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Modeling Market Microstructure Time Series

Abstract

Microstructure data typically consist of trades and bid and offer quotes for financial
securities that are collected at fine sampling intervals (often within the day). This paper
reviews approaches taken to modeling these data. The emphasis is on techniques of
stationary multivariate time series analysis: autoregressive and moving average
representations of standard microstructure models, vector autoregressive estimation,
random-walk decompositions and cointegration. The paper also discusses the challenges

posed by irregular observation frequencies, discreteness and nonlinearity.
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1. Introduction

Market microstructure is the area of financial economics that focuses on the
trading process. Factors both practical and academic are motivating research here. On
the practical side, innovation in financial markets has resulted in increased trading volume
in standard securities (stocks, bonds, etc.), creation of new types of securities, and greater
experimentation with alternative trading mechanisms. From the academic perspective
comes a fuller understanding of the role played by trading in the incorporation of new
information into security prices. Empirical work in the area has also benefited from the
increasing availability of detailed transaction data.

Microstructure research seeks to address two sorts of questions. The first belong
to the study of markets narrowly defined: how should transaction costs be estimated; what
are the optimal trading strategies; and, how should markets be organized? The second and
broader set of questions arises from the role that the market plays in price discovery (the
incorporation of new information into the security price): how can we characterize the
determinants of security value that we loosely refer to as public and private information?
Ultimately these two types of questions are related. The organization of a market may
affect the transactions costs, and therefore the net return to an investor, the valuation of
the asset and the allocation of real resources (Amihud and Mendelson (1986)).
Conversely, the characteristics of an asset (risk, return, homogeneity, divisibility) may
favor certain holding patterns among investors and certain market structures (Grossman
and Miller (1988)).

Empirical microstructure analyses draw on three areas of knowledge. The first is
comprised by the formal economic models of individual behavior that offer substantive
predictions about how observable variables should behave. The second area is statistical
time series analysis. The third area concerns the institutional realities: the actual
procedures by which individuals and automated systems work to accomplish trades in a
particular market.

The theoretical work in market microstructure has centered around several

reasonably well-defined paradigms that serve as a common basis for variations. The
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evolution of thought on security transaction price behavior has passed from basic
martingale models, to noninformational cost models (order processing and inventory
control paradigms), and finally to models that incorporate the distinctly informational and
strategic aspects of trading. Although this paper will describe the intuitions behind these
models, it does not present a rigorous discussion. O’Hara (1994) provides a
comprehensive textbook discussion that establishes much of the economic background for
this paper.

Present empirical work in microstructure is characterized by a wide diversity of
techniques. Market data exhibit a panoply of features that are hostile to statistical
modeling: complex dynamics, nonlinearities, nonstationarities, and irregular timing to
name a few. The impracticality of modeling all of these features jointly, in a specification
that can also potentially resolve alternative economic hypotheses, leads to a multitude of
more modest models that simply try to capture one or two phenomena relevant to the
problem at hand.

To establish a common footing, however, the models considered in this paper are
cast in the framework of linear multivariate time series analysis. Most of the statistical
techniques discussed here were originally developed and applied to macroeconomic time
series. (Lutkepohl (1993) and Hamilton (1994) are excellent textbook presentations.)
The reader approaching the present paper from a macro perspective will find most of the
time series results familiar. But time series analysis is not a mechanical procedure, and the
application of any technique to a new problem involves some reflection on the economics
of the situation and the nature of the data. Some issues that cause great difficulty in
macro applications are conveniently absent in microstructure data: microstructure
observations are exceedingly numerous and the fine time intervals over which the data are
collected greatly mitigate the simultaneity induced by time aggregation. On the other
hand, microstructure data often exhibit troublesome properties such as discreteness that
rarely arise in macro analyses.

Except as necessary to motivate the economic or statistical material, this paper

does not discuss the institutional details of particular markets. For reasons of data



Page 3

availability, however, most empirical work has focused on U.S. equity markets,
particularly the New York Stock Exchange (NYSE). Hasbrouck, Sofianos and Sosebee
(1993) discuss the NYSE in detail. The NYSE and other U.S. and non-U.S. equity
markets are described in Schwartz (1988 and 1991).

In contemplating the various empirical approaches to microstructure modeling, it is
useful to bear in mind two dichotomies or principles of differentiation. The first
dichotomy arises from the issues to which microstructure analysis is commonly addressed:
the narrowly defined questions of market design and operational market performance vs.
the broader informational and security valuation issues. From an economic perspective,
the actual security price in many microstructure models can be interpreted as an idealized
“informationally efficient” price, corrupted by perturbations attributable to the frictions of
the trading process. From an empirical viewpoint, the distinction can loosely be viewed
as one based on time horizon. New information imparts a permanent revision to the
expectation of a security’s value, while microstructure effects are short-lived and transient.
The first principle, then, is the dichotomy of security price variations into permanent
(informational) and transitory (market-friction-related) components.

The second dichotomy addresses the source of the price variations, as to whether
or not they are trading-related, i.e., attributable to one or more transactions. This
distinction is more subtle than the first, because while the difference between permanent
and transitory components arises frequently in economic analysis, the preoccupation with
the role of trades per se in price determination is largely peculiar to microstructure studies.

For the present purpose, the most important aspects of a trade are the fact and
time of its occurrence, the price and volume (quantity), and whether the trade was initiated
by the buyer or the seller. This last characteristic may require some elaboration.

Academic economists have long reacted to lay statements like, “Heavy buying drove stock
prices higher today,” with retorts along the lines of, “So, there were no sellers?”

Certainly there must be a seller for every buyer. At a fine level of observation, however, it
is often sensible to identify the active and passive sides of the transaction. The active

transactor can be viewed (in the sense of Demsetz (1968)) as the agent who seeks to trade
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immediately, and is willing to pay a price to do so. The passive transactor is the supplier
of immediacy. In many security markets, for example, the passive traders are those who
post bid and offer quotes (indicated prices at which they are willing to buy or sell), and
wait. The traders who impatiently demand an immediate trade, and accept one of the
quotes (hitting the bid or lifting the offer) are active.

A trade can affect both the permanent and transitory components of the price.
The permanent effect is informational. In asymmetric information models, the
informational impact of a trade is attributed to market’s estimate of the private information
content of the trade. The price rises in response to a buyer-initiated trade, for example, in
accordance with the market’s assessment of the chances that the trade was initiated by
positive information known to the buyer, but not to the public. The portion of the
permanent price movements that can be attributed to trades is therefore related to the
degree of information asymmetry concerning the firm’s value. From a statistical
viewpoint, it may be measured by the explanatory power of trade-related variables in
accounting for price changes.

The transitory price effect of a trade is a perturbation induced by the trade that
drives the current (and possibly subsequent) transaction prices away from the
corresponding informationally accurate (permanent component) prices. For a particular
trade, this divergence may sometimes be interpreted as a trading cost. In simple bid-ask
spread models, for example, the divergence corresponds to a cost paid by the active trader
to the passive trader. More generally, the trade-related transitory effect will reflect
influences such as price discreteness and inventory control (position management) by
dealers.

For the sake of completeness it should be mentioned that both permanent and
transitory price components may be due to considerations not directly related to trades.
Security prices (or indicated prices) react to public information, such as news releases.
The permanent effect of a public news release is informational. Any lagged adjustment

toward to new permanent price would constitute a transitory component.
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The principal dichotomies of permanent vs. transitory and trade-related vs. trade-
unrelated are summarized in Table 1. For each combination, the table gives economic
examples and also considerations useful in empirical resolution. These will be discussed at
length in the following sections.

Although these distinctions are useful for classification and exposition, this
simplicity comes at the cost of neglecting economic considerations that cross over these
dichotomies. As noted earlier, the operational features of a security market may affect the
informational characteristics of a security and vice versa. However, many useful analyses
can proceed under plausible ceteris paribus assumptions. Assuming that market structure
stays fixed, one may want to examine shifts in information characteristics surrounding
corporate announcements. Alternatively, assuming that the informational structure stays
fixed, one might want to examine the effect of a change in the tick size (minimum price
increment). The literature contains examples of both sorts of analyses.

While an overview of any sort requires the imposition of some classification
scheme, the particular perspective adopted here follows from a personal preoccupation
with the dynamic properties of microstructure data. One could organize a survey
historically or from the perspective of different market participants, perhaps with equal
justification. Nor is the perspective adopted here is an exhaustive one. I attempt to point
the reader to approaches that lie outside of this framework, but cannot claim to do justice
to these studies.’

The organization of the paper is as follows. The next two sections describe the
basic economic paradigms of market microstructure using simple structural models.
Section 4 presents a general statistical framework in which the diverse microstructure
effects can be accommodated while maintaining the two distinctions described above. The
next sections address particular characteristics of microstructure data that lie beyond (or at

least at the fringes of) conventional techniques: irregular timing of market events such as

! A recent survey by Goodhart and O’Hara (1995) provides more background on volatility

modeling and non-equity market applications.
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trades (Section 5); price discreteness (Section 6); nonlinearities in the trade-price relation
(Section 7); and multiple security / multiple market situations (Section 8). A summary

concludes the paper in Section 9.
2. Simple univariate models of prices.

2.1.  Martingales and the random-walk model.

The efficient markets hypothesis of financial economics generally implies that a
security price (perhaps normalized to reflect an expected return) behaves as a martingale,
a stochastic process with unforecastable changes (Samuelson (1965) and Fama (1970)). A
special case useful for empirical work is the homoskedastic random walk, wherein the
evolution of the security price p; is given by

D, =D +W, 2.1

Where the w; are disturbances with Ew, =0, Ew} = ¢>, and Ew,w_ =0 for t # 7. These
unforecastable increments derive from updates to the market’s information set (cf. Table
1). This model is often generalized to include an unconditional expected price change or
return, but for reasons both expositional and practical (described below) this component is
omitted in the present discussion.

The martingale property typically arises because the fundamental security valuation
in many models is characterized as a conditional expectation of the security’s terminal
(liquidation) cash flow. A sequence of conditional exi)ectations is a martingale (Karlin and
Taylor (1975, p. 246)). For the actual security price to behave as a martingale, however,
additional structure must be imposed. The hypothesis that transaction prices behave as a
random walk rests on assumptions (most importantly, the absence of transaction costs)
that do not hold even approximately at the level of the microstructure phenomena
considered in this paper.

The random-walk model is nevertheless a useful point of departure. Even if the
(martingale) conditional expectation does not completely determine the security price, it
certainly constitutes a component that is large and economically important. Accordingly,

even for models in which actual transaction price processes exhibit complicated
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dependencies, examination of the random-walk component of the price will illuminate the
informational structure of the market. Furthermore, the departure of actual prices from
the implicit martingale component may be used to illuminate the costs of transacting in the
market.

In embedding the random-walk model in microstructure frameworks, however,
one should bear in mind the importance of the conditioning information. A price p; is said
to be a martingale with respect to a (possibly vector-valued) information process ®; if
E[p...|@,, D,,.. . ®,|=p,. If the conditioning information includes the price(p, = ®@,),
then E[ Dol | DosDise- s p,] = p, This ensures that the increments w; in (2.1) are
unforecastable.

The assertion that p, — @, is frequently supported by institutional fact. Most of
the early theoretical and empirical work on market efficiency focused on U.S. equity
markets, for which transaction prices are promptly reported and widely disseminated.
Many markets, however, such as the U.S. government securities market, do not enforce
trade reporting, or, as in the case of the London equities market, permit delayed reporting
of certain trades (Naik, Neuberger and Viswanathan (1994)).

In the absence of prompt trade reporting, the fallback justification of (2.1) is that
the transaction price is redundant, i.e., that it contains no new information beyond that
available in the public information set. This view is unattractive because current economic
thought accords great significance to the role played by prices as aggregators or signals of
private information. In summary then, the random-walk model, which is a component of
most of the specifications discussed in this paper, is only appropriate in markets with
prompt transaction reporting. Absent this disclosure, other approaches must be used.
Instead of using transaction prices that may not be widely disseminated, for example, it
may be preferable to use dealer bid and offer quotes.

Correct specification of the conditioning information at the transaction level may
be exceedingly difficult because knowledge will often differ in a subtle fashion across
participants by reason of proximity to the market and cost. For example, the contents of

the book (pending orders) on the Tokyo Stock Exchange are publicly available in the
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sense that anyone may obtain the information from his or her broker. But the data are
electronically transmitted only in response to an inquiry and only to the broker’s lead
office (Hamao and Hasbrouck (1995), Lehmann and Modest (1994)). Costs of
information acquisition that are small at long time lags may become large over
microstructure time frames. Daily closing security prices are available for the price of a
newspaper, for example, while immediate updates require expensive real-time data feeds.

The preceding remarks are intended to heighten the reader’s sensitivity to
informational issues that are often suppressed (in the interests of tractability) in the formal
models. When aspects of these models are incorporated into specifications and estimated
for real market data, these considerations usually warrant at least some qualification of the
conclusions.

Equation (2.1) is specified in terms of price levels. It is often useful to interpret p,
as the natural logarithm of the price, in which case the first difference is a continuously
compounded rate of return. This is particularly convenient when the analysis covers
multiple securities spanning a wide range of prices, and in many applications does not
affect the conclusions. It should be borne in mind, however, that most of the formal
models are constructed using price levels. Furthermore, certain microstructure
phenomena (discreteness, in particular) depend fundamentally on the price level.

Many tests have been proposed and applied to the problem of determining whether
stock prices follow a random walk over daily or longer intervals (Fama (1970) and Lo and
MacKinlay (1988)). At the level of transaction prices, however, the random-walk
conjecture is a straw man, a hypothesis that is very easy to reject in most markets even in
small data samples. In microstructure, the question is not “whether” transaction prices
diverge from a random walk, but rather “how much?” and “why?” For the present,
however, it is useful to discuss several aspects of estimation in random-walk models that
will also apply in more realistic situations.

Microstructure data sets typically contain by large numbers of observations (often
in the thousands for each security) over a relatively brief period of calendar time (such as a

few months). To the econometrician seeking to estimate the parameters of a
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microstructure model, the abundance of observations appear to hold out the promise of
high precision. Unfortunately, when the number of observations is a consequence of fine
sampling (rather than a long span of calendar time), the increase in precision is partially
illusory. In particular, Merton (1980) shows that while precision of the estimate of
variance per unit time increases, that of the mean estimate does not. In view of the large
estimation errors for the mean, Merton suggests estimating the variance using the
noncentral sample moment.

There are two practical implications of this for transaction-level analyses. First, if
we are willing to accept a small bias in our estimates, the precision of these estimates is
enhanced by ignoring the unconditional expected return (suppressing the intercept in
price-change specifications). The discussions that follow do this as a matter of routine,
although it is usually a simple matter to add a non-zero expected return. Second, tests of
economic hypotheses that are based on second moments (variances and covariances) are

likely to be more powerful than those that rely on first moments.

2.2.  Models with random pricing errors.
It is useful to generalize the random-walk model by allowing the security price to
reflect a stationary disturbance in addition to the random-walk component. The general
structural model is:
m =m_ +Ww,

2.2)
D, =m +5,

Here, the random-walk term is m, , which may be interpreted as an implicit efficient price,
where (as in (2.1)) the w, are unforecastable increments arising from updates to the
conditional expectation of the security’s terminal value. The second component in the
price equation (s;) is a stationary component that for the moment can be viewed in an ad
hoc fashion as a residual or perturbation that drives the transaction price away from the
implicit efficient price.

Model (2.1) establishes the first of the principal dichotomies alluded to in the

introduction (cf. Table 1). The informational aspects of a model may be characterized by
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analysis of the m, or the w,. The noninformational features show up in the s;. Since the
dichotomy is not observable, some additional structure must be imposed on the problem in
order to make substantive statements. It is often useful to estimate the w; and the s; at a
point in time (as a function of various sets of conditioning information), to estimate the
variances o> and o, and to ascertain the components of these variances. In a sense,
most of this paper is devoted to consideration of the full generality of (2.1).

The motivation for and interpretation of w, are essentially the same as in the
random walk model. The new feature that has been introduced is the stationary pricing
error. The terminology stems from its role as a discrepancy between the implicit efficient
price and the actual transaction price. If 520, then there is a sense in which the buyer lost
(paid in excess of the efficient price) and the seller gained. Aggregating over the buyer
and seller, s; is a zero-sum game. If s, were randomly distributed over trades and traders,
then one would be tempted to argue its irrelevance by the law of large numbers. Equality
of traders in real markets, however, is a poor assumption. Agents’ characteristics (small
trader, large trader or dealer) have a large effect on the sort of prices they give and take,

and it is therefore likely that the pricing error will induce systematic distributional effects.

2.3, The simple bid-ask spread model.

A useful special case of the preceding model arises from the following trading
process. The implicit efficient price is common knowledge to all participants. A market-
maker or dealer in the security posts a price at which he is willing to buy (the bid price)
and a price at which he is willing to sell (the offer or ask price). These bid and ask quotes
will be denoted ¢” and ¢ , and the difference between them is termed the spread,

S, = ¢’ —q°. Ineconomic terms, this spread can be viewed as a consequence of the
dealer’s need to recover fixed transaction costs and a normal profit (Tinic (1972)).
Alternatively, the spread may arise endogenously from the choices of traders deciding
between market (active) and limit (passive) orders, as in Cohen, Maier, Schwartz and
Whitcomb (1981). These are noninformational spread models; other alternatives will be

considered below.
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Assuming that the spread is constant at S, that the bid and ask quotes are set to
bracket symmetrically the implicit efficient price (¢° =m, —S/2 and g/ =m, +S§/2),
and that at each time point, an agent arrives at the dealer and either buys (at price g; ) or

sells a single unit of the security (at ¢”). The full model is now
m=m,_ +Ww,
p,=m+c (2.3)
¢, =%5/2

The vacillations of ¢; are sometimes called “bid-ask bounce”.

The market mechanics imply that c, in (2.3) is a stationary random process with the
following properties: Ec, =0, Ec! =02;Ec,c, =0fort =7 and Ec,w, =0forallz,7.
The first three properties establish ¢, as a zero-mean homoskedastic random variable with
no serial correlation. The fourth property asserts that it is uncorrelated with the
information process, i.e., that the increments in the implicit efficient price are not trade-
related. By comparing this model with (2.2) it is apparent that c, = s,, the pricing error.
The variance of the pricing error is a useful summary measure of how close actual
transaction prices track the implicit efficient price. In this model, o = o= §/4.

In this model s, is clearly driven by the incoming trade (buy or sell).. In modern
microstructure data sets, these trades (or convenient proxies) are often observable, and it
is possible to model them directly. Representative bivariate price and trade models will be
discussed extensively below. Many older historical data sets, however, are limited to
transaction prices. We therefore consider inference based only on these prices.

We are in effect attempting to make inferences about the two unobserved
components of the transaction price, m, and s,(=¢,). The price changes are:

Ap: =P D =W TS S (24)

with first and second-order autocovariances given by y, = EAp? = o +20? and
v, =EAp,Ap, , = —o>. The autocovariances at higher orders are zero. From these first
two autocovariances (or estimates thereof), we may solve for o and o2, Most

importantly, the spread is given by
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S=20,=20,=2{-7, . (2.5)

The last expression is commonly known as Roll’s (1984) estimate of the spread. This
obviously requires ¥, <0. Harris (1990) discusses the statistical properties of this
estimator.

Another useful characterization of this model is the innovations or moving average
form. A process that possesses zero autocovariances beyond the first lag may be

characterized as a first order moving average (MA(1)) process:

Ap,=¢,+6¢,_,. (2.6)

where the & are serially uncorrelated homoskedastic increments. By equating the price
change autocovariances implied by (2.4) and (2.6), the correspondence between the two
sets of parameters may be established. In the one direction, o2 =(1+ B)ZJi and

o’ =-0c2.

There is a useful intuition behind the expression for o2 . The impulse response
function of a time series model specifies how the variables react to particular initial
shocks. Suppose in the present case that the lagged innovations ¢,_,, €,_,,... are zero. If
the innovation at time # is nonzero, the expected current and subsequent price changes
implied by equation (2.6) are E[Ap,|a,] =¢,. E[Ap,+1|£,] =@¢,, and E[Apt+k|a,] =0 for
k>0. The cumulative expected price change is therefore

E[Ap, +8p,.. + Ap,., +-|g, | = (1+6)g, 2.7)

This is the long-run expected price impact of an innovation, i.e., the informational impact
of the innovation. This implies w, = (1+6)e,, from which the expression for o follows
immediately. In the discussions that follow, impulse response functions are often used to
characterize the dynamic properties of structural models.

While many economic hypotheses of interest can be addressed by considering the
variances of the random-walk and pricing error components, it is often desirable to know
w; and s, at a particular time. On the basis of the transaction prices these quantities are not
identified in this model (even if we condition on prices subsequent to £), although filtered

estimates are attainable.
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2.4.  Lagged price adjustment.

The simple bid-ask model predicts that the price change will exhibit a negative
first-order autocovariance. This is in fact usually the case in transaction price data. The
model may be generalized to permit price change dependencies at orders higher than one
by introducing lagged price édjustment. Goldman and Beja (1979) suggest that security
dealers do not instantaneously adjust their quotes to new information, but do so gradually.

More generally, lagged adjustment can arise from lagged dissemination of
information, price smoothing by market makers and discreteness. Other analyses that
feature lagged adjustment are Amihud and Mendelson (1987), Beja and Goldman (1980),
Damodaran (1992) and Hasbrouck and Ho (1987).

A simple lagged-adjustment model is given by:

m=m_ +w,

2.8)
Pr=Pt a(mz _pt—l)’

where « is an adjustment speed parameter. (The spread is suppressed here in order to
focus on the lagged adjustment.) The price dynamics implied by this model may be
illustrated with an impulse response function. Figure 1 depicts the price subsequent to a
one-unit shock in the efficient price (w, = 1), assuming an adjustment parameter of &=0.5.
At each step, half of the remaining adjustment is made toward the efficient price. If
0<a<1, this adjustment is monotonic.

By substitution from (2.8), it is seen that price changes are generated as the first-
order autoregressive process: Ap, =(1—a)Ap,_, +aw,. If the estimated model is
Ap, = ¢Ap,_, +¢&,, the structural parameters may be computed as: o2 = o~ / (1-¢)" ,
a=1-¢. Asin the simple bid-ask spread model, o2 has an impulse response
interpretation. The random-walk innovation may be computed as
w, =(1+¢+¢>+-)e, = (1- #)"'&,, which effectively sums each period’s contribution to
price subsequent to the initial disturbance. The pricing error is s=p,—m,, which implies
s,=(l-a)s,_ —(1-a)w,=¢s,_, —¢w, and o’ = [¢20i]/[(1 - ¢2)(1— ¢)2J .

Since there is one disturbance driving this model (w;), both w; and s; can be

recovered from the price record. This is a stronger result than obtained in the simple bid-
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ask spread model. From a time-series perspective, this is due to the fact that the
stationary component in the present model is an exact linear function of past w’s. In the

simple bid-ask model, whether the trade took place at the bid or the ask (i.e., the value of

s) is independent of w.

3. Simple bivariate models of prices and trades.

The univariate price models described above are capable of exhibiting dynamics
that reflect microstructure phenomena and can also capture the first dichotomy mentioned
in the introduction, that between permanent (informational) and transient (market) effects.
The models described in this section encompass trades as well, with a view toward
establishing the second important distinction, that between trade-related and -unrelated

sources of price variation.

3.1.  Inventory models.

Buyers and sellers in the simple bid-ask spread model are assumed to arrive
independently and with equal probability. Let x; denote the signed trade quantity, positive
if the arriving trader buys from the dealer and negative if the trader sells. The cumulative
quantity from time zero through time # is Z;o x, . In the paper that introduced the term
“microstructure”, Garman (1976) pointed out that as 7 increased, this sum would diverge,
implying that the dealer bought or sold (net) an infinite amount. Real-world dealers face
capital constraints, however, and would in any event avoid large positions due to risk-
aversion. This motivates the need for some sort of inventory control or position
management.

The inventory control problem in classical microeconomics is one of specifying a
restocking strategy subject to order and stock-out costs. The security market dealer, on
the other hand has traditionally been supposed to achieve inventory control by shifting the
quotes to elicit an imbalance of buy and sell orders. Formal models of this effect include
Amihud and Mendelson (1980), Ho and Stoll (1981), O’Hara and Oldfield (1986) and
Stoll (1978).
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As an illustration, consider a generalization of the simple bid-ask spread model in
which quote-setting is depends on the dealer’s inventory position and incoming order flow
depends on the quotes:

m=m,_, +w,

q,=m,-bl,_,

I,=1_-x, 3.1
x, =—-a(q, —m,)+v,

D, =4, +cx,

The first equation describes the random-walk evolution of the efficient price. The quotes
are summarized by the quote midpoint (the average of the bid and ask quotes), ¢;. This is
equal to the efficient price plus an inventory control component, where 7, is the dealer’s
inventory at the close of period £. Without loss of generality, the dealer’s target inventory
is assumed to be zero. The quote-midpoint equation specifies that with >0, the dealer
lowers his price if he has a long position. The net demand, x,, is driven by a price sensitive
component (a>0) and a random component. The usefulness of the quote position as an
inventory-management tool is based on the demand price elasticity.

Since the dealer is assumed to be the counterparty to all trades, the change in
inventory is equal to the negative of the net demand. The transaction price is equal to the
quote midpoint, plus a cost component cx;. This cost is proportional to trade size: rather
than quoting a bid and offer price, the dealer quotes a linear bid and offer schedule. A
trader wanting to buy an amount |x,| will be quoted an ask price of g; = ¢, +¢|x,|, and a
trader wanting to sell will be quoted a bid price of g, = g, —c|x,|. The trade innovation v,
is assumed to be serially correlated, and uncorrelated at all leads and lags with w;.

The essential features of this model can be illustrated by examining the impulse
response function for a particular set of parameter values. Let @=0.8, 5=0.04 and ¢=0.5,
and consider the paths of price and inventory subsequent to a trade shock at time zero of
vo=1, i.e., a purchase of one unit from the dealer. These paths are graphed in Figure 2.
The buy is associated with an immediate price jump due to the cost component.

Reversion is not immediate, however. Subsequent to the trade, the dealer has a inventory
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“shortfall and must raise his quotes to elicit an incoming sell order. As the sell orders arrive
(in expectation), the dealer resets the quotes to the initial level. The inventory path
reflects the initial depletion caused by the purchase (from the dealer) and the subsequent
sales (fo the dealer). At the end of the adjustment process, both price and inventory have
completely reverted. There is no permanent price impact of a trade in this model because
trades are independent of information.

The permanent component of the price change is w;, which is due entirely to public
information. The pricing error is:

s,=p,—m,=cx,—bl_, (3.2)

t

This is entirely trade-driven. As in the simple bid-ask model, the buyer pays the half-
spread cx;. The second term depends on the dealer’s previous inventory position. If the
dealer happened to have an inventory surplus, the buyer’s cost would be reduced.

If both p; and ; are observable, the model may written as:

Ap, =—cl, +(2c-b)I,_ +(b-c)l,, +w, and], =(1-ab)l,, —v,. Formally, thisis a
bivariate vector autoregressive (VAR) model, with a contemporaneous recursive
structure, which may be estimated directly by least squares. There is sufficient structure
here to recover both w; and s; from current and past observations.

Among the various sorts of microstructure data available, however, dealer
inventory data are about the rarest. Implicit in these data are the dealer’s trading
strategies and trading profits, both of which are usually kept private. If ; is not known,
then inference must proceed solely from prices. On the basis of the univariate time-series
representation of the price changes, the structural model is underidentified. Two
important structural parameters are identified, however: the variances of the random-walk
and pricing error components.

Due to the paucity of inventory data, there are few analyses of pure inventory
control models. Ina U.S. S.E.C. (1971) study, Smidt presents some results for NYSE
stock specialists based on daily positions and price changes. Ho and Macris (1984)

estimate a transaction level model for an American Stock Exchange options specialist.
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Most recent studies allow for the possibility of asymmetric information in addition to

inventory control, and these are discussed below.

3.2.  Asymmetric information.

The models considered to this point have assumed that all market participants
possess the same information. This sort of public information may be thought of as
instantaneous news releases, in response to which bid and offer quotes would adjust with
no necessity of trading. The most important recent developments in theoretical
microstructure, however, have been models that allow for heterogeneously informed
traders. If a trade might be motivated by superior information, the occurrence of a trade
(a public event in most models) will communicate to the market something about this
private information. Some studies that initially addressed this phenomenon in
microstructure settings are Bagehot (1971), Copeland and Galai (1983), Glosten and
Milgrom (1985), Kyle (1985) and Easley and O’Hara (1987). O’Hara (1994, Ch. 3)

provides an overview.

A simple model of private information with fixed transaction costs can be given as:

m =m,, +w,

w, =u, +

t t gxt (33)
q,=m,_, +u,
P, =9, tcx,

Relative to the earlier models, the novelty here is in the random-walk innovation, w;. It is
now composed of two components. The first, u,, is assumed to reflect updates to the
public information set. The second, gx;, with g>0, reflects the market’s estimate of the
information contained in the trade. For this component to be serially uncorrelated, it must
be the case that x; is serially uncorrelated, i.e., we are back to assuming that buy and sell
orders arrive randomly. This model is a variant of one suggested by Glosten (1987).

Actual transaction prices are subject to a bid-ask spread related to the direction of
the trade. There are two ways of interpreting the cx, term in the price specification. First,
if the magnitude of the trade is fixed, say x, €{-1,+1}, then c is one-half the bid-ask

spread (§/2), with transactions occurring at the bid and offer prices (¢” = ¢, - S/2 and
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g7 =q, +S/2). Alternatively, if trade size is continuous, then ¢ gives the slope of the
dealer’s linear bid and offer schedule.

The dynamic behavior of prices and trades may be illustrated by the impulse
response function based on parameter values ¢c=0.5 and g=0.2, subsequent to an initial buy
order of one unit (x;=1). These are graphed in Figure 3. The initial price jump simply
reflects the bid-ask bounce, but in contrast with the inventory control model, the reversion
is not total. Of the initial 0.5 price jump, 0.2 is the inferred information content, which
remains permanently impounded in the stock price. By assumption there are no serial
dependencies in trades: the initial purchase engenders no subsequent order flow effects.

The evolution in the efficient price now reflects both public and private information
components, so

o, =0, +g'o,, (34

which isolates the non-trade and trade-related components of the efficient price change. A
useful summary measure of the relative importance of trades in explaining movements in

the efficient price is the proportion
=g’c’/o? (3.5)

The R? notation denotes the usual “proportion of total variance explained.” This measure
generalizes beyond the present model, and is a useful proxy for the extent of asymmetric
information.

The private information effects in this model reflect the market’s beliefs about the
probabilistic structure of the private information, not the actual level of private
information. That is, the price impact of a particular trade depends only on the market’s
general beliefs about extent and nature of private information, and not directly on the
actual information possessed by the trader. A model of this sort cannot be used to
identify, for example, illegal insider trades in a sample of data.

The pricing error is

S, = p, —m, =(c—g)x, (3-6)
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The pricing error is entirely trade driven. Relative to the simple bid-ask model with no
private information, however, s; is reduced by the information content of the trade, gx,. It
is generally assumed that c>g because the dealer is setting the half-spread to recover both
information costs g and additional order processing costs.

The return series is given by:

Apr =D~ D =U HCx, _(c“‘g)xr-l (3.7

If trades and prices are observable, this may be estimated directly. Early transaction-
based estimations of trade impacts on price are Marsh and Rock (1986), Glosten and
Harris (1988), and Hasbrouck (1988).

When trades are not observed, however, the inference must proceed solely on the
basis of transaction prices. This model superficially resembles the simple bid-ask model
considered in section 2.3. Like the earlier model, it possesses an MA(1) representation of
the form (2.6). Here, however, the two parameters of the MA model {O'f_ , 0} are
nsufficient to identify the four parameters of the structural model {c, g,02, oi} . The
random walk variance is identified as before: o2 =(1+6)’c? =0 + g%c. In contrast
with the earlier model, however, we cannot assume that the pricing error is uncorrelated
with the increment to the efficient price.

The connection to the simple model may be illustrated by considering the estimate
of the spread given in equation (2.5). Suppose that x, € {-1+1}, o =1 (from the
assumption of equiprobable buy and sell orders) and that c is the half-spread S/2. From
(3.6) the pricing error variance is o> = (c— g)2 . The estimate of the spread implied by
the simple bid-ask model will generally be biased downward. In the present model, the
first-order autocovariance is ¥, = ~c(c— g)o2 = —c(c—g) . For example, ifc=g, i.e, if
the spread is entirely information-based, then the transaction price changes will exhibit no
autocorrelation, and the simple estimate of the spread will be zero.

From a statistical viewpoint, the pricing error in the simple model is uncorrelated

with w; (the increment in the efficient price). In the present model since s, =(c— g)x, and

w, =u, +gx, the two are correlated due to the shared influence of trades. This correlation
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will not be perfect, except in the special case where o2 =0, i.e., where there is no
nontrade public information. Although this case is not attractive from an economic
viewpoint, the value of o> implied by this restriction possesses the useful property that it
establishes a lower bound for o (over all correlations between w; and s;, holding constant
the parameters of the observed return model {01,9} ).

In terms of the moving average representation (2.6), the assumption of perfect
correlation implies that both s, and w; are proportional to &. Equating w; to the cumulative
effect of a disturbance (cf. the discussion following equation (2.7)) gives w, = (1+ 6)e, .
From (2.2), Ap, = ¢, +0¢,, =(1+6)¢, +s,—s,_,, which implies by inspection that
s, =—0¢,,and 02, . oms = 60 Since —1<6K0, this is obviously less than or equal to
the estimate of o> implied by the simple model, ~fo%. This lower bound is generalized
in section 4.

In summary, based on knowing the parameters of the return process for this model
(autocovariances or, equivalently, the moving average parameters), we can compute the
random-walk (implicit efficient price) variance. Neither the pricing error variance nor
derived measures such as the spread, however, are identified in the absence of further
restrictions. Unfortunately, neither of the two identification restrictions considered above

is particularly attractive, as they involve a choice between suppressing all public

information or alternatively all private information.

3.3, Models with both asymmetric information and inventory control.
The following model combines inventory control and asymmetric information in an
additive fashion:
m =m,, +w,
wt = ut +gvl
q, =m_ +u, —bl_,
X, = —a(q, ~(m,_, + u,)) +,
I =1_-x,
P =4, tex,

(3.8)
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The m, and w, expressions are the same as in the asymmetric information model of the last
section. The quote-midpoint expression includes an inventory control component. When
information is entering the model from two sources, one must pay particular attention to
the timing. At time ¢, public information (u,) arrives, quotes are set (g:), net demand is
realized (x,), which leads to a transaction at price p,. Finally, the new efficient price m, is
set to reflect the information contained in the trade. The increment to the efficient price is
driven by the trade innovation v, and not simply the total trade. (Any new information
imputed to the trade should come from the trade innovation.) The quote midpoint is set to
reflect the current public information (#,) and the inventory imbalance, but not the private
information inferred from the time-# trade (which is not known at the time the quote is
set). The incoming net demand reflects the difference between the current quote and the
efficient price inclusive of public information.

The essential features of this model are illustrated by the impulse response
function. The same parameter values are used as for the pure inventory control case in
Figure 2, with g=0.2. Figure 3 depicts the time path subsequent to a one-unit innovation in
the demand (v, =1, a one-unit purchase from the dealer). The essential difference
between this and Figure 2 is that the price reversion is incomplete. There is a permanent
price effect of the buy order innovation, equal to gv=0.2(1).

The pricing error is
=p,—m, =cx,—gv,—bl,_, (3.9

St

The cx, - gv, term is analogous to the (¢ — g)x, expression for the pricing error in the
pure asymmetric information model (3.6). Note, however, that the half-spread ¢ is paid on
the full trade, while the information update is driven solely by the trade innovation. The
role of the —bI,_, term is the same as in the inventory control model (cf. equation (3.2)).
Both terms are trade-driven.

The joint specification for returns and inventory levels may be written as a
bivariate VAR in which all structural parameters are identified. If only transaction prices

are available, only the random-walk variance (not the pricing error variance) may be

identified from the reduced form.
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By comparing the price impulse responses for the inventory control model (Figure
2), the asymmetric information model (Figure 3) and the combined model (Figure 4), it is
apparent that the short-run price effects implied by the inventory and asymmetric
information effects are very similar. In the pure inventory control model, the price rises in
response to a buy because the dealer now has an inventory deficit and must attract more
selling interest. In the asymmetric information model, the price rise reflects the new
information revealed by the trade.

The similarity of the short-run price responses engendered by the inventory and
information effects makes resolution of the two very difficult. Since the inventory control
paradigm arose first, it was natural for early studies detecting a positive impact of trades
on prices to affirm the existence inventory effects. Empirical tests of (more recent)
asymmetric information models tended to attribute the initial price rise to the information
content of a trade.

In practice, the two mechanisms can be resolved only by a dynamic analysis of
both short and long-run effects. Studies of dealer (specialist) trading in equities on the
NYSE suggest that inventory control is indeed practiced. However, the mechanism is
considerably more complicated than that allowed for by the simple models considered
here. The hypothetical impulse response functions discussed here depict a rapid inventory
adjustment process, spanning a dozen trades at most. Trades are hypothetically negatively
autocorrelated: a purchase should (in expectation) be followed in short order by sales. In
actuality, however, trades exhibit strong positive autocorrelation in the short run
(Hasbrouck and Ho (1987) and Hasbrouck (1988)). Furthermore, NYSE specialist
positions appear to possess large long-run components (on the order of weeks or months).
The ability of the available data samples to support reliable identification of transient
inventory-control quote effects at these horizons is poor. See Hasbrouck and Sofianos
(1993) and Madhavan and Smidt (1991 and 1993).

As noted above, this simple model combines inventory and asymmetric information
effects in an additive fashion. The demand of an informed trader (and the market’s

estimate of the information content of a trade), however, will in principle depend on the
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prevailing bid and offer quotes, which are also determined by the dealer’s inventory

position. The Madhavan and Smidt models illuminate these interactions.

3.4.  Prices, inventories and trades.

The preceding analyses suggest that in the presence of asymmetric information or
some combination of asymmetric information and inventory control, the results available
from reduced-form price-change specifications are meager: o, is identified, but o2 is
not. It was also noted, however, that data sets that include dealer inventory data are rare.
(There are presently none to my knowledge that exist in the public domain.)

It is often possible, however, to obtain good proxies for the trade series, x;. A
common practice when trade prices and volumes are reported and bid and ask quotes are

available is to construct the proxy

+(volume) ,if p, >q,.
x, =¢0,if p, =g¢,. (3.10)
—~(volume) ,if p, <q,.

where g is the quote midpoint prevailing at the time the trade occurred. In the pure
asymmetric information model of section 3.2, this proxy is sufficient.

When inventory control is present, however, matters become more complicated.
By construction in the models discussed to this point, the dealer inventory is related to the
trade by I, =1, , —x,. Because trades convey information only about the inventory
changes, but not about the levels, they are generally inadequate proxies. From a statistical
viewpoint, the problem is one of overdifferencing. When a variable such as a security
price contains a random walk component, it is common to specify a stationary model in
terms of the first difference (the price change, as we have done here). If one takes the first
difference of a variable that is already stationary, however, the first difference will still be
stationary, but it will not possess a convergent autoregressive representation. The
overdifferenced variable is said to be noninvertible. The general role of the invertibility

assumption in microstructure models will be discussed in section 4.1. But the
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consequences for the specification of inventory control models can be illustrated with the
simple models considered here.

In the pure inventory control model of section 3.1, the specification given in
equations (3.1) may be reworked to give a univariate representation for the inventory
level: I, =(1-ab)I,_, —v,, a simple first-order autoregression that is easily estimated. The
trade series obtained by taking the (negative of) the first difference of the inventory is
x, =—(I,-1,,)=(1-ab)x,, +v,—v,,, a mixed autregressive-moving average (ARMA)
form. No recursive substitution will yield an autoregressive representation for x; with
declining coefficients. The dilemma is not solved by adding the price change: there does
not exist a convergent vector autoregressive representation for {Ap,,x,} . Norisit
generally convenient to estimate the ARMA specification given for x; directly, since most
techniques assume invertibility. (Exceptions are those based on exact maximum-likelihood
Kalman filter methods. See Hamilton (1994).)

Despite this cautionary note, there are many situations in which models based on
trades will in fact be invertible. The noninvertibility of the trade specifications arises from
the fact that the trade series is the (negative) first-difference of the (presumably stationary)
inventory series. In some data sets this is indeed the case: transactions are identified as to
sign (buy or sell) and counterparty (e.g., the London Stock Exchange data used by
Neuberger (1992) or the computerized trade reconstruction (CTR) data used by Manaster
and Mann (1992)). The trade series composed of all the buys and sells to and from a
particular dealer is, by construction, the first difference of the dealer inventory and it is
implausible to assume invertibility.

In many markets, however, the dealer is not invariably the counterparty to the
outside order. On the NYSE, for example, the dealer (specialist) participates in a
relatively small portion of the trades. Often the bid and ask quotes represent non-
specialist orders. There is a strong presumption of mean reversion in dealer inventories.
But the other traders effectively placing bid and ask quotes represent a large, diverse and

changing population of agents. There is little reason to suspect that the aggregate trades
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of this group integrate up to a stationary series, and therefore little concern that trades will
constitute an overdifferenced and noninvertible time series.

As an example, consider the following ad hoc model designed to capture many of
the essential features of the inventory and asymmetric information model, but specified
without direct reference to inventories:

mo=m,_ +w,

W, =u +gv,

g =m_ +u,+d(q_ —(m_,+ u,_l)) +bx, (3.11)
x, =-a(q,—(m_ +u,))+v,

D, =q, +cx,

The essential difference between this and (3.8) is in the quote midpoint equation. The
inventory dependence has been replaced by an explicit mean-reversion component that
mimics the behavior associated with inventory control. This model was originally
suggested by Lawrence Glosten, and is discussed in Hasbrouck (1991).

That the model exhibits characteristics of both inventory control and asymmetric
information models can be seen from the impulse response functions (Figure 5) subsequent
to a one-unit purchase innovation. The cumulative trade series is plotted as an analog to
the (negative) inventory level. The parameter values are a=0.8, 5=0.4, ¢=0.5, g=0.2 and
d=0.5. Like the basic inventory control model, there is a decaying reversion in the

transaction price. Like the asymmetric information model, the reversion is not complete.

3.5.  Summary remarks on the simple models

This section and the one preceding have illustrated the basic economic paradigms
that underlie modern microstructure. The results may summarized as follows. The bid-
ask spread reflects fixed-cost and asymmetric information factors. The cost effect
introduces a short-run transient “bounce” in price movements, while the asymmetric
information effect is associated with a relatively rapid and permanent impact of a trade on
the security price. Neither effect should necessarily induce any particular behavior in
subsequent trades. Lagged price adjustment and inventory control create transients of

longer duration. The price transients caused by the former, however, tend to smooth
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informational responses, while those induced by inventory control induce price reversals.
Inventory control should furthermore be associated with endogenous effects on the
incoming trades.

4. General specifications.

The last section introduced basic microstructure concepts using simple structural
models. These models are useful for calibrating the economist’s intuition, but they are
generally not good candidates for direct estimation. Key variables (such as the dealer’s
inventory) are often unobserved; the mechanisms are often more complicated than the
stylized models suggest; the effects are often operating in concert; and finally, they are
complicated by a host of other (primarily institutional) considerations discussed below.
While it is always preferable to base a statistical model on a well-specified theoretical
model, these considerations impose limitations on what can be achieved.

The models discussed in this section are in contrast nonrestrictive statistical models
of microstructure data. The perspective here is one of foregoing precise estimates of
structural parameters in hopes of achieving a characterization of microstructure effects
that is both broad and robust. Most importantly, it is still possible under minimal
assumptions to characterize the permanent/transient and trade-related/-unrelated

dichotomies set forth in the introduction.

4.1.  Vector Autoregressions (VARs)

A vector autoregression is a linear regression specification in which current values
of all variables are regressed against lagged values of all variables. The inventory and
asymmetric information models discussed in the last section, for example, can be specified
as bivariate vector autoregressions. More general and flexible models can be obtained by
extending the number of lags in estimation. VARs are relatively easy to estimate (least
squares usually suffices) and interpret (via the impulse response functions or other
transformations considered below). Their value in microstructure studies also rests,
however, on the their ability to characterize very general time series models. It is useful at
this point to outline the assumptions underlying this generality, and also the ways in which

they might be violated in microstructure applications.
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The broad applicability of VARSs ultimately rests on the Wold theorem. A zero-
mean vector time series y; is said to be weakly stationary (covariance stationary) if the
autocovariances do not depend on £, Ey,y, ; =T',. The Wold theorem states that a zero-
mean weakly stationary nondeterministic process can be written as a convergent vector
moving average (VMA) process (possibly of infinite order):

Y, =e,+Be_ +B,e, ,+--=B(Le,, (4.1)

where the e; are serially uncorrelated homoskedastic increments with covariance matrix 2
and L is the backshift operator, L(-) =(-),_, (Hamilton (1994) and Sargent (1987)). This
is nothing more than the innovations representation of the process. This section assumes
that the conditions of the Wold theorem are satisfied. The stationarity assumption will be
examined in greater detail in section 5.

Suppose that we are working \‘Jvith price changes and trades (as in the model of
section 3.4), so that the state vector is

y, = [AP'J and e, = [:’J; Var(e)=Q= [Ui 0 } (4.2)

2
X, \ 0 o,

The orthogonality of the residuals is based on the economic assumption that
contemporaneous causality flows from trade to the transaction price. This characterized
all of the simple structural models discussed in the last section. It is easy to contemplate
market structures in which this assumption might be violated, but in many settings it is a
reasonable approximation.

If all of the roots of the polynomial equation det(B(z)) =0 lie outside of the unit
circle, then the VMA representation is said to be invertible, that is, it may be reworked to
give a (possibly infinite) convergent VAR representation:

Y = Axyt—l +A2yt—2 +eete, = A(L)yt te,. (4-3)

In microstructure applications, the invertibility assumption is commonly violated by
overdifferencing or cointegration. As noted in section 3.4, overdifferencing is a real
possibility when the model involves inventories, but the data contain only trades (the first

difference of the inventory). Cointegration arises when the state vector includes two or



Page 28

more price variables for the same security (like the bid and ask quotes, or the transaction
price and either quote), and is discussed further in section 8. All of the simple models
discussed in the preceding sections may be represented in the form (4.3).

A minor inconvenience arises because all of the bivariate VAR models in the last
section include a contemporaneous term on the right hand side:
Y, = Ay, + Ay, + A4y, ,+-+e . ltiseasy to rework this into the form (4.3) by noting
ye=(I-4, )—1 Ay +(I-4, )_l Ay I -4 )—le; Estimating the model in the
form that includes the contemporaneous term is a convenient way of forcing orthogonality
on the estimated residuals. Most econometric texts, however, employ the form (4.3), and
this will be used here as well. There are several ways of computing the VMA (4.1) from
the VAR. Conceptually, the simplest procedure involves simulating the behavior of the

system subsequent to one-unit initial shocks (Hamilton (1974)).

4.2.  Random-walk decompositions.

In the simple models the distinction between permanent and transitory price
changes was expressed by equation (2.2). In the earlier sections, the specification of s,
was implicitly given by the structural form of the model. In this section, we take a more
frankly statistical perspective, defining m; and s, in terms of their time series properties.
Formally, the model is equation (2.2), but with the additional statistical assumptions that:

1. m, follows a homoskedastic random walk: Ew, =0, Ew’ = o, and
Eww,=0fort#.
2. s:is a covariance stationary stochastic process.
It is worth emphasizing that the pricing error is not assumed to be serially uncorrelated or
uncorrelated with w,.

To establish the connection between the random walk decomposition (2.2) and the
VAR described in (4.3), we will be working with the component of the VMA
representation that corresponds to the price changes:

Ap, = b(L)e, (4.4)
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where b(L) is the first row of the B(L) matrix in (4.1). We assume that the pricing error
can be written as a linear combination of current and lagged e, plus (to allow for other
sources of variation) current and lagged 7, where 7, is a scalar disturbance uncorrelated

with e
s,=cdL)e, +d(L)7, 4.5

In terms of the random-walk decomposition model, the price changes can be written as:

Ap, =(1-L)m, +(1-L)s, =w, +(1- L)s, (4.6)

The autocovariance generating function for a vector process y: is

h(z)=-T,27 +T 27+, +z' + 2%+, 4.7)

Yy

where z is a complex scalar (Hamilton (1994) p. 266). For a VMA process such as (4.1),

h,(z) = B(z)QB(z™") . Equations (4.4) and (4.6) lead to two alternative representations

for the autocovariance generating function of Ap, :

14

hy,(z) =b(z)Qb(z”") =0’ +(1-2)h,(z)(1-27") (4.8)

where hy,(z) and h,(z) are the autocovariance generating functions for Ap and s. By

setting z=1, we obtain:

o = b(1)Qh(1) 4.9)

This expression for the random-walk variance depends only on the parameters of the
observed model, and hence is always identified. For example, the bid-ask model (with or
without asymmetric information) can be represented as a first-order moving average
model given by equation (2.6). In this case, 5(L)=1+6L and Q= o?, which implies
o2 =(1+6)c’.

Returning to the bivariate case with price changes and trades, let 5(L) be
partitioned as b(L) = [bAp(L) bx(L)]. Given the diagonal structure of Q, the random-

walk variance can be decomposed as:

L)

% =[by, ()] o2 +[6, ()] & (4.10)
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The two variance terms correspond to the non-trade and trade-related contributions to the
efficient price variance. The R measure introduced in (3.5) as a summary of the extent of

asymmetric information can be generalized as:
R = [I;Ap(l)]2 0'3/03, (4.11)

Turning to the pricing error, we find that most results require further structure. If
it is assumed that the pricing error is driven entirely by e;, then we may eliminate the
d(L)n, termin (4.5). This yields 5(L)e, =w, +(1— L)c(L)e,, which implies
w, =[B(L)-(1- L)e(L)]e, . A solution for this is w, = (1)e,, which is obviously
consistent with the random-walk variance described above. By solving
b(L)=b(1)+(1- L)c(L), the coefficients of the c(L) polynomial are found to be:

C, = —Z;Hb ;- Once the (L) coefficients are obtained, we may compute the value for s,
at a point in time, the unconditional variance of the pricing error, and also the trade- and
nontrade-related components of this error. Given the diagonality of the innovation
covariance matrix, these may be partitioned into trade-related and -unrelated components
following the same procedure used in the analysis of o, above. The restriction that
d(L)n, =0 was originally suggested by Beveridge and Nelson (1981).

If the pricing error is assumed to be orthogonal to the random-walk increment,
then the c¢(L)e, term in (4.5) vanishes. In this case, the coefficients of the d(L) polynomial
must be found by factoring the autocovariance generating function. The autocovariance
generating function for s; is /4,(z) = d(z)oid(z™') with dy normalized to unity. This may
be substituted into (4.8) and the d(L) coefficients found by factorization. This
identification restriction is due to Watson (1986).

Watson also establishes some filtering results that are very useful in microstructure
applications. We are assumed to possess a VMA for the observed processes (equation
(4.1)) and wish to establish a correspondence to an unobserved components model
(equations (2.2) with pricing error given by (4.5)). Watson shows that the best one-sided
linear estimate (i.e., linear function of current and past observables) of the stationary

component (pricing error) is the one associated with the Beveridge-Nelson identification
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restriction. (Since 7, in (4.5) is orthogonal to the e, the best one-sided projection involves

only the e..) This one-sided projection, denoted 3, , is:

§ = E'[s,|e,,e,_1 " ] =c(L)e, (4.12)

where the c(L) coefficients are given above.

It is noted in Hasbrouck (1993) that the variance of the error in the one-sided
projection is: E(s, —§,)° = Es? —E$? >0 where the equality follows from the fact that the
projection errors are uncorrelated with the projection: E(s, —5,)3, =0. This implies
Es? > ES§’: the variance of the one-sided (Beveridge-Nelson) projection establishes a
lower bound on the variance of the pricing error. A related result is discussed in Eckbo
and Liu (1993).

The tightness of the lower bound for the pricing error variance depends on the
nature of the unobserved components model and also on the available data. In the
asymmetric information model of section 3.2, the lower bound is exact (coincides with the
true pricing error variance) if the model is estimated using both prices and trades. The
actual variance exceeds the computed lower bound, however, if the model is estimated

solely on the basis of prices. Hasbrouck (1993) discusses implementation considerations.

4.3.  Model order.

The VAR and VMA representations discussed above are possibly infinite in length.
In most applications these will be approximated by truncated specifications. This raises
the question of how many lags should be included in the specification.

It is tempting here to rely on the usual statistical tests for model order (see
Lutkepohl (1993), Ch. 4). In macroeconomic applications these tests usually (and
conveniently) lead to models of modest order. This may be a consequence, however, of
the low power of these tests to identify weak long term dependencies in typical
macroeconomic data sets. In contrast, the large number of observations in microstructure
applications is often sufficient to suggest statistical significance of weak dependencies at
lags that would drive the number of model parameters beyond the capacity of most

computer programs.
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Many empirical and theoretical considerations do in fact militate in favor of
extremely long lags. A number of studies, for example, have documented stock return
dependencies over horizons on the order of five or ten years. A correct specification for
stock price changes at the transaction level should in principle also account for observed
behavior over longer horizons as well. It would therefore appear that estimations limited
to, say, the five or ten most recent transactions are seriously misspecified.

If the concern is the behavior of stock returns over annual and longer cycles,
however, it can be argued that the misspecification in short-run transaction studies is both
economically irrelevant (for microstructure) and small in magnitude. The long-term
swings in stock prices are generally held to reflect changes in expected returns. These are
presumably due to business cycle factors in the real economy that have little connection to
the short-run trading characteristics. Microstructure phenomena are almost by definition
confined to short horizons. A truncated transaction-level model may not achieve an
accurate resolution of transitory and permanent effects, but it may nevertheless still
satisfactorily resolve microstructure and non-microstructure effects.

It must be acknowledged, however, that between horizons that are clearly
microstructure-related (five transactions) and those that are clearly macroeconomic (five
years) lie hourly or daily horizons over which microstructure phenomena might be
important but difficult to detect. It was noted that dealer inventories often exhibit long-
term components. Furthermore, traders sometimes employ strategies that spread order
placement over many days. Such effects may not be detected in short-run transaction
studies. This point is particularly imprint when the variable set includes nonpublic data, as

discussed below.

4.4.  Expanding the variable set.

Since the models discussed in sections 2 and 3 involve only prices and trades or
inventories, the discussion has been limited to bivariate VARs. It is not difficult, however,
to imagine hypotheses that would involve additional variables. For example, Huang and
Stoll (1994) incorporate futures market variables into stock return specifications;

Hasbrouck (1994) includes order flow; and Laux and Furbush (1994) examine program
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trades. Such studies typically attempt to test hypotheses concerning the informational
content of particular data that are usually associated with the trading process. While the
details of these models lie beyond the present discussion, it is appropriate here to raise
certain issues of modeling philosophy.

In contemplating the addition of a variable to a stock price specification, perhaps
the most important question is whether or not or in what sense it is public knowledge.
Given the complexities of the trading process, the usual situation is a murky one in which
the data are known by a subset of agents (see section 2.1). Transaction-level
microstructure VAR’s typically reflect the explanatory or predictive power of a variable
over a relatively short time horizon. If the variable does not enter the public information
set within the horizon, however, then its information content will be not be measured
correctly.

The information content of a trade, for example, can plausibly be assessed by
short-run analyses because in most markets trades are reported quickly. But suppose the
econometrician possesses a series of trades that has been identified (some months after the
fact) as originating from corporate insiders illegally trading on advance knowledge of
earnings announcements. If the insiders trade a week in advance of the public
announcement, then the association between an insider purchase and the price rise
occurring a week later will not be detected in a short-run microstructure VAR. The VAR
will pick up the information content of a purchase, but not the additional informational
content of an insider purchase.

Addition of other variables may cloud attribution of information effects in another
respect. The simple models were constructed with explicit timing assumptions that
generally sufficed to impose a recursive structure on the disturbances. In each time
interval for the asymmetric information model, for example, the quote is revised to reflect
public information, then a trade arrives, and then expectations are updated. This recursive
economic structure gives rise to the statistical property that trade innovations are
uncorrelated with public information, which in turn supports a clear resolution of trade

and non-trade information effects. Often, however, particularly when the data are
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collected from diverse sources, the time-stamps may not be clear enough to establish a
recursive structure. The econometrician’s imposition of a particular choice may
exaggerate the informational content of variables appearing early in the assumed recursion.

In such situations, the behavior of the model may be investigated by examining
alternative recursion assumptions. It is often possible, for example, to establish bounds on
the variance decomposition components in expressions such as (4.10) using Cholesky
factorizations of the innovation covariance matrix. Hamilton (1994) discusses general
principles; Hasbrouck (1995) presents a microstructure application.

S. Time.

The microstructure models studied in the earlier sections were implicitly cast in
real time, sometimes referred to as “calendar time” by macro econometricians or “wall-
clock time” by microstructure students. In the interest of simplicity we implicitly took the
time subscript ¢ in the usual sense, as an index of equally-spaced points in real time. The
stationarity assumptions necessary to support inference were assumed to hold with respect
to this time index.

Timing considerations in actual markets, however, are considerably more involved.
Markets do not usually operate continuously. The few that are in principle open twenty-
four hours per day exhibit strong concentration of activity. Furthermore, trades usually
take place at random times throughout the market session. This section discusses ways in

which more realistic notions of time can be incorporated into statistical models.

5.1.  Deterministic time considerations

Some of the time properties of markets appear to be deterministic, like the regular
or predictable seasonalities encountered in macro time series. Two related examples in
microstructure data are market closures and intraday patterns.

In most markets, trading takes place continuously during organized trading
sessions. In between are periods of nontrading, typically over a lunch break, overnight, or
over a weekend or holiday. If we are interested only in the behavior of the market during
a trading session, we may drop from the sample all observations that span trading sessions,

e.g., we might ignore an overnight return. If the aim of the analysis is a comprehensive
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model of the market evolution during periods of trading and nontrading, however, the
econometrician must first take a position on whether or not the market evolution is time
homogeneous, i.e., whether prices (security values) behave in the same way during trading
and nontrading periods. If homogeneity is assumed, then we are taking the view that the
timing of the observations in our sample is merely an artifact of some sampling process
that is not related to the behavior of the system. Obviously for models in which trading
plays a central role (such as those involving asymmetric information), time homogeneity is
not an attractive assumption. In testing less refined hypotheses, however, the conjecture
might be a workable approximation. This motivates consideration of how time
homogeneity is empirically examined. |

Most of what we know about the role of time in microstructure data derives from
the analysis of price-change variances (rather than means). This reliance on second
moment properties characterizes not only the analysis of trading vs. nontrading periods,
but also most of the work done on intra-trading session evolution. The reasons for this
emphasis are the ones raised in Section 2.1: if the price follows a random walk, the
precision of variance estimates is improved by more frequent sampling, the precision of
mean estimates is not.

In U.S. equity markets, at least, the hypothesis that the return variance per unit
time is constant over trading and nontrading periods is easily rejected (Fama (1965),
Granger and Morgenstern (1970), Oldfield and Rogalski (1980) and Christie (1981)).
Based on an analysis of returns computed using daily closing prices, French and Roll
(1986) estimate that the return variance per unit time is at least an order of magnitude
higher when the market is open than when it is closed. This is due in part to the fact that
production of public information (such as news releases) is more likely to occur during
normal business hours, but it is also due to the role of trading itself in the price discovery
process.

Having rejected time homogeneity in the large, that is over trading and non-trading
periods, might we still provisionally assume that it holds during trading sessions, at least

well enough to support intraday analysis? There is considerable evidence to the contrary.
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As a general rule, microstructure data exhibit distinctive behavior at the beginning and end
of trading sessions. Most notably, return variances per unit time exhibit “U”-shapes, i.e.,
elevations at the session endpoints. Marked intraday patterns are also found in measures
of trading activity such as transaction frequency, trading volume rates and bid-ask spreads
(Jain and Joh (1988), Mclnish and Wood (1990), McInish and Wood (1992) and Wood,
MclInish and Ord (1985)).

5.2.  Stochastic time effects

Although trading processes unfold in continuous time, they are marked by discrete
events (e.g., trades or quote revisions). The determination of these occurrence times is at
least in part random. Ideally, then, how should these processes be modeled from a purely
statistical perspective? Furthermore, what is the economic significance of the occurrence
times?

Specification of continuous-time models that allow for random intervals between
events is difficult. There is a well-established literature on the analysis of irregularly
spaced time series. (See Parzen (1984), Jones (1985), and the references therein.) It is
commonly assumed in these models that the irregularity is a property of the observational
process per se, i.e., that the underlying process evolves homogeneously in real time, and
that the irregular observation times are either fixed or are at least exogenous to the
evolution of the process. In microstructure applications both of these assumptions are
problematic, the former on account of intraday volatility patterns and the latter for reasons
yet to be discussed. Nevertheless, this approach does achieve an appealing unity in
capturing the discrete and continuous time aspects of a simple model. Furthermore, the
techniques used to specify and estimate these models may yet be generalized to more
complicated and realistic situations.

Garbade and Lieber (1976) specify a variant on the simple bid-ask model in which
the implicit random-walk variance per unit time is constant and the random-walk variance
over a transaction interval is scaled by the intertransaction time. It is also necessary to
assume that the intertransaction times are identically and independently distributed

exponential random variables (i.e., a Poisson trade arrival process). Garbade and Lieber
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find that the model performs well in a study of transaction data for IBM and Potlatch over
ten trading days. The data suggest, however, more clustering of trades (over intervals
shorter than approximately ten minutes) than is consistent with the hypothesized Poisson
arrival process. In a more recent and comprehensive study of stock transaction data,
Engle and Russel (1994) also find clustering and suggest an autoregressive duration
model.

Although the GL model predated the advent of the inventory control and
asymmetric information models, it could easily be adapted to incorporate these effects.
The principal limitation of the approach from a current perspective is the assumed
independence of the observation (“transaction generation”) process. The model implies,
for example, that the probability that a trade will occur is independent of the size of the
innovation in the security value, i.e., that we would be no more likely to witness a trade in
the one minute following the close of a major press conference than we would in the
middle of an uneventful August afternoon. This independence is not realistic.

Alternative approaches to the transaction occurrence problem have been employed
in multiple security settings. The principle that (for a random walk) precision of variance
estimates is enhanced by refinement of the observation interval also applies to estimates of
covariances and betas, both of which are central to the standard portfolio problem. In
addition, portfolio groupings are often employed to reduce measurement errors in certain
applications, particularly the estimation of the return autocorrelations. Yet as the use of
daily closing prices has become common, it has also been recognized that trading and
reporting practices can induce significant estimation error in betas and significant
autocorrelation in measured portfolio returns.

Campbell, Lo and MacKinlay (1993) provide an overview of these developments.
Applications with asynchronous trading and last-trade reporting have historically attracted
the most attention. Fisher (1966) discusses implications for stock index construction and
interpretation. Analyses focusing on beta and covariance estimations are given in Scholes
and Williams (1977), Dimson (1979), Cohen, Hawawini, Maier, Schwartz and Whitcomb
(1983a, b), Shanken (1987). Studies emphasizing the effects on portfolio return
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autocorrelations include Atchison, Butler and Simonds (1987), Boudoukh, Richardson
and Whitelaw (1994), Cohen, Maier, Schwartz and Whitcomb (1986), Conrad and Kaul
(1989), Conrad, Kaul and Nimalendran (1991), Lo and MacKinlay (1988a, b, 1990a, b),
Mclnish and Wood (1991) and Mech (1993).

Traders sometimes characterize a market at a given time as being “slow” or “fast”.
The description extends beyond the speed of price changes. Prices do tend to move
quickly in a fast market, but the frequency of order arrival and transaction occurrence is
also higher. It is as if “an hour’s worth of trading is packed into five minutes.” From a
modeling viewpoint, this is more than figurative speech. It is calling attention to the
distinction between real time and operational time, the time scale over which the process
evolves at a constant rate. Stock (1988) describes this as time deformation.

Time deformation themes have been advanced in many empirical microstructure
studies (not always using this terminology). Although the asymmetric information link
between trades and prices has been formalized relatively recently, the idea that price
variance is related to trading activity is older. Clark (1973) suggests that stock prices
follow a subordinated stochastic process, one in which the “clock” of the process is trades.
A number of studies find that over fixed real time intervals (such as a day or hour), the
variance of equity price changes is positively related to the number of transactions and/or
the trading volume (Harris (1987), Tauchen and Pitts (1992)). McInish and Wood (1991)
and Jones, Kaul and Lipson (1994)) suggest that the association between return variance
and trade frequency is higher than that between return variance and trade volume.

From an economic perspective, time deformation in market data is usually assumed
to result from variation in the “information intensity” of the market, the rate at which the
informational primitives (public and private signals) evolve. This is difficult to
operationalize because these primitives, with the exception of sharply defined events like
press conferences, are rarely observed. Also, in most theoretical models, the
informational primitives are exogenous, implying that the resulting time deformation

would also be exogenous.
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Other economic considerations, however, strongly suggest endogenous time
effects. A market-maker, for example, might diminish the frequency of incoming order
arrival simply by widening the bid-ask spread. This sometimes occurs in response to a
particularly significant informational announcement. In this instance, the econometrician
relying on trade frequency as a proxy for informational intensity will draw exactly the
wrong inference. Easley and O’Hara (1992), Easley, Kiefer and O’Hara (1993, 1994) and
Easley, O’Hara and Paperman (1995) discuss these effects and suggest empirical tests.
Strategic quote-setting behavior that cah also lead to trade frequency effects is discussed

by Leach and Madhavan (1992, 1993).

5.3.  Recommendations.

Incorporating realistic time effects into microstructure models is a difficult task
that is likely to call forth more and better research efforts. But if time per se is not the
focus of a particular analysis, the econometrician needs to match the method to the
immediate problem and the data. For investigating broad hypotheses about intraday
patterns in market data and associations in these patterns, it appears sufficient to rely on
data aggregated over fixed time intervals (e.g., hours). For investigating causal relations
(such as trade price impacts) that would be obscured by aggregation, the econometrician
should lean toward modeling the data purely in event time, i.e., where f indexes trades,
quote revisions, etc. This is generally preferable to real-time modeling because it mitigates
the effect of intraday patterns, and it incorporates some of the intuition of the formal time

deformation approach: the “clock” of the process is assumed to be events.

6. Discreteness.

Although the models discussed to this point have assumed that both prices and
quantities are continuous random variables, both are in fact discrete. Of course, most
economic data are discrete in the sense that they are collected and reported subject to
rounding or truncation errors. Market data are different, though, firstly because the
discreteness is not merely an artifact of the observational process and secondly because the

discreteness is economically significant. On the NYSE, for example, the standard
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transaction size is a “round lot” of 100 shares. Deviations from multiples of this
transaction size may lead to more difficulty in completing the trade and higher
proportional transaction costs. Also, a stock priced at $5 or more per share trades in ticks
of 1/8 dollar (12.5 cents). By way of comparison, the per share commission on an
institutional trade is roughly five cents per share. |

Inability to smoothly adjust prices and quantities plays havoc with the intuition
behind the simple models discussed earlier. Discreteness effectively transforms the
decisions faced by agents from relatively tractable continuous optimization problems to
complicated integer programming problems. In the simple asymmetric information model
of section 3.2, for example, it might be conjectured that a dealer contemplating a one-tick
quote increase would wait until a sequence of buy orders had occurred. It appears to be
all but inevitable that discreteness will induce dynamic effects. Economic models that
incorporate these and other aspects of discreteness include Bernhardt and Hughson (1990,

1992), Harris (1991, 1994), Chordia and Subrahmanyam (1992) and Glosten (1994).

6.1.  The statistical modeling of discreteness.

Although investigation of the economic aspects of discreteness is coming into its
own as an important subject for inquiry, its status in empirical models has traditionally
been that of a nuisance effect. Discreteness is often viewed as a feature of market data
that needs to addressed or controlled for in some fashion while investigating other
hypotheses. Most of the initial work on discreteness arose in response to the need to
estimate return variances for purposes of option valuation. From a statistical viewpoint it
is most convenient to model discreteness as a rounding disturbance (possibly to a floor or
ceiling) (Ball (1990), Cho and Frees (1988), Gottlieb and Kalay (1985) and Harris
(1990)).

At first glance, discreteness would seem to cause intractable problems for the
simple models of Section 3 and the generalized VAR models of Section 4, for the reasons
usually given in econometrics texts regarding the estimation of limited dependent variable
models using linear specifications. Consistency of least squares estimation does not

require that the residuals be independent of the explanatory variables, however, only that
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they be uncorrelated. In many situations, absence of correlation can be motivated by
appeal to the Wold Theorem, which is not contingent on an assumption that the variables
are continuous. If the assumption of joint covariance stationarity is tenable in the time
scale used to specify the model (usually either wall-clock time or transaction time), then
there is no particular reason why discreteness should pose problems for estimating general
VAR microstructure models and related constructs such as impulse response functions and
variance decompositions. For many purposes, this approach will suffice.

The characterization of the market obtained in this fashion, however, is
incomplete. The implied impulse response functions, for example, represent the
continuous paths of the expected evolution of the market, which will look quite different
from the sample paths that arise in discrete data. Furthermore this perspective is ill-suited
for examining hypotheses in which discreteness parameters (such as the tick size) are of
interest.

Hausman, Lo and MacKinlay (1992) present an ordered probit model of price
changes. This is a single equation model in which trades and other explanatory variables
(notably including the time between trades) drive a latent continuous price variable, which
is in turn mapped onto the set of discrete prices using ordered breakpoints (that are
estimated). Conditional on particular values of the explanatory variables, the predictions

from this sort of model are given as probabilities of prespecified discrete price changes.

6.2.  Clustering.

Market prices have an affinity for whole numbers that is difficult to justify on
economic grounds. In most economic and statistical models, discreteness is specified as a
grid on which strategies and outcomes must lie, but no distinctive properties are attributed
to particular points on the grid. In a discrete random walk with 1/8 ticks, for example, the
price change is equally likely to be +1/8 or 1/8. If the current stock price is 50 1/8, it is
equally likely that the next price will be 50 or 50 1/4. Yet, as Harris (1991) notes, “Stock
prices cluster on round fractions. Integers are more common than halves; halves are more
common than odd quarters; odd quarters are more common than odd eighths; other

fractions are rarely observed. This phenomenon is remarkably persistent across stocks.”
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Similar effects are found in NYSE limit order prices (Neiderhoffer (1965, 1966)), NYSE
quotes (Harris (1994), and (to a striking degree) in U.S. National Market System quotes
(Christie and Shultz (1994a, 1994b)). Clustering suggests the existence of an implicit
price grid that is coarser than the one mandated by the market rules. The economics of

why these trading conventions arise and persist are not well understood.

7. Nonlinearity.

The models in Sections 2-4 express current variables as linear functions of past
variables and disturbances. Although one can construct theoretical models for which
linearity is appropriate, such a requirement is uncomfortably restrictive in applications to
actual markets. This section discusses the motivation and approaches for nonlinear
generalizations.

Among all of the aspects of microstructure modeling which we have examined so
far, the one in which accurate functional specification is most important is the relation
linking trades and price changes. Implicit in this relation are both the mapping from trades
to inferred private information content and also the mapping from trades to trading costs.
These mappings are determinants of individual agents’ order placement strategies: how
much to trade and whether to split the total quantity across different orders. From a social
viewpoint, these mappings may admit or reject the possibility of market manipulation.

Most of the structural models that allow for nonlinearity in the trade/price impact
mapping are single-equation specifications of price changes in which trades are assumed
exogenous and the dynamic aspects of the market are not explicitly modeled. One
standard model of this sort is due to Glosten and Harris (1988). Their specification can be
viewed as a generalization of the asymmetric information model of section 3.2 in which
there is an implied intercept in the cost and information functions. Variations of this model
include George, Kaul and Nimalendran (1991), Neuberger and Roell (1991), Huang and
Stoll (1994) and Madhavan, Richardson and Roomans (1994).

Intercepts and other nonlinearities can be incorporated into the general VAR
models of section 4 in an ad hoc fashion. If price changes and signed trades are jointly

stationary, then any transformations of price changes and signed trades are also jointly
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stationary. This suggests that the dynamic VAR models can be generalized by expanding
the state vector to include nonlinear transformations. Hasbrouck (1991a, 1991b, 1993)
employs polynomial functions. Although a continuous function of a real variable can
generally be approximated by a polynomial of sufficiently high degree, however, there is
no assurance, that the approximation is a parsimonious one, an important consideration in
practical applications.

This motivates consideration of more flexible characterizations of the trade-price
change relation, of the sort provided by nonparametric analysis. Algert (1992) applies
locally weighted regression to NYSE price and trade data, and concludes that the price
change maps most closely to a low fractional power of the trade, suggesting that a square
root transformation is preferable to the quadratic. Further applications of nonparametric
and semiparametric methods in characterizing microstructure relations are likely to be
illuminating.

Related studies focus primarily on the price impact of large (block) trades in the
U.S. equity market: Holthausen, Leftwich and Mayers (1987), Barclay and Warner
(1993). Such trades are of interest not only because of their size, but also due to their

trade mechanism, as discussed in the next section.

8. Multiple mechanisms and markets

The basic market paradigm used in this paper is one in which patient or passive
traders (including dealers) post bid and offer quotes in some centralized venue like a stock
exchange. Trades occur when impatient active traders arrive and hit these quotes. While
this is the most common mechanism, actual markets exhibit considerable diversity. It is in
fact rare for a security to trade solely in one market setting using one procedure. Most
continuous equity markets, for example, employ a batching procedure to open a trading
session or to handle large order imbalances. There may be special mechanisms to handle
large trades. Finally, multiple markets in the same security may simply operate in parallel,
with varying degrees of formal integration. The important economic issues in these
situations concern the merits of alternative market structures and the nature of the

competition between markets (see, for example, Chowdhry and Nanda (1991)). The
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empirical challenges involve the building of specifications general enough to handle the
diverse trading mechanisms while retaining enough structure to address the economic

hypotheses of interest. We consider in this section some common situations.

8.1.  Call auctions.

A call auction is a procedure that approximates the Walrasian auction often used
as a conceptual device to explain price determination in an idealized competitive market.
Over some order entry period, traders submit supply and demand schedules specifying
how much they intend to buy or sell at a particular price. At some clearing time, orders
are crossed at the price given by the intersection of the aggregate supply and demand
curves. Although conceptually simple, the practical aspects of implementation are
decidedly nontrivial, ranging from how much information to display before clearing to the
pricing of order entry and exchange services.

There is much current interest in the economic analysis of call and continuous
markets. This is perhaps a consequence of the realization that with current
communications technology, a call auction simultaneously involving large numbers of
geographically dispersed participants is, for the first time, feasible. Advocates of call
auctions argue that pricing errors will be minimized because the aggregate supply and
demand schedules will reduce (by the law of large numbers) the impact of idiosyncratic
randomness in individual demands and arrivals (Mendelson (1982), Schwartz and
Economides (1995) and Schwartz (1996)). Advocates of continuous markets place a
high value on the availability of immediate execution, which is of particular importance in
hedging and dynamic portfolio strategies.

At the NYSE, a call is used to open continuous trading, and also to reopen
continuous trading after a trading halt. A call (itayose) is also used to initiate continuous
trading on the Tokyo Stock Exchange (Lehmann and Modest (1994), Hamao and
Hasbrouck (1995)). The Frankfurt Bourse runs a noon call, at which time most of the
retail orders for German equities are traded.

If the primary aim of a study is characterization of the continuous trading

mechanism (which usually accounts for the bulk of the trading activity and most of the
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price change variance), then one commonly drops the opening price (and the overnight
price change) from the analysis. For hypotheses that specify the joint behavior of the two
mechanisms, however, other methods are required.

It is rare in empirical studies for the two mechanisms to be modeled jointly with
fully specified models of both mechanisms. Instead, the merits are usually investigated by
comparing opening call prices with one or more prices from the continuous session.
Suppose that the time index #=1, 2, . . . is constructed so that the odd times =1, 3, 5, . ..
correspond to market opening times, and the even times =2, 4, . . . correspond to market
closing prices (or some other price taken from the continuous trading session). Using the
basic random walk decomposition model from section 2.2, a two-period price change may
be written as Apl*! = (w, +w,_,)+s,~s,_, . Assuming that the w, and s, are mutually and

serially uncorrelated, the variance of the two-period price change is

Var( ,[2]) = Var(w, ) + Var(w,_,) + Var(s,) + Var(s,_,) (8.1

We now consider how this variance depends on whether ¢ is odd (an open-to-open
price change) or even (close-to-close). There are two random walk terms. Whether or
not ¢ is even, one of the pair 7 and #-1 is even and the other is odd. Therefore
Var(w,) + Var(w,_,) does not depend on whether ¢ is even. It is the variance of the 24-
hour innovation in the efficient price. The pricing error time subscripts, on the other hand

will be both even or both odd. We may therefore write:

Var(Ap™") = Var(w,) + Var(w,_,) +2 Var(s;™")

t

8.2
Var(Ap;™*) = Var(w,) + Var(w,_, ) + 2 Var(s/**) (8.2)

The difference between these two variances is therefore twice the difference in
variances of the opening and closing pricing errors. If the variance of the opening pricing
error is greater that that of the closing pricing error, this difference is positive.
Alternatively, the variance ratio of the first variance to the second is greater than one.

Amihud and Mendelson (1987) and Stoll and Whalley (1990) find that on average
for NYSE stocks this ratio is indeed greater than one (larger variance of pricing error at

the opening call). These results have not settled the mechanism debate. It has been
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argued that the elevated opening variance at the NYSE is due to particular features of the
NYSE call (selective ability of traders to “recontract”, the last-move advantage of the
specialist, etc.). It may also be that the period of overnight market closure is associated
with transient opening effects that are not associated with the call mechanism per se. The
Tokyo Stock Exchange trading day is broken into morning and afternoon sessions, both of
which begin with a call. Amihud and Mendelson (1991) find that while the variance of the
morning open is elevated (consistent with U.S. findings), the variance of the afternoon call
is not. Related studies include Amihud, Mendelson and Murgia (1990) (Italy), Gerety and
Mulherin (1994) (long-run U.S.) and Masulis and Ng (1991) (London). Smith (1994) and
Ronen (1994) discuss the general statistical properties of variance ratio estimates in these
applications. Lee, Ready and Seguin (1994) discuss calls subsequent to trading halts.
More general variance ratios of another type arise in microstructure studies as a

summary measure of the extent to which a price series deviates from a random walk. Itis
a property of a homoskedastic random walk that the variance of the increments is a linear
function of the time interval over which the increment is computed. That is, in simple
random-walk model (section 2.1) the variance of the one-period price change is
Var(Ap,) = Var(p, - p,_,) = o>,; that of the two-period change is
Var(Api*') = Var(p, - p,_,) = 207, and so on. The ratio of these two variances scaled by
the time intervals is (Var[Ap,m]/ 2) / Var(Ap,) is equal to unity. More generally, the
variance ratio formed from the n-period price change (relative to the one-period change )
is

_ Var( ,["])

V=t %) (8.3)

For a random-walk, ¥,=1 for all n. The extent to which this ratio deviates from unity is
sometimes taken as a measure of how much the process deviates from a random walk.

A useful alternative form for 7, is obtained by expanding Var( ,["]) in terms of
the price-change autocovariances, and dividing through by Var(Ap,), yielding

-1 . . . . . s
V,=1+ 22:_1 p, where p; is the price-change autocorrelation at lag 7. Written in this
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fashion, it becomes apparent that for the simple bid-ask model of section 2.3, the only
non-zero autocorrelation is p, <0, which will in turn drive 7, below unity. On the other
hand, positive autocorrelation (induced perhaps by lagged adjustment) can lead to
variance ratios above one. A mixed pattern of positive and negative autocorrelations can
lead to a variance ratio equal to unity for a price-change process that is distinctly different
from a random walk.

An early application of variance ratios to stock return data is Barnea (1974), who
interprets the nine-day/one-day variance ratio as a performance measure for New York
Stock Exchange specialists (designated dealers). Hasbrouck and Schwartz (1988)
estimate variance ratios using transaction data for stocks traded on the New York,
American and National Market System (“over-the-counter”) exchanges. Kaul and
Nimalendran (1994) use variance ratios to resolve bid-ask and overreaction effects.

Lo and MacKinlay (1988) employ variance ratios to examine the random walk hypothesis
in weekly stock return data, and describe the asymptotic properties of the variance ratio
and related estimates under the null (random walk) hypothesis. Their paper also contains

citations to other occurrences of variance ratios in the statistical and economics literature.

8.2.  Large trade mechanisms.

Trade cost is related to trade size. When a trader is contemplating a transaction
that is much larger than the normal trade size for a market, this cost might be reduced by
breaking the order into smaller pieces brought to the market over time. For traders
demanding immediacy in large size, however, alternative trading procedures have often
evolved. On the NYSE, for example, large (block) trades are typically negotiated in the
“upstairs” market, and then formally transacted (“crossed”) on the exchange and reported
to the transaction tape. Economic issues are considered by Burdett and O’Hara (1987),
Grossman (1992), Seppi (1990, 1992).

The last section cited studies of the price impact of block trades. As in the case of
different opening mechanisms, there are no analyses employing fully realized joint
specifications of the regular (“downstairs”) and upstairs markets. In fact it is not possible

to infer from the public quote and transaction record which trades were negotiated in the
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upstairs market. Accordingly, most empirical studies simply treat block trades as “large”

trades, ignoring the details of the negotiation process.

8.3.  Parallel markets.

It is convenient to view opening call auctions and block trades (at least in the U.S.
equities markets) as alternative mechanisms functioning as close adjuncts to regular
trading in a single market. When the alternative trading mechanisms for a security diverge
greatly with respect to their clientele, locations or procedures, it may be more natural to
view the alternatives as distinctly different markets.

For example, equities listed on the NYSE also trade on the U.S. regional
exchanges. Although there are electronic links among the exchanges, trading and quote-
setting may vary considerably across venues. As a second example, while the Paris
Bourse accounts for much of the trading volume in French equities, large trades are
frequently done on the London Stock Exchange. There is no formal integration of the
two, although it is likely that someone contemplating a trade would check the prices in
both markets (de Jong, Nijman and Roell (1993)). Grunbichler, Longstaff and Schwartz
(1992) discuss multiple markets in German equities. The current trend toward increased
dispersal of trading activity is termed “fragmentation”.

It might be hoped that with market data on a single security trading in or more
markets, one could estimate the market dynamics jointly, simply by “stacking” the market
data to combine them in a single estimation. If these data include two or more price series
for the security, however, specification becomes tricky. The complexities can be
illustrated in a simple model of a single security trading in two markets, with imperfect
flows of information. The implicit efficient price follows a random walk, but with
increments that are “revealed” to each market separately:

m=m_ +Ww,
w, = ulyt + uz’,

(8.4)
pyy=m_tuy, +(1 —al)uZ,t =m —au,,

Doy =M Uy, +(1'—a2)u1,1 =m -,
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The price equations are consistent with lagged adjustment to information originating in the
other market. The price in the first market, for example, reflects only (1—a,)of the
contemporaneous innovation in the second market. The remaining pbrtion is reflected in
the subsequent time period. If the u; are uncorrelated, the total variance of the implicit
efficient price changes is o2 = Var(u,',) + Var(uz_,) . The proportion of information
contributed by the ith market, termed the “information share” in Hasbrouck (1995), is
Var(ui,, ) / ol

It may be shown that although a VMA representation for the price changes exists
in this model it is not invertible: a convergent VAR representation for the price changes
does not exist. This is not a consequence of the stylized nature of the model. It is rather a
reflection of the fact that even though both price series possess random-walk components
(formally, possess unit roots), the difference between the prices is stationary. Such
systems are said to be cointegrated. (See Davidson, Hendry, Srba and Yeo (1978), Engle
and Granger (1987), and, at a textbook level, Hamilton (1994) and Banerjee, Dolado,
Galbraith and Hendry (1994).)

Cointegrated systems can often be represented in numerous alternative ways, some
of which are more useful for interpretation and others for estimation. Of particular
importance in the present application is the Stock-Watson common trends representation.

If two prices are cointegrated, they may be written:

Ll

This is a multivariate generalization of the basic dichotomy between permanent and
transitory components. It is important to note that the two prices share the same
permanent component. |

In a cointegrated system, a convergent VAR representation for the price changes
will never exist. One generally has more success with a slightly modified specification, the

so-called error correction model (ECM). For a two-price model, a typical ECM is:

Ap, = a(pl,t—l - p2,t-1) +A44p, , + 44D, ,+ U, (8.6)
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where the 4; are (2x2) coefficient matrices and a is a (2x1) vector of coefficients. From
(8.6) a VMA representation for the price changes may be recovered. This in turn will
support computation of market information contributions described above (see Hasbrouck
(1995)). Although ECMs are frequently employed as general reduced form specifications,
their existence is not guaranteed. If a;=a;=1, the model given in equation (8.4)

will not possess a convergent ECM representation, although state-space estimation may
remain feasible.

In macroeconomic applications, the presence of cointegration and the coefficients
of the cointegrating vectors (or a linear basis for these vectors) are often problematic.
Matters are usually simpler in microstructure settings. When the cointegration involves
two or more prices associated with same security (such as the price in different markets or
the bid and ask quote in the same market), a basis for the cointegrating vectors can
plausibly be specified a priori. If there are n price variables, there are n-1 linearly
independent price differences. Rejection of this set of cointegrating vectors is tantamount
to asserting that two or more prices will tend over time to diverge without bound. This is
not plausible if the prices all pertain to the same security. Harris, McInish, Shoesmith and
Wood (1992) and Hasbrouck (1995) discuss these issues and describe applications to the
U.S. equities markets.

A similar situation exists when the multiple prices apply not to the same security,
but instead to the security and a derivative such as a futures or options contract. Here it is
often the case that arbitrage relationships between the derivative and the underlying will
lead to cointegration between the price of the underlying and some function of the price of
the derivative. Cointegration is likely to arise therefore, in studies of spot and forward

prices and stock and option prices.

9. Summary and directions for further work.

This paper has attempted to provide an overview of the various approaches to
modeling microstructure time series. Rather than recapitulate these developments, it is
perhaps more useful to return to the questions that motivated them. It was claimed in the

introduction that microstructure models can potentially examine both narrow questions of
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trading behavior and market organization and also broader issues of valuation and the
nature of information. The present paper has focused, however, almost exclusively on the
former. This emphasis can be justified on the grounds that any study using market
transaction data must employ methods that reflect the market realities. But as a practical
matter the economic importance of security valuation and the implications for the
allocation of real assets almost certainly outweighs the welfare improvements that might
result from modest changes in the trading mechanisms for most securities. It is therefore
appropriate to briefly indicate the some of the ways in which microstructure studies can
illuminate aspects of corporate finance.

The classic event study measures the impact of a public information event by the
associated change in the security price. The insight of the asymmetric information models
is that when the “event” is a trade, the price reaction summarizes the market’s estimation
of the private information behind the trade. Studies of the price impact of trades, the
spread (under certain assumptions), or the summary R, measure introduced in section
3.2 thereby broadly characterize the market’s beliefs about the magnitude of information
asymmetries. Since these beliefs cannot usually be measured directly, the window offered
by microstructure data may well be the only vantage point. Recent studies that explore
asymmetric information in the vicinity of corporate announcements include Foster and
Viswanathan (1995) (takeover announcements) and Lee, Mucklow and Ready (1993)
(earnings announcements). Neal and Wheatley (1994) discuss the asymmetric information
characteristics of closed-end mutual funds.

We now return to the narrower microstructure issues. From a statistical
perspective, the current state of the art falls considerably short of a plausible
comprehensive model of transactions data. The reader who has skimmed over the
discussion of time, discreteness nonlinearities and multiple markets in the earlier sections
can hardly avoid getting a sense of the tentativeness that marks modeling efforts in these
areas, and the need for further work. But statistical models in this area must be ultimately

judged by their implications for the economic questions.
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From an economic perspective, the standing questions are those of how
information enters market prices, how traders should behave (private welfare) and how
markets should be organized (social welfare). Studies of trade-price behavior have yielded
a modest understanding of the first issue. It is an empirical fact that trades seem to explain
part but not all of price changes. This confirms the existence of private information and
establishes the importance of trading for the revelation or incorporation of this
information.

Answers to the other two fundamental questions, however, remain elusive.
Trading strategy in most markets remains the province of human judgment, guided by
experience and intuition, beyond the limits of existing normative models, even outside the
realm of most ex post performance measurement excepting that of the roughest sort (“Did
our investment strategy make money, net of trading costs?”). Nor have academic efforts
to define economically efficient trading arrangements been particularly successful. While
we have garnered greater insights into the workings of existing markets, we have yet to
create yardsticks capable of ranking potential alternative arrangements. No consensus on
these questions among academics, practitioners and regulators has yet emerged. It is

certainly to be hoped that improved econometric models will provide useful insights.
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Table 1. A Classification of Microstructure Effects.

Type of price change

Permanent (informational)

Transient (market related)

Source
of
price
change

Trade-induced
(attributable to an
actively initiated
transaction)

Economic: Market’s
assessment of the
information content of the
trade (asymmetric
information)

Statistical: Random-walk
component of price
attributable to trade
variables

Economic: Non-
informational spread
effects, transaction costs,
dealer inventory control
effects, price discreteness.

Statistical: Stationary
component of price
attributable to trade
variables.

Not trade-induced

Economic: Public
information

Statistical: Random-walk
component of price change
not attributable to trade
variables.

Economic: Lagged
adjustment to public
information, price
discreteness

Statistical: Stationary
component of price not
explained by trades
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Figure 1.
The Impulse Response Function for the Lagged Price Adjustment Model

The adjustment of the transaction price (p) subsequent to an initial shock of +1 in the
efficient price. The model is the lagged price adjustment model given in equation (2.8),

with parameter o=0.5.
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Figure 2.
The Impulse Response Function for the Inventory Model

The adjustment of the transaction price (p) and the dealer’s inventory (/) subsequent to an
initial purchase of one unit. The model is the inventory control model given in equation

(3.1) with parameters a=0.8, 5=0.04 and ¢=0.5.
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Figure 3.

The Impulse Response Function for the Asymmetric Information Model

The adjustment of the transaction price (p) and the incoming trade (x) subsequent to an
initial purchase of one unit. The model is the asymmetric information model given in

equation (3.3) with parameters ¢=0.5 and g=0.2.
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Figure 4.
The Impulse Response Function

for the Inventory Control/Asymmetric Information Model

The adjustment of the transaction price (p) and inventory (/) subsequent to an initial
purchase of one unit. The model is the inventory control/asymmetric information model

given in equation (3.8) with parameters a=0.8, 5=0.04, ¢=0.5, and g=0.2.
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Figure S.
The Impulse Response Function

for the Asymmetric Information/Trade Model

The adjustment of the transaction price (p) and cumulative trades (Zx) subsequent to an
initial purchase of one unit. The model is the asymmetric information/trade model given in

equation (3.11) with parameters a=0.8, 5=0.4, ¢=0.5, g=0.2 and &=0.5.
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