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The Dynamics of Discrete Bid and Ask Quotes

Abstract

This analysis models discrete quotes as arising from two continuous random variables, the
efficient price and a cost of quote exposure (information and processing costs). The
former less the latter rounded down to the next tick yields the bid; the former plus the
latter rounded up yields the ask. To deal with situations in which the cost of quote
exposure possesses both stochastic and deterministic components, the paper proposes a
nonlinear state-space estimation method. The method is applied to intraday quotes at
fifteen-minute intervals for Alcoa (a randomly chosen Dow stock). The results confirm
the existence of deterministic and stochastic components of the cost that are of roughly

comparable magnitudes.
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1. Introduction

Although most determinants of a security price are likely to be continuous
variables, the security price is usually constrained by institutional arrangement to a discrete
grid. Since this grid may be coarse relative to the price variation over brief intervals,
discreteness becomes more important as the observation interval shrinks. This paper
suggests that the bid and ask quotes arise from an implicit efficient price and a quote-
exposure cost variable, both of which are continuous random variables. The efficient price
less the cost is rounded down to produce the bid; the price plus the cost is rounded up for
the ask. The paper proposes a nonlinear state-space procedure for estimation and (in real
time applications) online filtering, and applies this model to fifteen-minute bid and ask
quotes for a New York Stock Exchange stock.

This paper is most closely related to earlier empirical studies of discreteness in
stock prices. The first analyses in this area focused on estimation of long-term stock return
variances from transaction prices, a concern motivated by option pricing applications (see
Gottlieb and Kalay (1985), Cho and Frees (1988) and Ball(1988)). The empbhasis in later
studies of transaction prices shifted to microstructure phenomena (see Glosten and Harris
(1988), Harris (1990, 1991, 1994), Hausman, Lo and MacKinlay (1992), Angel (1994)
and Madhavan, Richardson and Roomans (1994)). Discreteness is often encountered as a
“nuisance” effect, a data characteristic that must be addressed en route to confronting
more interesting economic hypotheses. But since the minimum tick size may affect trading
activity, discreteness is also of theoretical and policy interest (Harris (1990, 1991),
Bernhardt and Hughson (1990, 1992), Brown, Laux and Schacter (1991), Glosten (1994),
Chordia and Subrahmanyam (1995), Ahn, Cao and Choe (1996)).

The present study seeks to model bid and ask quotes as opposed to transaction
prices. Quotes are of particular interest in microstructure studies because they can be
updated in the absence of trades to reflect changing information and also because they
reflect perceived asymmetric information costs. Discreteness has different effects on
quotes and transaction prices. A risk-neutral trader would presumably be indifferent to

the fair-game perturbation associated with symmetrically rounding the unobserved
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continuous price to the nearest tick. A market maker posting bid and offer quotes, on the
other hand, must round his bid price down and his offer price up in order avoid the
expectation of losing money on the next trade.

The paper is also closely related to studies of discreteness in the bid-ask spread.
Harris (1994) and Bollerslev and Melvin (1994) model the discrete spread using ordered
qualitative-data approaches. In these studies, the spread is a continuous function of
observable variables and a random disturbance that is transformed onto a discrete grid.
The spread in the present model, in contrast, is driven by an underlying variable that is
unobservable, stochastic and autocorrelated. Furthermore, in modeling the bid and ask
separately, the present analysis incorporates a rich specification of the efficient price
dynamics.

The paper represents the model in state-space form in which the unobserved
efficient price and quote exposure cost are the state variables and the bid and ask prices
are the observables. This framework is appealing because the recursive procedure used to
compute the likelihood function is a Bayesian updating that mimics agents’ inferences.
Furthermore, state-space models are natural and convenient tools with which to
investigate deterministic and stochastic time variation in parameters. The paper
implements several such generalizations.

In comparison with reduced-from vector autoregressive (VAR) microstructure
models (e.g., Hasbrouck (1991, 1993), the present design assumes more structure in the
form of the probability densities and the discrete-valued functions that map the continuous
state variables onto prices. These assumptions suffice to identify a (nonlinear) state-space
model. Although tightly structured in its discreteness aspects, this model remains general
in other regards, notably those related to time variation in the parameters. The
conventional approach to characterizing intraday parameter variation involves estimating
fixed-parameter models over intraday subsamples (e.g., as in Hasbrouck (1991), the first
hour of trading). In contrast, the present approach admits stochastic and deterministic

parameter variation in a comprehensive statistical model.
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Structural restrictions usually arise from specific economic models. The analyses
of Madhavan and Smidt (1991, 1993), Madhavan, Richardson and Roomans (1994),
Easley, Kiefer and O’Hara (1994), for example, estimate specifications derived from
detailed characterizations of agents’ behavior and/or specifications about the informational
features of the market. These assumptions serve to identify the “deep” economic
structural parameters. In this respect, the present aims are much more modest.

Thus, although the paper deals primarily with discreteness, the ultimate aim in this
line of inquiry is a modeling framework flexible enough to accommodate parameter shifts
resulting from the start and finish of trading and random variation in the underlying
informational and liquidity determinants of trading activity.

The analysis does not extend to clustering (the affinity of transaction prices and
quotes for integers, halves, quarters, etc., in decreasing frequency). Clustering in
transaction prices is examined by Niederhoffer (1965, 1966) and Harris (1991), and in
quotes by Christie and Shultz (1995a, 1995b). In a dynamic setting, clustering requires
specification of a mapping from continuous state variables to discrete observations that is
more complicated than the simple rounding functions employed here.

The paper is organized as follows. The next section describes the underlying
economic model that generates the bid and ask quotes. The paper then turns to the
problem of inference: how to estimate the underlying model from the observed discrete bid
and ask prices. Section 3 discusses inference when the successive quote exposure costs
are serially independent. Section 4 presents a richer model that incorporates stochastic
and deterministic time variation in the cost and efficient price volatility. The details of the
estimation procedure are presented in an appendix. The model is estimated for a
representative NYSE stock in section 5. Section 6 discusses extensions. A brief summary

concludes the paper in section 7.

2. The economic model

Denote by m the implicit efficient price of the security. The agent establishing the
quotes is assumed to be subject to a positive cost of quote exposure ¢>0, such that in the

absence of discreteness restrictions she would quote a bid price of m—c and an ask (offer)
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price of m+c. This cost is assumed to impound fixed transaction costs and asymmetric
information costs. Assuming a one-unit tick size in the market, the actual bid and ask
quotes are:

b = Floor[m—c|
a= Ceiling[m+ c]

(D

where Floor[-] rounds its argument down to the next whole integer and Ceiling[-] rounds
its argument up to the next whole integer. If the tick size is not unity, all variables may
simply be rescaled.

This construct can be motivated by most simple models of dealer behavior. In the
framework of Glosten and Milgrom (1985) quote setters face a population of informed
and uninformed traders. m is the expectation of the final value of the security conditional
on all public information (including the transaction price history). The quote exposure
cost ¢ is defined implicitly by the condition that m—c and m+c are the quotes that ensure
the quote-setter zero expected profits and no ex post regret. This outcome arises from
Bertrand competition. By rounding up on the ask and down on the bid, the market maker
ensures a positive expected profit on each trade.

The rounding in this model is asymmetric: the bid is rounded down, while the ask
is rounded up. If the rounding were symmetric (all prices rounded up, all prices rounded
down or all prices rounded to the nearest integer), then one or both sides of the quotes
might be associated with an expected loss. For example, if the efficient price is 5 and the
cost is 1.1, nearest-integer rounding yields a bid of 4 and an ask of 6, both of which yield
expected losses. Furthermore, symmetric rounding may in some instances lead to identical
bid and ask prices (if ¢ is small).

Although this model allows for randomness in both ¢ and m, the discreteness
aspect of the model arises from a nonstochastic transformation. There is no discreteness
“error” or disturbance that is required to impound the effect of discreteness.

As noted in the introduction, most studies of discreteness in security markets have
focused on transaction prices. Quotes and transaction prices are obviously related,

however, and the transaction price models therefore offer useful points of comparison. In
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this connection, there is at the outset one obvious incompatibility. If transactions arise as
uncorrelated equiprobable realizations of the bid and ask quotes determined by equation
(1), these prices cannot be described as a symmetrically-rounded random-walk.

The models actually estimated in the paper will allow this cost to exhibit both
deterministic and stochastic dynamic behavior. As a preliminary, however, it is useful to
point out that even when c is constant, random variation in m suffices to induce
randomness in the spread. For example, if c=1/4, then the spread is one tick as long as the
fractional part of m is between 1/4 and 3/4; and the spread is two ticks otherwise.
Therefore, variability in the discrete spread may be an erroneous proxy for variability in
the spread’s continuous determinants. In addition, price transitions will sometimes be
marked by quotes that appear to move “one leg at a time”. (Consider the quotes
associated with the m, sequence {0.4, 0.9, 1.3}.) U.S. stock quotes often exhibit this
behavior.

Finally, this model does not explicitly capture any particular agent’s optimization
problem. The framework is implicitly one in which the agent’s solution to a continuous
optimization problem (c) is then subjected to a transformation to yield discrete strategies.
Fundamentally, however, a discrete price and quantity grid gives rise to an integer
programming problem. There is no obvious necessary reason to assume that the optimal
strategies of all potential quote setters can be characterized as rounded continuous
solutions. A trader contemplating the submission of a limit order, for example, must
balance costs (including those associated with execution failure), value and execution
probability (see Harris (1994)).

3. Inference from observed bid and ask quotes.

Viewed as a transformation of continuous random inputs (m and c) into discrete
bid and ask prices, the model described by (1) is a very simple one. From the perspective
of the econometrician (and that of many market participants), however, the observed bid
and ask prices are given, and inference focuses on the unobserved inputs. Viewed in this

direction, the model is more complex.
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Taking the bid and ask quotes as given, the feasible region for (m, c) consistent
with model (1) is the region
Q(b,a)={(m,c):c>0,b£m—c<b+1anda—l<m+c£a} (2)

Figure 1 depicts Q(=0, a=1) (a one-tick spread), Q(b=0, a=2) (a two-tick spread), and
Q(b=0, a=3) (a three-tick spread). The diamond shape of the region Q(b=0, a=2), for
example, can be viewed as arising in the following way. When c is just slightly greater
than zero or slightly less than one, the range of m consistent with 5=0 and a=1 is a small
neighborhood about one. When c is 1/2, m can range from 1/2 to 3/2.

Most interesting applications will involve situations where the quote exposure cost
is random. This randomness can be viewed as arising from several sources. Along the
lines of the Glosten-Milgrom model, there may be random time variation in the
determinants of this cost, such as perceived exposure to adverse information or holding
costs. In this view all dealers and potential dealers are subject to the same cost.
Alternatively, we may view the quote setter as an agent drawn from a population of
traders with random cost functions. If more than one such agent is active at an instant,
then the relevant cost is the lowest ¢ in the group.

The only firm requirement on the latent cost variable is nonnegativity. A simple
density function that satisfies this requirement is the lognormal: Ln(c) is assumed to be
distributed normally with mean u and standard deviation o

In the distributional assumptions on the latent efficient price, the model admits a
wide generality. The full model presented in the next section incorporates an EGARCH
process for m. Initially, however, it is useful to characterize m by a uniform diffuse prior,
i.e., a probability density that is constant over some suitably large region. Formally it
suffices to take

F(m)= {K‘ for m € (0,x) 3)

0, otherwise
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where xis “large” (but not infinite). The choice of xis arbitrary; it integrates out of all
calculations. The cost parameter is assumed to be independent of the price level, which

implies that the prior density of the latent variables may be written as fim, c)=fm) fc).

The posterior densities
I now turn to the construction of the density of (m, ¢) conditional on observing

that the bid and ask quotes are b and a. The joint conditional density is:

flmcc) .
b.a)= Pr((b, a)) if (m,c) e 0(b,q) @

0, otherwise

f(m,c

where Pr(d, a) is the probability of observing discrete bid and ask quotes b and a:

Pr(b,a)= J(m’ &) 0(b,a) f(m,c)dmdc %)

(The m density parameter « drops out of f{im, c|b, a) in equation (4) because it appears as
a factor in both the numerator and denominator of the fraction on the right-hand-side.)

Since this conditioning imposes a truncation on the ranges of the variables, it might
seem that the conditional densities would be simple truncated versions of the priors. The
truncations defined by O(a,b), however, apply to linear combinations of the variables, not
the variables themselves. The shape of O(a, b) effectively forces a nonlinear
transformation on the priors.

As an illustration, consider the marginal densities f{c|b, a) and f{m|b, @) assuming
that that the parameters of the lognormal density for the quote exposure cost ¢ are y=—1
and o= 0.6. This implies (from equation (5)) that Prla—b=1] = 0.29, Pr{a-56=2] = 0.58,
Pr[a-b=3]=0.11, and Pr{a—4>3]=0.03. Figure 2 depicts the prior and conditional
density functions conditional on bid and ask quotes b=0 and a=2. The prior for m is
drawn as a flat line of height x™.

The conditional density for m is not uniform over the allowable range of m
(1/2<m<3/2). If m is near an endpoint, the range of feasible ¢ values is a small one, with
correspondingly low probability. If m is near the center of the range, the feasible set for c

is larger. Similarly the conditional density for c is not simply a truncated log normal, but
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slopes down gradually to the boundary defined by c=1. When c lies on this boundary, the
set of m values consistent with the observed quotes is a single point (of probability zero,
given the continuous prior assumed for m). As we move inward from this constraint, the
set of feasible m becomes larger. (The peak in the conditional cost density arises from the

“corners” in the diamond Q(a=0, b=2) in Figure 1.)

Estimation

Suppose now that the quote generation process occurs over a sequence of time
periods =1, . . ., T with a realization {m,, ¢;}. It will be assumed initially that the {c.} are
identically and independently distributed, and that they are also distributed independently
of the m,. For simplicity, the assumption of a diffuse uniform prior for all 7, is maintained.

If ¢, is observed directly, the parameters of the lognormal cost density function, 4
and o, can be estimated easily. In the usual fashion, the log likelihood function for a single
observation is given by /(c,;8) = Log{ flc,; 9)] , where 6=[u o]’ is the parameter vector
and fis the lognormal density function. In the usual fashion, a maximum likelihood
estimate (MLE) can be constructed by maximizing the sample log likelihood z;l(c,;e) :
This estimate is asymptotically normally distributed with mean @ and covariance matrix [7
I(0)]", where I(6) is the information matrix /(6)=E [(5’1 |66)(81] 0”9’)] . Usually,
however, the observations will consist of the series of discrete bid and ask prices {b;, a.}.
In this case, the log likelihood is (&,,a,;6) = Log[Pr(b,,a,;6)]. The sample log likelihood
function and information matrices may computed using this functional form.

From an econometric viewpoint, discreteness in this model causes problems similar
to those generally stemming from grouped data. Grouping is tantamount to a loss of
information, and it therefore imposes an efficiency penalty. This penalty may be assessed
in the present application by comparing the information matrices of the MLE based on the
log likelihood with continuous observations /(c;;6) and that of the MLE based on
I(b,,a;;6), the discrete-data counterpart.

With the same numerical parameter values used to illustrate the conditional density

calculation (u=-1.0 and 0=0.6), the inverse information matrix for the continuous MLE
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036 O.
is [ o 0 18]' In a sample of size n=100, for example, the standard error of estimate of

4 would be approximately (0.36/ 100)"% = 0.06 (which could also be obtained as 0'/ Jn ).

The absence of correlation between the parameter estimates is a consequence of normality.

088 -037
] . The loss

The inverse information matrix for the discrete MLE is
-037 062

of information from discreteness is reflected in the increased magnitudes of all entries. To
obtain the same standard error of estimate for u that was achieved with 100 continuous
observations, for example, roughly 244 discrete observations would be required (implied
by 0.06=(0.88/n)"?). Furthermore, the discrete éstimates of u and o are negatively

correlated.
4. The full dynamic model

Overview

The analysis to this point has suppressed dynamic considerations in the assumption
of a diffuse prior to the efficient price m, and the i.i.d. assumption on the quote exposure
cost ¢, It is useful to model the efficient price for two reasons. First, this is the quantity
that will be of primary interest in many applications. Second, it is apparent from the shape
of the feasible regions (the O in Figure 1) that knowledge about the location of m, is useful
in determining the location of ¢,: by incorporating the dynamics of m, we expect to obtain
sharper estimates of the parameters of the ¢, process. As for the dynamics of c;, realistic
applications would seem to require allowance for deterministic time effects (such as the
intraday “U” patterns) and also for autocorrelated stochastic effects.

The general model is:

m=m,_ +u (6)
In(c,) = 4 +¢°(Infc,,) - 47.1) + v, (7

The increments to the efficient price u, are assumed to follow an EGARCH (exponential
generalized autoregressive conditional heteroskedastic) process based on the GED

(generalized error density) function. From earlier studies, it appears desirable to allow for
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“U” shapes in both the efficient price volatilities and the cost means. I now turnto a

discussion of the EGARCH and deterministic components of the model.

The EGARCH component
The heteroskedasticity modeling in this analysis follows Nelson (1991). To allow

for leptokurtosis and time-varying volatility in the efficient price increments, I assume that
after standardizing by its standard deviation, the increment is drawn from a standard

d
generalized error distribution (GED) with parameter v: z, =u,/o,~GED(v). This

1\z|"
rorl (1)
prE , where A= (207 I(1/v)/T(3/v)| (8)

distribution is given by:

fGED(Z; V)=

In the case where =2, this reduces to the standard normal density.

A standard EGARCH specification models time-varying variances as:
ln(of) = u7 + ¢ﬂ(1n(0'f_1 ) - y:’_l) + 7(|zt_1| - E|zt_1 [) 9

The leading term on the right-hand-side, 47, is a deterministic function that impounds the
time-of-day behavior in variances. The second term is a first-order autoregressive
component. The last component is a disturbance component driven by the prior period’s
shock. The expected absolute value is unconditional and time-invariant, depending only
on the tail-thickness parameter. It is given by Elz= A2 T'(2/v)/T(1/v). (The
asymmetry term suggested by Nelson is omitted.)

In the present application, a problem arises from the fact that the m, (and therefore
u, and z=u,/ ;) are not observable. Since knowledge of the bid and offer quote history is
insufficient to compute equation (9), o; must be carried as an unobservable state variable.
This is not computationally feasible. As a more tractable alternative, I assume that the
variance process is driven by the conditional expectation of the absolute efficient price
increment. That is, |z.,| in (9) is replaced by its conditional expectation E..\[|z.1|] =

E.i[|z1])/ 0w, yielding

ln(af) =4+ ¢U(]n(o'f—1 ) ~ i, ) + 7(Ez—1 [|u,_1 l]/at—l - E|zt—1 D (10)
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where E,_|u,_,|= E[|u,_,”q,_,,q,_2,...]. This quantity is easily computed in the course of

the iterative update.

Deterministic time variation

Both the quote exposure cost function in (6) and the variance specification in (10)
allow for deterministic effects. At a bare minimum it appears necessary to allow for the
“U” shapes that characterize market data. A parsimonious function that permits end-point

elevation can be built from exponential decay functions. The deterministic component of

the cost process is:

¢,close

yf = #g + o exp(_;{‘c,openz_:?pen) +a exp(—/lc’d“’“rf"’“) (1 1)

close :

where 777" is the elapsed time since the opening quote of the day (in hours) and 77" is
the time remaining before the scheduled market close (in hours). The deterministic

component of the variance is:

o, close Aa,close close

exp( T, ),
#; =4 iftis not the daily close (12)
Hoermigne» 1f £ 18 the daily close

Hy +a”%" exp(—l""’"’"r;”"” ”) +a

Estimation

For purposes of estimation, the system may be viewed as a nonlinear state-space
model. The state variables are m, and c,, with associated transition equations (6) and (7).
The observations consist of the bid and ask quotes, with observation equation (1).

The estimation procedure follows Kitagawa’s (1987) approach. The appendix
contains a summary of this method as it applies to the present situation. Briefly, the
approach involves representing the conditional densities of the state variables as numerical
grids. Updating these densities at each time period requires numerical integration over the
state variables. Relative to the “usual” nonlinear filtering problem, these integrations are
simplified somewhat because the integration regions are the diamond and half-diamond
shapes in Figure 1, rather than the entire two-dimensional plane. Nevertheless, the

process remains computationally intensive.
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Alternative specifications

The full model described above is a joint description of the quote exposure cost
and the efficient price. Given its complexity and computational burdens, one might
reasonably ask if univariate models might yield similar results. That is, if only the cost
dynamics are of interest, is it sufficient to estimate a simpler model that assumes a diffuse
prior for the efficient price (cf. the development in section 3)? This variant, consisting of
the cost equation from (7) and equation(11), is termed the “cost model”. When m is
eliminated as a state variable, the numerical grid approach is still necessary due to the
stochastic variation in the cost, but the reduction in dimension speeds computation. The
resulting estimates can be viewed as being derived from the history of the spread, a— b:.

Alternatively, if only the efficient price is of concern, one might estimate the first
equation in (6), together with the EGARCH specification described in equations (10) and
(12), under the assumption of a diffuse prior for the quote exposure cost over the positive

real line. This variant is termed the “discrete EGARCH model”.

5. Estimation

Data

I estimate the specifications described in the last section to NYSE bid and ask
quotes for Alcoa (ticker symbol AA) for all trading days in 1994. Alcoa is the first Dow
Stock (in alphabetical ordering) and is viewed as a representative high-activity security.
Bid and ask quotes are those prevailing at the close of lS-minufe intervals. The first
observation of a day generally corresponds to 9:45, the last to 16:00 (26 points). There

are 6527 observations.

Estimates of the full model

Table 1 reports parameter estimates. For purposes of exposition, these may be

grouped as cost- and variance- related. The deterministic cost parameters depict the usual

! With 28 integration points used in the half-diamond region and 56 in the diamond region, convergence

required about two days for the full model, and six hours for the cost- and discrete-EGARCH models.

Computations were programmed in GAUSS and executed on a 100 MHz Pentium system.
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U-shaped intraday pattern, although the standard errors of the decay rates are large. Of
more interest is the characterization of the stochastic component. Both the disturbance
variance o, and the autoregressive parameter ¢ are strongly positive. The autoregressive
parameter suggests that about 30% of the excess log cost persists at the subsequent time
point (fifteen minutes later).

Figure 4 depicts the relative importance of the deterministic and stochastic sources
of variation in the quote exposure cost. The solid line graphs the intraday variation in the
deterministic component implied by the model estimates. (For example, the constant
parameter in the log quote exposure cost is ;5 = —1499, which implies a cost of
e = 02234 fticks, i.e., 0.2238/8=$0.028.)

The stochastic portion of the log quote exposure cost is a first-order
autoregressive process, which possesses a standard deviation of (0'3 / (1— (¢‘)2)) =
(0.7052 / (1-0300 ))]/2 =0.739. The dotted lines in Figure 4 define the plus-or-minus
two-standard deviation range on the cost. This range may be interpreted as a “confidence
interval” containing the cost at a given time on a randomly selected day. (This calculation
uses the model point estimates only, and so does not reflect estimation errors. This range
is not symmetric about the deterministic component due to the log transform.)

Consideration of the deterministic component (solid line in Figure 4) suggests a
quote exposure cost that is typically about six cents at the open and three cents thereafter.
(The elevation at the close is small). When the stochastic component is added in (as
indicated by the dashed lines), the range appears to be large relative to the deterministic
intraday variation.

Turning to the variance component of the model, the deterministic component
suggests end-point elevation and a sharply higher overnight variance. The autoregressive
parameter ¢” also suggests strong persistence of the variance. The tail-thickness
parameter estimate of v = 0.855 implies a sharply peaked, but otherwise fairly broad
distribution. For comparison purposes, Figure 3 graphs the GED density associated with

this value against the standard normal.
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Estimates of the cost model.

The cost model is a computationally simpler subcase of the full model that follows
from an assumption of a diffuse prior on the efficient price. The estimates are given in the
“cost” model column of Table 1. Not only are the estimates virtually identical to those
obtained for the full model, but so are the estimated standard errors. Although one might
have hoped that by using the price level information the full specification would result in
more precise estimates, this does not appear to be the case.

Several considerations could account for this failure. One possibility is simply
general model misspecification. But it is also possible that even in a correctly specified
model, the information about ¢ contributed by m is small. There is no strong economic
presumption supporting correlation between the two variables. Accordingly when we are
in a full diamond region of Figure 1, knowledge of m is more informative about the

dispersion of ¢ than the expected value.

Estimates of the discrete-EGARCH model.

This model follows from an assumption of a uniform diffuse prior for the quote
exposure cost. The estimates are reported in the “EGARCH” column of Table 1. The
point estimates of the parameters are quite similar to those found for the full model. The
standard errors are slightly worse, suggesting that the full model possesses an efficiency
advantage.

The usefulness of ¢ for determining the dynamics of m (but not the reverse) can be
explained by two factors. In the first place, the lognormal density assumed for ¢ implies a
steeper gradient (at the tails) than the fat-tailed density of m. Secondly (and again by
reference to Figure 1) knowledge of c is informative about the dispersion of m. But in this
case, it is a quantity closely related to this dispersion (the expected absolute value) that

drives the EGARCH process.

6. Extension to different quote exposure costs for the bid and ask.
The model described in equation (1) and used throughout this paper is one in
which the same quote exposure cost applies to the bid and ask side of the market. There

are practical reasons for questioning this symmetry. In many markets (including the
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NYSE), the bid and ask quotes may be placed by different agents, who are subject to
different quote exposure costs. It would seem to be a simple matter to generalize (D to

allow for a bid cost £>0, an ask cost >0, and rounding rules:

b = Floor[m— ]
a = Ceiling[m+ a]

(13)

Given a realization of discrete bid and ask quotes, the feasible region for (m, &, f)
consistent with model (13) is the polytrope:
0(b,a)= {(m,a,,B): a,f>0b<m—-pB<b+1and a—1<m+a<a} (14)

Figure 5 presents the region 0(0,1) (a one-tick spread), along with several rotated
perspectives. The corresponding region in the symmetric cost case is the half-diamond in
Figure 1, a subset of the region in Figure 5 that lies on the f/=a plane (not depicted).
Relative to the symmetric cost case, this model allows the efficient price m to lie anywhere
between the observed discrete bid and ask quote.

Although simple in principle, this modification presents practical problems.
Consider first the situation corresponding to the case discussed in section 3. Assume that
the a and S variates are lognormally distributed with common mean 4, common standard
deviation o and correlation coefficient p, and that these variates are not serially correlated.
Under the assumption of a diffuse prior for m, we may repeat the information matrix
calculations in the earlier section to assess sample size requirements in a representative
situation. When this calculation is attempted however (with numeric values similar to
those used earlier), the information matrix for the discrete case is nearly singular (and
therefore noninvertible).

Technically, given the probability structure of the problem, this matrix is not
singular, but this calculation (and any likely application) is limited by the precision of the
numerical integrations. As a practical matter, it seems that assumption of a diffuse prior
on m renders identification of the three parameters of the cost density impossible.

Of course, there remains the possibility that stronger identification may exist when

the model incorporates a dynamic structure for m. In Figure 5, for example, if m is more
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likely to lie near 1 (the ask price), it is more likely that the ask cost variable & islow. In
the symmetric cost framework, incorporation of a model for m has virtually no impact on
the cost estimates or their precision, however. A final difficulty arises from the
dimensionality of the state space. There are now three state variables, and the shape of the
integration region is more complicated than in the symmetric cost case. The numerical
difficulties are likely to be substantial.

Further generality would allow for negative quote-exposure cost. A limit-order
buyer, for example, might well decide to bid above the efficient price of a security (if his
alternative were lifting a very high ask quote). Once negative costs are allowed, however,
additional structure must be added to the model to preclude the crossing of bids and asks
(e.g. suppose m =10, #=0.2 and @ =-0.1). Moving further in this direction suggests
generalizing the quote exposure cost to a trading propensity variable that can range over
positive and negative values. Transactions occur when the discretized trading propensities
of a buyer and seller cross, which implies that the prevailing bid and ask quotes are

generated by a complex censoring process.

7. Conclusion

This paper has presented a dynamic model of discrete bid and ask quotes. The
discrete quotes are rounded transformations of a continuous efficient price and a
continuous quote exposure cost. The full statistical model is a rich one, allowing for
stochastic and deterministic time variation in the efficient price volatility and the quote
exposure cost. The model may be estimated by maximum likelihood using a nonlinear
filtering approach due to Kitagawa (1987).

This specification is estimated for NYSE bid and ask quotes collected at the end of
15-minute intervals for Alcoa over 1994. The estimates confirm the existence of
deterministic “U” shapes in the quote cost and efficient price volatility. More importantly,
however, the estimates confirm the existence of a persistent stochastic component of the
quote exposure cost. The magnitude of this component is roughly comparable to the

variation associated with the “U” shapes.
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In extending the model to incorporate other aspects of the market process, there
are several guidelines. It is relatively easy to incorporate deterministic effects and
observed exogenous variables into either the cost or efficient price specifications. Such
developments usually require additional parameters in the likelihood function, which does
not significantly affect the time required for the numerical calculation of this function
(although it will probably increase the number of iterations required for convergence).

It is more difficult to add endogenous variables, such as quote sizes (number of
shares at the bid and ask) or trades that are determined in part by prevailing quotes. These
developments require an expansion of the set of state variables and a large accompanying
increase in the computational burden. One might also want to specify a model for the
quote exposure cost that is more complicated than the first-order autoregressive process
employed here, by including additional autoregressive or moving average terms. These
modifications also require additional state variables.

Expansion of the state variable set runs into the “curse of dimensionality” because
of the requirement that the integration of the conditional probabilities be computed
numerically over all variables. The remains the possibility, however, of approximating
these densities (or a subset of them) by simpler functions for which closed-form integrals

exist. Work is in progress along these lines.
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Appendix:
Maximum Likelihood Estimation via Nonlinear Filtering

This appendix describes the maximum likelihood procedure used to estimate the
model described in Section 4. The analysis is a special case of the general state-space
approach discussed in Hamilton (1994a, 1994b) and Harvey (1991). The present model is
neither linear nor Gaussian. The estimation method used here is due to Kitagawa (1987),
which is summarized in Hamilton (1994b).

The essential construct is the probability density function of the current state
variables conditional on current and past observations. The crux of the calculation is the
updating of these beliefs to incorporate the next observation. The details of this updating
process are as follows. Suppose that we possess the density function for the current state
variables (m, and ¢;) conditional on the current and previous observations (quotes g;),

f (m,,ct|qt,qt_1 ye ) Looking ahead to time #+1 (prior to any new observation),

f(mm >Cra1 lqn ey5-- ) = J‘( f(m:+1’ct+1|mncr)f(mncz |q,, e15-+ ')dmtdct (A1)

mg.ct) € O

where O=0(b,, a;). The transition density f (m,+1 ,c,+1|m,,c,) may be computed from (6)
and (7).

The range of integration in (A.1) is a distinctive feature of the present problem. In
“typical” filtering applications, the integration range covers the entire real line (or
multidimensional analog): if the observation history suggests there is a trivial probability of
finding the state variable in a given neighborhood, the value of the conditional density is
close to zero. In the present application, however, the quotes serve to bound the possible
values of the state variables. Rather than integrate over the real half-plane defined by
me(—o0, +0), ce(0, +0), the integration is over one of the diamond or half-diamond
regions illustrated in Figure 1. Since the integral will be computed numerically, this is a

welcome simplification.

The conditional probability of observing q,., 1s

Pr(qm,% sGi-15+ ) = J-( f(mm >Crrl Iqt’qt—l see ')dmt+ldct+l (A2)

mt+]’ct+l) € Qt+1
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In an online application we would be interested in computing this probability for a number
of possible realizations of g~;. In an estimation situation, however, we need only compute
the probability for the value of g that actually occurred in the sample.

Next, note that the joint density of next period’s state variables and quotes is:

f(mt+1’ct+l|qt’qt—l"")’ if (mt+l’ct+l) € 0., (A3)

‘f‘(”lH_1 , ct+1 ’ qt+] Iqt > qt—l L ) = {0 otherWiSC

This too reflects a simplification peculiar to the present problem: computation of the
right-hand-side density usually involves integration over a density function of the
observational errors. Here, the observations (the quotes) are a deterministic function of
the state variables. Therefore

f(mm 3Crerr9din lqt L PR )

f(mH-] >Cr lqt-v-] sde>91-15-- ) = Pr(qt+1 |q, 51500 )
0, otherwise

> lf (mt+l’ct+l) € Qt+1 (A4)

This completes the update.

Although simple in principle, this update requires the evaluation of two integrals
for which closed-form solutions are not readily available. In the standard Kalman filter, all
joint, marginal and conditional densities are normal, and the results of the integrations are
summarized by update formulae for the conditional means and variances. In the present
case, successive updates would involve computation of nested, truncated densities of
increasing dimension. This is not computationally feasible.

The present analysis follows Kitagawa (1987) in approximating the conditional
density f (m,,c, Iq,,q,_,,...) by a numerical grid. The integrations in (A.1) and (A.2) are

computed using Gaussian quadrature. The log likelihood function is

Z ln(Pr(q, ,qt—l 525 )) .
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Table 1.
The state variables in the model are the implicit efficient price, m,, and the quote exposure
cost ¢;, where ¢ indexes 15-minute intraday intervals (plus the overnight period). The

dynamics of the state variables are:

m=m,_ +u,
ln(ct) = + ¢c(ln(ct—l)_ .uzc-l) +v,

d
The cost disturbance v, ~N(O, av) . The efficient price disturbance, u,, has standard
deviation o; and after standardization is distributed as a generalized error distribution

variate with tail-thickness parameter v
d
z,=u,/o,~GED(v)

The efficient price variance follows a modified EGARCH process:
ln(atz) =p + ¢6(1n(atz—1 ) —H ) + 7(Et-1 [lut—l |]/Ux-1 - Elzt-—l ')

where E,_llut_ll is the filtered estimate conditional on the bid and ask prices through #-1.

The deterministic component of the cost process is:

!/ 1
ﬂ:‘ = lug +ac,open exp(_lc,open‘[:zpen)_}_ac,clase exp(_/lc,cosez_:‘me)

close :

where 7{7"is the elapsed time since the opening quote of the day (in hours) and 7;”*is
the time remaining before the scheduled market close (in hours). The deterministic
component of the variance is:

P exp(—- lo’,apenz_:)pen) g exp(— o -clase thlose)’

M= if ¢ is not the daily close
Hovermign» £ 118 the daily close

The observations are the quotes, which comprise a bid and ask price, g={b,, a;}. These
are functions of the state variables:

b, = Floor[m, —c,]
a, = Ceiling[m, +c¢,]
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The column corresponding to the “full” model gives parameter estimates based the
Kitagawa nonlinear filtering procedure. The “cost” estimates reflect an estimate of the
cost-related parameters assuming a diffuse prior for the efficient price (also using the
Kitagawa procedure). The “EGARCH” estimates refer to maximum likelihood estimation
of a discretized EGARCH specification.

The models are estimated for Alcoa over all trading days in 1994, with ¢ indexing
15-minute intervals within the day (and the overnight interval). Standard errors are

reported in parentheses. 1]



Model
Full Cost EGARCH
Quote exposure ue -1.499 -1.498
cost parameters: (0.037) (0.037)
o’ re" 0.696 0.699
(0.137) (0.135)
Acepen 2.319 2317
(0.750) (0.734)
ofelose 0.218 0.217
(0.062) (0.061)
Asclose 1.055 1.057
(0.715) (0.714)
¢ 0.300 0.317
(0.024) (0.024)
oy 0.705 0.702
(0.017) (0.017)
EGARCH U -0.706 -0.593
parameters: (1.286) (1.325)
a®ope” 2.641 2.749
(1.085) (1.109)
Adepen 0.432 0.458
(0.244) (0.267)
a’close 1.901 1.949
(0.896) (0.936)
A Gclose 0.567 0.587
(0.379) (0.422)
H rernigh 2.908 3.084
(0.157) (0.187)
¢° 0.877 0.875
(0.020) (0.022)
% 0.299 0.348
(0.031) (0.038)
14 0.855 0.719
(0.021) (0.019)
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Figure 1
As a function of the efficient price m and quote exposure cost ¢, the discrete bid and ask
quotes are given by b=Floor[m-c] and a=Ceiling[m+c]. Given bid and ask quotes a and
b, the region of feasible m and c is:
Q(b,a)={(m,c).c>0,b<m-c<b+landa-1<m+c<a}

The figure depicts the regions Q(0, 1), O(0, 2) and Q(0, 3).
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Figure 2
Figure depicts unconditional and condition probability densities for the efficient price m
and quote exposure cost ¢. The unconditional density of ¢ is lognormal: Log|[c] is
normally distributed with mean —1.0 and standard deviation 0.6. The unconditional
density for m is a uniform diffuse prior on the interval (0, x), where xis an arbitrary
positive constant (and does not appear in the conditional densities). The conditional

densities are conditional on observing bid and ask quotes of 5=0 and a=2.

Panel A. Unconditional and conditional densities of the quote exposure cost c.

Je) Jc|6=0, a=2)
2 2
1 1
[4 c
0 1 2 0 1 2

Panel B. Unconditional and conditional densities for the efficient price m.
Jim) fim|b=0, a=2)
2

1/x
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Figure 3
Figure depicts the probability density functions for the standard normal and standard GED

with tail-thickness parameter v=0.855.
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Figure 4
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Figure depicts the deterministic component of the quote exposure cost (solid line). The

dashed lines define the implied plus-or-minus two-standard deviation limits of the

stochastic component of the quote exposure cost. (NB: these are not estimation

confidence intervals.)
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Figure S
Figure depicts the polytrope associated with the feasible set for bid quote exposure cost £,
ask quote exposure cost a, and efficient price m for observed discrete bid 5=0 and ask
a=1. This regionis O(b,a)={(m,a,B).a, >0,b<m-pB<b+1and a-l<m+a<aj.

The figure shows a detailed view and rotated perspectives.
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