NEW YORK UNIVERSITY
STERN SCHOOL OF BUSINESS
FINANCE DEPARTMENT

Working Paper Series, 1995

Pricing and Hea’ging American Options: A Recursive Integration Method.

Huang, Jing-zhi, Marti G. Su]:yrahmanyam, and G. George Yu.

FIN-95-25






Pricing and Hedging American Options:

A Recursive Integration Method

Jing-zhi Huang
Marti G. Subrahmanyam
Leonard N. Stern School of Business

New York University

G. George Yu
Goldman, Sachs & Co.

June 20, 1995

(To appear in Review of Financial Studies)

"We acknowledge helpful comments from Menachem Brenner, Bent Christensen, Steven Feinstein,
Steven Figlewski, and Bin Gao. We thank Chi-fu Huang, the former editor, and especially, an anony-
mous referee, for many helpful comments and suggestions that have greatly improved the paper. We
also thank Franklin Allen, the executive editor, for editorial suggestions. Address correspondence and
reprint requests to Marti GG. Subrahmanyam, Stern School of Business, Finance Department, New York

University, 44 West 4th Street, Suite 9-190, New York, NY 10012. Tel. (212) 998-0348.






Abstract

In this paper, we present a new method for pricing and hedging American options along with an
efficient implementation procedure. The proposed method is efficient and accurate in comput-
ing both option values and various option hedge parameters. We demonstrate the computational
accuracy and efficiency of this numerical procedure in relation to other competing approaches.
We also show how the method can be applied to the case of any American option for which a

closed-form solution exists for the corresponding European option.






A variety of financial products such as fixed-income derivatives, mortgage-backed securi-
ties and corporate securities have early exercise or American-style features that significantly
influence their valuation and hedging. Considerable interest exists, therefore, in both academic
and practitioner circles, in methods of valuation and hedging American-style options that are
conceptually sound, as well as efficient in their implementation.

It has been recognized early in the modern academic literature on options pricing that,
in general, closed-form solutions to the problems of valuation and hedging of American-style
options are very difficult, if not impossible, to achieve. Hence, many researchers have focused
on numerical methods to solve the problems of valuation and hedging of such options. These
methods can be divided into two broad categories.

The first approach is a solution to the integral equation, where the option value is written
as the expected value, under the risk-neutral probability measure, of the option payoffs. In the
case of American-style options, the computation of the conditionally expected value on a given
date is subject to the condition that the option has not been exercised previously. This approach
is in the spirit of the risk-neutral valuation approach suggested by Cox and Ross (1976) and
formalized by Harrison and Kreps (1979) and others. It is often implemented in practice in
the context of the binomial approach of Cox, Ross and Rubinstein (1979). A variation on the
integral equation approach is suggested by Geske and Johnson (1984), who provide a numerical
approximation based on the analytical valuation formulae for options exercisable on discrete
dates. Their approach uses the exact analytical expressions for options exercisable at one, two,
three and perhaps four dates, to derive an approximate price of an American-style option that
is continuously exercisable.

The second approach is to directly solve the Black and Scholes (1973) partial differential
equation, subject to the boundary conditions imposed by the possibility of early exercise. This
approach is implemented by using numerical approximation methods. For instance, the finite-
difference methods of Brennan and Schwartz (1977), Schwartz (1977) and Courtadon (1982)
and the analytical approximation methods of MacMillan (1986) and Barone-Adesi and Whaley
(1987) are applications of this approach.

Although both types of methods have been used extensively in the academic literature
and in practice, they have some limitations. First, as pointed out by Omberg (1987a), some
methods such as the binomial method and the Geske-Johnson extrapolation scheme may not

yield uniform convergence in option prices. Second, many of these numerical methods use a



perturbation scheme to compute the hedge parameters. Such a scheme requires fairly intensive
computation to obtain accurate results. Third, in some cases like the explicit finite-difference
scheme, the method may not always converge. Finally, it has been recognized that analytical
approximations may have large pricing errors for long-dated options.

These difficulties, as well as the desire for a more elegant mathematical representation, have
led to a search for an analytical framework for American-style options. In a sense, this is the
continuous-time extension of the Geske and Johnson (1984) approach. This solution was first
proposed by Kim (1990) and extended by Jacka (1991) and Carr, Jarrow and Myneni (1992).
These authors obtain the analytical American option pricing formulae under the assumption
of a lognormal diffusion for the underlying security price. Kim and Yu (1993) consider some
alternative underlying price processes in the same framework.

Two facets of the literature on the analytical valuation of American-style options should
be noted. First, much of the research has focused on standard American options on stocks
sluch as simple put or call options. Increasingly, there is need to explore how these formulae
can be extended to the cases of other American-style claims, such as exotic options. Second,
none of the above studies on these formulae offer clear guidance on how to implement the
analytical valuation formulae, in practice, for the efficient computation of American option
values. This is problematic due to the fact that the early exercise boundary of an American
option is implicitly defined by a complicated path integral and does not have any closed-
form solution. Therefore, the determination of the early exercise boundary, a pivotal step in
the implementation of these analytical valuation formulae, becomes a difficult task. For this
reason, there is need for American-style option formulae that are analytically rigorous, and
yet improve upon the computational simplicity and intuitive appeal of the existing numerical
methods in the literature.

In this paper, we provide a new unified framework for the valuation and hedging of American-
style options that is based on a recursive computation of the early exercise boundary. This
unified framework can applied to value and hedge several interesting options: options on stocks
with dividends, options on futures and options on foreign exchange. In particular, we imple-
ment an efficient numerical procedure which combines a unified analytical valuation formula
and the Geske-Johnson (1984) approximation method to compute option prices and hedge pa-
rameters. This procedure involves estimating the early exercise boundary at only a few points

and then approximating the entire boundary using the Richardson extrapolation, rather than



computing the boundary point-wise. An attractive feature of this procedure is that it is robust
for a general American-style option contract.

An additional important feature of our approach is that it permits the direct implementation
of formulae to compute option values as well as option hedge parameters. Specifically, once
the early exercise boundary is estimated, option values and hedge parameters can be obtained
analytically.! This feature distinguishes our approach from other existing approaches in the
literature, for example, variations of the binomial and the finite-difference methods. These
methods use a perturbation scheme to compute the option hedge parameters, and hence, reflect
the approximation errors, once again, in the values of the hedge parameters. In our approach,
in contrast, option prices and hedge parameters are calculated at the same time, given the early
exercise boundary. As a result, the computational errors in option prices are not compounded
in the calculation of hedge parameters.

It is useful to compare our approach to related work by Omberg (1987b), Broadie and
DeTemple (1994), and Carr and Faguet (1994). Omberg (1987b) uses an exponential func-
tion to approximate the early exercise boundary. Since he does not use the exact analytical
valuation formula which imposes the optimal early exercise condition, the optimality and the
convergence properties of his approach are somewhat unclear. Broadie and DeTemple (1994)
provide an upper bound on the value of American options using a lower bound for the early
exercise boundary (i.e., an approximate exercise boundary).? However, their formula for com-
puting option prices requires the use of parameters determined from regressions. Further, the
implementatioﬁ of their method for computing hedge parameters is not discussed in their pa-
per. Carr and Faguet (1994) develop the “method of lines” based on approximations to the
Black-Scholes (1973) partial differential equation (PDE). This involves discretization along
either the time or the state-variable dimension, but not both. They obtain an (approximate)
exercise boundary from this discretized PDE, and then calculate the option values and hedge
parameters. As in Broadie and DeTemple, their method also involves using some regression
coefficients for short maturity option contracts. Thus, both Broadie and DeTemple (1994) and
Carr and Faguet (1994) would seem to require a recalibration of the regression coefficients to
be applicable to non-standard options.

The paper is organized as follows. In Section 1, we present the unified analytical valuation
formulae for option prices and hedge ratios, for the case of American put options with a propor-

tional cost of carrying the underlying security. Section 2 presents a numerical implementation



procedure for the formulae. Section 3 applies this procedure to two American option pricing
problems, the first, the case of stock options, and the second, the case of quanto options. We
demonstrate the speed and the accuracy of our method by comparing its numerical results with

those of existing methods in the literature. Section 4 concludes the paper.

1 A Unified Valuation Formula for American Put Options

In this section, we present a unified analytical valuation formula for American options on an
underlying security that has an instantaneous, proportional cost of carry at a rate b. As will be
clear later, depending on the characterization of b and its value, we can have many commonly
traded financial contracts as special cases. For expositional purposes, we choose American put
options for analysis, although our method can be applied to almost any American option for
which an equivalent European-style valuation formula exists in closed-form.

Assume that the capital markets are frictionless and arbitrage-free with continuous trading
possibilities. Let S; denote the underlying security price at time ¢t and K the exercise price of
an American put option expiring at time 7. Assume also that the price process {S:;t > 0}

follows a lognormal diffusion with constant return volatility, o, and expected return s
dSt = ,uStdt + O'StdZt, (].)

where {Z;;t > 0} is a one-dimensional standard Brownian motion (defined on some probability
space).

As in McKean (1965) and Merton (1973), we define the American put value as the solution
to a free boundary problem. We assume that the early exercise boundary for this American
put is well-defined, unique and has a continuous sample path. Let B = {By; B, > 0,t € [0,T]}
denote the optimal early exercise boundary of the American put, and P(S;,t) denote the put
value at time t. Function P(Sy,t)is C1! on [By, 0] x [0,T] and C*! on (By, 0] x [0,T]. Then,
the arbitrage-free put price, P(S;,t), satisfies the fundamental Black-Scholes (1973) PDE

0255 (?ZP 0P aP
P bS,— — —— =
5 992 + b5 59 rP + 91 0, (2)

subject to the following boundary conditions:

P(S7,T) = max[0,K — S7], (3)



bli?l P(S,t) = 0, (4)

Slti}%t P(S:,t) = K — By, (5)

. OP(5:,1)
il S 6
T b (6)

where 7 > 0 denotes the continuously compounded interest rate and is assumed constant. Con-
dition (5) is the “value matching” condition and condition (6) is the “super-contact” condition,
and they are jointly referred to as the “smooth pasting” conditions. These conditions ensure
that the premature exercise of the put option on the early exercise boundary, B, will be optimal
and self-financing.

Let W(Sy;So) be the risk-neutral transitional density function of the underlying security

price. We can then derive the following expression for the price of the American put:?

T B, T B,
PO = Po + 7'1\”/ €—M / ‘I’(St, So)dstdt han Oé/ e—”/ St\I’(St, So)dstdt, (7)
0 0 0 0

where o = 7 — b, Py = P(5),0) and
%
po = p(So,0) = e_TT/O (K — S7)¥(S7; So)dST 8)

is the price of a European put. The ex-expiration-date early exercise boundary is given by
. A
Br = min (]\’,—Is’) ,
o

independent of the underlying security price distribution.®

Intuitively, the analytical valuation formula (7) gives the sources of value of an American
put. Specifically, the first term, the European put price, po, is the value of the guaranteed
payoffs from the put option. The last two terms represent the early exercise premium of the
American put. More specifically, the second term of (7) is the present value of the benefits
from prematurely exercising the American put, through the interest gained by receiving the
exercise proceeds early. The last term of (7) captures the costs associated with the early exercise
decision through the loss of insurance value, i.e., the costs of taking a short position on the
underlying security following exercising the put option early. Analogously, these values can be
linked to the expected payoffs from a dynamic trading strategy, suggested by Carr, Jarrow and
Myneni (1992), that converts an American put into an otherwise identical European put.

Under the assumed lognormal security price process (1), the pricing formula (7) becomes:

T
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where pg is the Black-Scholes-Merton European put option price:
po = Ke "I N(—dy(So, K,T)) = Soe T N(—dy(So, K, T)), (10)

N(-) is the standard normal distribution function, and

dl(«T, y»t) 1n($/y) _;E/bi+ 02/2)t7

dg(.’L‘, y7t) = dl(wa yat) - U\/Z'

It follows from equations (5) and (9) that the time ¢ optimal point on the early exercise

boundary, B, satisfies the following integral equation

K- B, = Ke™ ™ N(—dz(Bt, I(, T])) - Bte—aﬁ N(—dl(Bt, I(, Tl))

T
+/ [rKe™™™ N (—dy( By, By, 7)) — aBye=" N(—dx(By, Boy72))] ds, (11)
t

where 77 = T —t and 72 = s — t. In the above expression, the first two terms on the right
hand side represent the value of a European put with a forward price equal to B;. The last
two terms represent the gain due to interest earned and the loss due to the insurance value
foregone through early exercise, respectively, which are reflected in the increased value of an
American option over an otherwise identical European option.

Since the cost of carry, b, can be specified in quite a general fashion, formula (9) unifies
the American put valuation formulae for a wide range of American option valuation problems.
Some straightforward examples are: standard stock options for which the cost of carry is the
riskless interest rate, 7, less the constant dividend ratio, g3, i.e., b = r — 3; futures options
analyzed in Black (1976), in which b = 0; commodities options where there is a convenience
yield, b = r — v, where v is the convenience yield; and options on foreign currencies analyzed
in Garman and Kohlhagen (1983) and Grabbe (1983), in which the cost of carrying the foreign
currency is the domestic riskless interest rate, 7, less the foreign riskless rate, r*,i.e., b = r—r".

Clearly, once the early exercise boundary B is determined, the American put option value
can be easily computed using equation (9). The valuation formula also offers a simple way to
calculate the hedge parameters. Differentiating (9) yields the following explicit -comparative

statics results:

dP(S,1) - Teom
delta:  Z00Y _ _emamiN(_qy(S,, K, 7)) —
elta 95, e N(—d(St, K,7m1)) /t Py
[b n(d1(Ss, Bs,m2)) + aN(—d1(St, Bs,72))]ds, (12)
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where n(-) is the standard normal density function.® Similar to the option pricing formula
(9), these hedge parameters also have an intuitive explanation. One can see that all the three
parameters, “delta”, “gamma” and “vega”, are equal to their European counterparts plus a
term that depends on the early exercise premium. Moreover, given the early exercise boundary,
formulae (12)-(16) provide a direct approach to calculate the hedge parameters, while other
existing approximation methods based on numerical computation of option hedge ratios have
to rely on some scheme of perturbing the option valuation formula.

It is instructive to discuss the reasons why the analytical formulae presented above have
some desirable properties in terms of both efficiency and accuracy. Once the early exercise
boundary is specified, one can analytically obtain the option values and hedge parameters using
equations (9) and (12)-(16). In contrast, in methods using a perturbation scheme, the option
values have to be recomputed for other values of the input variables. Hence, the analytical
method is likely to be more efficient compared to the alternatives. In terms of accuracy, the
direct computation of option values and hedge parameters restricts the error to that from
approximating the early exercise boundary. The competing methods that perturb the option
values compound the approximation error, since they require repetitive calculation of option

values. i.e., the perturbation methods enhance error-propagation.



2 Implementation

Implementation of the valuation formula (9) and the hedge ratio formulae (12)-(16) requires
the early exercise boundary as an input. Once the optimal exercise boundary is obtained,
calculations of the option prices and sensitivity parameters are straightforward. In the follow-
ing, we first use a recursive scheme to calculate the exercise boundary and then our approach,
which is based on the Richardson extrapolation method, to calculate the option prices and

hedge parameters.

2.1 Optimal Exercise Boundary

The optimal exercise boundary B has no known analytical solution. An approximate exercise
boundary, however, can be obtained numerically. A straightforward algorithm is to compute
the boundary recursively using (11).” Namely, we divide the interval [0,7] into n subintervals
t;, for ¢ = 0,1,2,---,n, with t; = 0 and ¢, = T. This discretization yields, from (11}, »
implicit integral equations defining the optimal exercise points, By, By, -+ -, By,_,. Given the
boundary condition on expiration that B;, = min(K,rK/a), B, = {B,0 < i < n — 1} can
be computed recursively using the n integral equations. For a large enough n, this algorithm
produces a good approximation of the optimal exercise boundary. Given the discrete optimal
boundary B, the option price and hedge parameters can then be easily calculated from (9)
and (12)-(16) using a numerical integration scheme.

This recursive algorithm is conceptually simple and easy to implement, especially for the
valuation problem of short-term American options, where only a few points on the boundary
need to be calculated. However, this recursive method can be computationally intensive when
an option has a long time to expiration or where the exercise price is a function of time.® This
is because, in these cases, a fairly large number of points on the boundary may be needed in
order to obtain a good approximation of the boundary itself. It would, therefore, be useful
to rapidly compute the option value and hedge ratios without approximating the whole early

exercise boundary. This calls for a more efficient implementation of the recursive method.

2.2 Accelerated Recursive Method

In the following, we suggest an approach that uses the Richardson extrapolation method to

accelerate the recursive method mentioned earlier. Our method is in the spirit of Geske and



Johnson (1984), except that we estimate the early exercise boundary first and then calculate
the option values and hedge ratios directly. In other words, we calculate option values based
on only a few points on the optimal boundary and then extrapolate the correct option value.
This extrapolation scheme gains efficiency without sacrificing much accuracy.

For instance, consider a three-point Richardson extrapolation scheme. The Geske-Johnson

formula for extrapolating the American put value Py in this case is as follows:
Py = (P, — 8P, +9P3)/2, (17)

where P;,i = 1,2,3, is the price of an i-times exercisable option, and P, denotes an estimate
of PO-
It follows from (9) that®

P] = Do,
KT _: T _a
Po= ot e‘TTN(—dg(SO,BZ,T/2))—ab;O e~ N(~di(50, Bz, T/2)),
2
KT [ _: .
P = p0+T; [e—TTN(—dZ(SO,B%,T/:s))Jre—stN(—dl(so,Bgsz,QT/;a))]
aSOT

[e_%N(—dz(So, Bz,T/3))+ e~ 5" N(=dy(So, B§,2T/3))] ~

‘

A special case of the above expressions applies to the case of a non-dividend paying stock,

where o = 0:

Pl = Do (18)
KT _.

P, = pot e T N(=do(So, By, T/2)), (19)
KT [ _: .

Py = pot o [ N(=do(So, Br, T/3))+ e N(=di(So, Bz, 2T/3))] . (20)

One can see that only three boundary points B%, B% and B% are needed to calculate {P;}
and consequently Pp.

Given B%, B% and B%Z , the Richardson extrapolation method can also be used to calculate
the option hedge ratios such as the “delta”, “gamma” and “vega”. For example, the “delta”

value can be extrapolated as follows:
Ao = (A; — 8A, + 9A3)/2, (21)
where, for an option on a non-dividend paying stock,

Ay = _N(—dl(‘SVO?Ry’T))y (22)



Az = —N(—dl(S(),](,T))— CA—T—/Z 6_%[: 7l(d2(SO,B%,T/2)), (23)
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K\2T]3 _2
_ %/E =55 n(dy(So, Bar ,2T/3)). (24)
+20 3

2.3 Comparison with the Geske-Johnson Method

As mentioned earlier, the accelerated recursive method is similar in some ways to the Geske-
Johnson method. Although both methods employ the Richardson extrapolation, they use
different formulae for computing {F;,i = 1,---,n}.1% In the Geske-Johnson framework, the
exact option price is the limit (n T 00) of the price of an option exercisable on n-dates. As
Geske and Johnson showed, the price of such an option, P,, is a sum over several multivariate
cumulative normal density functions. Specifically, for a given n, P, involves two univariate
integrals (from a European option value), two bivariate integrals, two trivariate integrals, ...,
and two n-variate integrals [see equation (5), page 1514 of Geske and Johnson (1984)]. It is
known that the computation of a multivariate normal integral is time-intensive for large n.
Consequently, the Geske-Johnson method has been implemented only for n < 4. On the other
hand, as shown in (9), P, in the recursive method involves only the univariate normal integral.
For example, in the case of options on non-dividend paying stocks, P, involves n univariate
normal integrals, even under the crudest integration scheme - using a step function. As a result,
the recursive method can be easily implemented, in principle, for any value of n without too
much computational difficulty.

Due to its ease of implementation, the recursive method can improve the convergence of
the extrapolation. As Omberg (1987a) pointed out, the arithmetic sequence of n = {1,2,3,...}
used by Geske and Johnson in their extrapolation may not yield uniform convergence in P,
whereas a geometric sequence of n = {1,2,4,...} would give such convergence. However, it is
not practically feasible to implement the Geske-Johnson method using a geometric sequence
of n due to the substantial increase in computational cost beyond n = 3. On the other hand,
one can see from (9) that the recursive method can be implemented easily using a geometric
sequence and can, therefore, improve the convergence in Py.

The difference between the two methods in the dimensionality of the integrals involved also

indicates that the recursive method can improve the efficiency of the Geske-Johnson method.
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To illustrate this, consider‘ a three-point (an arithmetic sequence of n) Richardson extrapola-
tion scheme. In this case, computation of P, using the Geske-Johnson method would require
calculations of six single integrals, four double-integrals, and two triple-integrals, whereas using
the recursive method would require only five single integrals [cf. (18)-(20)]."! Although it is
difficult to say precisely how much more time it takes to calculate a multi-normal integral than
a single one, we can obtain a rough estimate. The most common algorithm to calculate a uni-
variate integral is Hill’s (1973), which approximates the integral by a summation of four terms.
A commonly used algorithm to calculate a bivariate integral is the one by Drezner (1978), which
uses a Gauss quadrature method. Typically, this method approximates the double integral by a
sum of nine to twenty five terms. Schervish’s (1984) algorithm for a multi-normal integral also
uses a Gauss quadrature method. In this method, calculation of an n-integral (n > 3) needs
computation of at least two (n— 1) dimensional integrals. It would not, therefore, be unreason-
able to conclude from these facts that the recursive method is likely to be much more efficient.
Furthermore, the larger the n-value, the more efficient is the recursive method compared to
the Geske-Johnson method which involves multi-normal integrals.!?

As far as the accuracy is concerned, the recursive method and the Geske-Johnson method
should be similar, given that both use the same extrapolation scheme, provided that { P, } values
calculated in the two methods are equally accurate. Under a three-point extrapolation scheme,
the truncation error of using P, defined in (17) is O(h®) where h = T//3.1> However, given the
relative ease of computation, the recursive method can be implemented under a higher order
extrapolation, say a five-point extrapolation [whose truncation error is O(h®)], to reduce the

truncation error, i.e., to improve the accuracy.!*

3 Applications

In this section, we illustrate the application of the analytical valuation formula (9) and its im-
plementation using the accelerated recursive method to two common American option pricing
problems: 1) American options on stocks and 2) American quanto options. It should be empha-
sized that this method can be also applied to other American-style contracts, such as futures
options, Asian options, barrier options and look-back options, since a closed-form solution for

the corresponding European-style option exists.
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3.1 Stock Options

Assume that the underlying security is a common stock without a dividend payout. This case
is chosen for ease of comparison with results in previous papers in the literature. Then, the

American put price is obtained from (9) by letting b = r:!®
T
Fo = pot [ rKeTIN(~da(So, B )i, (25)
0
where pg is the Black-Scholes European put price:
po = Ke T N(=dy(So, K,T)) — SoN(—=d1(So, K,T)). (26)
The integral equation defining the early exercise boundary B; is obtained from (11):
T
K — B; = p(By,t) + r](/ e "= N(—dy(B;, By, s — t))ds, (27)
t

with the boundary condition By = K. The formulae for option hedge parameters can be
obtained from (12)—(16) by letting b = .

To test the accuracy and speed of the (accelerated) recursive method, we compare the
results of option prices and hedge parameters calculated from the recursive method with those
from three widely-used numerical methods - the finite difference method, the binomial method,
and Breen’s (1991) accelerated binomial method.'® We also report the results from Geske and
Johnson (1984) as a basis for comparison. The accuracy is measured by the deviation from
a benchmark, which is chosen to be results from the binomial method with N = 10,000 time
steps.!” The speed is measured by the CPU time required to compute option prices or hedge
parameters for a given set of contracts. The set of contracts is chosen to be the one in Table I
of Geske and Johnson (1984).

Table 1 reports the results of option prices from the five alternative methods. Column
4 shows the numerical results from the binomial method with N = 10,000 time steps (the
benchmark). Column 5, reported in Table I of Geske and Johnson (1984), is included here
for comparison. Columns 6-9 show the results from the binomial method with N = 150 time
steps, the accelerated binomial method with N = 150 time steps, the finite difference method
with 200 steps in both time and underlying state variables, and the recursive method with a
four-point extrapolation, respectively. The accuracy of a particular method is measured by its

root of the mean squared error (RMSE), as shown in the second last row. The CPU time in

12



seconds is shown in the last row. Note that the CPU time in Column 5 is absent because the
corresponding results are taken directly from Geske and Johnson (1984).

Table 1 indicates that the RMSE of the recursive method has the same order of the magni-
tude as that of the binomial method with N = 150, in spite of the fact that the former method
is implemented with a step-function discretization. One can also see that the amount of CPU
time using the recursive method is significantly less than that using the other three numerical
methods listed in the table. In particular, the recursive method is about five times faster than
the accelerated binomial method and more accurate as well.

Table 2 reports the results of deltas for the same contracts as shown in Table 1. As before,
the results in column 4 are taken as the benchmark. Again, column 5, reported in Table I of
Geske and Johnson (1984), is included here for comparison. One can see from the table that
the recursive method again produces much smaller RMSE than the accelerated binomial and
the finite difference methods do. It is worth noticing that it takes almost the same amount of
CPU time for the recursive method (and also the finite difference method) to compute deltas
as option prices, whereas it takes twice as much CPU time to compute deltas as option prices
for both the binomial and the accelerated binomial methods. This indicates that the recursive
method is particularly efficient in calculating hedge parameters.

Table 3 reports the results of gammas for the same contracts as shown in Table 1.® Again,
the RMSE of the recursive method is much smaller than that of the accelerated binomial
method. Also, the speed of computation is faster by at least one order of magnitude compared
with the alternatives. It is apparent that the relative computational merit of the recursive

method increases as we get to higher order hedge parameters.!?

3.2 American Quanto Options

We now consider the application of our method to non-standard options, in particular, to
quanto options. We do this to illustrate the use of the method for any case where a closed-
form solution exists for the corresponding European-style option. Quanto options are options
based on two (or more) underlying state variables, usually the foreign exchange rate and an
asset price. Examples of these options available to U.S. investors are Nikkei Index warrants
and currency-protected warrants on foreign treasury bonds, warrants on cross-currency rates

denominated in dollars, as well as a range of over-the-counter products. Some basic features
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and valuation results on these instruments are described in, among others, Derman, Karasinski
and Wecker (1990) and Dravid, Richardson and Sun (1993; henceforth DRS). These papers
examine the issues of hedging, sensitivity analysis and parameter estimations of these contracts.
In this section, we focus on the valuation of American-style put warrants using our alternative
approach.?’ The analysis of the American-style call warrants can be analogously developed.
Let ST be the yen price at time ¢ of the underlying Nikkei index with an instantaneous
dividend payout rate §;. Assume that Y; denotes the spot exchange rate specified in units of
dollars (or cents) per yen. Define the dollar price of the Nikkei index at ¢ by 5y = 57Y;. Denote
by r; and 7} the instantaneous U.S. and Japanese riskless interest rates, respectively. Following

DRS, we have, under the risk-neutral probability measure,

dS, = (ro— 8)Sudt + 05+5dZ2"") + 0,5,d7, (28)
dY, = (ro—r))Ydt+0,Y,dZ", (29)
dS7 = r;Srdt+ oSz, (30)

where o4« and oy, are the instantaneous volatilities of the Nikkei index and the exchange rate,
{Zt(s*);t > 0} and {Zt(y);t > 0} are two standard one-dimensional Brownian motions with a
correlation coefficient p, and r¢ = rf — 6; — posroy.

Consider a put option whose yen payoffs can be converted into U.S. currency at a prespec-
ified exchange rate Y.2! With a fixed exchange rate, the European put price depends on the
fixed exchange rate and the parameters of the exchange rate dynamics, but is independent of
the current level of the exchange rate. This is because the U.S. investor has to continuously
rebalance his position in the Nikkei index through the foreign currency market, by converting
dollars into yen, and wvice versa, in order to hedge this option (since the Nikkei index is not
directly traded in dollars). Equivalently, it can be said that simply by using the Nikkei index
(denoted in yen) and riskless Japanese bonds, the U.S. investor completely hedges the Euro-
pean put option, but is exposed to the foreign exchange risk, which can be hedged over time by
continuously rebalancing the positions in the Nikkei index through the foreign currency market.
Consequently, by using riskless Japanese bonds and the Nikkei index, the U.S. investor can also
hedge/replicate the American put, but in terms of yen. This essentially makes the pricing of
fixed exchange rate American Nikkei puts a one-dimensional problem. Namely, the problem is
equivalent to pricing an American put option whose underlying asset price process is described

by (30), and hence can be recast in the framework developed in Section 1.
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Substituting & = r —r; and 0 = o4« into (9)-(11), we have that the value of fixed exchange

rate American put (in yen) with a strike price K™ is
— T . %
PJY = po +/0 [rE*e™"* N(~2(S5, Bsy s)) = (r = 77)5
TN (—21(55, B, 9))] ds, (31)
and that the value of the corresponding European put option in yen is (see DRS)

po = K e T N(—25(S5, K*,T)) = 55e~ DTN (—z1(85, K=, T)), (32)

where
In(z/y)+ (r; + 0% /2)t
:L'l(w’y’t) = / ) 0_( ir/z ) )

zo(z,y,t) = xl(x,y,t)—(rs*\/z,

and B, is the early exercise boundary at time ¢, in terms of the Nikkei index. The value of B;

is determined by

T
K*-B, = p1+ / [TK*G_T(S“)N(—iBQ(Bta Bs,s—1t)) = (r —ry)B,
t

e_(r_rf)(s"t)N(—zl(Bt, B, s — t))] ds, (33)
where
p1= K¢ " T-ON(—zy( B, K* T — ) = §7e~ DTN (—ay(B;, K™, T — 1)),

and z; and z, are as defined in (32) above. The formulae for hedge ratios can be obtained
in a straightforward manner from (31), and will not be presented here for in the interest of
brevity. Once the exercise boundary is computed using methods analogous to those described
in Section 2, the values and hedge parameters of options exercisable at discrete points can be
obtained from (31). The use of the Richardson extrapolation then yields the estimates of the
values and hedge parameters of the American-style quanto options.??

It should be noted that the pricing formula (31) can also be obtained directly using the
arguments underlying equation (7) and the fact that a closed-form solution exists for the
corresponding European-style option. Further, this scheme also applies to those non-standard
American-style pricing problems that cannot be recast in the framework of the general pricing

formula (9).



The above analysis illustrates the general principles to be applied in implementing the
recursive method to non-standard American-style options. Given that a closed-form solution
exists for the corresponding European-style option, one can set up the value-matching condition
as in (33) above. One can also write down the discrete time analog of (31) for the ¢-times
exercisable option, P;,i = 1,2,3..., and the corresponding ones for the hedge parameters. The
Richardson approximation can then be used to obtain the values of the American-style option

and the hedge parameters.

4 Conclusions

This paper has presented a method of recursive implementation of analytical formulae, taking
the early exercise boundary as given, for the value and hedge parameters of an American-style
option. The early exercise boundary is computed by using a Richardson approximation based on
options exercisable on (one, two, three etc.) discrete dates. The method can be implemented for
any American-style option for which a closed-form solution exists for the equivalent European-
style option. A unified analytical formula was derived for American-style put options on an
underlying security with a cost of carry. This formula can be applied to a range of standard
American-style options: options on stocks with dividends, options on futures, options on foreign
exchange and quanto options etc. The method was implemented for American put options on
non-dividend paying stocks, for ease of comparison with other methods in the literature.

The method presented in the paper has three attractive features. First, since its implemen-
tation is based on using an analytical formula for both option values and hedge parameters,
the latter are computed directly, rather than by perturbation of the option pricing formula.
Second, as a result, the computation is both efficient and accurate, since the analytical formula
involves only univariate integrals. The improvement in efficiency over competing methods is
especially advantageous in the management of options books in practice, since the implemen-
tation of dynamic trading strategies involves the computation of values and hedge ratios for
large numbers of options on a continuous basis. Third, the analytical formulae presented here
permit an intuitive decomposition of the value and the hedge ratios into three terms: that of a
corresponding European-style option, the gain in the time value of money and the loss in the
insurance value from early exercise.

Several modifications and extensions of the methods proposed in the paper can be explored
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in further research. First, the accuracy and efficiency of the method can be improved, particu-
larly for long term options, by exploring the possibility of unequal spacing of the discrete points
or by explicitly taking into account the slope of the exercise boundary between the discrete
points. Second, the method can be applied to the valuation of other American options such as
those with two or more sources of uncertainty, for instance, mortgage-backed securities, options
on bonds, foreign exchange or real assets in capital budgeting applications. In particular, the
applications to exotic options in these situations can be studied in greater detail. Third, the
valuation of American options can be studied in the context of alternative stochastic processes

for the underlying asset. We leave these directions of enquiry for later work.
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Foot notes

1.

[}

10.

This is in the same sense that the Black-Scholes formula is an analytical formula, although

it involves numerical integration of the cumulative normal density function.

They also develop a lower bound on the option value using a capped option written on

the same underlying asset.

. We discuss and illustrate our numerical procedures for the lognormal diffusion process,

although the method can be applied to other diffusion processes using the formulae derived

by Kim and Yu (1993).

. This is a direct extension of the results in Carr, Jarrow and Myneni (1992) and Kim and

Yu (1993).

. The simple derivation of the ex-expiration-date early exercise boundary Br is as follows.

First, By < K. In addition, since holding an asset with a cost of carry, b, is equivalent to
holding a stock with a constant dividend ratio a = r —b, the early exercise decision at the
ex-expiration-date instant 7' — dt is justified if (rK — aBr)dt > 0, implying Br < rK/a.

Therefore, By = min( K, r K /a).

. In practice, we need to compute the “delta”, “gamma” and “vega” only, since the other

two comparative statics parameters are explicit functions of these values.

This is in the spirit of Kim (1990).

. The case of a non-constant exercise price (i.e., an exercise schedule) merits closer attention

even for short-term options, since the computational procedure has to adequately capture
all the points where there is a change in the exercise price, so as to be computationally

accurate and efficient.

. These approximations are made by replacing the integration in (9) by a simple sum over

exercisable points.

Other similar methods are Breen (1991), Bunch and Johnson (1992), Carr and Faguet
(1994), and Ho, Stapleton and Subrahmanyam (1994), which use the binomial method,
a maximization scheme, the method of lines, and an exponential approximation, respec-

tively, to calculate {P;}, and in turn, P,.
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11.

12.

13.

14.

15.

16.

17.

In the Geske-Johnson method, P; involves the calculation of two single integrals, P, the
calculation of two single and two double integrals, and P3 the calculation of two single,

two double, and two triple integrals.

Selby and Hodges (1987) present an identity relating a sum of nested multinormal in-
tegrals to a single multi-dimensional integral. Schroder (1989) improves Curnow and
Dunnett’s (1962) reduction formula for high dimensional normal integrals. However, the
Selby-Hodges method still involves computing high dimensional integrals. The Schroder
method has a significant advantage over the Curnow-Dunnett formula only when the di-
mension n > 5, and involves at least two hundred univariate integrals for n > 5. As a
result, a four-point extrapolation with these new reduction schemes is still slow, as noted

by Bunch and Johnson (1992).

This result is based on the assumption that the estimate Py of the true price Py has
the following structure: Py = Py + Sy a;h*, where a; are constants independent of
Py, m(> 1) is an integer and the series does not necessarily converge. Notice that the
Richardson extrapolation method is valid only if this assumption is satisfied [see, e.g.,
Dahlquist and Bjorck (1974)]. However, it is not clear that the Taylor expansion argument
used in Geske and Johnson (1984) can indeed justify this assumption. Results from our

attempt to answer this question numerically are inconclusive.

An improvement in the accuracy may also be achieved at a lower order extrapolation

using a more sophisticated integration scheme, say Simpson’s rule.

This formula was first obtained by Kim (1990) and elaborated upon by Carr, Jarrow and
Myneni (1992).

It would be interesting to include more methods for comparison, for instance, Carr and
Faguet (1994), and Broadie and DeTemple (1994). However, as mentioned before, the
implementation of these two methods involves using some regression coefficients, whose
values are determined from data sets that are different from ours. See these two papers

for a comparison of their methods against other methods.

Broadie and DeTemple (1994) also use option values from the binomial method with N =

10,000 time steps as their benchmark. Carr and Faguet (1994) use the average of values
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18.

19.

20.

21.

22.

from N = 1,000 and N = 1,001 as their benchmark.

The Geske-Johnson method is left out in Table 3 because no results about gammas for

the same contracts are reported in Geske and Johnson (1984).

Notice that two of the gamma values from the accelerated binomial method in column 6
are negative and that another one with K = 45, 0 = 0.2, and T = 0.3333, though positive,
deviates significantly from the corresponding benchmark value. This may be due to the
fact that the accelerated binomial method is an approximation of the Geske-Johnson
formula (also an approximation). This calls for caution when one uses the accelerated

binomial method to compute hedge parameters.

In this paper, we present the valuation framework in terms of the Nikkei index put
warrants. The same intuition and valuation methodology can be applied to the valuation
of other types of contingent claims on a foreign stock index, as well as the valuation
of dollar-denominated cross-currency warrants, such as warrants on the Yen/DM cross-

currency rate.

Our method also applies to some variations on the basic quanto structure analyzed here.

An example is the flexible exchange rate case. [See DRS for details.]

Numerical results are available from the authors upon request.
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Table 1

Values of American Put Options on Stocks Using Different Numerical Methods
(S = $40; r = 4.88%)

0] @ @) @ ) ®) @ ) ®

Binomial Geske- Binomial Accelerated Finite- Recursive
K o T(yr) (N =10,000) Johnson (N =150) Binomial Difference Method
35 0.2 0.0833 0.0062 0.0062 0.0061 0.0061 0.0278 0.0062
35 0.2 0.3333 0.2004 0.1999 0.1995 0.1994 0.2382 0.2004
35 0.2 0.5833 0.4328 0.4321 0.4340 0.4331 0.4624 0.4337
40 0.2 0.0833 0.8522 0.8528 0.8512 0.8517 0.9874 0.8543
40 0.2 0.3333 1.5798 1.5807 1.5783 1.5752 1.6244 1.5873
40 0.2 0.5833 1.9904 1.9905 1.9886 1.9856 2.0177 1.9987
45 0.2 0.0833 5.0000 4.9985 5.0000 4.9200 5.0052 5.0020
45 0.2 0.3333 5.0883 5.0951 5.0886 4.9253 5.1327 5.0954
45 0.2 0.5833 5.2670 5.2719 5.2677 5.2844 5.2699 5.2631
35 0.3 0.0833 0.0774 0.0744 0.0775 0.0772 0.1216 0.0775
35 0.3 0.3333 0.6975 0.6969 0.6993 0.6977 0.7300 0.6978
35 0.3 0.5833 1.2198 1.2194 1.2239 1.2218 1.2407 1.2233
40 0.3 0.0833 1.3099 1.3100 1.3083 1.3095 1.3860 1.3116
40 0.3 0.3333 2.4825 2.4817 2.4799 2.4781 2.5068 2.4919
40 0.3 0.5833 3.1696 3.1733 3.1665 3.1622 3.1819 3.1842
45 0.3 0.0833 5.0597 5.0599 5.0600 5.0632 5.1016 5.0604
45 0.3 0.3333 5.7056 5.7012 5.7065 5.6978 5.7193 5.6970
45 0.3 0.5833 6.2436 6.2365 6.2448 6.2395 6.2477 6.2303
35 0.4 0.0833 0.2466 0.2466 0.2454 0.2456 0.2949 0.2467
35 0.4 0.3333 1.3460 1.3450 1.3505 1.3481 1.3696 1.3468
35 0.4 0.5833 2.1549 2.1568 2.1602 2.1569 2.1676 2.1603
40 0.4 0.0833 1.7681 1.7679 1.7658 1.7674 1.8198 1.7694
40 0.4 0.3333 3.3874 3.3632 3.3835 3.3863 3.4011 3.3970
40 0.4 0.5833 4.3526 4.3556 4.3480 4.3426 4.3567 4.3699
45 0.4 0.0833 5.2868 5.2855 5.2875 5.2863 5.3289 5.2853
45 0.4 0.3333 6.5099 6.5093 6.5103 6.5054 6.5147 6.5128
45 0.4 0.5833 7.3830 7.3831 7.3897 7.3785 7.3792 7.3865

RMSE 0.0000 4.8045¢-2 2.3742e-02 3.1772¢-01 3.6937e-01 6.0342e-02

CPU time (sec) 1.1766e+00 7.8330e-01 6.4664e+4+00 1.3333e-01

Columns 1-3 represent the values of the parameters, K (strike price), o (volatility), and T (the time to expiration),
respectively. Column 4 shows the numerical results of option values from the binomial method with N = 10,000
time steps (the benchmark). Column 5 is as reported in Table I of Geske and Johnson (1984). Columns 6-9
show the results from the binomial method with N = 150 time steps, the accelerated binomial method with 150
time steps, the finite difference method with 200 steps in both time and the underlying state variable, and the
recursive method with n = 4 (a four-point extrapolation), respectively. The second last row shows the root of the
mean squared errors (RMSE), a measure of deviation from the benchmark. The CPU time is the time required
to compute the option values for all the 27 contracts listed in the table on a SPARC-10 machine. Note that the
RMSE values shown here in column 8 for the finite-difference method can be reduced by using smaller grid sizes,
but at expense of more CPU time. For instance, using 100 steps in time and 500 steps in the underlying state
variable gives RMSE = 6.0027e-2 and CPU time = 8.2997 (sec).
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Table 2

Hedge Ratios (Deltas) of American Put Options on Stocks Using Different Numerical Methods
(S = $40; r = 4.88%)

M @) ) @ 5) ©) ™ ®) 9)

Binomial Geske- Binomial Accelerated Finite- Recursive
K o T(yr) (N =10,000) Johnson (N =150) Binomial Difference Method
35 0.2 0.0833 -0.0080 -0.008 -0.0081 -0.0081 -0.0522 -0.0080
35 0.2 0.3333 -0.0901 -0.090 -0.0911 -0.0913 -0.1337 -0.0900
35 0.2 0.5833 -0.1338 -0.134 -0.1355 -0.1352 -0.1692 -0.1351
40 0.2 0.0833 -0.4693 -0.470 -0.4698 -0.4690 -0.5738 -0.4712
40 0.2 0.3333 -0.4435 -0.443 -0.4443 -0.4425 -0.5083 -0.4416
40 0.2 0.5833 -0.4287 -0.427 -0.4299 -0.4297 -0.4821 -0.4228
45 0.2 0.0833 -1.0000 -1.000 -1.0000 -0.9867 -0.9617 -0.9993
45 0.2 0.3333 -0.8812 -0.888 -0.8803 -0.7439 -0.8897 -0.8964
45 0.2 0.5833 -0.7948 -0.805 -0.7944 -0.6271 -0.8355 -0.8112
35 0.3 0.0833 -0.0516 -0.052 -0.0526 -0.0524 -0.1041 -0.0516
35 0.3 0.3333 -0.1741 -0.174 -0.1758 -0.1758 -0.2067 -0.1744
35 0.3 0.5833 -0.2126 -0.213 -0.2144 -0.2140 -0.2372 -0.2145
40 0.3 0.0833 -0.4695 -0.470 -0.4699 -0.4697 -0.5437 -0.4710
40 0.3 0.3333 -0.4420 -0.442 -0.4429 -0.4409 -0.4810 -0.4429
40 0.3 0.5833 -0.4256 -0.425 -0.4268 -0.4253 -0.4544 -0.4243
45 0.3 0.0833 -0.9233 -0.926 -0.9220 -0.8762 -0.9111 -0.9293
45 0.3 0.3333 -0.7266 -0.726 -0.7260 -0.7302 -0.7516 -0.7229
45 0.3 0.5833 -0.6520 -0.651 -0.6520 -0.6576 -0.6776 -0.6459
35 0.4 0.0833 -0.1062 -0.106 -0.1073 -0.1072 -0.1526 -0.1062
35 0.4 0.3333 -0.2260 -0.226 -0.2277 -0.2278 -0.2502 -0.2265
35 0.4 0.5833 -0.2539 -0.254 -0.2557 -0.2553 -0.2714 -0.2558
40 0.4 0.0833 -0.4668 -0.467 -0.4673 -0.4673 -0.5236 -0.4679
40 0.4 0.3333 -0.4360 -0.437 -0.4370 -0.4362 -0.4626 -0.4376
40 0.4 0.5833 -0.4173 -0.418 -0.4186 -0.4162 -0.4360 -0.4177
45 0.4 0.0833 -0.8363 -0.835 -0.8350 -0.8364 -0.8478 -0.8341
45 0.4 0.3333 -0.6475 -0.646 -0.6474 -0.6479 -0.6678 -0.6424
45 0.4 0.5833 -0.5819 -0.580 -0.5819 -0.5833 -0.5982 -0.5753

RMSE 0.0000 2.2760e-2 9.5337e-03 3.8499%e-01 3.7994e-01 4.6532e-02

CPU time (sec) 3.5315e4+00 2.3332e400 6.4664e+00 1.3333e-01

Columns 1-3 represent the values of the parameters, K (strike price), ¢ (volatility), and T (the time to expiration),
respectively. Column 4 shows the numerical results of option values from the binomial method with N = 10,000
time steps (the benchmark). Column 5 is as reported in Table I of Geske and Johnson (1984). Columns 6-9
show the results from the binomial method with N = 150 time steps, the accelerated binomial method with
150 time steps, the finite difference method with 200 steps in both time and the underlying state variable, and
the recursive method with n =4 (a four-point extrapolation), respectively. The second last row shows the oot
of the mean squared errors (RMSE), a measure of deviation from the benchmark. The CPU time is the time

required to compute the delta values for all the 27 contracts listed in the table on a SPARC-10 machine.
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Table 3

Convexity Parameter (Gammas) of American Put Options on Stocks Using Different Numerical Methods

(S = $40; r = 4.88%)

5 2) 3 @) (5) ®) @ (8)

Binomial Binomial Accelerated Finite- Recursive

K o T(yr) (N =10,000) (N =150) Binomial Difference Method
35 0.2 0.0833 0.0095 0.0096 0.0095 0.0273 0.0095
35 0.2 0.3333 0.0357 0.0358 0.0359 0.0434 0.0358
35 0.2 0.5833 0.0364 0.0364 0.0361 0.0412 0.0374
40 0.2 0.0833 0.1776 0.1772 0.1757 0.1638 0.1759
40 0.2 0.3333 0.0923 0.0922 0.0928 0.0942 0.0870
40 0.2 0.5833 0.0719 0.0718 0.0736 0.0748 0.0669
45 0.2 0.0833 0.0000 0.0000 0.0132 0.0106 0.0010
45 0.2 0.3333 0.0827 0.0829 0.3140 0.0541 0.0804
45 0.2 0.5833 0.0787 0.0785 -0.2757 0.0755 0.0860
35 0.3 0.0833 0.0306 0.0308 0.0307 0.0422 0.0306
35 0.3 0.3333 0.0376 0.0376 0.0376 0.0409 0.0381
35 0.3 0.5833 0.0326 0.0325 0.0322 0.0344 0.0332
40 0.3 0.0833 0.1170 0.1168 0.1160 0.1160 0.1173
40 0.3 0.3333 0.0597 0.0596 0.0592 0.0601 0.0579
40 0.3 0.5833 0.0459 0.0458 0.0461 0.0462 0.0434
45 0.3 0.0833 0.0578 0.0581 -0.1188 0.0393 0.0615
45 0.3 0.3333 0.0572 0.0571 0.0599 0.0519 0.0614
45 0.3 0.5833 0.0485 0.0484 0.0509 0.0471 0.0517
35 0.4 0.0833 0.0398 0.0399 0.0399 0.0469 0.0398
35 0.4 0.3333 0.0330 0.0329 0.0329 0.0345 0.0334
35 0.4 0.5833 0.0269 0.0268 0.0266 0.0276 0.0272
40 0.4 0.0833 0.0872 0.0871 0.0866 0.0869 0.0877
40 0.4 0.3333 0.0441 0.0440 0.0437 0.0441 0.0434
40 0.4 0.5833 0.0336 0.0336 0.0333 0.0337 0.0324
45 0.4 0.0833 0.0590 0.0591 0.0608 0.0459 0.0612
45 0.4 0.3333 0.0439 0.0438 0.0450 0.0417 0.0431
45 0.4 0.5833 0.0355 0.0354 0.0365 0.0346 0.0347

RMSE 0.0000 1.2899e-03 7.9471e-01 8.3037e-02 2.2949e-02

CPU time (sec) 3.5332e4+00  2.3332¢e4+00 6.4664e+00 1.3333e-01

Columns 1-3 represent the values of the parameters, K (strike price), o (volatility), and T (the time to expiration},
respectively. Columns 4-8 show the numerical results of gamma values from the binomial method with N =
10,000 time steps (the benchmark), with N = 150 time steps, the accelerated binomial method with 150 time
steps, the finite difference method with 200 steps in both time and the underlying state variable, and the recursive
method with n = 4 (a four-point extrapolation), respectively. The second last row shows the root of the mean
squared errors (RMSE), a measure of deviation from the benchmark. The CPU time is the time required to
compute the gamma values for all the 27 contracts listed in the table on a SPARC-10 machine.
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