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Abstract

An Econometric Model of Credit Spreads with
Rebalancing, ARCH, and Jump Effects

In this paper, we examine the dynamic behavior of credit spreads on corporate bond

portfolios. We propose an econometric model of credit spreads that incorporates portfolio

rebalancing, the near unit root property of spreads, the autocorrelation in spread changes,

the ARCH conditional heteroscedasticity, jumps, and lagged market factors. In particular,

our model is the first that takes into account explicitly the impact of rebalancing and yields

estimates of the absorbing bounds on credit spreads induced by such rebalancing. We

apply our model to nine Merrill Lynch daily series of option-adjusted spreads with ratings

from AAA to C for the period January, 1997 through August, 2002. We find no evidence

of mean reversion in these credit spread series over our sample period. However, we find

ample evidence of both the ARCH effect and jumps in the data especially in the investment-

grade credit spread indices. Incorporating jumps into the ARCH type conditional variance

results in significant improvements in model diagnostic tests. We also find that while log

spread variations depend on both the lagged Russell 2000 index return and lagged changes

in the slope of the yield curve, the time-varying jump intensity of log credit spreads is

correlated with the lagged stock market volatility. Finally, our results indicate the ARCH-

jump specification outperforms the ARCH specification in the out-of-sample, one-step-

ahead forecast of credit spreads.

JEL Classification Codes: C22, C13, C53, G12.

Key Words: Credit risk; corporate bonds; credit spread index; index rebalancing; jumps.



1 Introduction

Accessing and managing credit risk of risky debt instruments has been a major area of

interest and concern to academics, practitioners and regulators, especially in the aftermath

of a series of recent credit crises such as the Russian default and the Enron and WorldCom

collapses. In particular, there has been a fast growing literature on models of credit risk

measurement.1 One measurement issue that is both interesting and challenging is the

credit risk of a portfolio of risky bonds. This is especially relevant for banks, pension funds,

insurance companies, and bond mutual funds. However, the literature on portfolio credit

risk is still new, especially in the area of empirical studies.

In this paper, we examine the time series behavior of credit spreads on corporate

bond portfolios and propose an econometric model for these spreads that incorporates

portfolio rebalancing, unit root, conditional heteroscedasticity, jumps, and Treasury bond

and/or equity market factors. More specifically, we apply this model to option-adjusted

spreads (OAS) of Merrill Lynch (ML) corporate bond indices for nine rating/maturity cat-

egories over January, 1997 through August, 2002.

There are a few benefits from examining credit spreads of corporate bond indices from

a major dealer.2 First, the ML credit spread indices are representative portfolios with

a given rating and maturity range, are updated daily, and are a leading index in credit

markets. Yields on several Merrill Lynch corporate bond indices are in fact quoted in the

Wall Street Journal. A credit spread index is also useful for corporate bond index funds

that track a corporate bond index. The accuracy of a tracking model depends crucially on

its assumptions on the interest rate and credit spread dynamics of the targeted index (see

Jobst and Zenios (2003)).

Second, credit spread indices could serve as the underlying instrument for credit deriva-

tives. There has been a rapid growing market for structured credit products recently, with

the total value exceeding $1 trillion in 2001 (Berd and Howard, 2001). Although there

are no credit derivatives written directly on credit spread indices in the market at this

moment, there are ongoing efforts in the industry to make this happen. For example,

Standard & Poor’s has announced that “S&P Credit Indices are now available for licensing

in association with derivative products, structured notes, reference obligations and other

applications” (Standard & Poor’s, 1999). To design and price credit derivatives based on
1See, for example, Caouette, Altman, and Narayanan (1998), Saunders and Allen (2002), Duffie and

Singleton (2003) and references therein.
2Three widely followed corporate bond indices covering both the investment-grade and high-yield cor-

porate bond markets are those published by Lehman Brothers, Merrill Lynch, and Salomon Smith Barney

(Reilly and Wright, 2001).
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a credit spread index, it is important to investigate first the time series properties of the

index.

Third, the ML high-yield indices each cover a substantial amount of high-yield issues (see

Appendix B). Existing studies on the dynamics of individual bond credit spreads have

mostly focused on monthly prices of investment grade bonds because of data constraints

(e.g., Duffee, 1999). A study of high-yield indices may help understand the general dynamics

of credit spreads in the high-yield bond market.

The dynamics of credit spread indices poses a challenge in the modelling of financial

time series. Like equity indices, a corporate bond index is often rebalanced, usually at a

monthly frequency, to maintain the qualifying criteria for the index. Although this issue is

always ignored in studies of equity indices, we believe that it should not be so in modelling

the behavior of a corporate bond index. This is because frequent portfolio rebalancing

has two direct impacts on the time series properties of portfolio credit spreads. First,

since large movements in credit spreads of an issuer are often accompanied by changes in

credit ratings, credit spreads on index rebalancing days are implicitly bounded by some

absorbing boundaries for rating based corporate bond indices. Second, the rebalancing

leads to changes in the index components and changes in the behavior of the index as well.

The econometric model we propose is flexible enough to capture these special features of

corporate bond indices. We assume that after rebalancing, the index credit spread process

restarts from a new level and that credit spreads on rebalancing days have a bounded

distribution. This distribution is a bounded transformation of the log-normal distribution,

and is assumed to be independent of any past history. The absorbing boundaries are

essential features of rating based credit spread indices, and should be incorporated into the

pricing of any financial products whose payoff is linked to the credit spread of a particular

rating class of bonds. To our knowledge, this study is the first to consider the effect of

rebalancing on the dynamics of credit spread indices and explicitly estimate the boundaries

(induced by rebalancing) of spreads on rebalancing days.

Admittedly, the independence assumption is rather strong, as a considerable number of

bonds will likely remain in the index upon rebalancing, but is made for the following reasons.

First, we do not have data information about the degree of memory refreshing. Second, the

independence assumption facilitates maximum likelihood estimation of the bounds. Third,

log-credit spreads behave like unit root processes, but are likely mean reverting in the long

run. The independence of the log-spread on rebalancing days allows the log-spread to be a

unit root process in between rebalancing days while still being mean-reverting.

We propose a renewal ARX-ARCH-Jump specification to model the behavior of the log-

arithm of credit spreads between two adjacent rebalancing days. (Non-negativity of credit
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spreads makes it natural to focus the time series study of credit spreads on the logarithm.)

Empirical evidence has documented that credit spreads exhibit volatility clustering and rare

extreme movements. For instance, Duffee (1999) notices that failure of incorporating the

GARCH effect in the conditional variance of individual bond credit spreads has resulted

in model specification errors. Pedrosa and Roll (1998) find strong GARCH effect and non-

normality in the distribution of log credit spread changes at the index level. However, a

GARCH conditional variance specification for rebalanced credit spread portfolios is not

plausible because of the vanishing memory due to rebalancing. For this reason, we adopt

an ARCH specification with limited memory. In addition, we incorporate state-dependent

jumps in our modelling of the dynamics of credit spreads. The jump probability is allowed

to depend on the lagged general market conditions. Similar specifications have been used

in studies of the dynamics of interest rates and exchange rates (e.g., Vlaar and Palm, 1993,

Bekaert and Gray, 1996, and Das, 2002).

We estimate our model using daily credit spreads of various Merrill Lynch corporate

bond indices from December 31, 1996 to August 30, 2002. Our main findings are as follows.

First, credit spreads of various indices do not exhibit clear mean-reversion over our sample

period. A comprehensive unit root/stationarity analysis is first carried out to determine the

integration order of log credit spreads between rebalancing days. The unit root hypothesis

is preferred in all the tests we performed. As a result, the empirical behavior of credit

spread indices could be characterized as a process where credit spreads behave as unit root

process in between rebalancing days, but are regularly pulled back into certain bounds

through rebalancing. The unit root property of credit spread indices we have found here

in between rebalancing days is consistent with the findings of Pedrosa and Roll (1998)

using daily investment-grade option-adjusted spread indices of about one and half years,

but contradictory to the clear mean-reversion of individual bond credit spreads reported in

Duffee (1999) over a longer time period.

Second, lagged Russell 2000 index returns and changes in the slope of the Treasury

yield curve are significant predictors of the credit spread movement. Higher returns on the

Russell 2000 index are followed by decreasing credit spreads and the relationship is stronger

for lower rated bonds. For investment-grade indices, a steeper yield curve indicates lower

spreads on the next day. These results provide evidence that changes in credit spread are

driven by changes in market conditions on a daily basis.

Third, we find that jumps play an important role in modelling the dynamics of credit

spreads and that the jump intensity depends on the lagged level of CBOE VIX implied

volatility index. Jumps affect credit spreads mainly through the conditional volatility of

changes in log credit spreads. Our in-sample model diagnostic tests indicate that the
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model featuring both ARCH effect and jumps describes the data much better than the

model without jumps. One-step-ahead forecast comparisons over the most recent three

years provide further support on the statistical and economic significance of jumps in the

dynamics of credit spreads.

To ensure that the predictable component we have identified in the movement of credit

spreads is not due to slow adjustment to market information in the Merrill Lynch trading

desk bid prices, we also apply our model specification to daily spreads from the S&P

industrial investment-grade and speculative-grade credit indices from January, 1999 through

August, 2002. The results are largely consistent with the findings with the Merrill Lynch

data.

This article is not the first to examine empirically the daily dynamics of corporate bond

credit spread indices, although the model specification introduced here is new. Pedrosa

and Roll (1998) study the daily properties of 60 investment-grade option-adjusted spread

indices from Bloomberg between October, 1995 and March, 1997. They find that a Gaussian

mixture could better describe the empirical distribution of credit spread changes and that

the credit spread changes exhibit a GARCH type conditional variance. However, they do

not formally model the dynamic behavior of credit spreads and do not consider the index

rebalancing effect either.

The remainder of the paper is organized as follows. Section 2 outlines the economet-

ric framework we propose for modelling the dynamics of credit spreads on corporate bond

portfolios that are subject to regular portfolio rebalancing. Section 3 describes the Merrill

Lynch credit spread data set used in our empirical analysis. Section 4 contains the esti-

mation results and diagnostic and robustness tests. Section 5 discusses the out-of-sample

forecast issue and the implications for credit spread risk measurement and management.

Section 6 concludes.

2 An Econometric Model of Corporate Bond Credit Spreads

In this section we describe our model of credit spreads on corporate bond portfolios. We will

discuss the models for spreads on rebalancing days and on non-rebalancing days separately.

2.1 Model Specifications

Previous studies have documented that the unconditional distribution of credit spread

changes exhibits leptokurtosis (Pedrosa and Roll 1998). In various continuous time models

such as those used in Duffee (1999), the conditional variance of changes in credit spreads is a

function of the level of credit spreads. This method is valid only when the time series under
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studies is stationary. Duffee (1999) finds that the error terms from these models still exhibit

GARCH type effect. Pedrosa and Roll (1998) describe the unconditional distribution of

credit spread changes as Gaussian mixtures with fixed probabilities, and the conditional

variance is modelled as a GARCH process. However, as mentioned earlier, the GARCH

conditional variance specification for rebalanced credit spread portfolios is not plausible

because of the vanishing memory. For this reason, we adopt an ARCH specification with

limited memory.

Empirical studies have provided ample evidence that the GARCH type specification is

generally insufficient to describe the dynamics of financial time series that are featured by

occasional large discontinuous movements. Models that incorporate both GARCH feature

and jumps have been shown to result in significant model improvements in the studies of

exchange rates (Vlaar and Palm, 1993, Bekaert and Gray, 1996) and interest rates (Das,

2002). The credit market is subject to substantial surprises that would induce significant

jumps in the credit spread movement. The defaults of the Russian government, Enron and

WorldCom are just typical examples of information surprises that would induce jumps in the

systematic risk of corporate bond credit spreads. For these reasons, our model incorporates

both ARCH and jumps.

Another aspect of our model specification is related to the information content of general

market conditions on the systematic risk of corporate bond credit spreads. The BIS (1998)

requirements for controlling “spread risk,” “downgrade risk” and “default risk” call for

credit risk models that fully integrate market risk and credit risk. Jarrow and Turn-

bull (2000) are among the first to incorporate general market conditions, as reflected in

changes in the spot interest rate and equity market indices, into the reduced-form models

of corporate bond pricing (e.g. Duffie and Singleton 1999; Jarrow and Turnbull 1995).

Huang and Kong (2002) document that changes in the ML index credit spreads are closely

correlated with the concurrent changes in interest rates and equity market index. A more

interesting issue for credit risk measurement and management purpose is to look at the in-

formation content of lagged general market information on the movement of credit spreads.

Understanding the predictable component in the daily movement of corporate bond credit

spread would help credit risk measurement and management. In our specification, we allow

for the movement of credit spreads to depend on lagged market information.

As mentioned in the introduction, rebalancing has two direct impacts on the observed

credit spreads of a particular rating/maturity index. First, since large movements in credit

spreads of an issuer are often accompanied by changes in credit ratings, credit spreads

on index rebalancing days are implicitly bounded by some absorbing boundaries for rating

based corporate bond indices. Second, rebalancing wipes out part of the memory because of
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the changes in the index components. The econometric model we propose below is flexible

enough to capture these special features of corporate bond indices.

Let St be the credit spread of a given credit index/portfolio on day t, and Ωt denote

the information set available at t. Consider first the model specification of credit spreads

on rebalancing days. The credit spread St when t is a rebalancing day is assumed to be

given by:

St = α +
1

1/(β − α) + exp(−ur,t)
, (1)

ur,t = µr + εr,t, εr,t ∼ N
(
0, σ2

r

)

where α, β, µr and σr are parameters to be estimated (the subscription r refers to rebal-

ancing days) and 0 ≤ α ≤ β. It is easy to see that α < St < β and

lim
ur,t↑−∞

St = α (2)

lim
ur,t↑∞

St = β (3)

lim
α↓0,β↑∞

St = exp(µr + εr,t). (4)

As said before, under the specification given in Eq. (1), it is implicitly assumed that the

distribution of the credit spread on a rebalancing day is independent of the past, so that

index rebalancing wipes out all memory, and after each rebalancing, the credit spread starts

from a random level within (α, β), albeit following the same process thereafter until the

next rebalancing day. Even though this assumption is relatively strong, given the difficulty

in quantifying the degree of memory refreshing, our assumption can be regarded as a good

one for practical purposes and makes the consistent estimation of α and β easily attainable.

Eq. (2) indicates that the distribution of the spread approaches a lognormal distribution if

the bounds are relaxed.

Consider next the model specification of credit spreads on non-rebalancing days. Sup-

pose day t is the Jth (J ≥ 1) day after the last rebalancing day. We will often work

with the logarithm of credit spreads on non-rebalancing days because it guarantees the

non-negativity of predicted credit spreads from the model. We assume that the log spread,

ln (St), conditional on the information set at t− 1, takes the following ARX-ARCH-Jump

specification:

ln(St) Ωt−1
= µ0 + γ ln (St−1) +

J∑

j=1

φj (1−D1,t−j) ln (St−j/St−j−1)

+
K∑

k=1

βkxk,t−1 + λtµJ + εt, (5)
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where

εt ∼




N
(
(1− λt) µJ , h2

t + σ2
J

)
w.p. λt

N
(−λtµJ , h2

t

)
w.p. (1− λt)

(6)

h2
t = $0 +

P∑

p=1

bp (1−D1,t−p) ε2t−p. (7)

In the above specification, D1,t is a dummy variable that equals one when day t is a

rebalancing day and zero otherwise. This captures the vanishing memory feature from

index rebalancing. The exogenous variables xk, k = 1, . . . ,K, represent market factors such

as interest rates. h2
t is the conditional variance of εt in the no-jump state and follows

an ARCH(P ) process where P ≤ J . For the jump intensity in log credit spreads, we

concentrate on the Bernoulli distribution, first introduced in Ball and Torous (1983) and

also used in Vlaar and Palm (1993), Bekaert and Gray (1996), and Das (2002). In this

structure, the probability that a jump occurs on day t is λt and the probability of no

jumps on day t is 1 − λt. Various studies have shown that this structure is tenable for

daily frequency data. Conditional on a jump occurrence, we assume the jump size J to be

i.i.d and normally distributed with J ∼ N
(
µJ , σ2

J

)
.3 We also allow the jump probability

to depend on lagged exogenous variables such as the volatility of interest rate and the

volatility of equity market index. Specifically, the jump probability is assumed to be a

logistic function augmented by lagged exogenous variables z1,...,zL as follows

λt =
exp (p0 + p1z1,t−1 + p2z2,t−1 + ... + pLzL,t−1)

1 + exp (p0 + p1z1,t−1 + p2z2,t−1 + ... + pLzL,t−1)
(8)

where p`, ` = 0, . . . , L, are parameters to be estimated.

2.2 Estimation Method

Consider first the model of spreads on rebalancing days. We will show that the lower and

upper bounds are identified and can be estimated by maximum likelihood. It follows from

Eq. (1) that

εt = ln (St − α) + ln (β − α)− ln (β − St)− µr, (9)

and thus
dεt

dSt
=

(β − α)
(β − St) (St − α)

. (10)

3In principle, the mean and variance of the jump size could be allowed to depend on lagged exogenous

variables. Our empirical analysis finds that this does not provide any model improvement.
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Under the normality assumption of εt, the probability density function of credit spread on

rebalancing day t is given by

f (St)r =
(β − α)

(β − St) (St − α)
×

exp
[
− 1

2σ2
r
×

(
ln

(
(St−α)(β−α)

(β−St)

)
− µr

)2
]

√
2πσr

. (11)

The estimation of the parameter set θr = [α, β, µr, σr] involves maximizing the log-likelihood

function as follows

max
θr=[α,β,µr,σr]

L =
Tr∑

t=1

ln (f (St|θr)r) . (12)

where Tr is the number of rebalancing day observations in the sample. Of course, the

ML estimators of the lower (upper) bound α (β) should be strictly less (greater) than the

sample minimum (maximum) of spreads on rebalancing days for a given credit index. In

Appendix A we show that the parameters can be identified by the first-order condition

E (∂L/∂θr) = 0.

Consider next the model of spreads on non-rebalancing days. As can be seen from

Eq. (5), our model of credit spreads on non-rebalancing days is specified in terms of the

conditional distribution of log credit spreads. Estimation will be done by maximizing the

conditional likelihood function.

Let θnr = [µ0, γ, (φj), (βk), $0, (bp), (p`), µJ , σj ]. Let also I1,t be an indicator function

that equals one in the event of jump on day t and zero otherwise. It follows from Eq. (5)

that the conditional density of credit spread St on non-rebalancing days can be written as

the following:

f (St|Ωt−1, θnr)nr = (1− λ) f (St|Ωt−1, I1,t = 0) + λf (St|Ωt−1, I1,t = 1)

= (1− λt) exp

(
− (ln (St)−Ψt−1 − µ0)

2

2h2
t

)
1√

2πh2
t St

(13)

+λt exp

(
− (ln (St)−Ψt−1 − µ0 − µJ)2

2
(
h2

t + σ2
J

)
)

1√
2π

(
h2

t + σ2
J

)
St

where

Ψt−1 ≡ γ ln (St−1) +
J∑

j=1

φj (1−D1,t−j) ln (St−j/St−j−1) +
K∑

k=1

βkxk,t−1

As a result, under our model specification the density function of credit spreads on day

t can be written as follows:

f (St|Ωt−1) =





f (St|Ωt−1, θr)r , if D1,t = 1

f (St|Ωt−1, θnr)nr , if D1,t = 0
(14)
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Since the parameter sets θr and θnr do not intersect, the estimation of the model can be

done separately. Namely, the model in (1) can be estimated using only the rebalancing day

sub-sample and the model in (5) estimated using only the non-rebalancing day sub-sample.

3 The Credit Spread Data

The credit spread data used in this study are daily Merrill Lynch option-adjusted spreads of

corporate bond indices.4 Each index is a market value weighted average of individual credit

spreads on component bonds within a given maturity, industry, and credit rating category.

Daily prices of corporate bonds used to calculate credit spread are based on the bid side of

the market at 3:00 PM New York time, and obtained from the Merrill Lynch trading desk.

Each index is rebalanced on the last calendar day of each month to maintain its qualifying

criteria; see Appendix B for a detailed description of the rebalancing procedure and for the

number of issues included in each index on rebalancing days. Issues that no longer meet

qualifying criteria for a given index are dropped from the index and new issues that meet

the qualifying criteria are included for the following month. The dynamics of credit spreads

of a given index thus reflects the spread risk of a corporate bond portfolio that is regularly

rebalanced to maintain its characteristics on rating, maturity, and amount outstanding. We

believe that these ML data are of high quality since as mentioned earlier, yields on several

Merrill Lynch corporate bond indices are quoted in the Wall Street Journal.

For investment-grade corporate bonds, we obtain industrial corporate credit spread

indices for three maturities, 1-10 years, 10-15 years, and 15+ years and two rating groups,

AA-AAA and BBB-A, and as a result, have six indices in total. These indices track the

performance of US dollar-denominated investment-grade public debt of industrial sector

corporate issuers, issued in the US domestic bond market. For high-yield corporate bonds,

Merrill Lynch has credit spread indices for three credit ratings: BB, B and C. The industry

composition of these high-yield indices is not available. We have in total 9 series of credit

spreads with different rating and maturity categories. The sample period is from December

31, 1996 (the inception date of the Merrill Lynch option-adjusted credit spread indices) to

August 30, 2002.

The original credit spread series we obtained contain data on weekends or holidays. To

ensure that the credit spread data we use reflect market information, we restrict our analysis
4For a corporate bond with embedded options such as call provisions, the option-adjusted spread calcu-

lation begins by using statistical methods to generate a large number of possible interest rate paths that can

occur over the term of the bond and measures the resulting impact of the scenarios on the bond’s value. By

averaging the results of all the scenarios, the implied spread over the Treasury yield curve is determined.
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to NYSE trading days. This is done by matching the credit spread data with the S&P 500

index data over the sample period. When no match is found, we drop the corresponding

observation(s) from the credit spread series. This results in 1,425 daily observations for

each ML credit spread index. Figures 1-1, 1-2 and 1-3 plot credit spreads of AA-AAA

rated indices, BBB-B rated indices and high-yield indices respectively. Figure 2 plots the

percentage changes in log credit spreads on non-rebalancing days. One can see from the

figure that spread changes exhibit volatility cluster and large spikes, especially during the

Asian financial crisis, the Russian and LTCM defaults and the September 11 event. The

changes in investment-grade credit spreads are clearly more volatile during the first two

years of the sample period.

Before estimating the model, we look at the statistical properties of the credit spread

series first. Table 1 shows the basic statistical properties of the 9 credit spread series on

non-rebalancing days. Panels A through C contain respectively the summary statistics on

credit spread level, basis point changes and log percentage changes in credit spreads. Credit

spreads are given in basis points.

The mean and standard deviation of each credit spread series reported here are compa-

rable to those reported in other studies using option-adjusted spreads (Caouette, Altman,

and Narayanan, 1998; Kao, 2000). The mean and volatility of credit spreads are gener-

ally higher for indices of lower quality and longer maturity. The sample mean of credit

spread changes is all insignificantly different from zero. Credit spread changes of all rat-

ing/maturity categories show large excess kurtosis.

Because of the index rebalancing, we calculate the first-order serial correlation coefficient

ρ(1) of credit spread changes as defined by

ρ (1) =
T∑

t=2

(
∆st −∆s

) (
∆st−1 −∆s

)
(1− dt) /

T∑

t=1

(
∆st −∆s

)2
, (15)

where T is the total number of non-rebalancing days, ∆s is the sample mean of credit spread

changes, and dt is a dummy variable that takes on the value one if t is the day right after

a rebalancing day, and zeros otherwise. The first order autocorrelation in credit spread

changes (both in basis points and in percentage) is significantly negative for investment-

grade credit spreads and significantly positive for high-yield credit spreads at 95% significant

level. The first-order serial correlation coefficient of squared credit spread changes (both in

basis points and in percentage), which is defined in the same way as Eq. (15), is significantly

positive at 95% significant level for all investment-grade credit spread series and C rated

spread series.

10



4 Empirical Results

We first present results from testing if mean-reversion exists in the nine ML credit spread

series in between rebalancing days. We then report estimation results from our model of

credit spreads. Finally, we show results from robustness tests.

4.1 On Mean-Reversion of Credit Spreads

One issue in the estimation of the log credit spread distribution on non-rebalancing days

as specified in Eq. (5) is when the log credit spread series is a near unit root process. In

this case, the parameter inference associated with γ is non-standard. Below, we detect the

integration order of the credit spread in between rebalancing days in our sample.

Reduced-form models of corporate bond pricing such as Duffee (1999) and Duffie and

Singleton (1999) typically assume that the expected default loss is governed by a mean-

reverting square-root diffusion process. However, empirical evidence on the mean-reverting

speed of corporate bond credit spreads, at either individual bond level or index level, is

limited. Duffee (1999) reports a median half-life mean reverting speed of less than 3 years

estimated with a sample of individual bonds. Using the Augmented Dickey-Fuller (ADF)

test, Pedrosa and Roll (1998) could not reject the unit root hypothesis for daily investment-

grade option-adjusted credit spread indices of Bloomberg over the period October 5, 1995

to March 26, 1997. Their failure to reject could be due to the relatively short sample period

in their study or the fact that the ADF test is known to have a very low power testing

against near unit root alternatives.

Below, we perform a comprehensive unit root analysis, using either unit root or station-

arity as the null hypothesis, and allowing for structural breaks in the time series. When

doing so, we use the whole sample period, including rebalancing day observations. If there

is obvious mean-reverting in credit spreads in between re-balancing days, together with the

bounded credit spreads distribution on rebalancing days, we would expect more evidence

against unit root through these tests.

4.1.1 Standard Unit Root Tests

We begin with two widely used unit root tests in the literature. Let st denote the logarithm

of the credit spread on day t. We use the log credit spreads in all the tests so that the time

series under study is not bounded from below by zero.

The augmented Dickey-Fuller (ADF) test of unit root hypothesis against the stationarity
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hypothesis is based on the following regression:

st − st−1 = α + βst−1 +
p∑

j=1

νj (st−j − st−j−1) + εt. (16)

where εt is white noise. The null hypothesis of unit root is that β = 0, while the alterna-

tive hypothesis of mean-reverting is β < 0. Following Said and Dickey (1984) the initial

autocorrelation lag p is selected as a function of the sample size: p = 5N1/4 where N is the

number of observation in the regression. Based on the regression with this p, the optimal p

is then selected under the null hypothesis using the Schwartz information criterion (SIC).

Since the assumption made in the ADF test that εt is white noise may be violated

in the credit spread data, we consider another widely used unit root test, the Phillips-

Perron (1988) test. Consider

st = α + βst−1 + εt, (17)

where εt is a zero-mean stationary process. The null hypothesis of unit root corresponds

to β = 1 and the alternative hypothesis is β < 1. This test employs a Newey-West type

variance estimator of the long-run variance of εt and is robust to a wide variety of serial

correlation and heteroscedasticity.

The estimate of the β coefficient in the ADF test and the Phillips-Perron test are

reported respectively in Panels A and B of Table 2. One can see from the table that the

unit root hypothesis could not be rejected in any of the 9 credit spread series. The mean-

reversion coefficients β in the ADF test are all negative, but insignificantly different from

zero. The estimates of β in the Phillips-Perron test are all above 0.99 and the unit root

hypothesis is not rejected at the 95% significance level.

4.1.2 Stationarity Tests

It is a well-known empirical fact that the standard unit root tests such as the ADF and

Phillips-Perron tests fail to reject the null hypothesis of a unit root in a near unit root

economic time series. The null hypothesis is always accepted unless there is strong evidence

against it. To avoid this problem, tests have been designed under the null hypothesis that

the time series under test is stationary around a long-term mean, against the alternative

that the time series has a unit root. We employ two such stationarity tests as a robustness

check of the conclusion reached from the ADF and the Phillips-Perron tests.

The first stationarity test we use is developed by Kwiatkowski, Phillips, Schmidt and

Shin (1992) (KPSS hereafter). The KPSS test assumes that the time series under test can

be decomposed into a random walk and a stationary error term as follows:

st = rt + εt, (18)
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rt = rt−1 + ut, (19)

where the ut’s are i.i.d
(
0, σ2

u

)
. Under the null hypothesis that σ2

u = 0, the process under

test is stationary around a long-term mean. A Lagrange multiplier test statistic is designed

under the null hypothesis of stationarity and a large value of this statistic leads to the

rejection of stationarity hypothesis.

Another stationarity test we use here is proposed by Bierens and Guo (1993). The test

is designed with the null hypothesis

st = µ + εt, (20)

against the alternative

∆st = st − st−1 = εt (21)

where εt is a zero-mean stationary process and µ is the long-term mean. Bierens and

Guo (1993) design four types of Cauchy tests against unit root hypothesis, based on an

auxiliary linear time trend regression. Large values of these tests would lead to the rejection

of the stationarity null hypothesis.

The results of the two stationarity tests are contained in Panel C and Panel D of Table

2. In the KPSS test, the null hypothesis of stationarity is rejected at 95% significance level

for all credit spread series. The Bierens and Guo Cauchy tests exhibit similar pictures.

The only evidence of stationarity is from the type 3 and type 4 Cauchy tests on the credit

spread of the AA-AAA 10-15 years index.

4.1.3 Nonlinear Augmented Dickey-Fuller Test

One possible reason for the non-stationarity shown above could be the presence of struc-

tural breaks in the credit spread time series. Perron (1989, 1990) and Perron and Vogel-

sang (1992) have shown that when a time series has structural breaks in the mean, the unit

root hypothesis is often accepted before structure breaks are taken into account, while it is

rejected after structural breaks are considered. The fact that our sample includes extraor-

dinary financial and credit events as mentioned earlier makes it very likely to have some

structural breaks.

A few unit root tests have been developed for time series with structural breaks. We use

the Bierens (1997) nonlinear augmented Dickey-Fuller (NLADF) test here since it allows

the trend to be an almost arbitrary deterministic function of time. The test is based on an

ADF type auxiliary regression model where the deterministic trend is approximated by a

linear function of Chebishev polynomials:

∆st = βst−1 +
p∑

j=1

νj∆st−j + θT P
(m)
t,n + εt, (22)
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where P
(m)
t,n =

(
P ∗

0,n (t) , P ∗
1,n (t) , ..., P ∗

m,n (t)
)T

is a vector of orthogonal Chebishev polyno-

mials. Under the null hypothesis of unit root, β = 0 and θT = 0. The unit root hypothesis

is tested based on the t-statistic of β, the test statistic Am = ((n− p− 1)β) /
∣∣∣1−∑p

j=1 νj

∣∣∣,
and the F−test of the joint hypothesis that β and the last m components of θT are zero.

Panel E of Table 2 presents the results of NLADF tests and the associated critical values.

The results show that even after any nonlinear trend breaks are taken into consideration,

the unit root hypothesis still could not be rejected.

In summary, we can conclude that there is no empirical evidence of mean-reversion

in the 9 credit spread series over our sample period in between rebalancing days. As a

consequence, the empirical behavior of credit spread indices may be captured by a process

in which credit spreads behave as unit root process in between rebalancing days, but are

regularly pulled back within certain bounds through rebalancing.

4.2 Estimation Results of the Model of Credit Spreads

The model given in Eq. (5) is rather general. The summary statistics reported in Table 1

suggest that a particular specification of the general model may be adequate for our sample

of data. In particular, results of ρ(1)∆s and ρ(1)∆s2 shown in Table 1 indicate that a

specification with AR(1) and ARCH(1) in Eq. (5) may be a good first attempt to capture

the autocorrelation in spread changes and conditional variance. As a result, we will estimate

an ARX(1)-ARCH(1)-Jump model of log credit spread changes in this subsection. We will

perform robustness tests in the next subsection.

4.2.1 Estimated Model

The econometric model introduced in section 2 allows the dynamics of credit spreads to

depend on lagged exogenous variables. It has been well recognized that changes in corporate

bond credit spreads are closely correlated with the contemporaneous changes in general

market and economic conditions, as reflected by changes in interest rate and stock market

indices. The exogenous variables we consider include lagged interest rate changes, changes

in the slope of the yield curve, Russell 2000 index returns and the CBOE VIX implied

volatility. Specifically, we allow the conditional mean of log credit spread changes to depend

on lagged interest rate changes ∆r, yield curve slope changes ∆slope and the Russell 2000

index return retrus. We also allow for the conditional jump probability to depend on lagged

level of the CBOE VIX index since we expect to observe more extreme movement in credit

spreads in a more volatile equity market.

Changes in credit spreads are generally considered to be negatively correlated with
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the contemporaneous changes in interest rates and changes in slope of the Treasury yield

curve, as has been shown in Duffee (1998). We use the change in the Merrill Lynch Treasury

Master Index yield (%) as a proxy for the change in the interest rate. The slope of the

Treasury yield curve is approximated by the difference between the ML 15+ years Treasury

Index yield (%) and the ML 1-3 years Treasury Index yield (%). Credit spreads also tend

to rise when returns on stock market index are low. We choose the Russell 2000 index

return (retrus,t = ln (Prus,t/Prus,t−1)) here because it has been shown to be more closely

related to credit spread changes than a large-cap index such as the S&P 500 index (Kao,

2000; Huang and Kong, 2002).

Based on the above discussion, we estimate the following ARX(1)-ARCH(1)-Jump

model with the sub-sample of credit spreads on non-rebalancing days:

ln (St) = ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2) (23)

+ β1 retrus,t−1 + β2 slopet−1 + β3∆rt−1 + λtµJ + εt,

h2
t = $0 + b1 (1−D1,t−1) ε2t−1, (24)

λt = exp (p0 + p1 ∗ V IXt−1) / (1 + exp (p0 + p1 ∗ V IXt−1)) . (25)

To compare the relative importance of the ARCH specification and jumps in explaining

the leptokurtic behavior of spread changes, we estimate both the ARX-ARCH-Jump model

and the nested ARX-ARCH model and report results separately. The estimation is done via

the (quasi) maximum likelihood method using the GAUSS MAXLIK and CML modules.

Both the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm, and the Berndt,

Hall, Hall, and Hausman (BHHH) algorithm are used in the estimation and give the same

results.

4.2.2 Results from the Model for Rebalancing Days

Table 3 contains the estimation results of the credit spread distribution on rebalancing

days for the nine Merrill Lynch credit spread series. As expected, the estimates of the

lower bound α and the upper bound β are close to the sample minimum and maximum of

credit spreads, respectively, on rebalancing days. The distance between estimated α and

β indicates that even for portfolios that have managed to maintain its rating, minimum

amount outstanding and maturity, the upper boundary of the credit spreads could still be

three to five times higher than the lower boundary. One can also see from the table that

the mean of the innovations, µr, increases as the credit rating gets lower, but the estimates

of the standard deviation of the innovations, σr, do not always increase as credit ratings

decrease.
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4.2.3 Results from the Model in between Rebalancing Days

Estimation results from the nested ARX(1)-ARCH(1) model for log credit spreads in

between rebalancing days are reported in Table 4. Results from the complete ARX(1)-

ARCH(1)-Jump model are presented in Table 5.

As shown in the tables, the drift term µ0 and the mean of the jump size µJ are mostly

insignificant. Even though in the model with jumps, the estimate of µJ is positive for 8

indices, it is only significant for the BBB-A 15+ years index. This implies that jumps

affect credit spreads mainly through the conditional volatility of log credit spreads. There

is autocorrelation in the changes of log credit spreads, as suggested by the estimate of the

AR(1) coefficient φ1. The positive autocorrelation in log credit spread changes of high-yield

indices is clearly a result of the slightly upward trend exhibited by high-yield credit spread

indices over the sample period. The negative autocorrelation in log credit spread changes of

investment-grade indices suggests the existence of short-run mean-reversion. The estimates

of the autocorrelation term are more significant when jumps are considered in the model.

The return on equity market index provides valuable information in forecasting the

credit spread of next trading day. The estimated coefficients of lagged Russell 2000 index

returns are significantly negative for all indices in the ARX-ARCH model. In the ARX-

ARCH-Jump model, the lagged Russell 2000 index returns lose significance for the AA-AAA

1-10 years and 10-15 years indices, but are still significant for all the other seven indices.

Not surprisingly, when jumps are included, the estimated coefficients are smaller. The

information contained in lagged Russell 2000 index return is also economically significant.

Taking the AA-AAA 15+ years index as an example, the estimated coefficient on the

lagged Russell 2000 index return in the ARIMAX-ARCH-Jump model is 0.063, and the

mean value of the AA-AAA 15+ years index is about 87 basis points over the sample

period. Consequently, when evaluated at the mean, a 1% return on the Russell 2000 index

predicts a 5 basis points drop in credit spreads on next trading day.

The information contained in the slope of the Treasury yield curve helps predict the

movement of credit spreads on investment-grade corporate bonds. The estimated coeffi-

cients for high-yield indices are positive and insignificant in all cases. For investment-grade

indices, a steepening Treasury yield curve predicts falling credit spreads. The estimated

coefficients indicate that, when the difference between the long-term Treasury yield and

the short-term Treasury yield increases by 100 basis points, the credit spreads of various

investment-grade indices would drop by 1.5% to 3.7%. The insignificance of the yield curve

information in the prediction of high-yield credit spreads is consistent with the reported

weak contemporaneous relation between changes in high-yield credit spreads and changes

in yield curve slope for the period of January 1990 through December 1998 in Kao (2000).
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But it is not very clear why credit spreads of high-yield bonds would be less sensitive to

the slope of the yield curve than investment-grade bonds.

We do not find any convincing evidence that changes in the interest rate provide any

useful information on the next movement of credit spreads. The estimated coefficients on

lagged interest rate changes are mostly insignificant.

In summary, the conditional mean of log credit spread changes depends on lagged log

credit spread changes, lagged Russell 2000 index returns and lagged changes in the slope

of the Treasury yield curve.

We now discuss results on jumps. The estimated mean of the jump size is not signif-

icantly different from zero for most indices. Jumps affect credit spreads mainly through

the conditional volatility. Consequently, including jumps in the movement of credit spreads

results in a sharp decrease in the constant term $0 and the persistent coefficient b1 in

the ARCH(1) specification. Clearly, part of the time-varying volatility would be better

modelled as the result of jumps in the movement of credit spreads than as the result of

persistence of the squared innovation in last period. An interesting result is when jumps

are modelled in the conditional variance, the ARCH(1) coefficient for high-yield indices

becomes significant.

The conditional jump probability is clearly time-varying and depends on the lagged

volatility in the equity market. The coefficient on lagged CBOE VIX index in the time-

varying jump probability specification is significantly positive for all indices. The sensitivity

of conditional jump probability to lagged equity market volatility tends to increase as the

credit quality gets lower. This is consistent with the implication of structural models of

corporate bond pricing that high-yield bonds behave more like equity. The sample mean of

the CBOE VIX index over the sample period is about 26%. When evaluated at the sample

mean of the VIX index, the daily jump probability in log credit spreads ranges from 11.2%

for the AA-AAA 10-15 years index to 3.1% for the BB index.

Results of the Schwartz and Akaike information criteria shown in the bottom of Table 5

indicate that the ARX-ARCH-Jump model outperforms the ARX-ARCH model in terms of

the overall goodness-of-fit. A potential problem might arise when using the likelihood ratio

test for the statistical significance of jump behavior in log credit spreads. This is because

the parameters associated with jumps cannot be identified under the null hypothesis of

no jumps. Hansen (1992) states that unless the likelihood surface is locally quadratic

with respect to the nuisance parameters, the LRT statistic is no longer distributed χ2

under the null hypothesis.5 A formal test on the null hypothesis would require a series

of optimizations over a grid of the nuisance parameters and the computation would be
5The LRT statistic ranges from 256 for B rated index to 1011 for BBB-A 1-10 years index.
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extremely burdensome. In our case, the fact that the coefficient on lagged equity market

volatility is highly significant do provide a certain amount of confidence in the existence of

jump behavior in credit spreads. In the next subsection, we present more model diagnostic

tests on the ARX-ARCH-Jump model and the nested ARX-ARCH model based on in-

sample residuals.

4.2.4 Model Diagnostic Tests

Several specification tests based on in-sample residuals are performed to test the conditional

normality of the innovation. We summarize the results in Table 6. Under the ARX-ARCH

specification, the standardized residual of the model is standard normally distributed. In

the specification involving jumps, the residual of the estimated model is actually a mixture

of two normal distributions. To compare the residual distribution from the estimation of the

ARX-ARCH-Jump model and the nested ARX-ARCH model, we use the method of Vlaar

and Palm (1993). We first calculate the probability of observing a value smaller than the

standardized residual. In the jump specifications, this would be a weighted average of the

normal cumulative distribution function under the jump state and the no-jump state. Under

the null hypothesis of normal mixture, these probabilities should be identically uniformly

distributed between 0 and 1. A Pearson chi-squared goodness-of-fit test is then performed

on these transformed residual series of each model by classifying the series into g groups

based on their magnitudes. Under the null hypothesis, this test statistic is chi-squared

distributed with g − 1 degree of freedom.

Column 4 of Table 6 presents the associated Pearson chi-squared goodness-of-fit test

statistic of each model when g equals 20. It is quite clear from the large χ2 (19) value that

the ARX-ARCH normal model is inappropriate for index credit spreads. The smallest value

of the χ2 (19) statistic in the ARX-ARCH model, that of the B credit spread index, is as

high as 74.88. The results improve significantly when the specification includes jumps. In

the ARX-ARCH-Jump model, the null hypothesis is not rejected at the 5% level for 4 out

of the 9 indices, and is not rejected at the 1% level for 8 out of the 9 indices.

We now conduct two diagnostic tests based on the autocorrelation in the standardized

residuals of the estimated models. In the specification with jumps, we follow again Vlaar and

Palm (1993). Specifically, the standardized residuals are obtained by inverting the standard

normal cumulative distribution function based on the probability series in calculating the

Pearson chi-squared test. We compute the first-order sample autocorrelation coefficient of

the standardized residuals ρε (1), and of the squared standardized residuals ρε2 (1) based

Eq. (15). The results are presented in columns 5 and 6 of Table 6. It turns out that

our specification has removed most of the first-order autocorrelation in spread innovations
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as reported in Table 1. Although the first-order sample autocorrelation coefficient of the

standardized residuals is significant for AA-AAA rated indices, they are typically between 0

and -0.1. The ARCH(1) specification also seems successful in capturing the time dependence

of volatility. Except for the AA-AAA 1-10 years index and the BBB-A 10-15 years index,

the first-order sample autocorrelation coefficient of the squared standardized residuals is

insignificant. In the two cases where they are significant, the estimates are both less than

0.7. Overall, correlation in the residuals and the squared residuals does not pose any

challenge to our model specification.

For five indices, the ARX-ARCH-Jump model passes the Pearson χ2 (19) goodness-of-

fit test marginally. We explore the possible misspecification by looking at the empirical

skewness and kurtosis of the standardized residuals from the model estimation. The first

four central moments of the standardized residuals are computed in a joint GMM-system.

The normality of the standardized residuals is then tested based on a Wald-test that both

the skewness and kurtosis coefficients are jointly equal to zero. The estimated sample

skewness, kurtosis and GMM normality test statistic are reported in the last three columns

of Table 6. The results in Table 6 tell us that there is no skewness in the standardized

residuals from both specifications, and the two specifications differ primarily in modelling

the fatness in the tails of the distribution. There is still substantial leptokurtosis in the

standardized residuals from the ARX-ARCH specification. The minimum is 7.2 for the C

rated index and the maximum is 24.8 for the BBB-A 1-10 years index. The leptokurtosis

in the standardized residuals from the ARX-ARCH-Jump specification is also significant

for all indices, but the maximum is only 0.84. Again, the transformed residuals from

the ARX-ARCH-Jump specification pass the normality test marginally. Since the existing

leptokurtosis in the transformed residuals is at such a small magnitude, we are comfortable

enough to say that the ARCH-Jump specification well captures the fat tails in the original

distribution of credit spread changes.

Overall, there is clear evidence that both jumps and time-varying volatility exist in

the daily movement of credit spreads of different credit quality and maturity corporate

bond indices. Model diagnostic tests show that the ARX-ARCH-Jump model is strongly

preferred over the nested ARX-ARCH and performs rather well for the dynamics of both

investment-grade and high-yield indices.

4.3 Robustness Tests

We have documented the information content of lagged equity market returns, volatility,

and yield curve slope. However, it is important to ensure that the predictive power we have

identified is not due to the special feature of the Merrill Lynch bid prices. As a robustness
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test, we fit the model specification used for the Merrill Lynch data to the S&P’s credit

indices.

Specifically, we use the S&P U.S. industrial investment-grade and speculative-grade

credit indices. Both indices contain daily option-adjusted credit spreads (see the S&P

publication (1999) for details). The composite market price used to calculate the option-

adjusted spread is based on the average bid and ask prices from a number of sources

including brokers and dealers. A potential problem of the S&P credit indices is that, unlike

other credit spread indices, an issue is substituted by another issue immediately when the

original issue no longer meets the selecting criteria on maturity, amount outstanding, rating

and liquidity, and when an individual issue “experience a large credit spread fluctuation

that is not indicative of the general market trend.” The level of the indices is adjusted by

a divisor whenever there is a change in the index issue. Consequently, we apply our non-

rebalancing day credit spread model to the adjusted spread series of S&P credit indices.

Nevertheless, the results from the S&P credit indices would provide additional evidence on

the information content of lagged general market conditions.

We estimate the ARX(1)-ARCH(1)-Jump model using the S&P daily credit indices for

the time period of December 31, 1998 (the inception date of the indices) to August 30,

2002. The estimated results are reported in Table 7. One can see from the table that

similar to the Merrill Lynch indices, the S&P indices also exhibit a relationship between

credit spread movements and the lagged equity market return and volatility. In particular,

the estimated coefficients on the lagged Russell 2000 index return are significantly negative

for both S&P indices. Also, the time-varying jump probability significantly depends on the

lagged volatility level in the equity market as measured by the CBOE VIX index.

5 Out-of-Sample Forecast and Implications

In this section we seek to further explore the economic implication of allowing for lagged ex-

ogenous variables, conditional heteroscedasticity, jumps in the modelling of credit spreads.

We first derive the one-step-ahead prediction formula for the ARX-ARCH-Jump model.

We then demonstrate that the model with jumps performs well in forecasting out-of-sample

credit spreads. We also discuss the implication of our findings for measuring and pricing of

credit risk.

5.1 Out-of-Sample Specification Tests

To avoid over-parameterization of the ARX-ARCH-Jump model, and to establish the eco-

nomic significance of allowing for jumps in the dynamics of credit spread, we compare the
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out-of-sample forecast ability of the model with jumps and that of the model without jumps.

Given the model specification in Eqs. (23) and (25), we can form the following one-step-

ahead forecast conditional on the information set Ωt−1 at time t− 1:

Et−1 (St) = Et−1

[
exp(ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2)

+ β1retrus,t−1 + β2slopet−1 + β3∆rt−1 + λtµJ + εt)
]

(26)

= St−1 exp (φ1 (1−D1,t−1) ln (St−1/St−2)) exp (µ0 + λtµJ)

× exp (β1retrus,t−1 + β2slopet−1 + β3∆rt−1) Et−1 (exp (εt)) .

It follows from (6) that

Et−1 (exp (εt)) = (1− λt) exp
(
−λtµJ + 0.5h2

t

)

+λt exp
(
(1− λt) µJ + 0.5

(
h2

t + σ2
J

))
. (27)

The forecaster based on the model without jumps can be obtained from the above equation

by setting λt to zero.

In performing the out-of-sample test, we first estimate the ARX-ARCH-Jump model

and the nested ARX-ARCH model using the data from January 1997 to December 1999.

The estimated parameters are used in the one-step ahead out-of-sample prediction for the

non-rebalancing day credit spread in January 2000. The same procedure is repeated each

month over the subsequent period. That is, starting with January 2000, on the first non-

rebalancing day of each month, the parameters of the model are estimated using all past

observation, and the parameters are then used for the credit spread forecast within this

month without being updated. In principle, the parameter could be updated each day

using past observations. However, this practice will be computationally burdensome. The

approach we have adopted is a trade-off between computational convenience and timely

updating of new information. Because the estimates of the drift term µ0, the mean of the

jump size µJ , and the coefficient on lagged interest rate changes are mostly insignificant, we

have dropped lagged changes in interest rates, and allowed for both µ0 and µJ to be zero in

the model we used for forecast. For comparison, we also include the prediction performance

of a simple martingale model of credit spreads using just credit spreads of previous day.

The difference between forecast and actual credit spreads over the out-of-sample period

is summarized in the form of root mean squared error (RMSE) and mean absolute errors

(MAE).

The changes in log credit spreads are much more volatile over the first three years

than the most recent three years of the sample. This makes it important to allow for a

time-varying jump probability. Results in Table 8 show that in the out-of-sample forecast

21



race, the model with time-varying jumps outperform the model without jumps in eight out

of the nine different indices. The complicated models outperform the simple martingale

model in six (seven) indices in terms of MAE (RMSE).6 Given the fact that the parameter

estimates are only updated monthly for the complicated models, these results are quite

encouraging. The out-of-sample forecast results alleviate the fear of over-parameterization

and demonstrate the economic significance of allowing for jumps in the dynamics of credit

spreads.

5.2 Practical Implications

Our empirical findings from the proposed ARX-ARCH-Jump model of credit spreads have

a number of practical implications. First, the econometric model we have proposed for

the systematic credit spread risk in corporate bond portfolios directly incorporates the

information on the general market condition into the forecasts of the conditional mean

and variance of the credit spread. Furthermore, rare extreme movements in credit spreads

have been captured by jumps with a time-varying jump probability that depends on equity

market volatility. These information could be incorporated into the calculation of the ‘value

at risk’ measure for credit spread risk.

Second, our results shed some light on the effort of reaching superior investment per-

formance through exploring the information content of equity market index returns and

volatility on general credit spread movements. Asset price predictability could arise as

a result of time-varying risk premium, and not necessarily from information inefficiency.

Whatever the reason is, our findings call for further studies on the interaction of equity

market risk and corporate bond credit spread risk, and the corresponding strategies that

could make use of this information content.

Third, our model could be used for the valuation of credit derivatives written on credit

indices. For instance, the model could be potentially used in the valuation of credit spread

options.

6 Conclusions

We propose an econometric model to describe the dynamic behavior of credit spreads of

corporate bond portfolios. In particular, we develop a method to capture the fact that such

portfolios are subjected to rebalancing on a regular basis – an issue that has been ignored
6We also compared the forecast errors excluding the month of September 2001 in the sample. The relative

performance of the models under consideration is not affected by this although it reduces the RMSE and

MAE by 0.1-2 basis points.
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in the literature. The proposed model integrates together portfolio rebalancing, changes

in general market conditions, conditional heteroscedasticity and jumps. We test the model

using daily option-adjusted credit spreads of the Merrill Lynch credit spread indices from

December 31, 1996 to August 30, 2002. Empirical results indicate that changes in credit

spreads of both investment-grade and high yield bond portfolios exhibit autoregression,

conditional heteroscedasticity and jumps. Lagged equity market index returns and changes

in the slope of the Treasury yield curve are shown to help predict credit spread changes.

The time-varying jump probability is found to be related to the lagged volatility level in

the equity market. The statistical and economic significance of jumps and the information

content of general market conditions are supported both by in-sample and out-of-sample

data.

Given the importance of credit risk management in practice, this study may serve the

needs of both investors in corporate bond markets and related regulatory agencies. The

estimation method developed here that takes into account the rebalancing of a corporate

bond portfolio may be extended to deal with similar issues in equity portfolios.
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A Identification of the Upper and Lower Bounds

Let β and α denote the implicit upper and lower bound, respectively, of credit spreads of

a given index on re-balancing days. In our model, the distribution of credit spreads on

re-balancing days is

Sr,t = α +
1

1/(β − α) + exp(−ur,t)
, (28)

where α < Sr,t < β, ur,t = µr + εt and µr is a constant, and εt is normally distributed with

N
(
0, σ2

r

)
.

It follows from Eq. (28) that

dur,t

dSr
=

(β − α)
(β − Sr) (Sr − α)

. (29)

Under the assumption that ur,t is normally distributed with N
(
µr, σ

2
r

)
, the density function

of spread on re-balancing days is,

h (Sr) =
(β − α)

(β − Sr) (Sr − α)
×

exp
[
− 1

2σ2
r
×

(
ln

(
(Sr−α)(β−α)

(β−Sr)

)
− µr

)2
]

√
2πσr

, (30)

as follows from the well-known transformation formula for densities. Taking the first order

derivative of the log-density function with respect to β given the true parameters α and β,

we have:

∂ ln (h (Sr))
∂β

= −(ur − µr)
σ2

r

×
(

1
β − α

− 1
β − Sr

)
+

1
β − α

− 1
β − Sr

. (31)

From Eq. (28), we have
1

β − Sr
=

exp (ur) + (β − α)
(β − α)2

.

It follows that
∂ ln (h (Sr))

∂β
=

1
(β − α)2

×
(
ur − µr − σ2

r

)

σ2
r

exp (ur) . (32)

Integrating ur out then yields

(β − α)2 E

[
∂ ln (h (Sr))

∂β

]
=

∫ ∞

−∞

(
ur − µr − σ2

r

)

σ2
r

× exp (ur)
exp

(
− (ur−µr)2

2σ2
r

)

√
2πσr

dur

=
exp

(
2µrσ2

r+σ4
r

2σ2
r

)

σr

∫ ∞

−∞
y
exp

(
−y2

2

)

√
2π

dy = 0. (33)

We can show in a similar fashion that

E

[
∂ ln (h (Sr))

∂α

]
= 0. (34)
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B Rebalance of the Merrill Lynch Corporate Bond Credit

Spread Indices

In this appendix, we describe certain rules used in rebalance of the Merrill Lynch Corpo-

rate Bond Credit Spread Indices. The information is based on a publication from Merrill

Lynch (2000). The publication contains information on the Merrill Lynch High Grade U.S.

Industrial Corporate Index, the Merrill Lynch U.S. High Yield Master II Index, and a de-

tailed description about the general re-balancing rules used by Merrill Lynch to maintain

the qualifying criteria of each index. We believe that the same criteria should hold for the

sub-indices we use in this study.

To be included in an index, qualifying bonds must have a fixed coupon schedule and at

least one year to maturity. The amount of outstanding required for being on a high-grade

index is a minimum of $150 million, while that for being on a high-yield index is a minimum

of $100 million.

Re-balancing takes place on the last calendar day of each month. The adding or dropping

decision of any issue will be based on information that is available in the marketplace “up

to and including the third business day prior to the last business day of the month.” There

are 62 re-balancing days in total including the inception date of the indices, December 31,

1996, in our sample.

The table below contains the number of issues that were included in each index on

re-balancing days, which are supposed to be the last calendar day of each month since

December 31, 1996. If the last calendar day is not a business day of New York Stock

Exchange, we use the next available observation.
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Number of Issues Included in Each Merrill Lynch

Credit Spread Index on Rebalancing Days

This table contains the number of issues that were included in each Merrill Lynch index on rebalancing day.

Rebalancing is done on the last calendar day of each month since December 31, 1996 (the inception day

of the indexes). When the last calendar day is not a business day of New York Stock Exchange, the first

trading day of the next month is used.

Rebalance AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

days 1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

19961231 74 7 46 556 83 363 376 467 65

19970131 76 6 46 558 83 364 356 461 66

19970228 75 6 46 570 82 367 358 478 74

19970331 74 6 47 573 81 376 361 482 80

19970430 75 6 47 586 84 381 383 465 79

19970602 75 6 47 598 83 384 378 458 79

19970630 76 6 46 604 84 389 367 454 81

19970731 76 6 45 612 85 397 367 456 76

19970902 80 7 46 621 84 411 367 446 73

19970930 90 7 49 669 91 437 361 451 69

19971031 91 7 51 683 92 447 370 468 69

19971201 89 7 51 691 92 454 372 474 74

19971231 89 7 53 695 92 466 380 476 78

19980202 91 8 55 705 93 488 376 493 84

19980302 91 8 57 707 86 478 408 503 86

19980331 90 8 57 723 88 484 419 515 90

19980430 91 8 59 738 89 488 402 528 90

19980601 88 8 59 755 92 502 384 531 93

19980630 86 7 58 758 91 514 384 523 103

19980731 87 7 58 750 95 517 390 530 107

19980831 86 8 59 766 100 520 392 530 110

19980930 86 8 59 765 98 521 398 541 124

19981102 92 8 60 777 95 526 388 546 137

19981130 89 7 58 786 93 528 390 554 134

19981231 84 8 50 813 94 542 377 537 141

19990201 83 8 51 821 92 542 370 538 141

19990301 81 10 45 831 95 552 380 534 144

19990331 82 9 45 834 93 556 382 532 149

19990430 83 9 47 829 87 552 394 536 155
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Rebalance AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

days 1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

19990601 82 9 47 841 87 557 386 529 158

19990630 81 9 47 849 87 556 379 529 150

19990802 66 7 44 590 56 423 359 537 139

19990831 70 6 45 611 58 427 361 531 142

19990930 72 6 45 615 57 430 370 552 145

19991101 75 6 45 613 52 426 372 564 147

19991130 73 6 45 630 52 433 373 568 140

19991231 71 6 41 764 61 493 365 563 144

20000131 76 1 36 817 66 530 365 566 136

20000229 78 1 38 858 66 543 382 569 138

20000331 78 1 38 867 66 545 397 600 147

20000501 79 3 43 869 64 539 407 591 148

20000531 77 3 40 870 64 545 402 588 161

20000630 78 3 39 881 64 547 390 600 159

20000731 79 3 39 877 67 546 391 609 165

20000831 78 3 39 890 65 551 396 624 165

20001002 79 3 39 895 67 554 406 619 174

20001031 78 3 39 898 69 552 409 692 207

20001130 74 3 38 896 67 548 396 706 214

20010102 74 4 41 889 65 537 384 703 224

20010131 74 5 35 896 71 534 386 684 253

20010228 77 5 37 923 66 535 398 659 264

20010402 78 4 37 928 67 524 425 651 255

20010430 80 4 37 932 63 521 456 612 276

20010531 81 4 37 942 68 524 453 605 282

20010702 83 4 37 943 65 519 458 578 301

20010731 91 4 37 949 67 522 472 568 298

20010831 89 4 37 963 67 525 495 519 318

20011001 87 4 37 970 64 523 508 525 318

20011031 95 4 44 979 67 511 490 537 313

20011130 89 4 41 1005 68 513 489 523 331

20011231 89 5 44 1005 67 506 495 529 336

20020131 88 5 44 1004 64 508 509 529 328

20020228 82 4 44 1017 62 509 517 564 305

20020331 84 3 42 1028 63 512 523 546 309

20020430 85 2 42 1037 64 509 538 523 315

20020531 86 2 43 1037 62 494 603 520 297

20020630 84 2 44 1041 64 493 663 662 308

20020731 85 2 43 1026 61 480 656 698 303

20020831 85 2 41 1042 63 481 656 702 315

Average 81 6 46 791 77 494 401 547 162

30



Table 1

Summary Statistics on Merrill Lynch Option-adjusted Credit Spreads

This table reports the summary statistics on daily Merrill Lynch option-adjusted credit spread (OAS) indices

on non-rebalancing days. Panels A through C present respectively the summary statistics on credit spread

level, changes in credit spreads and changes in log credit spreads. ρ (1) is the first order autocorrelation

coefficient. The sample period of daily credit spreads is from 1/02/1997 to 8/30/2002. There are 1358

observations on non-rebalancing days.

Statistics AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Panel A: Option-adjusted Spreads (Basis Points)
Mean 62.51 72.03 87.38 136.32 137.45 157.25 319.5 552.33 1317.7

Median 63.668 69.383 90.502 138.756 135.666 153.442 308.45 531.358 1262.645

Std Dev. 20.39 24.49 27.08 54.21 49.96 52.25 125.6 205.77 533.44

Max 103.248 133.32 138.088 239.189 279.223 258.472 725.166 1082.642 2358.557

Min 27.138 16.64 36.17 50.384 52.76 73.994 136.141 280.837 504.05

Panel B: Changes in Credit Spreads (∆St = St − St−1)
Mean -0.004 -0.056 0.001 0.127 0.038 0.037 0.34 0.549 1.06

Std Dev. 1.76 3.03 1.83 2.01 2.47 2.03 6.08 8.96 13.79

Skewness -0.62 -1.79 0.38 1.35 0.68 1.23 7.02 3.36 1.65

kurtosis 20.63 34.27 12.83 15.76 7.85 16.89 116.16 53.7 25.53

Max 10.859 20.23 14.267 18.81 14.77 20.93 106.67 145.81 182.47

Min -18.7 -41.37 -12.589 -12.43 -12.61 -12.86 -24.8 -48.84 -91.17

ρ (1)∆S -0.28 -0.17 -0.17 -0.02 -0.04 -0.01 0.15 0.17 0.17

ρ (1)∆S2 0.36 0.05 0.3 0.23 0.31 0.15 0.02 0.01 0.04

Panel C: Changes in Log Credit Spreads (∆st = ln (St/St−1) ∗ 100))
Mean -0.014 -0.063 0.007 0.077 0.024 0.027 0.065 0.082 0.074

Std Dev. 3.74 5.19 2.51 2.03 2.22 1.52 1.54 1.47 1.01

Skewness -1.78 0.37 -0.31 0.001 0.49 -0.25 3.13 1.81 1.35

kurtosis 47.88 55.6 20.91 27.94 21.31 22.8 41.63 18.91 14.13

Max 29.83 74.91 18.99 15.41 22.88 11.79 22.75 17.47 10.24

Min -52.43 -60.75 -21.1 -18.36 -16.25 -14.59 -6.24 -5.89 -6.18

ρ (1)∆s -0.29 -0.29 -0.22 -0.16 -0.2 -0.14 0.1 0.14 0.2

ρ (1)∆s2 0.37 0.4 0.37 0.41 0.42 0.27 0.01 0.01 0.04
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Table 2

Unit Root/Stationarity Tests on the Merrill Lynch

Option-adjusted Credit Spread Series

This table presents the results of various unit root/stationarity tests on Merrill Lynch option-adjusted

credit spreads over the period of 12/31/1996 - 8/30/2002. The estimates and associated t-statistics from

the Augmented Dickey-Fuller test and the Phillips-Perron test are reported in Panels A and B. Panel C

contains the Lagrangian Multiplier (LM) test statistic from the stationarity test of Kwiatkowski, Phillips,

Schmidt and Shin (1992). Panel D reports the four types of Cauchy tests of Bierens and Guo (1993)

stationarity test. Panel E presents the results of Bierens (1997) non-linear Augmented Dickey-Fuller tests

for unit root.

Test AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

Statistics 1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Panel A: Augmented Dickey-Fuller Test
(Critical Value: (5%)=-2.89; (10%)=-2.58)

β -0.0042 -0.009 -0.003 -0.001 -0.001 -0.002 -0.005 -0.001 -0.0004

t− stat -1.51 -2.2 -1.53 -0.97 -0.63 -1.18 -0.39 -0.66 -0.33

Panel B: Phillips-Perron Test
(Critical Value: (5%)=-14.51; (10%)=-11.65)

β 0.9925 0.9842 0.996 0.9986 0.9985 0.9985 0.9996 0.9995 0.992

t− stat -5.41 -13.68 -3.6 -1.46 -1.37 -2.33 -1.17 -0.92 -12.04

Panel C: KPSS (1992) Stationarity Test
(Critical Value: (5%)=0.463; (10%)=0.347)

LM − Stat 3.23 1.9 2.87 4.12 3.99 3.87 4.14 3.79 4.18

Panel D: Bierens-Guo (1993) Stationarity Tests
(Critical Value: (5%)=12.706; (10%)=6.314)

Type 1 46.33 2.48 374.54 748.52 367.7 607.54 805.6 887 718.59

Type 2 49.61 2.5 541.15 1391.8 1386 1376 1424.7 1424 1425

Type 3 13.62 1.63 29.84 149.36 90.75 122.1 157.6 175.89 205.95

Type 4 30.01 2.82 44.14 189.17 128.28 111.26 118.9 73.88 121.6

Panel E: Bierens (1997) Nonlinear ADF test
(Critical Value of t-stat (5%)=-3.97; (10%)=-3.46)

(Critical Value of Am (5%)=-27.2; (10%)=-23)

(Critical Value of F-test (5%)=4.88; (10%)=5.68)

β -0.006 -0.009 -0.003 -0.004 -0.008 -0.003 -0.008 -0.005 -0.007

t− stat -1.32 -1.93 -1.03 -1.35 -2.1 -1.26 -2.36 -2.13 -2.37

Am -5.1 -9.04 -3.1 -4.84 -9.16 -4.74 -11.34 -9.64 -11.28

F-test 1.25 1.77 1.91 1.69 2.58 1.35 3.06 1.89 3.43
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Table 3

Maximum Likelihood Estimates of Credit Spread Distribution on

Re-balancing Days

This table presents results of the estimation of Merrill Lynch option-adjusted credit spread indices on index
re-balancing days. The distribution of credit spreads St for a given index on re-balancing day t takes the
following form:

St = α +
1

1/(β − α) + exp(−ur,t)
(35)

where α < St < β, ur,t = µr + εt, µr is a constant, and εt is normally distributed with N
(
0, σ2

r

)
. Maximum

likelihood estimates of the parameters for each index and the heterodscadesticity-consistent standard errors

are reported below.

Parameter AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

α 31.897 27.304 39.832 54.599 53.672 73.905 138.76 288.61 540.99

(0.218) (2.371) (0.525) (0.31) (8.09) (0.88) (2.99) (0.76) (3.82)

β 103.072 139.644 133.4 232.97 281.569 258.21 627.89 1006.14 2346.1

(0.66) (5.94) (0.43) (0.47) (8.3) (1.3) (7.26) (4.98) (9.61)

µr 3.82 4.25 4.565 4.65 4.698 4.858 5.337 5.63 7.02

(0.237) (0.172) (0.24) (0.3) (0.33) (0.227) (0.22) (0.25) (0.24)

σr 1.898 1.133 1.876 2.286 1.258 1.792 1.613 2.02 1.92

(0.283) (0.186) (0.258) (0.39) (0.33) (0.241) (0.22) (0.24) (0.22)

ln (L) -288.47 -309.58 -309.08 -350.58 -357.77 -353.85 -421.76 -437.92 -506.6
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Table 4

Maximum Likelihood Estimates of the ARX(1)-ARCH(1)

Model of Credit Spreads on Non-rebalancing Days

This table reports the maximum likelihood estimates of the ARX(1)-ARCH(1) model of log credit spreads
for the period 01/02/1997 through 08/30/2002. The estimated model is

ln (St) = ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2)

+β1retrus,t−1 + β2slopet−1 + β3∆rt−1 + εt, (36)

where D1,t is a dummy variable that equals one when day t is a rebalancing day and zero otherwise, retrus,t−1

is the lagged Russell 2000 index return, ∆slopet−1 is lagged changes in the slope of yield curve, and ∆rt−1

is the lagged changes in interest rates. The disturbance εt has mean zero and conditional variance h2
t , where

h2
t is specified as an ARCH(1) process:

h2
t = $0 + b1 (1−D1,t−1) ε2t−1. (37)

The asymptotic heteroscedasticity-consistent standard errors are reported in parentheses. Bold number
indicates significance at the 10% level

Parameter AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

µ0 0.121 -0.074 0.014 0.082 0.031 0.002 0.066 0.075 0.074

(0.133) (0.143) (0.061) (0.049) (0.057) (0.034) (0.083) (0.039) (0.037)

β1 -0.226 -0.287 -0.127 -0.175 -0.137 -0.106 -0.169 -0.165 -0.100

(0.075) (0.094) (0.040) (0.047) (0.040) (0.030) (0.053) (0.031) (0.037)

β2(∗102) -4.742 -4.113 -3.043 -2.150 -4.372 -2.035 2.707 0.413 1.396

(2.293) (3.012) (1.821) (1.371) (1.477) (1.051) (5.619) (1.200) (0.937)

β3(∗102) -0.805 5.267 -0.228 -0.395 0.964 -0.183 0.095 2.003 0.785

(3.513) (3.445) (1.460) (1.266) (1.288) (1.031) (1.129) (1.319) (0.768)

φ1 -0.261 -0.094 -0.126 -0.151 -0.096 0.047 0.137 0.196 0.265

(0.195) (0.067) (0.059) (0.068) (0.081) (0.044) (0.180) (0.055) (0.075)

$0 4.226 11.104 3.351 1.660 2.290 1.227 1.936 1.980 0.786

(0.892) (2.349) (0.684) (0.392) (0.368) (0.286) (0.370) (0.291) (0.093)

b1 0.961 0.790 0.602 0.743 0.571 0.579 0.233 0.041 0.236

(0.288) (0.355) (0.195) (0.246) (0.175) (0.194) (0.450) (0.038) (0.223)

ln(L) -3211.12 -3799.04 -2951.22 -2508.74 -2717.15 -2262.90 -2479.04 -2412.45 -1878.81

BIC 6472.750 7648.577 5952.934 5067.986 5484.810 4576.294 5008.570 4875.404 3808.112

AIC 6436.259 7612.086 5916.443 5031.495 5448.319 4539.803 4972.079 4838.913 3771.621
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Table 5

Maximum Likelihood Estimates of the ARX(1)-ARCH(1)-Jump

Model of Credit Spreads on Non-rebalancing Days

This table presents the maximum likelihood estimates of the ARX(1)-ARCH(1)-Jump model of log credit
spreads for the period 01/02/1997 through 08/30/2002. The estimated model is

ln (St) = ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2)

+ β1 retrus,t−1 + β2 slopet−1 + β3∆rt−1 + λtµJ + εt, (38)

where D1,t is a dummy variable that equals one when day t is a rebalancing day and zero otherwise,
retrus,t−1 is the lagged Russell 2000 index return, ∆slopet−1 is lagged changes in the slope of yield curve,
and ∆rt−1 is the lagged changes in interest rates. The disturbance εt has mean zero and is a mixture of two
normal distributions: one is N

(
−λtµJ , h2

t

)
with probability (1− λt) in the event of no jumps and the other

is N
(
(1− λt) µJ , h2

t + σ2
J

)
with probability λt. h2

t , the conditional variance of εt in the no-jump state, is

assumed to follow an ARCH(1) process:

h2
t = $0 + b1 (1−D1,t−1) ε2t−1. (39)

The jump probability λt = exp (p0 + p1 ∗ V IXt−1) / (1 + exp (p0 + p1 ∗ V IXt−1)). The asymptotic heteroscedasticity-
consistent standard errors are in parentheses. Bold number indicates significance at 10% level.

Parameter AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C
1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

µ0 -0.070 -0.001 -0.018 -0.016 -0.029 -0.027 0.006 0.039 0.025
(0.040) (0.057) (0.033) (0.024) (0.032) (0.019) (0.035) (0.034) (0.023)

β1 -0.049 -0.048 -0.063 -0.051 -0.074 -0.062 -0.108 -0.133 -0.076
(0.034) (0.042) (0.025) (0.020) (0.025) (0.016) (0.031) (0.030) (0.018)

β2(∗102) -3.054 -3.68 -1.567 -1.683 -1.524 -1.282 0.316 0.030 0.572
(1.277) (1.735) (0.978) (0.662) (0.988) (0.553) (1.026) (0.824) (0.614)

β3(∗102) -1.148 2.458 -1.268 -0.714 0.624 -0.529 0.072 1.670 0.989
(0.932) (1.386) (0.683) (0.522) (0.694) (0.447) (1.047) (1.341) (0.535)

φ1 -0.243 -0.133 -0.114 -0.133 -0.045 -0.015 0.092 0.168 0.215
(0.033) (0.04) (0.04) (0.047) (0.034) (0.068) (0.047) (0.052) (0.035)

$0 1.311 2.258 0.771 0.411 0.798 0.280 1.122 1.305 0.478
(0.136) (0.236) (0.076) (0.037) (0.082) (0.026) (0.119) (0.139) (0.05)

b1 0.380 0.324 0.369 0.365 0.373 0.383 0.140 0.047 0.073
(0.063) (0.06) (0.082) (0.07) (0.05) (0.079) (0.049) (0.02) (0.028)

p0 -4.634 -3.604 -3.345 -5.032 -4.132 -4.502 -5.679 -6.124 -5.471
(0.649) (0.588) (0.554) (0.658) (0.685) (0.565) (1.195) (1.383) (1.000)

p1 0.077 0.059 0.049 0.090 0.065 0.087 0.086 0.103 0.112
(0.023) (0.02) (0.02) (0.022) (0.024) (0.021) (0.03) (0.035) (0.027)

µJ 1.140 -0.09 0.216 0.557 0.386 0.769 1.207 1.070 0.443
(0.912) (0.827) (0.426) (0.584) (0.466) (0.329) (1.205) (1.203) (0.312)

σJ 8.708 10.146 5.283 5.027 4.667 3.346 5.015 4.152 2.189
(1.497) (1.286) (0.725) (0.762) (0.664) (0.533) (2.182) (1.586) (0.551)

ln(L) -2803.19 -3329.02 -2564.66 -2003.22 -2428.47 -1844.43 -2265.01 -2279.74 -1736.64
BIC 5685.738 6737.38 5208.669 4085.796 4936.287 3768.203 4609.365 4638.831 3552.626
AIC 5628.395 6680.03 5151.326 4028.453 4878.944 3710.860 4552.022 4581.487 3495.283
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Table 6
Model Diagnostic Tests

Table 6 presents various model diagnostic tests for the estimated ARX(1)-ARCH(1)-Jump model and the
nested ARX(1)-ARCH(1) model as reported in Table 5. The marginal significance level of the corresponding
test statistics are reported in square brakets.

Spread Index Model χ2 (19) ρε (1) ρε2 (1) Skewness Kurtosis Normality

ARCH 403.1 -0.1 0.071 0.28 15.95 25.66

AA-AAA rated [0.00] [0.00] [0.005] [0.73] [0.00] [0.00]

1-10 Yrs Jump-ARCH 34.41 -0.096 0.059 -0.037 0.779 4.52

[0.02] [0.00] [0.015] [0.76] [0.06] [0.1]

ARCH 530.1 -0.072 0.035 0.00 11.29 31.18

AA-AAA rated [0.00] [0.004] [0.102] [0.99] [0.00] [0.00]

10-15 Yrs Jump-ARCH 60.61 -0.07 0.032 0.06 0.424 6.11

[0.00] [0.006] [0.117] [0.52] [0.024] [0.05]

ARCH 424.3 -0.038 0.004 0.24 13.32 24.36

AA-AAA rated [0.00] [0.08] [0.44] 0.72 [0.00] [0.00]

15+ Yrs Jump-ARCH 31.96 -0.048 0.028 0.059 0.484 6.24

[0.03] [0.038] [0.15] [0.52] [0.01] [0.04]

ARCH 489.6 -0.05 0.034 0.33 24.8 31.3

BBB-A rated [0.00] [0.029] [0.11] [0.77] [0.00] [0.00]

1-10 Yrs Jump-ARCH 40.24 -0.022 0.058 -0.024 0.618 7.55

[0.003] [0.21] [0.02] [0.8] [0.01] [0.02]

ARCH 242.1 -0.04 0.058 0.26 11.99 26.8

BBB-A rated [0.00] [0.06] [0.02] [0.67] [0.00] [0.00]

10-15 Yrs Jump-ARCH 26.48 -0.016 0.046 0.004 0.65 7.2

[0.12] [0.28] [0.04] [0.97] [0.014] [0.027]

ARCH 407.5 -0.074 0.024 0.17 20.93 19.16

BBB-A rated [0.00] [0.003] [0.188] [0.87] [0.00] [0.00]

15+ Yrs Jump-ARCH 31.05 -0.008 0.038 0.045 0.842 8.19

[0.04] [0.38] [0.08] [0.7] [0.01] [0.02]

ARCH 123.5 -0.058 -0.005 -0.035 21.55 7.63

BB rated [0.00] [0.02] [0.43] [0.98] [0.006] [0.02]

Jump-ARCH 21.56 -0.013 0.006 -0.047 0.417 4.65

[0.31] [0.32] [0.41] [0.6] [0.03] [0.098]

ARCH 74.88 -0.042 0.005 -0.302 11.72 6.62

B rated [0.00] [0.06] [0.43] [0.7] [0.01] [0.04]

Jump-ARCH 13.13 -0.009 0.003 -0.086 0.304 4.16

[0.83] [0.37] [0.45] [0.26] [0.05] [0.12]

ARCH 90.65 -0.079 -0.004 -0.01 7.2 9.57

C rated [0.00] [0.002] [0.43] [0.98] [0.002] [0.008]

Jump-ARCH 17.46 -0.034 0.024 0.022 0.314 2.2

[0.56] [0.1] [0.19] [0.8] [0.14] [0.33]
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Table 7
Robustness Test Using the S&P Credit Indices

This table presents the maximum likelihood estimates of the ARX(1)-ARCH(1)-Jump model with two daily
S&P credit index series over the period 12/31/1998 through 08/30/2002. The estimated model is

ln (St) = ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2)

+ β1 retrus,t−1 + β2 slopet−1 + β3∆rt−1 + λtµJ + εt,

where D1,t is a dummy variable that equals one when day t is a rebalancing day and zero otherwise,
retrus,t−1 is the lagged Russell 2000 index return, ∆slopet−1 is lagged changes in the slope of yield curve,
and ∆rt−1 is the lagged changes in interest rates. The disturbance εt has mean zero and is a mixture of two
normal distributions: one is N

(
−λtµJ , h2

t

)
with probability (1− λt) in the event of no jumps and the other

is N
(
(1− λt) µJ , h2

t + σ2
J

)
with probability λt. h2

t , the conditional variance of εt in the no-jump state, is

assumed to follow an ARCH(1) process:

h2
t = $0 + b1 (1−D1,t−1) ε2t−1. (40)

The jump probability λ = exp (p0 + p1 ∗ V IXt−1) / (1 + exp (p0 + p1 ∗ V IXt−1)). The asymptotic heteroscedasticity-
consistent standard errors are in parentheses. Bold number indicates significance at 10% level.

Parameter Investment-grade High-yield
Credit Index Credit Index

µ0 -0.03 0.035
0.028 0.061

β1 -0.102 -0.081
(0.026) (0.03)

β2(∗102) -1.102 0.866
(0.767) (0.999)

β3(∗102) 0.742 1.678
(0.713) (1.223)

φ1 0.174 0.191
(0.058) (0.0645)

$0 0.432 0.603
(0.094) (0.101)

b1 0.242 0.075
(0.074) (0.036)

p0 -5.533 -4.826
(1.581) (1.785)

p1 0.112 0.173
(0.032) (0.083)

µJ 0.362 0.044
(0.497) (0.14)

σJ 2.314 1.446
(1.162) (0.149)

ln(L) -1201.19 -1479.51
BIC 2477.366 3034.008
AIC 2424.382 2981.024
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Table 8
Out-of-Sample Forecast Comparison

This table presents the root mean squared error (RMSE) and the mean absolute error of the actual credit
spread and the one-step-ahead predicted credit spread from the ARX-ARCH-Jump model and the nested
ARX-ARCH model. Starting from January of 2000, on the first non-rebalancing trading day of each month,
the parameters of the model are estimated using all past observations. The parameters are held constant
for the one-step-ahead prediction within the month. The initial sample period runs from January, 1997 to
December, 1999 and the forecast period is from January, 2000 through August, 2002. The data used are
daily observations of Merrill Lynch credit spread indices on non-rebalancing days. MT indicates the simple
martingale model of credit spreads. Bold number indicates the smallest value.

Panel A: Root Mean Squared Error

Model AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Jump-ARCH 1.447 2.605 1.909 2.181 2.708 2.233 8.077 11.081 17.494

ARCH 1.465 2.634 1.919 2.204 2.769 2.24 8.021 11.101 17.815

MT 1.497 2.657 1.929 2.118 2.701 2.255 8.219 11.318 17.686

Panel B: Mean Absolute Error

Model AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Jump-ARCH 0.905 1.559 1.17 1.319 1.783 1.341 4.543 7.08 11.8

ARCH 0.949 1.618 1.185 1.389 1.844 1.357 4.525 7.092 12.011

MT 0.915 1.561 1.166 1.267 1.756 1.356 4.56 7.268 11.974
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Figure 1−1
Merrill Lynch Option−adjusted Credit Spread Indexes (AA−AAA Rated)
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Figure 1−2
Merrill Lynch Option−adjusted Credit Spread Indexes (BBB−A Rated)
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Figure 1−3
Merrill Lynch Option−adjusted Credit Spread Indexes (High−Yield)
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Figure 2: Percentage Changes in Merrill Lynch Option−adjusted Spread Indexes 


