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Abstract

Using high-frequency data on Deutschemark and Y en returns against the dollar, we construct
model-free estimates of daily exchange rate volatility and correlation, covering an entire decade. In
addition to being model-free, our estimates are also approximately free of measurement error under general
conditions, which we delineate. Hence, for all practical purposes, we can treat the exchange rate volatilities
and correlations as observed rather than latent. We do so, and we characterize their joint distribution, both
unconditionally and conditionally. Noteworthy results include a ssmple normality-inducing volatility
transformation, high contemporaneous correlation across volatilities, high correlation between correlation
and volatilities, pronounced and highly persistent temporal variation in both volatilities and correlation,
clear evidence of long-memory dynamicsin both volatilities and correlation, and remarkably precise scaling
laws under temporal aggregation.
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1. Introduction

It is now widely agreed that, although daily and monthly financial asset returns are approximately
unpredictable, return volatility is highly predictable, a phenomenon with sweeping implications for financial
economics and risk management (e.g., Bollerdev, Engle and Nelson, 1994). Of course, volatility isinherently
unobservable, and most of what we think we know about volatility has been learned either by fitting
parametric econometric models such as GARCH, by studying volatilities implied by options pricesin
conjunction with specific option pricing models such as Black-Scholes, or by studying direct indicators of
volatility such as ex-post squared or absolute returns. But al of those approaches, valuable asthey are, have
distinct weaknesses. For example, the existence of competing parametric volatility models with different
properties (e.g., GARCH versus stochastic volatility models) suggests misspecification; after al, at most one
of the models could be correct, and surely, none is strictly correct. Similarly, the well-known smiles and
smirks in volatilities implied by Black-Scholes prices for options written at different strikes provide evidence
of misspecification of the underlying model. Finally, direct indicators, such as ex-post squared returns, are
contaminated by measurement error, and Andersen and Bollerdev (1998a) document that the variance of the
“noise” typicaly isvery large relative to the “signal .”

In this paper, motivated by the drawbacks of the popular approaches, we provide new and complementary
measures of daily asset return volatility. The mechanics are straightforward: we estimate daily volatility by
summing high-frequency intraday squared returns. With sufficiently frequently sampled underlying returns,
the resulting volatility estimates are largely free of measurement error. Hence, for practical purposes we can
treat volatility as observed. We do so, and we proceed to examine its distribution directly, using much
simpler techniques than those required when volatility is latent.

Our analysisisin the spirit of, and directly extends, the earlier contributions of French, Schwert and
Stambaugh (1987), Hsieh (1991), and Schwert (1989, 1990), and more recently Taylor and Xu (1997). We
progress, however, in a number of important ways. First, we provide rigorous theoretical underpinnings for
the volatility measures for the general case of a specia semimartingale. Second, much of our analysisis
multivariate; we develop and examine measures not only of return variance but also of covariance. Finally,
our empirical work is based on a unique high-frequency dataset consisting of ten years of continuously-
recorded 5-minute returns on two major currencies. These high-frequency returns enable us to compute and
examine daily volatilities, which are of central concern in both academia and industry. In particular, the
persistent volatility fluctuations of interest in risk management, asset pricing, portfolio allocation,
forecasting, and analysis of market microstructure effects are very much present in daily returns.

We proceed as follows. In Section 2 we provide aformal justification for our volatility measures. Readers
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who are primarily interested in the empirical results may skip the technical detailsin Sections 2.1 and 2.2.
In Section 3, we discuss the high-frequency Deutschemark - U.S. Dollar (DM/$) and Yen - U.S. Dollar
(Yen/$) returns that provide the basis for our empirical analysis, and we a so detail the construction of our
realized daily variances and covariances. In Sections 4 and 5, we characterize the unconditional and
conditional distributions of the daily volatilities, including long-memory features. In Section 6, we explore
issues related to temporal aggregation and scaling in relation to long memory. Finaly, we concludein

Section 7 with asummary of our results and suggestions for future research.

2. Volatility Measurement: Theory

Here we develop the theoretical foundation for our realized volatility and covariance measures. We
introduce the relevant concepts for the general semimartingale case, then detail how the measures may be
approximated directly from high-frequency return observations. Finally, we explore the implications within
the more familiar settings of 1t6 processes and mixed jump-diffusions.

2.1 Realized Volatility and Covariance Measures when Returns Follow a Special Semimartingale

The most general specification of asset return processes of practica relevance for financial economicsisthe
special semimartigale. It alows for a unique, canonical decomposition of the returns into alocal martingale
and a predictable, integrable finite variation process. Hence, the "drift" isidentified and represents the
conditional mean of the instantaneous return; see Back (1991) for further discussion.

Formally, let te[ 0, T], 7, be ao-fidd reflecting the information at time t, so that 7, « .7, for O<s<t<T, and let
P denote a probability measure on (o,P,s), where o represents the states of the world, so that &7 = 77 isthe
set of events that are distinguishable at the horizon T. Also, the information filtration (7, )..o 1, satisfies the
“usua conditions,” i.e., it is P-complete and right continuous. Any logarithmic price process, p,, and the
associated return over the t-period horizon isthen given as

P - pO) = M(D) + A(D), D
where M, (0) = A(0) = 0, M, isalocal martingale, and A, isalocally integrable and predictable process of
finite variation. For full generality, we define p, to be inclusive of any cash receipts such as dividends and
coupons, but exclusive of required cash pay-outs associated with, for example, margin calls.

The formulation in (1) includes It6, jump and mixed jump-diffusion processes, and it does not require a
Markov assumption. Without loss of generdity, each component may be assumed cadlag (right-continuous
with left limits). The corresponding caglad (left-continuous with right limits) process is then defined by p,.(t)
= limg, o P(S), identifying the jumps as

apdt) = pdb) - P(D). )



Because, by no arbitrage, jumps are not predictable, M, contains the (compensated) jump part of p, aong
with any infinite variation terms, while A, has continuous paths. Thus, the conditional mean of the return at
timetis given by the predictable "drift", A(t), and the innovation by the local martingale M,(t).

For any semimartingale X, the stochastic integral H - X = {5 H(s) dX(s)}+o is defined for any caglad
integrand H (Protter, 1992, ch. 2), and may be extended to predictable processes H, i.e., H belonging to the
smallest s-algebrarendering all caglad processes measurable (Protter, ch. 4). Moreover, for H - X well
defined, the stochastic integral constitutes a semimartingale. In particular, for any two semimartingales X
and Y, the quadratic variation process, [ X,X] = ([ X,X]), o7, and the quadratic covariation process, [ X,Y] =
([X,Y])e10m, ae well defined and given by

[X,X] = X2-2 )X dX, and [X,Y] = XY- /X dY-|Y.dX (3
These processes are not only semimartingales, but also of finite variation on [0,T]. The following properties
show that they may be interpreted as the realized cumulative instantaneous variability of X and the realized
cumulative instantaneous covariability between X and Y, respectively.

For a sequence of random partitions of [0,T], ©y0 < tmy < ..., SUCh that sup; 1(tmje1 = ) = 0, o - 0, and
SUp, 4 tmj - T for m- « with probability one,

limy { X(0) + = [ X(tem) - X(Viam2) 17}~ [X X, (4)
and

limo { XO) YO) + 51 [X(tremy ) - X(Wiomy)] [Y(thimg) - Y( Uiy 2)] } = [X V], (5)
wheret A+ = min(t,x), and the convergence is uniform in probability for any t e [0,T]. Moreover, [ X,X] isa

monotone increasing process,

[XiYJO = XOYO1 A[X,Y_l = AXAY1 (6)
and for H and K integrablew.r.t. X and Y, respectively,
[HXKY] = fo H(s) K(s) d[X,Y]s (")

forany t € [O,T]. Findly, if Xand Y are localy square integrable local martingales so that conditional
variances and covariances are meaningful, then B = [X,Y] is the unique adapted, cadlag process with paths
of finite variation that satisfies the conditions in equation (6) and

XY -B = XY - [XY] ©)
isalocal martingale. Hence, [ X,Y] isameasure of the realized covariability between X and Y, and the
covariance structure of X and Y (letting X(0)=Y(0)=0) isgiven by E(X(t)Y(t)) = E([X,Y],).

For the specia martingale p, in equation (1), the finite variation part has[A,A] = 0, so

[PoPde = MM e = MR MRTE + 3050 (AMYS) )2 ©)

where M, has been decomposed into two local martingale components; a continuous term with infinite
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variation paths and a term representing the compensated jump part of the process. Now, exploiting the
identical decomposition for any other logarithmic price process, p;, j » k, we have

[P Bt = [Mo, Mjle = [Mg, M7+ 2050 aM(S)aAM((s). (10)
The formulas (9) and (10) define the realized volatility and realized covariance measures.

It isworth emphasizing the generality of the semimartingale formulation. 1t encompasses all processes
used within the standard arbitrage-free asset pricing literature. Note, however, that it does rule out the
fractional Brownian motion, By(t), 0 < d < %. The latter is not a semimartingale and allows for arbitrage, as
shown by Maheswaran and Sims (1993) and Rogers (1997). Formally, By(t) is given as an infinite moving
average (MA) of a standard Wiener process where the defining MA kernel has asingularity a zero. This
feature is readily corrected by modifying the MA kernel at zero, thus generating a semimartingale that is
consistent with the no-arbitrage condition, while retaining the basic long-memory characteristics (Rogers,
1997, provides a concrete example). However, it is arguably more relevant to allow for long-range
dependence in return volatility. This may be done by positing a non-negative long-memory process for the
volatility, which does not generate an arbitrage unless derivative claims written on the volatility process are
traded. For instance, the option pricing model in Comte and Renault (1998) is based on afractionally
integrated log-volatility process, which violates the semimartingale property. An adternative, and perhaps
preferable approach, isto modify the MA-kernel of the volatility process as suggested above, thus retaining
both the long-memory in the volatility process and the validity of the standard integration theory for
semimartingales.

2.2 Measurement of Realized Volatility and Realized Covariance

The local martingale formulation in (8) yields the key insight that the quadratic variation and covariation
associated with the price processes provide measures of cumulative instantaneous return variability and
covariability, respectively. Moreover, (4) and (5) suggest that we may approximate these quantities directly
from high-frequency data. In particular, the measures are invariant to the specification of the conditional
mean, since the squared mean return is an order of magnitude smaller than the squared return innovations.

Specifically, let 1y (1) = pdt) - pt-1/m), t = 1/m, 2/m, ... T, denote the discretely sampled returns
computed from m equally spaced observations per period. For concreteness, we normalize the unit time
interval, or m= 1, to represent one trading day. It follows then directly from equations (4) and (5), that

PiMy. Siet m Fem@/M) = [P Py s (11)
and

PliMy Zicy e N(/M) 1 m@i/m) = [pe, Bl - (12)
Consequently, cumulative squares and cross-products of finely sampled high-frequency returns should
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provide a good approximation to the quadratic variation and covariation processes. The identical procedure
may be used to approximate the corresponding h-period measures (t = h, 2h, ... T),

Ui,m)(t) = [P Pedt - [Pxr Plen s (13)
and

om® = [P Pl - [P Blen - (14)
These measures constitute time series of realized h-period volatilities and covariabilities.

It isimportant to recognize that of ,(t) and o ,(t) are generally not measurable w.r.t. 7,,,. Thus, we
typicaly have E[oy ()| 7inl # o m(t), Smply because redlizations differ from ex-ante expectations. An 1t0
process with constant volatility as is assumed for example in the Black-Scholes model, constitutes an
important exception, asin that case of (t) = oz h. However, in general, the volatility measures represent
realizations of variability and covariability rather than conditional variances and covariances. Nonetheless,
Cov[ (). ) Fenl = Eloy ()7l , SO that the realized volatility measures do provide unbiased
estimates of the ex-ante conditional variances and covariances.

Note also that there is generally no direct link between of ,(t) and o ¢,(t), and the conditional variance and
covariance at timet, E[of,(t+h)|7] and E[oy(t+h)|7]. Hence, the volatility measures are primarily
tools for measuring realized volatilities, and not for forecasting, although they may be useful for that purpose
aswell. Specificaly, if ,, denotes the --algebra generated by the past realized variances and covariances,
{of m(t-iN)} and {oy; (t-ih)} for al k;j and i=0,1, ... (t-h)/h, then, typically, E[of o (t+h)|7] «

E[ of m(t+h) (s, . In particular, any parametric model allowing for an asymmetric relation between returns
and volatility, or smply auxiliary state variablesin the volatility dynamics, will imply that optimal forecasts
should exploit information beyond ;.. Nonetheless, because of the ex-ante unbiasedness, the ex-post
realizations, of (t+ih) and o (t+ih), i=1,2,.. (T-t)/h, still provide the appropriate benchmark for
volatility forecast evaluation.

Lastly, note that, because no financia market literally provides continuously recorded transaction prices,
we cannot measure realized volatility via (11) and (12) without error. Moreover, it is not necessarily
preferable to compute the measures from the highest possible frequency available, as bid-ask bounce, or
dealer spread positioning, tend to induce negative autocorrelation, in turn violating the semimartingale
assumption for ultra high-frequency returns. Thus, as discussed further in Section 3, some experimentation
isrequired in practice to balance the pertinent microstructure biases against the accuracy of the continuous
record asymptotics.

2.3 The Integrated Volatility Measure for 1t6 Processes

Much finance theory assumes that logarithmic asset prices follow a diffusion,
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dpft) = p(®dt + off) dW(D), (15
where W(t) denotes a Wiener process. Formally, in the terminology of the preceding section,

PO -Pd0) = ) = Jo K ds + 5 afs) AW(S). (16)
which congtitutes the canonical decomposition into a predictable, or "drift", term of finite variation, and a
local martingale, or "Wiener", term. Since [W,W], = t a.s., it follows from equation (7) that

[P Pde = Jo a9 ds = oii(l) . (17)
Equation (17) defines the so-called integrated volatility that is central to the option pricing in Hull and White
(1987), and further discussed in Andersen and Bollerdev (1998a) and Barndorff-Nielsen and Shephard
(1998). The result impliesthat r, «(t) conditiona on [p, py]. is normally distributed with variance [g
o2(S) ds.

This result extends directly to the multivariate setting. Let W= (W,, ... , W,) denote an n-dimensiona

standard Brownian motion, and (7)o refer to its completed natural filtration. Then by martingale

representation (Protter, Theorem 4.42) any locally square integrable 1t6 price process may be written as

P) - P0) = [o (S ds + =Ly o oi(S) AW(S), (18)
so that in particular,

[Pc: Pl = 05,(0('[) = 3. 0o Ui,i(s) ds (19)
and

[P, Bl = o) = =iy [0 oki(S) 0i(S) ds. (20)

The former provides a natural generalization of the scalar integrated volatility concept, while o (t) is
denoted the integrated covariance. Asa specia case, one may dedicate a few orthogonal Wiener
components to be common factors while others serve as idiosyncratic error terms, providing a continuous-
time anal ogue to the discrete-time latent factor volatility model in Diebold and Nerlove (1989).

Of course, integrated volatilities are inherently unobservable. Gallant, Hsu and Tauchen (1999) propose
an intriguing reprojection method for estimating the distribution of of ,(t) (see aso Chernov and Ghysels,
1998), but it relies on specific parametric assumptions. Motivated by (11) and (12) we, in contrast, take a
direct nonparametric approach to measuring the daily integrated volatility and covariance by summing
squares and cross-products of high-frequency intraday returns. The resulting realized volatility and
covariance series alow us to characterize both the unconditional distribution and associated dynamic
features of return volatility by standard statistical procedures.

2.4 The Integrated Volatility Measure for Pure Jump Processes and mixed Jump-Diffusions
Specia semimartingales of the pure jump variety have particularly smple quadratic variation and

covariation processes. The process decomposes uniquely into a compensated local martingale jump
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component and a finite variation term with zero quadratic variation, i.e.,

p) = pL0) + M) + o p(s) ds. (21)
The innovations to M,(t) are pure jumps, so that from (6)

[P Pde = Zose (aM(9) )% (22)
Thisresult covers avariety of complex scenarios, including multiple jump components asin

M) = =21 Sose wi(S) aNG(S) - 1o () ds, (23)

where |,(s) denotes the conditional mean of the overall jump process, aN,;(S) is an indicator for the
occurrence of ajump in the i'th component at time s, and the (random) «;(S) determines the jump size.
Hence, in this case

[P Pde = Zose (AMS) )Y = 321 S0 wki(S) ANi(9). (24)
Moreover, the quadratic covariation of a pure jump process with any other semimartingale is governed
exclusively by their common jumps,

[P, Plt = Zost AM(S) aM(s), (25)
which equals zero unless the processes exhibit contemporaneous jumps.

Several authors (see for example Andersen, Benzoni and Lund, 1998, for evidence and references) argue

for the importance of including both time-varying volatility and jumps when modeling short-horizon returns,

asin

p) - PO = Jo ML ds + [ ofS) AW(S) + g wd(S) ANKS). (26)
Again, the quadratic variation follows directly from equation (9),

[P e = Jo o9 ds + Zogp xil(S) AN(S) . (27)

Extensions to a multivariate setting with an n-dimensional Brownian motion and multiple jJump components

are straightforward, resulting in modifications aong the lines of equations (18)-(20) and (23)-(25).

3. Volatility Measurement: Data

Our empirical analysis focuses on the bilateral DM/$ and Y en/$ spot exchange rates, which are particularly
attractive candidates for examination as they represent the two axes of the international financial system.
They a so represent the most actively traded and quoted foreign currencies, and hence they permit the
congtruction of extremely accurate volatility measures. We first rationalize the use of underlying 5-minute
returns to construct daily realized volatilities, and then detail our treatment of weekend and other holiday
non-trading periods. Finaly, we describe the actual construction of the realized volatility measures.

3.1 On the Use of 5-Minute Returns

In practice, the inherent discreteness of actual securities prices renders continuous-time maodels poor
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approximations at very high sampling frequencies. Furthermore, high-frequency, or tick-by-tick, prices are
generally only available at unevenly-spaced discrete time points, so that calculation of evenly-spaced high-
frequency returns must necessarily rely on some form of interpolation involving the recorded prices around
the beginning and end of a given timeinterval. It iswell known that this non-synchronous trading or
guotation effect may induce negative autocorrelation in the interpolated return series. Moreover, such biases
may be exacerbated in the multivariate context, if varying degrees of interpolation are employed in the
calculation of the different returns.

The sampling frequency at which microstructure biases become a practical concernislargely an empirical
guestion. For the actively quoted and traded foreign exchange rates analyzed here, a sampling frequency of
288 times per day (5-minute returns) represents a reasonable compromise between the accuracy of the
theoretical approximations and the market microstructure considerations. That is, m=288 is high enough
such that our daily realized volatilities are largely free of measurement error (see the calculationsin
Andersen and Bollerdev, 19984), yet low enough such that microstructure biases are not a major concern.
(Methods for diagnosing and avoiding microstructure biases are developed in Andersen, Bollerdev, Diebold
and Labys, 1999a.)

3.2 Construction of 5-Minute DM/$ and Yen/$ Returns

The two raw 5-minute DM/$ and Y en/$ return series were obtained from Olsen and Associates. The full
sample consists of continuously-recorded 5-minute returns from December 1, 1986 through November 30,
1996, or 3,653 days, for atotal of 3,653-288 = 1,052,064 high-frequency return observations. Asin Miller
et a. (1990) and Dacorogna et al. (1993), the construction of the returns utilizes all of the interbank FX
guotes that appeared on the Reuters screen during the sample period. Each quote consists of a bid and an ask
price together with a*“time stamp” to the nearest second. After filtering the data for outliers and other
anomalies, the price at each 5-minute mark is obtained by linearly interpolating from the average of the log
bid and the log ask for the two closest ticks. The continuousy-compounded returns are then simply the
change in these 5-minute average log bid and ask prices. Goodhart, I1to and Payne (1996) and Danielsson and
Payne (1999) find that the basic characteristics of 5-minute FX returns constructed from quotes closely
match those calculated from transactions prices (which are not generally available).

It iswell known that the activity in the foreign exchange market sows decidedly over the weekend and
certain holiday non-trading periods; see, e.g., Andersen and Bollerdev (1998b) and Mdiller et al. (1990). In
order not to confound the distributional characteristics of the various volatility measures by these largely
deterministic calendar effects, we explicitly excluded a number of days from the raw 5-minute return series.

Whenever we did so, we aways cut from 21:05GMT the night before to 21:00 GMT that evening, to keep
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the daily periodicity intact. This particular definition of a“day” was motivated by the ebb and flow in the
daily FX activity patterns documented in Bollerdev and Domowitz (1993). In addition to the thin weekend
trading period from Friday 21:05GMT until Sunday 21:00 GMT, we removed several fixed holidays,
including Christmas (December 24 - 26), New Y ear’s (December 31 - January 2), and July Fourth. We aso
cut the moving holidays of Good Friday, Easter Monday, Memoria Day, July Fourth (when it falls officially
on July 3), and Labor Day, aswell as Thanksgiving and the day after. Although our cuts do not account for
all of the holiday market dowdowns, they capture the most important daily calendar effects.

Finally, we deleted some of the returns contaminated by brief lapses in the Reuters data feed. This
problem, which occurred amost exclusively during the early part of the sample, manifested itself in the form
of sequences of zero or constant 5-minute returns in places where the missing quotes had been interpol ated.
To remedy this, we simply removed the days containing the fifteen longest DM/$ zero runs, the fifteen
longest DM/$ constant runs, the fifteen longest Y en/$ zero runs, and the fifteen longest Y en/$ constant runs.
Because of the overlap among the four different sets of days defined by these criteria, we actualy removed
only 51 days. All in al, we were left with 2,449 complete days, or 2,449-288 = 705,312 5-minute return
observations, for the construction of our daily realized variances and covariances.

3.3 Construction of DM/$ and Yen/$ Daily Realized Volatilities

In order to define our daily volatility measures formally, we denote the time series of 5-minute DM/$ and
Yen/$ returns by alogD gq(t) and AlogY g (t), respectively, where t = 1/288, 2/288, ..., 2,449. We then
form the corresponding 5-minute squared return and cross-product series (a10gD g(t))?, (Al0gY 26 (t))% and
Al0gY . g6)() -al0gD 65/(t). The statistical properties of the squared return series closely resemble those found
by Andersen and Bollerdev (1997a,b) with a much shorter one-year sample of 5-minute DM/$ returns.
Interestingly, the basic properties of the 5-minute cross-product series, alogY|gq)(t)-A10gD 5e4(1), are similar.
In particular, al three series are highly persistent and display strong intraday calendar effects, the shape of
which is driven by the opening and closing of the different financial markets around the globe during the 24-
hour trading cycle.

Now, following the results in equations (11) and (12), we construct our estimates of the daily variances and

covariances by summing the 288 5-minute observations within each day,

vard, = 3y o (A10gD gey(t-1+/288))? (28)
vary; = Zjo1_es (A10QY(oeg(t-1+]/ 288))? (29)
COVt = Zj:l,..,288 AI OgD(ZSB) (t' 1+J/288) AI OgY(ZSB) (t' 1+J/288), (30)

wheret=1,2,...,T; here T = 2449. Our focus on the squared returns as a volatility measure, as opposed to

say the absolute returns, is motivated by the diffusion theoretic foundation in Section 2. Of course, squared
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returns also have the closest link to the variance-covariance structures and standard notions of risk employed
throughout the finance literature. However, in addition we shall also examine several aternative, but related,
measures of realized variation and covariation derived from the realized variances and covariancesin
equations (28), (29) and (30), including realized standard deviations, stdd, = vard,*? and stdy, = vary,”?,
realized logarithmic standard deviations, Istdd, = %2-log(vard,) and Istdy, = ¥2-log(vary; ), and realized
correations, corr, = cov,/(stdd,-stdy, ). In Section 4 we characterize the unconditional distribution of each of
these realized volatilities, and in section 5 we characterize their conditiona distributions.

In addition to daily voldtilities, we also investigate the volatility of temporally aggregated returns. In
particular, let h-1 denote the length of the return horizon. We construct temporally aggregated realized

variances and covariances for h-day returns as

vardy, = 3j-1_sgsn (A10GD gg)(t-htj/ 288)) (31)
Varyin = Zj=q28sn (A10QY(ogg(t-N+j/ 288))? (32
COVLh = Zj:l,..,288-h AI OgD(ZSB)(t-h+J/288) - AI OgY(ZSB)(t-h+J/288)1 (33)

wheret=h, 2h, ..., [T/h] -h. We obtain the corresponding h-day standard deviations, stdd;, and sty ,,
logarithmic standard deviations, Istdd,,, and Istdy, ,, and correlations, corr,, by appropriately transforming
vard, vary,, and cov,,. In Section 6 we analyze these temporally aggregated volatilities.

4. The Unconditional Distribution of Daily Realized FX Volatility
The unconditional distribution of volatility captures an important aspect of the return variance process, and
as such it has immediate implications for risk measurement and management, asset pricing, and portfolio
allocation. Here we provide a detailed characterization.
4.1 Univariate Unconditional Distributions

In the first two columns of the first panel of Table 1 we show a standard menu of moments (mean,
variance, skewness, and kurtosis) summarizing the unconditiona distributions of the daily realized variance
series, vard, and vary,, and in the top panel of Figure 1 we show kernel density estimates of the unconditional
distributions. It is evident that the distributions are very similar and extremely right skewed. Thus, although
the realized daily variances are constructed by summing 288 squared 5-minute returns, the strong
heteroskedasticity in intraday returns renders the normal distribution a poor approximation.

The standard deviation of returnsis measured on the same scale as the returns, and thus provides a more
readily interpretable measure of volatility than the variance. We present summary statistics and density
estimates for the two daily realized standard deviations, stdd, and stdy, , in columns three and four of the first

pandl of Table 1 and in the second panel of Figure 1. The distributions of the standard deviations are clearly

-10-



non-normal, but the right skewness has been significantly reduced relative to the distributions of the
variances. The mean of each daily realized standard deviation is approximately 68 basis points.

Interestingly, the distributions of the two daily realized logarithmic standard deviations, Istdd, and Istdy;, ,
displayed in columns five and six of thefirst panel of Table 1 and in the third panel of Figure 1, appear
symmetric. Moreover, normality isamuch better approximation for the logarithmic standard deviations than
for the realized variances or standard deviations. This accords with the findings for monthly volatility
aggregates of daily equity index returnsin French, Schwert and Stambaugh (1987), as well as the earlier
findings in Clark (1973) and Taylor (1986).

Finally, we characterize the distribution of daily realized covariances and correlations, cov;, and corr,, in
the last two columns of the first panel of Table 1 and the bottom panel of Figure 1. The basic characteristic
of the unconditional distribution of the covariance is similar to that of the two daily variances -- it is
extremely right skewed and leptokurtic. Interestingly, however, the distribution of the realized correlation is
close to normal. The mean realized correlation is positive (0.43), which is not surprising, as it may arise from
common dependence on U.S. macroeconomic fundamentals. The standard deviation of realized correlation
(0.17) indicates significant variation of the correlation around its mean, which may be important for short-
term portfolio allocation and hedging decisions.

4.2 Multivariate Unconditional Distributions

The univariate distributions characterized above do not address relationships that may exist among the
different measures of variation and covariation. Key financia and economic questions, for example, include
whether the individual volatilities such as Istdd, and Istdy, move together, and whether they are positively
correlated with movements in correlation. Although such questions are difficult to answer using conventiona
volatility models, they are relatively easy to address using our realized volatilities and correlations.

The sample correlations in the first panel of Table 2, along with the Istdd,-Istdy, scatterplot in the top panel
of Figure 2, indicate a strong positive association between the two exchange rate volatilities. Thus, not only
do the two exchange rates tend to move together, as indicated by the positive means for cov, and corr,, but
their volatilities are aso closely linked. This provides empirical justification for the use of multivariate
volatility models with afactor structure, asin Diebold and Nerlove (1989) and Bollerdev and Engle (1993).

The correlation figures in Table 2 along with the corr-Istdd, scatterplot in the second panel of Figure 2
also indicate a positive association between correlation and volatility. To quantify further this “volatility
effect” in correlation, we show in the top panel of Figure 3 kernel density estimates of corr, when both |stdd,
and Istdy, are less than -0.46 (their median value, which happens to be the same for each) and when both
Istdd, and Istdy, are greater than -0.46. Similarly, we show in the bottom panel of Figure 3 the estimated corr,
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densities conditional on the more extreme volatility situation in which both Istdd, and Istdy, are less than -
0.87 (approximately the tenth percentile of each distribution) and when both Istdd, and Istdy, are greater than
0.00 (approximately the ninetieth percentile of each distribution). In each case, the distribution of corr,
conditional on being in the high volatility state is clearly shifted to the right. A similar correlation effect in
volatility has been documented for international equity returns by Solnik, Boucrelle and Le Fur (1996)
among others, while Ang and Bekaert (1999) have explored the optimal portfolio implications of such an
effect. Of course, given that the high-frequency returns are positively correlated, some separation isto be
expected (e.g., Ronn, 1998, and Forbes and Rigobon, 1999). However, the magnitude of the effect is

nonetheless noteworthy.

5. The Conditional Distribution of Daily Realized FX Volatility

The value of a derivative security such as an option is closely linked to the expected volatility of the
underlying asset until expiration. Hence improved volatility forecasts should, for example, lead to more
accurate option pricing. The conditiona dependence in volatility forms the basis for such forecasts. This
feature is most easily identified in the daily realized correlations and logarithmic standard deviations which
are approximately unconditionally normally distributed. To conserve space, we focus on those three series.

It isinstructive first to consider the time series plots of the realized volatilities in Figure 4. The wide
fluctuations and strong persistence evident in each of the univariate Istdd, and Istdy, series are of course
manifestations of the widely documented return volatility clustering. It is striking that the time series plot for
corr, shows equally pronounced persistence, with readily identifiable periods of high and low correlation.

This visual impression is borne out by the highly significant Ljung-Box tests reported in the first row of the
first panel of Table 3. (The 0.001 critical value is 45.3.) The correlograms of Istdd,, Istdy, and corr, in
Figure 5 further underscore the point. The autocorrelations of the logarithmic standard deviations begin
around 0.6 and decay very dowly to about 0.1 at a displacement of 100 days. Those of the realized daily
correlations decay even more slowly, reaching 0.31 at the 100-day displacement. Similar results based on
long series of daily absolute or squared returns from other markets have previously been obtained by a
number of authors, including Ding, Granger and Engle (1993). The slow decay in Figure 5 is particularly
noteworthy, however, in that the two realized daily volatility series span “only” ten years.

The findings of dow autocorrelation decay might indicate the presence of a unit root, asin the integrated
GARCH model of Engle and Bollerdev (1986). However, Dickey-Fuller tests with ten augmentation lags
soundly reject the unit root hypothesis for all the series, with test statistics ranging from -9.26 to -5.59, while
the 0.01 and 0.05 critical values are -2.86 and -3.43. Although unit roots are soundly rejected, the very sow
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autocorrelation decay coupled with the negative and dowly decaying estimated augmentation lag coefficients
in the Dickey-Fuller regressions till suggest that long-memory of a non unit-root variety is present. Hence
we now turn to an investigation of fractional integration in the daily realized volatilities.

As noted by Granger and Joyeux (1980), a dlow hyperbolic decay of the long-lag autocorrelations or,
equivalently, the log-linear explosion of the low-frequency spectrum, are distinguishing features of a
covariance stationary fractionally integrated, or 1(d), process with 0< d <%,. The low-frequency spectra
behavior aso forms the basis for the log-periodogram regression procedure of Geweke and Porter-Hudak
(1983) and later refinements by Robinson (1994, 1995), Hurvich and Beltrao (1994) and Hurvich, Deo and
Brodsky (1998). In particular, let I(w;) denote the sample periodogram at the jth Fourier frequency, «; =
24/T,j=1,2,...,[T/2]. The log-periodogram estimator of d is then based on the OL S regression,

log[ I(w)] = 8o + B1-log(e;) + uj, (34)
wherej=1,2,...,m, and @ = -%2-8, . The least squares estimator of p,, and hence @, is asymptotically normal
and the corresponding standard error, =-(24-m)™*, depends only on the number of periodogram ordinates used.
Although the earlier proofs for consistency and asymptotic normality of the log-periodogram regression
estimator rely on normality, Deo and Hurvich (1998) and Robinson and Henry (1998) have recently shown
that these same properties extend to non-Gaussian, possibly heteroskedastic, time series as well. Of course,
the actual estimate of d depends upon the specific choice of m. While the theoretical standard error formula
suggests choosing alarge value of min order to obtain a small standard error, doing so may induce a bias,
because the relationship underlying equation (34) in general holds only for frequencies close to zero.
Following Tagqu and Teverovsky (1996), we therefore graphed and examined @ as a function of m, looking
for a“flat region” in which we are plagued neither by high variance (m “too small”) nor high bias (m “too
large”). Our subsequent choice of m= [ T%°], or m= 514, is consistent with the optimal rate of O(T*®)
established by Hurvich, Deo and Brodsky (1998).

We present the estimates of d in the second row of the first panel of Table 3. The estimates for all eight
volatility series are highly statistically significant, and al are fairly close to the “typical value” of 0.4. These
estimates for d are also directly in line with the estimates based on long time series of daily absolute and
squared returns from other markets reported by Granger, Ding and Spear (1997), as well as the findings
based on a much shorter one-year sample of intraday DM/$ returns reported in Andersen and Bollerdev
(1997b). The results therefore suggest that the standard continuous-time models applied in much of the
theoretical finance literature, in which the volatility is assumed to follow an Ornstein-Uhlenbeck (OU)
process, are misspecified. Our results are also constructive, however, in that they indicate that smple and

parsimonious long-memory models should accurately capture the long-lag autoregressive effects.
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6. The Effects of Temporal Aggregation

The analysis in the preceding sections focused exclusively on the distributional properties of daily realized
volatilities. However, many practical problemsin asset pricing, portfolio alocation, and financial risk
management invariably involve longer horizons. Here we examine the distributional aspects of the
corresponding multi-day realized variances and correlations. As before, we begin with an analysis of
unconditional distributions, followed by an anaysis of the dynamic dependence, including a detailed
examination of long-memory asit relates to temporal aggregation.

6.1 Univariate and Multivariate Unconditional Distributions

The lower panels of Table 1 provide summary statistics for the univariate unconditional distributions for
the temporally aggregated volatility measures at weekly, bi-weekly, tri-weekly and monthly return horizons
(h=5, 10,15, and 20, respectively, corresponding to sample sizes of 489, 244, 163 and 122 days). By
construction, the means of the volatility seriesvard,,, vary,,, and cov,, grow at the constant rate h, while the
mean realized correlation, corr,,,, islargely invariant to the level of aggregation. Of significantly, the growth
of the variance of the realized variances and covariance adheres closely to h?**, where d denotes the order of
integration, a phenomenon that we discuss at length subsequently. Observe also that, even at the monthly
level, the unconditional distributions of vard,,, vary;, and cov,, remain leptokurtic and highly rightward
skewed. The basic characteristics of sttd,,, and stdy;, are similar, with the mean increasing a the rate h*2. In
contrast to previously, however, the unconditional variances of Istdd;, and Istdy, , now decrease with h, but
again at arate linked to the fractional integration parameter, as we document below.

Next, turning to the multivariate unconditional distributions, we display in the lower panels of Table 2 the
correlation matrices of all volatility measures for h=5, 10, 15, and 20. While the correlation between the
different measures of volatility drops dightly under temporal aggregation, the strong positive association
between the volatilities so apparent at the one-day return horizon islargely preserved under temporal
aggregation. For instance, the correlation between Istdd,, and Istdy; , ranges from a high of 0.604 at the daily
horizon to alow of 0.533 at the monthly horizon. Meanwhile, the volatility effect in correlation is reduced
somewhat under temporal aggregation; the sample correlation between Istdd; ; and corr,; equals 0.389,
whereas the correlation between Istdd, ,, and corr, ,, is 0.245. Similarly, the correlation between Istdy; |, and
corr,, drops from 0.294 for h= 1 to 0.115 for h= 20. Thus, while the long-horizon correlations are till
positively related to the overal level of volatility, the lower numerical values suggest that the benefits to
internationa diversification may be the greatest over longer investment horizons.

6.2 The Conditional Distribution: Dynamic Dependence, Fractional Integration and Scaling
Andersen, Bollerdev and Lange (1999) have recently shown that, given the estimates typically obtained at
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the daily level, from atheoretical perspective the integrated volatility should remain strongly serialy
correlated and highly predictable under temporal aggregation, even at the monthly level. The Ljung-Box
statistics for the realized volatilities presented in the lower panels of Table 3 provide strong empirical
confirmation. Even at the monthly level, or h= 20, with only 122 observations, al of the test statistics are
highly significant. This contrasts with other sorts of evidence, which tends to show little or no significant
evidence of volatility clustering by the time one aggregates to monthly returns, asin Baillie and Bollerdev
(1989) and Christoffersen and Diebold (2000).

The estimates for d in Section 4 all suggest that the realized daily volétilities are fractionally integrated.
The class of fractionally integrated modelsis self-similar, so that the degree of fractional integration should
be invariant to the sampling frequency; see, e.g., Beran (1994). This strong prediction is borne out by the
estimates for d at the different levels of temporal aggregation, given in the lower panels of Table 3. All of the
estimates are within two asymptotic standard errors of the average estimate of 0.391 obtained for the daily
series, and al are highly statistically significantly different from both zero and unity.

Another implication of self-similarity concerns the variance of partial sums. In particular, let

[X]h = Zi=1.n X+ (35)
denote the h-fold partial sum processfor x,, wheret=1,2,...,[T/h]. Then, asdiscussed by, e.g., Beran
(1994) and Diebold and Lindner (1996), if x, is fractionally integrated, the partial sums obey a scaling law,

Var([x]y) = ch*™ (36)

Of course, by definition [ vard,], = vard,, and [ vary,],, = vary,,, so the variance of the realized volatilities
should grow at the rate h***. This theoretical implication is remarkably consistent with the unconditional
sample variances and covariances in Table 1 for values of d around 0.35-0.40. Similar scaling laws for
power transforms of absolute FX returns are reported in a series of papersinitiated by Miller et al. (1990).

The striking accuracy of our scaling laws carries over to the partial sums of the aternative volatility series.
The left panel of Figure 6 plots the logarithm of the sample variances of the partial sums for the realized
logarithmic standard deviations versus the logarithm of the aggregation levd; i.e., log( Var ([ Istdd,],)) and
log(Var([ Istdy;],)) against log(h) for h=1,2, ..., 30. Thelinear fitsimplied by equation (36) are validated.
Each of the dopes are very close to the theoretical value of 2d+ 1 implied by the log-periodogram estimates
for d, further solidifying the notion of long-memory volatility dependence. The estimated dopes in the top
and bottom panels are 1.780 and 1.728, respectively, corresponding to d values of 0.390 and 0.364.

Because a non-linear function of a sum does not equal the sum of the non-linear function, it is not clear
whether Istdd, , and Istdy; , will follow similar scaling laws. The estimates of d reported in Table 3 suggest
that they should. The corresponding plots for the logarithm of the h-day logarithmic standard deviations
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log(Var(Istdd,,)) and log(Var(Istdy,,)) against log(h), for h=1,2, ..., 30, in theright panel of Figure 6, lend
empirical support to this conjecture. Although the fits are not as perfect as those in Figure 8, the log-linear
approximations are still remarkably accurate. Interestingly, however, the lines are downward s oped.

To understand why these slopes may be negative, assume that the returns are serialy uncorrelated. The
variance of the temporally aggregated return should then be proportiona to the length of the return interval,
that is, E(var,,) = b-h, where var, , refers to the temporally aggregated variance as defined above. Also, by
the scaling law in (36), Var(var,,) = c-h®**. Furthermore, assume that the corresponding temporally
aggregated |logarithmic standard deviations, Istd,, = ¥2-log( var, ), are normally distributed across all
frequencies h with mean 1, and variance 2. Note that these assumptions accord closely with the empirical

distributions summarized in Table 1. It then follows from the properties of the lognormal distribution that

E(var,,) = exp(2u,+ 2:2) = bh (37)
and

Var(var,,) = exp(4i,) exp(4or) [ exp(4o7) -1] = c-h*, (38)
so that solving for the variance of the log standard deviation yields

Var(lstd,,) = o2 = log(cb®h+ 1). (39)

With 2d-1 dightly negative, this explains why the sample variances of Istdd,, and Istdy, , reported in Table 1
are decreasing with the level of temporal aggregation, h. Furthermore, by alog-linear approximation,

log[ Var(Istd,,)] = a + (2d-1) -log(h), (40)
which provides ajustification for the apparent scaling law behind the two plotsin the right panel of Figure 6,
and the negative slopes of approximately 2d-1. The dopesin the top and bottom panels are -0.222 and -
0.270, respectively, and the implied d values of 0.389 and 0.365 are almost identical to the valuesimplied by
the scaling law in equation (36) and the two left panels of Figure 6.

7. Summary and Concluding Remarks

We have provided atheoretical basis for measuring and analyzing time series of realized volatilities
congtructed from high-frequency intraday returns. Utilizing a unique data set consisting of ten years of 5-
minute DM/$ and Y en/$ returns, we find that the distributions of realized daily variances, standard
deviations and covariances are skewed to the right and leptokurtic, but that the distributions of logarithmic
standard deviations and correlations are approximately Gaussian. Volatility movements, moreover, are
highly correlated across the two exchange rates, as would be implied by a factor structure induced by
common dependence on U.S. fundamentals. We also find that the correlation between the exchange rates (as

opposed to the correlation between their volatilities) increases with volatility, so that the benefits of portfolio
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diversification are reduced just when they are needed most. Finally, we confirm the wealth of existing
evidence of strong volatility clustering effects in daily returns. However, in contrast to earlier work, which
often indicates that volatility persistence decreases fairly quickly with the horizon, we find that even monthly
realized volatilities remain highly persistent. Nonetheless, realized volatilities do not have unit roots; instead,
they appear fractionally integrated and therefore very dowly mean-reverting. This finding is strengthened by
our analysis of temporally aggregated volatility series, which appear to be governed by remarkably accurate
scaling laws, as predicted by the structure of fractional integration.

A key conceptual distinction between this paper and the earlier work on which we build -- Andersen and
Bollerslev (1998a) in particular -- is the recognition that realized volatility is usefully viewed as the object of
intrinsic interest, rather than simply a post-modeling device to be used for evaluating parametric volatility
models such as GARCH. As such, it is of interest to examine and model realized volatility directly. This
paper isafirst step in that direction, providing a nonparametric characterization of both the unconditional
and conditional distributions of bivariate realized exchange rate volatility.

It will be of interest in future work to fit parametric models directly to the realized volatility, and in turn
use them for forecasting in specific financia contexts. In particular, our findings suggest that modeling
realized logarithmic daily standard deviations and correlations by a linear Gaussian multivariate long-
memory model, could result in important improvements in the accuracy of long-term volatility forecasts and
Value-at-Risk type calculations. Thisideais pursued in Andersen, Bollerslev, Diebold and Labys (1999b).
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Tablel
Statistics Summarizing Unconditional Distributions of Realized DM/$ and Yen/$ Volatilities

vard,, vary,, stdd,, stdy,, Istdd,, Istdy,, cow, corr,,

Daily, h=1
Mean 0.529 0.538 0.679 0.684 -0.449 -0.443 0.243 0.435
Variance 0.234 0.272 0.067 0.070 0.120 0.123 0.073 0.028
Skewness 3711 5576 1681 1.867 0.345 0.264 3.784 -0.203
Kurtosis 24.09 66.75 7.781 10.38 3.263 3.525 2525 2.722
Weekly, h=5
Mean 2646 2.692 1555 1566 0.399 0.405 1.217 0.449
Variance 3.292 3.690 0.228 0.240 0.084 0.083 0.957 0.022
Skewness 2628 2.769 1252 1.410 0.215 0.382 2.284 -0.176
Kurtosis 1420 1471 5696 6.110 3.226 3.290 10.02 2.464
Bi-Weekly, h=10
Mean 5297 5.386 2216 2.233 0.759 0.767 2437 0.453
Variance 1044 11.74 0.389 0.403 0.072 0.070 2.939 0.019
Skewness 1.968 2462 1.063 1.291 0.232 0.380 1.904 -0.147
Kurtosis 7939 1198 4500 5.602 3.032 3.225 7.849 2.243
Tri-Weekly, h=15
Mean 7937 8.075 2717 2744 0964 0.977 3.651 0.455
Variance 22.33 2277 0560 0.546 0.069 0.064 5.857 0.018
Skewness 2046 2.043 1.033 1.177 0.208 0.400 1.633 -0.132
Kurtosis 9408 8.322 4.621 4.756 2999 3.123 6.139 2.247
Monthly, h=20
Mean 1059 10.77 3.151 3.179 1.116 1.127 4.874 0.458
Variance 34.09 36.00 0671 0.671 0.062 0.059 8975 0.017

Skewness 1561 1.750 0.906 1.078 0.295 0452 1369 -0.196
Kurtosis 5768 6.528 3.632 4.069 2.686 2.898 4436 2.196




Table2
Correation Matrices of Realized DM/$ and Yen/$ Volatilities

vary,, stdd,, stdy,, Istdd,, Istdy,, cov,, corry,

Daily, h=1
vard, 0.539 0.961 0.552 0.860 0.512 0.806 0.341
vary; 1.000 0546 0.945 0514 0.825 0.757 0.234
stdd, - 1.000 0592 0.965 0.578 0.793 0.383
stdy, - - 1.000 0589 0.959 0.760 0.281
Istdd, - - - 1.000 0.604 0.720 0.389
Istdy, - - - - 1.000 0.684 0.294
cov, - - - - - 1.000 0.590
Weekly, h=5
vard,, 0.494 0.975 0.507 0.907 0.495 0.787 0.311
vary,p 1.000 0519 0.975 0514 0.908 0.761 0.197
stdd, , - 1.000 0.545 0.977 0545 0.789 0.334
stdy;p, - - 1.000 0555 0977 0.757 0.220
Istdd,, - - - 1.000 0.571 0.748 0.336
Istdy, - - - - 1.000 0.718 0.235
CoV;j, - - - - - 1.000 0.617
Bi-weekly, h=10
vard, 0.500 0.983 0.503 0.931 0490 0.776 0.274
vary,p, 1.000 0516 0.980 0514 0.923 0.772 0.170
stdd, j, - 1.000 0.533 0.982 0.531 0.780 0.293
stdy;p, - - 1.000 0544 0.981 0.762 0.188
Istdd,, - - - 1.000 0.556 0.753 0.300
Istdy, - - - 1.000 0.726 0.202
CoV;j, - - - - - 1.000 0.609
Tri-weekly, h=15
vard,, 0.498 0.982 0.505 0.931 0497 0.775 0.255
vary; p, 1.000 0522 0.984 0525 0.939 0.763 0.146
stdd, j, - 1.000 0.538 0.983 0.539 0.787 0.277
stay, - - 1.000 0551 0.984 0.756 0.155
Istdd,, - - - 1.000 0.564 0.765 0.285
Istdy, - - - - 1.000 0.727 0.162
CoV;j, - - - - - 1.000 0.605
Monthly, h=20
vard, 0479 0.988 0.484 0.952 0479 0.764 0.227
vary, 1.000 0501 0.988 0.509 0.953 0.747 0.109
stdd, j, - 1.000 0.512 0.988 0.511 0.775 0.241
stay, - - 1.000 0527 0.988 0.741 0.112
Istdd, , - - - 1.000 0.533 0.763 0.245
Istdy, - - - 1.000 0.719 0.115

cov,., - - - - - 1.000 059




Table3
Dynamic Dependency Measuresfor Realized DM/$ and Yen/$ Volatilities

vard,, vary,, stdd,, stdy,, Istdd,, Istdy,, cow, corr,

Daily, h=1

LB 4539.3 3257.2 7213.7 5664.7 9220.7 6814.1 2855.2 12197

d 0.356 0.339 0.381 0428 0420 0.455 0334 0413
Weekly, h=5

LB 592.7 4939 786.2 609.6 930.0 636.3 426.1 2743.3

d 0457 0429 0446 0473 0485 049 0.368 0.519
Bi-weekly, h=10

LB 2212 181.0 2679 206.7 3053 2038 1554 1155.6

d 0.511 0490 0470 0501 0.515 0507 0436 0.494
Tri-weekly, h=15

LB 100.7 108.0 122.6 1173 1383 1125 101.6 647.0

d 0.400 0426 0384 0.440 0421 0.440 0.319 0.600
Monthly, h=20

LB 718 699 831 709 945 660 785 4273

d 0.455 0488 0440 0.509 049 0.479 0439 0.630
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Distributions of Daily Realized Exchange Rate Volatilitiesand Correlations
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Figure2
Bivariate Scatter plots of Realized Volatilitiesand Correlations
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Figure3

Distributions of Daily Realized Exchange Rate Correlation:
Low Volatility vs. High Volatility Days
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Time Series of Daily Realized Volatilitiesand Correlation
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Sample Autocorrelations

Figure5

Sample Autocorrelations of Realized Volatilitiesand Correlation
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