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The Use of Low Discrepancy Points in Valuing Complex Financial
Instruments

by Graham Lord, Spassimir Paskov, and Irwin T. Vanderhoof

Abstract:Modern finance has evolved the use of very complex
financial instruments. Stock and interest rate options fit this
description. Another example of such an instrument would be a
mortgage pool involving many tranches and providing relationships
between the tranches so that the payoff on one tranche depends upon
the amounts paid upon other tranches over the whole history of the
pool. Since the valuation of this last instrument would involve a
separate probability distribution for each period over the whole
period of the pool, the calculation could involve 360 separate
probability distributions over the whole period. It would require,
then, a multiple integration over all these periods, all 360 of

them. Such calculations are generally not possible on an exact
basis so that numerical integration must be used. In such an
environment only Monte Carlo methods are practical. Certain

selected sequences of values called "low discrepancy points" are
theoretically more efficient in this kind of calculation than the
random numbers usually generated for Monte Carlo calculations.
This paper di?cusses the theoretical basis for such a claim
(Niederreiter covers much of the material in a more rigorous
fashion.), the calculation of such points, and illustrations of the
results of using such methods on several real problems.

The Nature of Low Discrepancy Points

The term "low discrepancy points" is not commonly used in
numerical analysis or statistics and a definition of the term is a
necessary place to start this discussion. We shall provide a
heuristic definition. The term derives from something called the
L, discrepancy problem.

The deiscrepancy problem starts with a unit hypercube - that
is a cube of more than three dimensions. Each edge of the cube has
a length of one unit. The volume of the cube is therefore 1. Let
us assume that there is a large number of points to be distributed
within the cube. How can these points be distributed so that if
any volume in the cube is selected the proportion of the points
within the volume is as "close" as possible to the volume itself?

It seems obvious that such a distribution of points should be
possible, It should also be obvious that unless the number of
points is very large indeed that the results will not be
satisfactory. The discrepancy between the percentage of the total
number of points and the volume will differ for a higher portion of
all the possible volumes as the number of points decreases. It is
not so obvious, but true nonetheless, that a uniformly spaced grid
is not the appropriate solution for the problem. The use of a grid
leaves large well defined volumes that have no points in them!
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Points which provide, on the average, a close fit between these two
numbers provide a low discrepancy and are therefore so named.

Such a selection of points was originally of interest in
number theory, but the application is not obvious. Suppose,
however, that each dimension of the cube is identified as the value
of a Cumulative Distribution Function (CDF) of random variates. If
the possible values of the variate run from 1 through 10 then the
CDF for values of the variate less than 1 is zero and the value of
the CDF for values of the variate greater than 10 is 1. If the
value of the variate is set at 4 , and the corresponding CDF is .3,
this means that for a very large number of selections of the
variate the percentage that would be less than 4 would be 30%, or
.3 and the proportion over 4 would be .7. Further, if the value of
the variate is set at 5 and the value of the CDF is .65 we can say
that 65% of the trials would produce a result less than five. We
can further say that the probability of a value between 4 and 5 is
35%.

In addition, we <can note that for the probability
distributions that are common in financial usage, there is a single
value of the variate corresponding to each value of the CDF. The
CDF of .3 corresponds to a value of 4 of the variate and a value of
the CDF of .5 would correspond to a value of the variate between 4
and 5. The exact value could be calculated subject to complete
specification of the probability distribution. If we are dealing
with a series of independent variates then the dimensions of our
hypercube could be interpreted as the separate CDF's corresponding
to these variables. A volume within the hypercube would then be
interpreted as the measure of the probability of occurrence of an
event within the range of the variates corresponding to the values
of the CDF's that define the volume.

Let us look at an example. Supposing a volume inside such a
cube is defined by .3 to .65, .3 to .65 and 0 to 1. If all three
random variates have the distribution described above then the
probability of an event between 4 and 5 in the first and second
dimensions and any value for the third dimension would be .35 x .35
x 1 = .1225 = 12.25%.

The application of low discrepancy points to Monte Carlo
problems can thus be formulated. If we interpret the hypercube as
one whose linear dimensions are the values of CDF's of the
different random variables we are using in a calculation and these
variates can be structured so that they are independent, then each
point represents values of all the variables involved. If the
variables are interest rates for each month over the next 30 years,
then a single point represents a path for interest rates over that
whole period. If the number of points is very large we could say
that the number of samplings from within each probability volume is
proportional to the probability itself. This is one characteristic
that we would expect if the numbers were chosen at random. In
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addition we would expect that there would be the same size
probability volume surrounding each of the points. If one more
point was added we would expect that there would be a
redistribution of the volumes such that the statement would still
be true.

The final conclusion is as follows. By using low discrepancy
points to define the CDF's of the variables and using the inverse
function to solve for the actual variates themselves, we have
availed ourselves of the most efficient method of sampling the
probability space. This approach should dependably provide the
values we expect to get from the use of random numbers in Monte
Carlo calculations.

There are, however, several caveats. The results described
would be true for very large number of such points. In theory,
there should be advantages in the use of low discrepancy points for
problems with a low number of dimensions. It is not clear how this
advantage would change as the number of dimensions increases. Low
discrepancy points should always be at least as efficient as random
numbers. However, for there to be adequate reason to change to a
new method of implementation of Monte Carlo, there should be
evidence that the advantages are real for smaller numbers of
calculations in higher dimensions. This is subject to empirical
investigation.

Calculation of Low Discrepancy Points for Monte Carlo

The essence of these low discrepancy points is that they are
anti-correlated. The earliest of fuch sequences of numbers seems
to be the van der Corput sequence

Construction of a van der Corput sequence would require the
initial choice of the number of terms, "N", to be calculated and
the base in which numbers were to be expressed. Let the base
chosen be "p'", a prime number. Express each number, "n"<N in base

p.
Any non-negative integer can be expressed

n =% c; pj,jzo (For example, 7 = (1x30 + 2x3H

] ]
Define the radical-inverse function "P" in base p by

P(n) = I c; -J-1 ( P(7) = 1/3 + 2/9 )

Note that 0 £ P(n) < 1. The van der Corput sequence in base
p is then;

P(0), P(1), P(2), ...P(n).
Hammersleyzsays "Furthermore, we may justifiably suspect that
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there exists a deterministic way of chosing the N points in the
hypercube that will be better than the Monte Carlo method." He
specifically suggested that for a two dimensional problem the van
der Corput sequence could be used to develop a series of points
that should be efficient for Monte Carlo calculations. His
argument was in terms of the low discrepancy characteristic of
these points. The coordinates of these points in two dimensions
would be:

n/N, P(n).

Hammersley further conjectured that for higher dimensional
problems a more complex set of coordinates could be developed.
This sequence would involve a series of prime numbers: P1, Py, Py
etc., and the corresponding radical inverse functions Py, Py, Py,
etc. The coordinates of these points within the hypercube would be

n/N, Py(n), Py(n),Py(n),....

T?e set of points from n= 1 to n=N are Hammersley points.
Halton’ showed that the discrepancy for this sequence has a defined
upper limit which is less than a power of log N and is a result
favorable compared to random numbers. (The points whose
coordinates are

Pl(n), Pz(n), P3(n),.... are referred to as
Hammersley-Halton points or Halton points.)

Roth! has shown that the L, discrepancy must be at least on
the order of

n*(log n)(d'”/2 and that this result is sharp.

This discrepancy is minimized for Hammersley points with a
small and unknown amount added to the first dimensional coordinate.

WoZniakowski% and Traub and Wozniakowskil ! (and o;her
publications) established that these "shifted" Hammersley points
would be efficient in Monte Carlo calculations.

There are, however, at least two problems with Hammersley
points. The first is that the amount by which the first dimension
must be shifted is unknown. The theoretical result is therefore
not being achieved. The use of classical Hammersley points is
possible with some minor loss in efficiency. The second problem is
that the construction of Hammersley points is such that if an
additional point is to be added, a reconstruction of all previously
calculated points is necessary.

For these reasons other sets of low discrepancy points have
been investigated and used in Monte Carlo calculations. Faure
points and Sobol points have been used with success as recounted
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later. Niederreiter Points are another variation in this
methodology which has not yet been tested in application to
financial problems.

Briefly, Faure points are constructed by choosing a value of
the prime number "p" higher thﬁn the dimensionality of the problem
and calculating the values of cj from

n = rle. pJ The values of higher order coefficients are
then calculated ﬂy recursion.

kc-(n) =2 C(i,3,) k-lg, (n) (mod p) where the summation is
over i to N'with i>j. C(1 j)= 1'/(3'(1 )

The calculation for Sobol peints 1is more complex and the
reader may refer to Niederreiter' for more details and a more
comprehensive discussion of the various low discrepancy series in
Monte Carlo calculations.

Other series are under study. However, the characteristic of
all these multidimensional points is that additions to the series
fill up gaps left by previous entries. Because of their anti-
correlated attribute, they seem to find the empty places in the
matrix and fill them up. Figure 1 is a two dimensional graph of
points whose coordinates are chosen by standard random number
generators. Figures 2 and 3 are respectively 512 and 1024 points
whose coordinates are developed from the Faure sequence.

Applications

Three reports are known to exist on the use of low discrepancy
points in the Monte Carlo valuation of complex financial

instruments. Rupert Brotherton-Ratcliffe of General Re. made a
presentationg(unpublished) at a meeting of Ehe Society of Actuaries
on May 23, 1995. Joy, Boyle, and Tan have presented their

findings at a seminar at Columbia. Paskov** has also made several
presentations of his conclusions.

Before presenting some detailed discussion of each of these
studies we will present the conclusions reached by all of the
authors. They are as follows:

1) The calculation of the low discrepancy points (quasi-
random numbers) is easier and less expen51ve than the use of the
common random number generators.

2) The convergence of the calculations is more rapid by
a factor of 5 to 10, and smoother, than that found using common
random number generators.

3) The actual values to which the functions qonyerged
when the common pseudo-random number generators were used indicated
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a bias which seemed to be a dependence upon the starting seed used
in the random number generator.

4) The convergence of the 1low discrepancy point
calculations seemed to be considerably better than the theoretical
expectation.

The Brotherton-Ratcliffe study concerned the valuation of
stock options where the stock price followed a standard Weiner
process and the option was based upon the arithmetic or the
geometric average price of the stock. Both Faure and Sobol points
radically outperformed random numbers for four periods. For 48
periods the Sobol points again outperformed random numbers.

The Joy, Boyle, Tan study centered around the use of Faure
points in their calculations. They studied an option on the
geometric mean of three assets, an option on a basket of 60% light
sweet crude and 40% natural gas, an Asian option involving
averaging over 52 periods, and a six month option to enter into a
1 year natural gas swap. They attempted to use realistic models
for the prices of the securities.

They conclude that the Faure sequences provide more rapid and
regular convergence than do common random number generators for a
number of reasons. Perhaps the most important is that the random
number generators generate numbers according to some set formulas.
In very high dimensions there may be patterns which bias the
results. Another possible reason might be that even if the numbers
are random we would expect some results to be very bad as well as
some being very good - just by chance. Low discrepancy points
should give dependable results. :

Additionally these calculations do not take into consideration
the regularity of the integrand. Financial functions may be
especially smooth and therefore well adapted to calculations using
low discrepancy points.

The Paskov study is probably the most comprehensive work on
this subject to date. The object studied was a Collateralized
Mortgage Obligation (CMO) called "Fannie Mae REMIC Trust 1989-23"
This is a pool of 30 year mortgages having therefore 360 cash
flows. Interest rates were assumed to vary according to a log
normal distribution and prepayments were modeled according to an
arctangent function (the form was suggested by Goldman Sachs as one
which had been used on Wall Street in the past). The CMO had ten
tranches including the Z tranche. The distributed results focused
upon the A tranche as a representative example of each of these
financial interests.

In most cases there were 1,000,000 iterations of the
calculations to arrive at an answer. Calculations were done using
Halton po%?ts, Sobecl points and the random number generators Ranl
and Ran2 . Figure 4 shows a result for Tranche A using Ranl
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(1988 edition of Numerical Recipes) with four different seeds to
start the calculation. The results were similar, though not so
striking for Ran2.

This study also made a comparison with the use of antithetic
variables as a variance reduction method. The technique of
antithetic variables involves the creation of a new function that
will have the same expected value as the original function but a
lower standard deviation. Since the error bound in Monte Carlo
calculations is proportional to the standard deviation of the
function and inversely proportional to the square root of the
number of points in the calculation, a reduction in the standard
deviation will reduce the number of points needed for a given level
of expected average accuracy.

In this comparison also, Sobol points provided more rapid and
smooth convergence than the antithetic variable approach even using
the superior Ran2 random numbers. Figure 5 shows the results of
Sobol points, Halton points, and two runs of antithetic variables
using Ran2 (1992 edition of Numerical Recipes). It was also found
that the Sobol points converged to a result that was the average of
twenty separate runs using antithetic variables with different
seeds for Ran2. Considering all 10 tranches and 20 runs (200
cases), the Sobol point run was closer to this average than the
antithetic variable runs in 131 cases and closer than traditional
Monte Carlo in 171 cases. Figure 6 illustrates this result.

Finally, calculations were performed using small numbers of
points to test the results under this restriction. The use of
Sobol points still provided superior results. :

Conclusion

In tests involving different persons, different institutions,
different financial instruments, and different methodologies, low
discrepancy points have proved more efficient than pseudo-random
number generators in speed and accuracy. They must be seriously
considered in the future in types of calculation involving complex
financial instruments. Two remaining matters need to be addressed.
They are the paradox of the marked superiority of these methods
over common random number generators, and the other advantages of
the use of these techniques over variance reduction methodology.

While there are theoretical demonstrations of the superiority
of low discrepancy points over random numbers in low dimensions,
this advantage may diminish in high dimensional calculations.
However, we have three separate demonstrations that this is not the
case. The superiority seems most evident in the high dimensional
calculations. The argument that this is somehow due to chance does
not seem plausible. If that were the case many of the results
would go the other way and the superiority would not be so
striking.



The nature of financial calculations is often that the early
results are most important and that later events have less impact
on the final result due to discounting. If we are dealing with
thirty year instruments then the results of the first five or ten
years have the greatest impact on present values. The second named
author speculates that since Sobol points are more evenly
distributed in the early periods of the calculation the results we
obtain from these low discrepancy points are more robust than those
from pseudo-random numbers.

The last named author speculates that the real reason is that
the theoretical results attributed to Monte Carlo assume that there
is a source of random numbers. However, no one knows how to
produce true random numbers. Any mathematical formula will produce
some kind of cycle and therefore some kind of bias. This seems to
regularly show up in studies of higher dimensional arrays. A
physical process would also have some kind of bias depending upon
the actual experimental arrangements. Realistically, no one even
wants a truly random process. We want numbers that can be reused
so that we can calibrate a new formula to old results and so that
we can conveniently improve accuracy by increasing the number of
points. Low discrepancy points will be used because they produce
the results theoretically predicted for random numbers but are more
convenient than actually trying to get random numbers. A
comparison with the use of variance reduction techniques must
mention the fact that the variance reduction technology requires
specific special research for each new problem. The low
discrepancy points can be used where ever the CDF's are known.

The last point to mention is the other major advantage in the
use of low discrepancy points. That advantage is that they provide
a full sampling of the entire space. The first and last named
authors have used Faure points in the construction of interest rate
scenarios for experiments on asset liability management. They were
used rather than pseudo-random scenarios because with Faure points
we could be assured that there was reasonable representation of all
the possible future according to the assumed interest rate
distributions. Random scenarios could not assure that there was
reasonable representation of all the possibilities. This last
point also applies to the comparison with the effectiveness of
variance reduction techniques. Even if such a technique were to
produce as rapid a convergence, the essence of variance reduction
techniques is the loss of the shape of the function. All higher
moments are lost. The use of low discrepancy points preserves all
higher moments of the probability distributions and therefore can
be used for judgement of risk, as well as expected return, on an
asset. Since each of the results has approximately the same
probability of occurrence, we have a representation of the CDF for
the results of the entire simulation. This is the first known
practical application of the 1low discrepancy points for
"reconstruction of a probability surface", a concept often
mentioned in the literature.
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Figure 6: Sobol and Halton runs for tranche A and an average of twenty antithetic

variables runs using RAN2
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