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1 Introduction

One of the most puzzling features of international asset prices is the tendency for high
interest rate currencies to appreciate, when the expectations hypothesis suggests the
opposite: that investors will demand higher interest rates from currencies expected
to fall in value. This departure from uncovered interest parity, which we term the
forward premium anomaly, has been documented in dozens—and possibly hundreds—
of studies, and has spawned a second generation of papers attempting to account for
it. One of the most influential of these is Fama (1984), who attributed the behavior
of forward and spot exchange rates to a time-varying risk premium. Fama showed
that the implied risk premium must (i) be negatively correlated with the expected
rate of depreciation and (ii) have a greater variance.

We refer to this feature of the data as an anomaly, because asset pricing theory
to date has been notably unsuccessful in producing a risk premium with the requisite
properties. This includes applications of the capital asset pricing model to currency
prices (Frankel and Engel, 1984; Mark, 1988), statistical models relating risk premi-
ums to changing second moments (Cumby, 1988; Domowitz and Hakkio, 1985; Hansen
and Hodrick, 1983), and consumption-based asset pricing theories, including depar-
tures from time-additive preferences (Backus, Gregory, and Telmer, 1993; Bansal,
1991; Macklem, 1991) and from expected utility (Bekaert, Hodrick, and Marshall,
1992).

We approach the anomaly from the perspective of dynamic asset pricing theory,
in which asset prices are governed by a pricing kernel. Existence of a pricing kernel
is guaranteed in any economy that does not admit pure arbitrage opportunities. We
relate the behavior of spot exchange rates to pricing kernels in two currencies and
describe, in an abstract theoretical setting, the properties these kernels must have to
account for the puzzling behavior of forward and spot exchange rates.

These properties are given concrete form in three examples that we think will
lead to a persuasive explanation of the anomaly. The first is a variant of the pop-
ular Hamilton model in which conditional moments, including risk premiums, vary
across two “regimes.” The second is a two-currency version of the Cox-Ingersoll-Ross
(1985) model similar to Nielsen and Sai-Requejo (1993) and Sai-Requejo (1994).
This model delivers Fama’s condition (i) with any permissible values of the parame-
ters, but has difficulty with condition (ii). Our third example combines elements of
the first two: expansionary monetary policy and other factors periodically leads to
greater uncertainty and an expectation among market participants that the currency
will fall in value. This combination of events tends to produce contrary movements in
the depreciation rate and the forward premium and thus a solution to the anomaly.



2 The Forward Premium Anomaly

We begin with a review of properties of spot and forward exchange rates for the US
dollar versus the remaining G7 currencies. Here and elsewhere, s; is the logarithm
of the dollar price of one unit of foreign currency and f; is the logarithm of the
dollar price of a one-month forward contract: a contract arranged at date ¢ specifying
payment of exp(f;) dollars at date ¢t 4+ 1 in return for one unit of foreign currency.

We report summary statistics in Table 1 for the depreciation rate of the dollar,
St41 — St, and the forward premium, f; — s;. We see in Panel A of the table that
depreciation rates have been small relative to their standard deviations. The largest
mean depreciation rate rate is 0.0036 monthly for the yen, or about 4.3 percent per
year, but the standard deviation is almost ten times larger. Higher moments, however,
exhibit no clear pattern. There is some evidence of skewness for the pound, but
little for other currencies. The kurtosis parameters are generally positive, indicating
greater likelihood of extreme events than with normal random variables, but they
are small in most cases. Similarly, there is little indication that depreciation rates
are autocorrelated. The forward premium, in contrast, is highly persistent, with
autocorrelations ranging between 0.625 for the franc and 0.884 for the pound.

One way to think about this evidence is to relate it to the ezpectations hypothesis:
that forward rates are expected future spot rates. We express this in logarithmic form
as f; = Fysiq1 or fi — sy = Eysgqq — 8¢ Although we do not observe expected future
spot rates, we can get an indication of the accuracy of the expectations hypothesis by
comparing mean forward premiums and depreciation rates across currencies. We see
in Figure 1 (which uses entries from Table 1) that while the two means are not the
same, their differences are small relative to their cross-section variation. Countries
with large forward premiums, on average, are also those against which the dollar has
depreciated the most.

This sanguine view of the expectations hypothesis changes dramatically when we
turn from cross-section to time-series evidence. A huge body of work has established,
for the extant flexible exchange rate period, that forward premiums have been nega-
tively correlated with subsequent depreciation rates for exchange rates between most
major currencies. Canova and Marrinan (1993), Hodrick (1987), and Levich (1985)
provide exhaustive references to the literature. The most common evidence comes
from regressions of the form

St+1 — 8t = a1 + a2(ft — s¢) + residual. (1)

The expectations hypothesis implies a regression slope az = 1, yet most studies
estimate a; to be negative. Thus we find not only that the expectations hypothesis
provides a poor approximation to the data, but that its predictions of future currency



movements are in the wrong direction. We report similar evidence in Table 2, where
a; ranges from -0.461 for the lira to -3.542 for the deutschemark. The t-statistics for
these estimates, relative to a; = 1, range from 1.9 for the lira to 4.3 for the Canadian
dollar.

This evidence has motivated, as we noted, a growing number of studies suggest-
ing explanations. Foremost among these is Fama (1984), who labels the difference
between the forward rate and the expected future spot rate a risk premium, and
proceeds to document its properties. In Fama’s interpretation, the forward premium,
ft — st, includes a risk premium p as well as the expected rate of depreciation g¢:

fe—st = (fi — Etst41) + (Etst41 — st)
= pitaq. (2)
The cross-section evidence (Table 1 and Figure 1) suggests that risk premiums are

small, on average, but the time series evidence implies they are hlghly variable. Since
the population regression coefficient ag is

_ Cov(g,p+4q) _ Cov(g,p) + Var(q) 3)
Var(p + q) Var(p+q)

it’s clear that a constant risk premium p generates a; = 1. To generate negative
values of ay we need Cov(q,p) + Var(¢) < 0. Fama notes that this requires (i)
negative covariance between p and ¢ and (ii) greater variance of p than ¢g. These
two conditions serve as hurdles that any theoretical explanation of the anomaly must
surpass.

We can quantify the components of the forward premium by taking a closer look
at the estimates of equation (1) summarized in Table 2. The fitted values of the
regression are estimates of expected rates of depreciation ¢; their means and standard
deviations are reported in Table 3. An analogous estimate of the risk premium is

pe=(ft—8:)— @t = —a1 + (1 — a2)(fe — 1),

whose means and standard deviations are also reported in Table 3. We see, first, that
mean risk premiums are small, as suggested by Figure 1. The means are uniformly
smaller than the standard deviations, in some cases by more than an order of magni-
tude. We also see that the estimates of p and ¢ satisfy the two conditions suggested
by Fama. Condition (ii) is apparent in Table 3, where we see that the risk premium
has a larger standard deviation than the expected rate of depreciation for each of the
six currencies listed. Condition (i) follows from the difference in signs of a; and 1—ay:
since our estimates of p and ¢ are both linear functions of the forward premium, with
slope coeflicients a; and 1 — a4 of opposite sign, the correlation between them is mi-
nus one. These properties together allow us to reproduce the slope coefficient a; from



formula (3). For the deutschemark we have

Var(p) (0.007980)% = 0.6368 x 10~
Var(q) = (0.006223) = 0.3872 x 10~*
Cov(p,g) = —(0.007980)(0.006223) = —0.4966 x 10~*
Var(p+q) = 0.3087 x 107°.

These imply, by (3), a slope coefficient a; = —3.542, as we reported in Table 2. These
numbers work out simply as a feature of least squares, but they give us a rough
idea of the magnitudes involved in conditions (i) and (ii). Since fitted values are
projections on a limited information set, we might expect them to be less variable
than the conditional means, ¢; = E;s;41 — s; and p; = f; — E;s441. The population
variances, then, are likely to be larger than we've estimated, and the population
correlation is likely to be smaller in absolute value. Finally we note that the strong
autocorrelation evident in forward premiums (Table 1) translates, in our estimates,
into equal persistence in both components.

In short, Fama’s interpretation of the evidence suggests a highly variable risk
premium that reverses the sign of the slope parameter a; in the forward premium re-
gression relative to what it would be under the expectations hypothesis. But without
a theory that generates a risk premium with the required properties, the term risk
premium is more a convenient label than an explanation of the anomaly. We consider
several potential explanations below.

3 Theoretical Considerations

Before turning to models that might account for the anomaly, we find it useful to
consider currency prices in a fairly general theoretical setting. As in the modern
dynamic theory of asset pricing, we think of asset prices as being consistent with
a pricing kernel: a stochastic process governing prices of state-contingent claims.
Existence of such a process is guaranteed in any economic environment that precludes
arbitrage opportunities. The beauty of this result is its simplicity. It requires only
that market prices of traded assets not permit combinations of trades that produce
positive payoffs in some states with no initial investment—a departure from covered
interest rate parity, for example. In this section, we develop this approach to the
pricing of currencies, relate currency variability to the variability of pricing kernels,
and examine the relation between the conditional distribution of the kernels and the
forward premium anomaly.



3.1 Pricing Kernels

We begin with assets denominated in domestic currency (“dollars”), then move on
to those denominated in a foreign currency (“marks”). With respect to dollar assets,
consider the dollar value v; of a claim to the stochastic cash flow of d;; dollars one
period later. If m is a random variable that prices one-period state-contingent claims,
the price and cash flow of the asset satisfy the pricing relation,

vt = Ey (mig1dia), (4)

or
1= E;(mig1Riq1), (5)

where Ryy1 = di41/v: is the one-period return on the asset. We refer to the possible
realizations of m as state prices, to the stochastic process governing m as the pricing
kernel, and to the random variable m as the state-price function or simply the pricing
kernel. In economies with a representative agent, m is the nominal intertemporal
marginal rate of substitution and (5) is a first-order condition. More generally, there
exists a positive random variable m satisfying the pricing relation (5) for returns R
on all traded assets if the economy admits no pure arbitrage opportunities. When the
economy has a complete set of markets for state-contingent claims, m is the unique
solution to (5), but otherwise there is generally a range of choices of m that satisfy the
pricing relation for all returns. These issues, and the relevant literature, are reviewed

by Duffie (1992).

The pricing kernel, embodied in m, and the pricing relation (5) are the basis of
most modern theories of bond pricing: given a pricing kernel, we use (5) to compute
prices and yields for bonds of all maturities. Denote by b} the price of an n-period
zero-coupon bond: the claim to one dollar at date ¢t + n in all states. Since the return
on an (n + 1)-period bond is b7, , /b7*!, we can compute bond prices recursively from

bt = By (myy1bfy,) (6)

starting with 8 = 1 (a dollar today costs a dollar). The price of a one-period bond,
for example, is b} = E;m;41. Continuously-compounded bond yields y are related to
prices by

b} = exp (—yi'n).

The short rate r; is the yield y} on a one-period bond:
Ty = — 10g b} = — log Etmt+1 . (7)
We return to this equation when we consider exchange rates.

When we consider assets with returns denominated in deutschemarks, we might



adopt an analogous approach and use a random variable m* to value them. Alter-
natively, we could convert mark returns into dollars and value them using m. The
equivalence of these two procedures gives us a connection between exchange rate
movements and state prices in the two currencies, m and m*. If we use the first
approach, mark returns R} satisfy

1= E;(mi1Ryy) - (8)

If we use the second approach, with § = exp(s) denoting the spot price, in dollars, of
one mark, then

1= Ei (mey1(Ses1/Se) Riyq) -

If the mark asset and currencies are both traded, there are obvious arbitrage oppor-
tunities unless the return satisfies both conditions:

E; (miy1Riy1) = Ey (myy1(Se41/S4)Riyq) -

This equality ties the rate of depreciation of the dollar to the random variables m and
m* that govern state prices in dollars and marks. Certainly this relation is satisfied
if m¥,; = my415¢41/5:. This choice is dictated when the economy has a complete set
of markets for currencies and state-contingent claims. With incomplete markets, the
choices of m and m* satisfying (5,8) are not unique, but we will see that there is no
loss of generality in choosing them to satisfy the same equation.

We summarize the connection between pricing kernels and currency prices in

Proposition 1 Consider stochastic processes for the depreciation rate, Siy1/S;, and
returns Riy1 and R}, on dollar and mark denominated assets. If these processes do
not admit arbitrage opportunities, then we can choose the pricing kernels m and m*
for dollars and marks to satisfy both

miyy/mis1 = Sey1/8 9)

and the pricing relations (5,8).

Proof. Consider dollar returns on the complete set of traded assets, including the dol-
lar returns (S¢4+1/5:)Rfy; on mark-denominated assets. If these returns do not admit
arbitrage opportunities, then there exists a positive random variable ™41 satisfying
(5) for dollar returns on each asset (Duffie 1992, Theorem 1A and extensions). For
any such m, the choice m},; = m;15:41/95: automatically satisfies (8).

The proposition tells us that of the three random variables, my1, miy1, and
St+1/St, one is redundant, and can be constructed from the other two. We start



with the two pricing kernels, which brings out the essential symmetry between the
two currencies. Despite the algebra, the intuition is relatively straightforward: if
we know prices of state-contingent claims in dollars and marks, we can compute the
implied exchange rate from their ratio. The only ambiguity stems from combinations
of state-contingent claims that are not traded.

Before turning to forward rates, we note that the observed properties of exchange
rates and other asset prices imply that m and m* are closely related. To see this,
note that (9) implies

Var (st41 — 8¢t) = Var (logmy,; — log miyy) .

For, say, the deutschemark, we estimate the left side to be 0.03382—the square of
about 3 percent per month (see Table 1). The right side we can estimate from
Hansen-Jagannathan bounds. A ballpark estimate of the standard deviation of logm
is about 0.4; see, for example, Bekaert and Hodrick (1992, Table XI), who report
estimated lower bounds as high as 0.78. If the variances of logm and log m* are the
same, then their correlation, p, is the solution to

0.0338% = 2(1 — p)(0.4)?,

so that p = 0.996. Stated more simply: the small variance of the depreciation rate
relative to the pricing kernels implies that the two kernels are highly correlated. The
correlation does not fall appreciably with smaller estimates of the standard deviation
of logm. With a standard deviation of 0.1, for example, the correlation falls only to
0.943. With most estimates of the variance of pricing kernels we have

Remark 1 Most of the variation in the pricing kernels, m and m”*, is common to
both.

An explicit factor structure is suggestive of how the interdependence of the two
pricing kernels might be modeled. Suppose logm and logm* combine a common
factor z and idiosyncratic factors z and 2*:

logm: = x4+ 2

logm; = z;+ 2.

If the three factors are independent, and the idiosyncratic factors have the same
variance, the numbers in the preceding paragraph imply

0.39932
Var(z*) = 0.0239°.

Var(z)
Var(z)



Almost all of the variance in state prices, then, is in the common factor z.

The strong correlation between the two pricing kernels suggests that it may be
difficult to detect the relatively small idiosyncratic features that bear on the pricing of
currencies: exchange rates depend only on differences between the logarithms of m*
and m, yet most of the variation in these random variables is common and therefore
does not affect currency prices.

3.2 Forward Rates and Risk Premiums

Given pricing kernels for two currencies and equation (9) for spot exchange rates, we
derive the forward premium and its components from the pricing relation. Consider a
forward contract specifying at date ¢ the exchange at t+1 of one mark and F; = exp(f;)
dollars, with the forward rate F; determined at date ¢ as the notation suggests. This
contract produces net dollar cash flows at date ¢t + 1 of F; — S;4+1. Since it involves
no payments at date ¢, the pricing relation (4) implies

0 = E; [mey1(F: = Seq1)] -
If we divide by S; and apply Proposition 1 we find
(Ft/St)Ee(mit1) = Bt (ma415e41/5t) = Ee(miy,),

or
Ft/St = Etm:+1/Etmt+1.

Thus the forward premium is
fe — s =log Eymy,; —log Eymqy,. (10)
This equation and the definition of the short rate, equation (7), give us
fe—st=r -1}, (11)
the familiar covered interest rate parity condition.

Now consider the components of the forward premium. The expected rate of
depreciation is, from (9),

g = Et8t+1 — 8 = Et log mf_'_l - Et log miqq. (12)

Thus we see that the first of Fama’s components is governed by the means of the
logarithms of the pricing kernels. The risk premium is, from (2,10),

pt = (log Exmjy, — Erlogmiy,) ~ (log Evmes1 — Eilogmiyr), (13)



the difference between the “log of the expectation” and the “expectation of the log” of
the pricing kernels m and m*. If this seems overly complicated, we should recall that
nonlinearity is the essence of the risk aversion that underlies most of finance. The
examples in the following sections will help to give these expressions more concrete
form.

With additional structure we can be more specific about the factors that affect the
risk premium. Many popular bond pricing models start with conditionally log-normal
pricing kernels: log my41 and log mj,, are conditionally normal with means (p1¢, 43,
and variances (p2t, u%;). With this structure, one-period bond prices are

exp (U1t + p2t/2)
Emi, = exp(pui;+up3:/2)

Eimipq

and, from (10), the forward premium is

fo— 8¢ = (u1; — pae) + (p3, — pae)/2-

The first term on the right is the expected rate of depreciation and the second is
the risk premium. Fama’s conditions require, in this case, (i) negative correlation
between differences in conditional means and variances of the two pricing kernels and
(ii) greater variation in the one-half the difference in the conditional variances.

If the conditional distributions of log m and log m* are not normal, the risk pre-
mium depends on higher moments. For an arbitrary distribution, equation (12) tells
us (again) that only the means affect the expected rate of depreciation. The risk
premium is given, in general, by (13), but if all of the conditional moments of log m
exist, log Fyms41 can be expanded

10g Etmt+1 = Z I‘éjt/j!, (14)
7=1

where k;; is the jth cumulant for the conditional distribution of logm;4;. Equation
(14) is an expansion of the cumulant generating function (the logarithm of the moment
generating function) evaluated at one; see Stuart and Ord (1987, chs 3,4). The
cumulants are closely related to moments, as we can see from the first four: K1; = pas,
Kot = Moty K3t = Mat, and kg = pgs — 3(2¢)?. The notation is standard, with pjq,
for j > 1, denoting the jth central conditional moment of log m¢4+1. For the normal
distribution, the cumulants are zero after the first two, so equation (14) gives us a
way of quantifying the impact of departures from normality. If the foreign kernel has
a similar representation, we can express the forward premium as

o0
fo=s0= (K5 — ki) /3,
=1



and the risk premium as
Pt =K1 — K-1}, (15)

where
o0 o0
. N .
K—1t = E :”jt/J!, ko1t = 2 :”jt/J!-
1=2 71=2

We refer to the sums x._;; and &2, ; generically as “higher-order cumulants” or mo-
ments.

With equations (15) and (12) describing risk premiums and expected depreciation,
we have

Remark 2 If conditional moments of all order exist for the logarithms of the two
pricing kernels, m and m*, then Fama’s necessary conditions for the forward premium
anomaly tmply

(i) negative correlation between differences in conditional means, K}, — K11, and
differences in higher-order cumulants, K*; , — K_1,; and

(it) greater variation in the latter.

In short, the forward premium anomaly requires, in the theory, an inverse relation
between differences in first moments and high-order moments of logarithms of pricing
kernels. In the following sections, we use examples to illustrate how such a relation
might be incorporated into a dynamic theory of asset pricing.

4 Example 1: Alternating Regimes

Our first example adapts the popular two-regime model of currency fluctuations used
by Engel and Hamilton (1990) and Evans and Lewis (1993) to the theoretical setting of
the last section. These two papers find that US dollar depreciation rates against major
currencies are approximated well by a model that alternates between two “regimes”
with different conditional means and variances of depreciation rates.

We can reproduce these features, and extend them to the forward premium
anomaly, in a version of our theoretical framework with conditionally log-normal
pricing kernels. Let us say that the behavior of the two pricing kernels varies across

10



two regimes as indicated by a random variable z. The regime is part of agents’ infor-
mation sets. When z = 1 the world is in regime"l, and when z = 2 the world is in
regime 2. The regimes follow a Markov chain with transition probabilities

. ) 1-6)r+6 1-60)(1-7)
Prob{ze41 = jlae = i} = [ ( (1—)0)1r (1(— (1 —1)+6 |’ (16)

where 7 is the unconditional probability of regime 1 and 6 is the autocorrelation of z.

To account for the persistent patterns of appreciation and depreciation, we let
the first moments of log m and logm* vary across the two regimes. Let us say, to be
concrete, that the first moment of the dollar pricing kernel alternates between two
values,

61 when z; =1

Et(log mt+1) = { 62 when 2 = 2

and that log m* has analogous parameters 6. That gives us, from (12), an expected
rate of depreciation
_J ;i =61-461 when z =1
= g = 65 — 63 when 2z, = 2.

Engel and Hamilton (1990) and Evans and Lewis (1993) report estimates of ¢; and
qz-

To account for the anomaly, we need similar variation in higher-order moments
across Tegimes. Let us say that the conditional variance of the dollar kernel alternates
between two values,

when z; = 1
Vari(logmiyr) = { ;: when Z: =2

and that log m* has analogous conditional variances vF. This structure delivers a risk
premium
P = =1 —-m)/2 when z =1
p2 = (3 —72)/2 when 2z = 2.

While both Engel and Hamilton (1990) and Evans and Lewis (1993) report estimates
of the conditional variance of the depreciation rate across regimes, this information
is not enough to identify p; and p,.

Since both the risk premium and expected depreciation are functions of the regime,
in this example, they are related to each other. It’s fairly easy to construct exam-
ples in which they are negatively correlated and reproduce the anomalous forward
premium regressions. Consider an example based on Evans and Lewis’s (1993, Ta-
ble II) monthly estimates for the dollar-deutschemark rate (Engel and Hamilton’s

11



quarterly estimates are similar). Their estimates imply that regimes are highly per-
sistent (6 = 0.924) and that regime 1 occurs with greater frequency (7 = 0.865).
The expected rate of depreciation alternates between ¢; = —0.000308 = —0.037/1200
in regime 1 (the strong dollar regime) and ¢, = 0.006892 = 0.827/1200 in regime
2 (the strong mark regime). These values imply Var(q) = 0.0002461%. If we posit
a risk premium that is lower in regime 2, and has a greater variance, we can ac-
count for the anomaly. An example that replicates our estimate of a; from Table 2 is
p2 = p1 — 0.0009233 for any p;.

The obvious strength of this example is that it builds on the striking trends
in spot exchange rates documented by Engel and Hamilton (1990) and Evans and
Lewis (1993). Other considerations, however, suggest to us that this is, at present,
not a persuasive explanation of the anomaly. First, the standard deviation of the
expected rate of depreciation implied by the Evans-Lewis estimates is more than an
order of magnitude smaller than we estimated in Section 2. Their estimates for the
deutschemark imply a standard deviation that is smaller by a factor of 25 (0.0002461
vs. the estimate of 0.006223 in Table 3). As a result, the standard deviation of the
risk premium required to reproduce the regression slope (in the example, 0.0003156)
is smaller by the same factor than the estimate in Table 3, as is the standard deviation
of the forward premium. This suggests that while there are sharp differences across
“regimes,” most of the variation in risk premiums and expected depreciation implied
by forward premium regressions is missed by these models. Second, our example
can reproduce the negative slope coefficients of Table 2 in any sample that includes
observations of both regimes, but not within a regime. Yet when we estimate a;
over shorter samples, or within the estimated regimes, we find that the anomaly
remains. Third, the variances that determine the risk premium in our example are
not identified by the behavior of the spot exchange rate. The regime models estimate
the conditional variance of the spot rate across regimes,

Vary(st41 — 8¢) = Var; (logm},; —log muyq)
not the difference between the conditional variances,
pr = Vary (logmy, ;) /2 — Var; (log meyq) /2.

Without additional information, we have no way of knowing whether our choice of
risk premiums in the two states is a reasonable one, or simply a fortunate choice.
Moreover, other work (Bekaert and Hodrick 1993, Domowitz and Hakkio 1985), has
failed to detect the relation this implies between differences in conditional variances of
depreciation rates and risk premiums. Finally, this model generates only two different
yield curves in each country, one in each regime. In this sense, it fails to utilize the
information on pricing kernels that earlier work has derived from bond prices. We
correct this oversight in the next section.

12



5 Example 2: Affine Yield Models

Our second example builds on the modern theory of bond pricing, in particular the
affine yield class exemplified by Cox, Ingersoll, and Ross (1985). Similar examples
have been studied by Nielsen and Sad-Requejo (1993) and Sai-Requejo (1994). One
advantage of models in this class is that they are relatively simple analytically: both
interest rates and risk premiums are linear functions of underlying state variables.
Another advantage is that we can use the knowledge of pricing kernels accumulated in
an extensive empirical literature on bond prices. Finally, we will see that many of the
models in this class produce automatically the contrary movements in the conditional
mean and variance of pricing kernels that are required by Fama’s condition (i) in
log-normal settings. Condition (ii), however, is less easily satisfied.

To see how this class of models works, it’s useful to start with a two-country,
discrete-time version of the Cox-Ingersoll-Ross (1985) model, adapted from Sun (1992).
The heart of the model is a state variable z that obeys the “square root process”

zp1 = (1 - @)0 + 02z + UZtl/2€t+1, (17)

with 0 < ¢ < 1, § > 0, and {¢} ~ NID(0,1). Despite the nonlinearity of the
innovation, this is a first-order autoregression with mean é and autocorrelation ¢. The
effect of the square-root term is to reduce the conditional variance of the innovation to
zero as z approaches zero. If (1—¢)é > 02/2, z can only become negative with extreme
negative realizations of ¢. In discrete time this happens with positive probability, but
we can make the probability as small as we like by choosing a small time interval,
and in the continuous time limit the state variable z is a.lways positive. Given z, the
pricing kernel is characterized by

1/2
- lOg M4y = 2 + /\Zt/ €t41- (18)
Since €41 is normal, log m44 is conditionally normal.

This structure is an example of the conditionally log-normal pricing kernels de-
scribed in Section 3. The conditional mean and variance,

Etlogmt.H = —Z
Varilogmy1, = A2z,

are both linear in the state variable z, and have a perfect negative correlation. The
short rate is

ry = —log Eymyy1 = — (Etlogmeyr + (1/2) Varglogmeyq) = (1 — A2/2) ze.  (19)

13



As long as 1 > A?/2, the short rate inherits the positive sign of 2. Yields on bonds ¢’
longer maturities are computed by applying (6) repeatedly. The values § = 0.00728,
o = 0.0103, ¢ = 0.976, and A = —.885 reproduce the mean, standard deviation,
and autocorrelation of the short rate and the average slope of the yield curve for US
treasury securities (Backus, 1994).

We complete the example by appending to this Cox-Ingersoll-Ross model of dollar
bonds a similar model of deutschemark bonds. If the deutschemark kernel has the
same structure based on a second state variable z*, then the deutschemark short rate
is 17 = (1 — A?/2) z; and the forward premium is f; — s; = (1 — A2/2) (2: — 2}). The
components of the forward premium are the expected rate of depreciation,

9 = (2t — 27 ),

and the risk premium,
Pt = —(1/2))\2(21 - Z:).

Thus the linearity of the conditional mean and variance translate into forward pre-
mium components that are linear functions of the differential z — 2*. More impor-
tant, this structure automatically generates the negative correlation between p and ¢
of Fama’s condition (i). Sai-Requejo (1994, p 21) makes the same observation of a
similar model.

The negative correlation in this model between the risk premium and expected
depreciation is striking, since it indicates that the inverse relation between first and
second moments of pricing kernels required by Fama’s condition (i) is a standard
feature of a popular model of bond pricing. A closer look suggests, however, that this
partial success is difficult to extend further. The problem is Fama’s condition (ii):
for the risk premium to be more variable than expected depreciation we need A\%/2 >
1, the reverse of the inequality that produced a positive interest rate. Apparently
the model cannot explain the anomaly without generating negative rates of interest.
Futhermore, parameter estimates are typically consistent with the positive interest
rate restriction. The parameter values listed above, for example, result in positive
interest rates, and the implied forward premium regression has slope

1

= ——— = 1.644
Toayp -~ 04

az

which is not only positive but greater than one. In short, this two-currency version
of the Cox-Ingersoll-Ross model delivers Fama’s condition (i), but condition (ii) and
the negative regression slope follow only if interest rates are negative.

One possible solution is to extend the theory to the broader class of affine yield
models described by Duffie and Kan (1993). Despite the wide range of behavior
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included in this class, we find that the problem remains if we limit ourselves to
symmetric models: :

Proposition 2 In the Duffie-Kan class of affine yield models, suppose (a) pricing
kernels are symmetric across currencies and (b) interest rates are strictly positive.
Then the model cannot account for the forward premium anomaly.

A proof is given in Appendix A.

Proposition 2 tells us that the difficulty we had with the two-country Cox-Ingersoll-
Ross model extends to the broader class of symmetric affine yield models. There are,
however, asymmetric affine models that reproduce the negative regression slopes we
reported in Table 2. One of the simplest examples is based on a single state variable
z obeying a process like (17), with pricing kernels

—logmiyy = az+ (Qﬂ»’«’t)l/2 €1+1

—logmi,, = a*z+ (2ﬂ"‘z:,g)1/2 €t+1-

This model is asymmetric, by our definition, if (e, 8) # (a*, 5*). In this setting short
rates are 7y = (@ — f)z and r; = (a* — 3*)z;, expected depreciation is

9t = (01 - a*)zt,

and the risk premium is
pt=—(8~B7)z.

If o > B and a* > 3%, interest rates a positive. Moreover, we can generate an inverse
relation between the forward premium and the interest differential if « — o* and §—3*
have the same sign, and the latter is larger in absolute value. An example is a = 1,
o* = 0.844, § = 0.4, and §* = 0.2, which generates a regression slope of a; = —3.542,
the estimate for.the deutschemark reported in Table 2. The choices of o and 8 in
this example are approximately those implied by the parameter values we cited for
the Cox-Ingersoll-Ross model. The foreign currency parameters result in a foreign
interest rate that is higher and more variable than the dollar interest rate.

In principle, an asymmetric model might provide a convincing explanation of the
anomaly, but examples we have studied to date suggest to us that asymmetries often
introduce counterfactual features in other dimensions. One feature is the small mean
risk premiums we noted in Figure 1 and Table 3. Symmetric models generate zero
mean risk premiums as a matter of course, since the risk premium is proportional to
z — z*, which has mean zero by construction. With asymmetric models it is less easy
to accomplish the same thing. Our one-factor example has a mean risk premium of
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—(B = B*)6 < 0. We can imagine correcting this fault by introducing a parameter
that shifts the mean of p to zero, as with the modified kernel

— log m;+1 = a*zt + [Q(ﬂ — ,H*)(S + 2,3*2t]1/2 €41,

but we worry that the proliferation of parameters threatens to void the theory of
predictive content. This drawback does not constitute an airtight case against asym-
metry, and symmetry itself is not something we want to take literally, but they increase
the appeal to us of models outside the affine class.

We summarize briefly. The class of affine yield models includes some of the sim-
plest examples that reproduce the inverse relation between expected depreciation and
the forward premium, but it is not yet clear whether it can provide a persuasive so-
lution of the anomaly. Certainly symmetric models cannot account for the anomaly
without generating negative interest rates. With more work we may be able to rec-
oncile asymmetric affine models with both time-series and cross-section evidence, but
this seems to us, at present, to require a fortuitious combination of parameter values.
Nevertheless, we use the intuition of this class of models in a related example in the
next section.

6 Example 3: Continuous Regimes

Examples 1 and 2 suggest that while we can construct theoretical models that replicate
the puzzling negative slope of forward premium regressions, they are neither trivial
nor easily reconciled with the behavior of currency prices and interest rates. Our third
example is an attempt to retain some of the analytical simplicity of affine models with
the nonlinearity of regime models.

We begin with a scenario. Suppose that the US, or some other country, appears to
be entering a recession. As events unfold, we see, relative to the rest of the world, (i)
a relatively high degree of uncertainty over future events, (ii) expansionary monetary
policy, and (iii) expected depreciation of the currency. Uncertainty is a common
feature of downturns, where we generally see an increase in the cross-section dispersion
of both aggregate quantities and asset prices, so (i) is consistent with other work. The
combination of monetary policy and expected depreciation might be attributed, in
the business press, to the central bank placing greater emphasis on restoring domestic
growth than on defending the currency. In our view, this combination of events seems
plausible. The reduction of interest rates in the US in 1992, for example, was widely
interpreted as an indication that the dollar would fall relative to the mark (and it

did).
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These events imply, in our framework, opposite movements in the conditional
mean and variance of the pricing kernel. The weak currency implies a decline in
the conditional mean of the domestic pricing kernel; see (12). An increase in the
conditional variance of the kernel might be a consequence, as we have seen, of a
recession, or other domestic turbulence. These two moments push the short rate in
opposite directions, but for the short rate to fall we need the variance, or higher
moments more generally, to dominate. If so, then the events described imply a rise in
the expected rate of depreciation and a larger fall in the risk premium; see equation

(15).

One appealing mathematical representation of our scenario relates domestic and
foreign pricing kernels to two sets of state variables. Set one is common across coun-
tries, set two is country-specific. If the common state variables affect the two kernels
symmetrically, then they play no role in currency pricing. This is apparent from
equations (11,12,13), where the forward premium and its components are expressed
as differences between moments of the two kernels. Since the common state variables
have no impact on currency pricing, we focus here on the idiosyncratic factors.

We model the idiosyncratic part of the pricing kernels with equations similar to
those of the two-currency Cox-Ingersoll-Ross model of the last section. The difference
is that the state variable driving changes in conditional moments is bounded above
and below. As a result, we can eliminate the tendency in affine models to generate
negative interest rates. The regime model has a similar feature: with a finite number
of regimes, moments are bounded (obviously) by their maximum and minimum values.

Let us say, then, that the conditional mean and variance of the pricing kernel are
linear functions of a state variable z:

— log M1 = QB + 2 + AZtI/ZEH_l. (20)

The only departure from equation (18) is the intercept x. We bound the state variable
below by zero and above by one by postulating a law of motion of the form

z41 = =12t + p2(1 — 2) + o [z(1 — Zt)]l/2 €441, (21)

with 0 < ¢1,¢p2 and {e:} ~ NID(0,1). This equation, like (17), is a discrete-time
approximation to a continuous-time process in which z is driven away from its bound-
aries at zero and one, back into the unit interval; see Karlin and Taylor (1991, pp
239-241).

We have two stories for how a bounded state variable might arise. One is that
targeting of interest rates keeps domestic interest rates from deviating too much from
world levels. Targeting of interest rates is a useful way of thinking about monetary
policy which has proved, in related work by Balduzzi, Bertola, and Foresi (1993), to
have significant implications for the term structure of interest rates.
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Our second story involves learning about an unobservable regime in the spirit of
Lewis (1989). Suppose the world alternates, as in Section 4, between two regimes.
If the regimes are not part of agents’ information sets, they can learn about them
from market prices. This learning could take the form of a subjective probability m;
that the world is in regime 1, which we can think of as a (naturally bounded) state
variable. Although our law of motion (21) is not easily put into the form of a Bayesian
updating formula, as in Lewis (1989, eq 9) or Gray (1993, eq 11), we think this story
helps to motivate bounds on the state variable z.

Given the pricing kernel (20) and law of motion (21), the mathematics of forward
and spot exchange rates is much like the last section. If we posit a similar process for
the foreign country, short rates are

rt=u+(1—)\2/2)zt, r{=u+(1—)\2/2)z,’,“,
the forward premium is
fo=si=(1=22/2) (2 - ),
and the forward premium components are

@ = (z—2%)
pr = —(1/2)A%(z - z).

This reproduces the negative slope of forward premium regressions if A2/2 > 1. Unlike
our Cox-Ingersoll-Ross example, this need not be inconsistent with positive interest
rates. For A2/2 > 1 the short rate varies between pu + 1 — A\?/2 and p. If we set
= A%/2— 1, this is always positive. If we think of this as the idiosyncratic factor of
a multi-factor model, this device simply adds a nonnegative amount to the short rate
implied by the other factors.

This model needs more work before we can regard it as a likely solution to the
forward premium anomaly, but it has a number of features that we find appealing.
First and foremost, it is capable of reproducing the negative slope of forward premium
regressions with strictly positive interest rates and zero mean risk premium. With
A = 1.601, for example, the regression slope is -3.542, our estimate in Table 2 for the
deutschemark, and with g = A?2/2 — 1 = 0.282 the interest rate is always positive.
Second, the model is consistent with the finding of Brenner, Harjes, and Kroner (1993)
that while volatility is generally increasing in the level of the short rate, there is a
component of volatility that can be high even with low interest rates. If equations
(20,21) govern the short rate, then the model implies a counterfactual inverse relation
between volatility and the short rate. But if example 3 is the idiosyncratic component
of a multi-factor model, with the common factor governed by a Cox-Ingersoli-Ross
model, then we would expect to see something very close to their finding. Third, this
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structure is capable of accounting for the success of regime models of exchange rate
movements. If regimes are persistent and we learn relatively quickly which one we
are in, the data are likely to be well approximated by a model in which we disregard
intermediate probabilities.

7 Final Remarks

We would like to say that we now have the solution to the forward premium anomaly,
but such a claim is clearly premature. Nevertheless, we think we have made progress
on some fronts.

One front is our characterization of the anomaly in terms of conditional moments
of pricing kernels: expected depreciation is governed by conditional means, and the
risk premium by higher moments [equation (15)]. For the risk premium to be more
variable than the expected depreciation, as Fama (1984) suggests it is in the data, we
need more variation in higher moments than in means. This message is uncomfortably
close to “things are complicated,” but we think it conforms with the growing body
of statistical work on nonlinear dynamics in asset prices. For the forward premium
anomaly, these nonlinearities are more than a refinement of an approximately linear
theory, they are essential.

Another front concerns the common and country-specific factors governing asset
returns worldwide. We showed, absent barriers on the international trade of assets,
that the variance of spot exchange rate changes for the G7 currencies suggests that
most of the variation in state prices is common. The country-specific factors that
affect currencies, in other words, are small relative to common “world” factors. This
interpretation is a blessing to analysts of fixed income securities, who generally oper-
ate with casual disregard of foreign factors. But it is a curse for currency analysts,
who might otherwise hope to use information from fixed income studies to justify pric-
ing kernels used to value currencies. The information about pricing kernels needed
to characterize currency prices must be gleaned, it seems, from currency prices them-
selves.

Finally, we used three examples to indicate how dynamic asset pricing theory
might be developed to provide a resolution of the anomaly. All three are capable of
accounting for the anomaly. Of the three, we think the last is the most interesting,
since it combines ingredients of regime models of exchange rates and affine models
of bond pricing and reproduces what we feel is a plausible combination of events.
Perhaps further work will tell us how well this structure mimics the properties of
interest rates and currency prices more generally.
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A Proof of Proposition 2

Duffie and Kan (1993), translated into discrete time, show that the affine class is
based on an n-dimensional vector of state variables z following

21—z = (I — )6 — z) + TV (2)Y €141, (22)
where {€;} ~ NID(0,I) and V(z) is a diagonal matrix with typical element
v;(2) = a; + Biz.

This process requires, obviously, that the volatility functions v; not turn negative
(subject to the qualification that we are talking here about a discrete time approxi-
mation). The set of feasible 2’s (those for which volatility is positive) is thus

D = {z:v(2) > 0all ¢}.

Duffie and Kan (1993, Section 4) show that for z to remain in D, and thus for
volatilities to remain positive, the process must satisfy

Condition A

(a) For each ¢ and all z satisfying v;(z) = 0 (the boundary of positive volatility),
the drift is sufficiently positive: {1 — ®)(6 — z) > B/XX/B;/2.

(b) For all 7, and j # ¢, if the jth component of BT is nonzero, then v;(2) = v;(2).

Given the state variables z, asset prices are generated by a pricing kernel of the

form
- 10g mi+1 = U + 0'zt + )\,V(Zt)I/ZGH.]. (23)

We consider a similar structure for the foreign kernel, and define a symmetric model as
one in which log m* has the same form and parameter values as log m, but depends on
a vector z*. To the extent they depend on the same state variables, let the appropriate
elements of z and z* be equivalent.

We turn now to the forward premium anomaly. In this setting, expected depreci-
ation is
9 = 0l(zt - Z;)7
the difference between the means of logm;,; and log my1. Define 7 = 3, A?aj and
v = 3°; A2B;/2. Then the short rate is 7, = (u — 7) + (6 — 7) z; and, with a similar
expression for the foreign short rate, the forward premium is

fr—se=(0-7) (2t - 7).
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The forward premium anomaly then implies
0 > Cov(gt, fr — st) = (0 — v)' Var(z — 2*)8. (24)
The question is whether this is consistent with interest rates that are always positive.

Proposition 2 says that (24) cannot hold in a symmetric model with positive
interest rates. We start by reviewing the set D of feasible states. Part (b) of Condition
A says, essentially, that either (i) the ith element of 8/ is its only nonzero element
or, if element j # ¢ is nonzero, (ii) vi(2) = v;(2). Either way, there are only n nonzero
elements of [0, ...,0,])'S. In this case, we can choose the 3;’s to be positive, since any
negative values can be reversed by redefining z as —z and adjusting other parameters
accordingly. The feasible space D then takes the following form. In case (i) v;(z) > 0
defines points above a hyperplane (in two dimensions, a line) parallel to the z; axis. In
case (ii), we define a half-space that intersects the “upper-right” part of the positive
orthant (in two dimensions, points above a downward-sloping line). Either way, if we
start at any point z € D, we can increase any one of the elements of z without bound,
holding fixed the other elements, without leaving D.

With this taken care of, we can return to the proposition. Since the f3;’s are
positive, we see from its definition that v must be positive, too. For interest rates to
be positive we need

re=(u—7)+(0—7) 2 >0forall z€ D.

We’ve seen that this includes 2’s that increase without bound in one dimension at
a time, so # — v must be strictly positive. Since v is positive, this requires strictly
positive §. But if § and 8-+ are both positive, and Var(z—2z*)is positive semidefinite,
inequality (24) is reversed. That is: positive interest rates and the forward premium
anomaly are incompatible in this symmetric affine environment.
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Table 1

Summary Statistics for Exchange Rates

Entries are sample moments of the depreciation rate, s;4; — s;, and the
forward premium, f;—s;, where s and f are logarithms of spot and one-month
forward exchange rates, respectively, measured in dollars per unit of foreign
currency. Mean is the sample mean, St Dev the sample standard deviation,
Skewness an estimate of the skewness parameter v;, Kurtosis an estimate
of the kurtosis parameter 73, and Autocorr the first autocorrelation. Both
71 and 7y are zero for normal random variables, so nonzero values indicate
departures from normality. The data are monthly, last Friday of the month,
from the Harris Bank’s Weekly Review: International Money Markets and
Foreign Ezchange, compiled by Richard Levich at New York University’s
Stern School of Business. Dates ¢ run from July 1974 to April 1990 (190
observations).

Currency Mean  Std Dev  Skewness Kurtosis Autocorr

A. Depreciation Rate, s;41 — s;

British Pound -0.0018  0.0328 0.483 1.106 0.046
Canadian Dollar -0.0010  0.0122 0.012 0.727 0.046
French Franc -0.0010  0.0326 0.032 0.769 -0.042
German Mark 0.0022 0.0338 0.033 0.265 -0.054
Italian Lira -0.0034  0.0309 0.033 1.027 -0.004
Japanese Yen 0.0036 0.0338 0.033 0.602 0.074

B. Forward Premium, f; — s;

British Pound -0.0021 0.0028 -0.265 1.839 0.884
Canadian Dollar -0.0012 0.0014 -0.014 0.570 0.813
French Franc -0.0020 0.0033 -0.865 2.834 0.625
German Mark 0.0029 0.0018 0.606 0.667 0.838
Italian Lira -0.0058 0.0049 -2.047 5.575 0.726

Japanese Yen 0.0027 0.0030 -0.081 0.465 0.866




Table 2

Forward Premium Regressions

The table reports statistics from regressions of the depreciation rate, s¢y1—S$t,
on the forward premium, f; — s;:

St41 — 8¢ = a1 + ag(fy — s¢) + residual,

where s and f are logarithms of spot and forward exchange rates, respec-
tively, measured as dollars per unit of foreign currency. The data are de-
scribed in the notes to Table 1. Dates ¢ run from July 1974 to April 1990.
Numbers in parentheses are Newey-West standard errors and Std Er is the
estimated standard deviation of the residual.

Currency a; as Std Er R?

British Pound -0.0067 -2.306 0.0322 0.0344
(0.0028) (0.862)

Canadian Dollar -0.0027 -1.464 0.0120 0.0247
(0.0009) (0.581)

French Franc -0.0026 -0.806 0.0326 0.0015
(0.0032) (0.928)

German Mark 0.0032 -3.542 0.0333 0.0287
(0.0043) (1.348)

Italian Lira -0.0061 -0.461 0.0309 0.0053
(0.0044) (0.403)

Japanese Yen 0.0084 -1.813 0.0334 0.0201
(0.0032) (0.719)




Table 3

Fama’s Decomposition of the Forward Premium

Fama (1984) decomposes the forward premium into a risk premium p and
the expected rate of depreciation g¢:

fi—s: = (fi — Eise41) + (EeSe41 — St)
= pt+ g

Table entries are means (Mean) and standard deviations (Std Dev) of the two
components, computed from fitted values of the forward premium regression
of Table 2 and its complement,

St41 — fr = —a1 + (1 — a3)(ft — s¢) — residual.

Risk Premium p Exp. Depreciation ¢

Currency Mean Std Dev Mean Std Dev
British Pound -0.0003 0.0094 -0.0018 0.0065
Canadian Dollar -0.0002 0.0035 -0.0010 0.0021
French Franc -0.0010 0.0060 -0.0010 0.0029
German Mark 0.0007 0.0080 0.0022 0.0062
Italian Lira -0.0023 0.0071 -0.0034 0.0023

Japanese Yen -0.0009 0.0083 0.0036 0.0054




