of the rounding error due to price discreteness
is underestimated, especially in the early part of the day. Alternatively, this finding may
reflect possible autocorrelation of these errors.

Table 5 also provides a comparison between the intraday patterns in the sample variance
of ask price changes and the implied variance of ask price changes (from the model). Of
particular interest, the actual variances and the implied variances both drop after the begin-
ning of the day, and level off around midday. For example, the implied variances drop from
.0042 to .0035, and then level off at .0031. Similarly, the sample variances drop from .0061
to .0048 and then level off at .0040. To the extent that the implied variances of ask price
changes are calculated using parameters estimated from transactions data, the similarity in
patterns provides us with a potential explanation for the true pattern in the variance of ask

price changes.?® In particular, the fall in the variance of ask price changes is due to the com-

22This may also occur because of the presence of stale limit orders. In our model, quotes are rational, so
this factor is omitted.

23While the patterns are similar, it should be pointed out, that like the spreads, the implied variance of
ask price changes is of a lower magnitude than actual estimates. We hope to explore the relation between
this result and the likewise result for bid-ask spreads in future research.
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bination of (i) price discovery, and (ii) less public information arriving to the market. With
quote revisions, transaction costs (i.e., ¢) are not relevant, so the increase in ¢ throughout
the day does not lead to a corresponding increase in the variance.

It is important to point out that these implied estimates of variances and autocorrelations
of quote revisions are derived from the structural parameters of the model, 8 = (8, ¢, p, A).
These parameters are estimated using transactions data within the model’s framework, and

do not rely on direct estimation of moments of bid/ask price changes.

5. Discussion

In this section, we discuss the theoretical and empirical limitations of our approach and some

avenues for future research.

5.1. Limitations of the Model

There are several dimensions on which the model does not perform well that require further
discussion. First, the difference between the implied bid-ask spread and actual spreads is
troubling. The expected spread is underestimated by approximately one-third systematically
throughout the day. One explanation for this result is that some quotes are not representative
of the price level at which trades might take place. For example, midquote transactions are
far more common when quoted spreads are large. While our mode] does not address this
issue, one could imagine placing additional structure on the model, such as a provision for
market liquidity to have some role in determining spreads though not transaction prices. This
more complex model might also address the model’s failure to capture a second characteristic
of the data, namely the level of quote revision volatility. If bid-ask spreads are subject to a
stochastic, market liquidity factor, then this factor would also lead to an increase in quote
revision volatility, which is not captured by our model.

Interestingly, the intraday patterns of both of these characteristics are explained by the
structural model. This suggests that our explanation for intraday patterns may still be
reasonable. The final characteristic not satisfactorily explained by the model are the auto-

correlations of transaction price changes during the opening period. The two most likely
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explanations are that we either overestimate the volatility of the public information compo-
nent during this period, or ignore the overall higher levels of trading volume at the opening.
Below, we discuss some natural extensions of the model, which might help address some of

these and other related issues.

5.2. FEzxtenstons
5.2.1. Volume

In terms of the structural nature of the model, it would be interesting to extend the model to
incorporate volume. While this issue is perhaps less relevant for the frequently traded stocks
in our sample where almost all the trades take place either at the quotes or within the quotes,
it will be especially important for series involving inactive securities. Indeed, Huang and Stoll
(1996) pursue such an extension for their model and find evidence of volume effects. Even
within our sample, however, there is anecdotal evidence that volume may play a role. Table
1 shows that volume per transaction gradually decreases throughout the day which could
explain the intradaily decrease in the asymmetric information parameter, §. A comparison
with Table 2, however, shows that the drop in 6 is largest from the first half hour to the next
period which is not consistent with the volume behavior described in Table 1.

Nevertheless, incorporating volume into this setting would be an important contribution.
One approach to including volume, while still maintaining the structural framework, is data
driven. Specifically, we can model 8 as a function 6 = 8(g:), where ¢; denotes the (absolute)
trade size. Theoretical models (e.g., Kyle (1985)) suggest linear functional forms of the type
8(g:) = 6o + 614, while empirical studies (e.g., Hasbrouck (1991a), Keim and Madhavan
(1996)) show that a concave relation of the form 6(g;) = 6o./q:. Using a Taylor series
expansion, for example, the researcher can avoid making these parametric assumptions and
instead write

6(q:) =a+ g+ Begc + ...,

where 8(q¢) is substituted into equation (3), and the model estimation of Section 2.2 continues

as before, albeit with many more explanatory variables (zt, Te—1,%1q1, mtqf, Teo1qt, Tt-1G2,

).
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Alternatively, this general model could be approximated by estimating equation (3) for
different order size ranges. That is, one could specify multiple indicator variables for various
order size ranges. If, say, we have k different size ranges, we could extend the model to
allow for k different trade indicators corresponding to a buy or sell in each size range and
have k different §’s. Allowing for ¢ to also vary with trade size would increase the number
of moment equations by 2k — 2, but would otherwise be straightforward. This approach is
taken by Huang and Stoll (1996).

There are several problems with introducing volume via an empirical approach. First,
care must be taken so that the results are not biased by very large trades that occur outside
the specialist-auction system. In particular, large block trades originating in the so-called
“upstairs” market may significantly bias the estimation. Previous research (see, e.g., Seppi
(1990), Madhavan and Cheng (1996), and Keim and Madhavan (1996)) demonstrates that
upstairs trades are likely to be associated with significantly lower information asymmetry
because they originate in a non-anonymous trading mechanism. From én empirical view-
point, this would suggest truncating trade size above a fixed order size (not necessarily 10,000
shares) as in Hausman, Lo, and MacKinlay (1992) or using the observed distribution of trade
size to create a limit that varies from stock to stock, as in Madhavan and Smidt (1991). Sec-
ond, in the empirical setting described above, volume is treated as an exogenous variable.
Clearly, if the hypothesis is that volume has important information about the degree of
asymmetric information, then volume must be treated as an endogenous variable. Thus,
the dynamic relation between intraday price changes and trading volume needs to be jointly
modeled. Recent research (Brock and Kleidon (1992), Foster and Vishwanathan (1993a))
provides a first pass at developing a theory of volume, but it remains an open question how

models of this type can be integrated into the structural setting of this paper.

5.2.2. Time-Consistency of Parameters

Implicitly in the results of Section 3 is the notion that the parameters change as a function
of time. For example, the asymmetric information parameter, 8, goes from 4.15 cents on
average during the opening half hour to 3.18 cents in the next one and a half hour period.

Taken as given, the model implies that at precisely 10:00 AM there is a discrete jump in
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the parameter value. Clearly, even if the model is correctly specified, this jump is just an
approximation of reality. Another structural extension is to explicitly model the intraday
evolution of the parameters as a nonlinear function of elapsed time. Similar to the empirical
approach with volume described above, one could estimate § = a + 817 + G272 + ... (where
7 is the time elapsed from the start of the appropriate trading horizon, either the open or
some event day of interest), and approximate the true functional form using this expansion.

However, similar to volume, this approach also ignores the underlying theoretical struc-
ture of the model. For example, ceteris paribus, do we believe that it is the time of day that
determines the level of the parameters, or some underlying structure (such as information
releases due to overnight news) that tends to coincide with the time of day? This is an
important distinction because, on days in which there is no overnight accumulation of infor-
ination, the parameter values will erroneously imply a relation between the parameters and
time. Of course, developing a model in such an environment is not a straightforward task.
The hope, however, is that the simple structure of our model can be built upon to address
some of these more complex issues.

A related extension is to estimate the model over intervals other than a trading day. We
expect the average daily level of § may decline over the week, since traders would learn about
fundamental values over the course of trading. Indeed, Foster and Vishwanathan (1993b)
suggest that declines in adverse selection costs over the week can explain negative abnormal
returns on Mondays. Similarly, Cao and Choe (1995) find evidence from a number of markets
that transitory volatility declines over the week. A similar conjecture is that ¢ should increase
over the week when the model is estimated using daily (rather than intraday) intervals,
reaching a maximum on Friday just before the weekend. The idea here is that if ¢ partly
reflects the cost of holding overnight inventory then this should be greatest immediately
before the three nights of an upcoming weekend. There may also be more natural sample
periods defined by economic events such as earnings or dividend announcements. Indeed
there is considerable discussion in the accounting literature about the extent of asymmetric
information around announcement dates. Our model provides a starting point to developing

a method to perform an “ event study” to answer questions of this sort.
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5.2.3. The Order Flow and Price Processes

In this paper, we model a very simple process for order flow. There are two natural extensions
to our model. The first is to allow order flow to follow a more general order Markov process.
While we allow only one lag, other researchers, most notably Hasbrouck (1991), allow for a
much richer lag structure. Moreover, Hasbrouck finds some evidence that these lags have
additional information about the underlying price process. This extension takes on special
importance for applications involving longer horizons. For example, if additional lags are
important, price volatility due to transitory effects may be more or less persistent than
implied by the first order Markov model of order flow embedded in equation (3).

The second extension is more complex, and relates to the theoretical extensions described
in Sections 5.2.1 and 5.2.2 above. In theory, the specialist can elicit order flow of a given
sign through his placement of quotes. If in fact this strategy is employed, then the sign
of order flow may depend on the magnitude of price changes. Thus, a theory of order
flow would need to be outlined and then implemented within our structural setting. For
our data this consideration would seem less important because the stocks in our sample
are actively traded and intraday inventory effects of the type discussed above are likely
to be economically small (See, e.g., Madhavan and Smidt (1991), Hasbrouck and Sofianos
(1993a)). While the development of a theory for order flow may be necessary to apply the
structural model generally across all stocks, there have been some empirical investigations
which address the endogeneity issue (see Hasbrouck (1993) and Huang and Stoll (1994)).
Perhaps, the approaches in these papers, with some underlying theoretical justification, can
lead to an extension of the model.

As a related issue, it may also be important to provide a more detailed description of
the price process itself. Three possible applications are (i) differentiating the types of orders
that go to the market, (ii) taking account of firm specific versus market-wide information,
and, similarly, (iii) breaking down firm-specific trades into information-based events. With
respect to (i), for example, Greene (1996) extends our model to allow for limit orders and
finds evidence that such trades occur within the posted spread. For an application of (ii),
one could build in the effects of observed market movements currently captured by ¢; by

allowing this to be a function of movements in a major market index such as the S&P 500
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index.

5.2.4. Price Discreteness

An additional extension of the model in this paper would be to formally model price dis-
creteness. On the one hand, the results in this paper suggest discreteness will not have
substantive effects. For example, the autocorrelation of the residual of price changes (i.e.,
transaction price changes minus its structural form in equation (3)) is close to zero. On the
other hand, there are many applications in which this will not be the case. For example, the
extension to price discreteness is especially important for our model if it is to be applied for
low priced stocks. In this paper, we treat the rounding error of prices as some unspecified
stochastic random variable which is i.i.d. Strictly speaking, given the structural model of
equation (3), this treatment of price discreteness introduces a misspecification as compared
to the actual data. Few papers have addressed this issue directly; a notable exception, Has-
brouck (1996) models the rounding down (up) to the bid (ask) formally in the context of a
market microstructure model. Perhaps, the research design of that paper can be integrated
into the structural framework of this paper, and the extensions of 5.2.1-5.2.3, to produce a

more universal model of intraday price movements.

6. Conclusions

Security prices change because of new public information and through information revealed
in the trading process. This paper develops a model to explain the evolution of prices over
the day that embodies these two features. The paper’s contribution is threefold. First, with
a relatively simple structural model, many patterns in intraday bid-ask spreads, execution
costs, price and quote volatility, and autocorrelations of price changes and quote revisions
can be jointly explained. The model provides a unified framework that sheds light on why,
over the day, (i) the variance of transaction price changes is U-shaped while the variance
of ask price changes is declining, (ii) the bid-ask spread is U-shaped although information
asymmetry and uncertainty over fundamentals is decreasing, and (iii) the autocorrelations
of transaction price changes are large and negative, yet the autocorrelations of ask price

changes are small and negative.
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Second, because the model is so simple, the structural parameters can be estimated in
a setting which provides a high comfort level in terms of estimation error. Indeed, the
parameters can be estimated using transactions data alone, and can then be used to in-
fer characteristics of transaction price changes and quote revisions. Further, the model’s
simplicity allows for natural extensions to incorporate variable order size, time-varying pa-
rameters, price discreteness, and more detailed descriptions of the order flow and information
arrival processes. Integrating these extensions and incorporating some of the generality of
the reduced-form approach may yield a more universal model of price formation.

Third, although our focus is on the evolution of intraday prices, 2 model of this type can be
applied to many other issues of interest. A partial list of such topics includes: (i) an analysis
of limit order execution probability and its impact on execution costs; (ii) the extent to
which market structure or firm characteristics affects the speed of price discovery (measured
by the rate of decrease of the information asymmetry parameter); (iii) the dynamic relation
between price volatility and order flow; and (iv) an inter-market analysis 6f the components

of the bid-ask spreads. These, however, are topics for future research.
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Table 1
Descriptive Statistics for the Sample of Stocks (1990)

Panel A provides summary statistics on the variance of transaction price changes, variance of
ask price changes, average number of transactions per day, market capitalization, and price for 274
NYSE-listed stocks in 1990. Panel B provides mean estimates of the variance of transaction and
ask price changes, number of transactions per hour, the mean hourly volume (in round lots of 100
shares), the volume per transaction (in round lots of 100 shares) and the dollar spread for five time
intervals during the day.

Panel A Mean Std.Dev. 75% Median  25%
Variance of AP .0067 .0025 .0079 .0062 .0051
Variance of AP .0044 .0030 .0059 .0037 .0025
Transactions/Day 95 86 107 66 44
Market Cap. ($ bn.) | 4.36 6.95 4.42 2.21 1.02
Price ($) 38.85 21.82 49.13 36.63 22.25
Panel B 9:30-10:00 10:00-11:30 11:30-2:00 2:00-3:30 3:30-4:00
Variance of AP .0073 .0068 .0065 .0066 .0070
Variance of APk .0061 .0048 .0042 .0040 .0040
Transactions/hour 17 16 12 13 17
Volume/hour (100s) | 385.8 357.4 235.6 252.3 272.5
Volume/transaction | 22.7 22.3 19.6 194 16.0
Spread ($) 228 211 204 205 210
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Table 2
Summary Statistics of GMM Model Parameter Estimates

Table 2 presents summary statistics of the GMM model estimates of the parameters for the 274
NYSE-listed stocks in the 1990 sample period over five intraday trading intervals. The table presents
the mean coefficient estimate across the stocks, the mean standard error of the mean estimates,
the standard deviation of the estimates across the 274 stocks, and the median estimate for the four
main parameters of interest: 6, the asymmetric information component; ¢, the transaction cost
component; p, the autocorrelation coefficient of the order flow; and A, the probability a trade takes
place between the quotes.

9:30-10:00 10:00-11:30 11:30-2:00 2:00-3:30 3:30-4:00
]
Mean 0.0415 0.0318 0.0275 0.0274  0.0287
(Av. Std.Er.) | (0.0057)  (0.0023) (0.0019)  (0.0022)  (0.0038)
Std. Dev. 0.0277 0.0212 0.0190 0.0190  0.0200
Median 0.0355 0.0274 0.0234 0.0236  0.0241
®
Mean 0.0344 0.0402 ~ 0.0437 0.0450  0.0461
(Av. Std.Er.) | (0.0053)  (0.0021) (0.0017)  (0.0021)  (0.0036)
Std. Dev. 0.0166 0.0125 0.0109 0.0111  0.0119
Median 0.0368 0.0419 0.0450 0.0469  0.0485
p
Mean 0.4073 0.3676 0.3684 0.3789  0.3847
(Av. Std.Er.) | (0.0370)  (0.0184) (0.0166)  (0.0203)  (0.0330)
Std. Dev. 0.0724 0.0657 0.0720 0.0763  0.0884
Median 0.4021 0.3663 0.3700 0.3838  0.3871
)
Mean 0.3360 0.3086 0.2893 02874  0.2825
(Av. Std.Er.) | (0.0218)  (0.0108) (0.0097)  (0.0118)  (0.0184)
Std. Dev. 0.0984 0.0971 0.0984 0.0949  0.0920
Median 0.3411 0.3105 0.2888 0.2898  0.2886
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Table 3
Summary Statistics of Estimated Trading Costs

Table 3 presents summary statistics of estimates of trading costs for 274 NYSE-listed stocks
in the 1990 sample period over five intraday trading intervals. Specifically, the mean coefficient
estimate across the stocks, the mean standard error of the mean estimates, the standard deviation
of the estimates across the 274 stocks, and the median estimate are provided for various parameters
of interest: s, the implied spread; r, the fraction of the implied spread attributable to asymmetric
information; sZ, the effective bid-ask spread; and rE | the ratio of the effective to the implied spread.

9:30-10:00 10:00-11:30 11:30-2:00 2:00-3:30 3:30-4:00
S
Mean 0.1518 0.1440 0.1425 0.1448  0.1496
(Av. Std.Er.) | (0.0066)  (0.0027) (0.0024)  (0.0029)  (0.0048)
Std. Dev. 0.0331 0.0252 0.0233 0.0238  0.0246
Median 0.1467 0.1389 0.1380 0.1419  0.1461
B
S
Mean 0.0728 0.0773 0.0814 0.0834  0.0864
(Av. Std.Er.) | (0.0050)  (0.0022)  (0.0019)  (0.0024)  (0.0040)
Std. Dev. 0.0142 0.0129 0.0125 0.0125  0.0123
Median 0.0735 0.0768 0.0808 0.0838  0.0863
T
Mean 0.5107 0.4149 0.3630 0.3553  0.3601
(Av. Std.Er.) | (0.0378)  (0.0167)  (0.0138)  (0.0165) (0.0270)
Std. Dev. 0.2527 0.2153 0.1977 0.1943  0.1994
Median 0.4812 0.3923 0.3345 0.3302  0.3210
B
-
Mean 0.5019 0.5552 0.5888 0.5927  0.5947
(Av. Std.Er.) | (0.0469)  (0.0220)  (0.0196)  (0.0240)  (0.0381)
Std. Dev. 0.1435 0.1414 0.1409 0.1375  0.1360
Median 0.4975 0.5392 0.5747 0.5842  0.5899
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Table 4
The Components of the Volatility of Transaction Price Movements

Table 4 presents summary statistics of estimates of the components of the volatility of trans-
action price changes ag for 274 NYSE-listed stocks in the 1990 sample period over five intraday
trading intervals. Specifically, the average proportional contribution of the particular component
of volatility, the mean coefficient estimate of this component across the stocks, the standard devi-
ation of the estimates across the 274 stocks, and the median estimate are provided for the various
components: af, the variance of public information; 20?, the variance of the price discreteness
variable; ag, the variance of price changes due to asymmetric information; ag, the variance of price
changes due to transaction costs; and agq,, the variance of price changes due to the interaction of
asymmetric information and transaction costs. The estimates of these components are based on
the GMM coefficient estimates described in Table 2.

9:30-10:00 10:00-11:30 11:30-2:00 2:00-3:30 3:30-4:00
0'3 .007 .0068 .0065 .0066 .0070
0%
Prop of AP | 0.4626 0.4064 0.3679 0.3565 0.3526
Mean 0.00363 0.00302 0.00264 0.00259  0.00267
Std. Dev. 0.00260 0.00227 0.00203 0.00204 0.00221
Median 0.00300 0.00238 0.00203 0.00202 0.00211
207
Prgp of AP | 0.0161 0.0272 0.0346 0.0380 0.0357
Mean 0.00004 0.00015 0.00002 0.00022  0.00024
Std. Dev. 0.00065 0.00040 0.00039 0.00048  0.00086
Median 0.00013 0.00016 0.00020 0.00022  0.00023
o3
Prop of AP | 0.1345 0.0916 0.0740 0.0726 0.0762
Mean 0.00122 0.00077 0.00060 0.00059  0.00065
Std. Dev. 0.00168 0.00103 0.00081 0.00089 0.00100
Median 0.00068 0.00042 0.00032 0.00033  0.00034
)
Pﬁop of AP | 0.2158 0.2928 0.3416 0.3488 0.3484
Mean 0.00122 0.00165 0.00193 0.00200  0.00211
Std. Dev. 0.00092 0.00109 0.00112 0.00111 0.00114
Median 0.00104 0.00148 0.00178 0.00188  0.00204
of
Prd:)p of AP | 0.1711 0.1820 0.1819 0.1841 0.1872
Mean 0.00112 0.00120 0.00119 0.00122  0.00130
Std. Dev. 0.00081 0.00053 0.00049 0.00056  0.00068
Median 0.00119 0.00122 0.00117 0.00123  0.00130
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Table 5
Actual and Implied Moments of Price Changes and Quote Revisions

Table 5 presents summary statistics for the difference between actual and implied moments of
price changes and quote revisions for the 274 NYSE-listed stocks in the 1990 sample period over five
intraday trading intervals. The table presents the mean estimate of both the implied moment (from
the model) and corresponding sample moment, the standard deviation of the sample moment across
the 274 stocks, and the standard deviation of the difference between the implied and sample moment
across the stocks. The particular moments computed are: corr(AP;, AP;_1), the autocorrelation
of price changes; corr(AP*, AP2F), the autocorrelation of ask price changes; and var(APK),
the variance of ask price changes.

9:30-10:00 10:00-11:30 11:30-2:00 2:00-3:30 3:30-4:00
corr(AP;, AP;_)
Implied -0.0972 -0.2026 -0.2501 -0.2588  -0.2525
Sample -0.1719 -0.2166 -0.2433 -0.2484  -0.2197
Std. Dev. 0.1168 0.1114 . 0.1069 0.1054 0.1139
Std. Dev. of Diff. 0.1831 0.0975 0.0875 0.0971 . 0.1278
corr(APZ*, APF)
Implied 0.0117 -0.0123 -0.0285 -0.0333  -0.0315
Sample -0.0358 -0.0573 -0.0626 -0.0597  -0.0458
Std. Dev. 0.0659 0.0464 0.0401 0.0428 0.0542
Std. Dev. of Diff. 0.0648 0.0512 0.0444 0.0513 0.0842
var (A P2F) '
Implied 0.0042 0.0035 0.0031 0.0031 0.0032
Sample 0.0061 0.0048 0.0042 0.0040 0.0040
Std. Dev. 0.0028 0.0025 0.0022 0.0022 0.0022
Std. Dev. of Diff. | 0.0017 0.0020 0.0022 0.0022 0.0022
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