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Asset Price Dynamics and Infrequent Trades

1 Introduction

We model an economy where stocks and bonds (consols) are traded by two types of agents:
speculators, expected utility maximizers always present in the market, and traders who
trade only infrequently and by finite amounts. Infrequent and finite trades would occur, for
example, if some agents face fixed transactions costs in rebalancing their portfolios.! We do
not model infrequent traders’ motives nor the structure of the transactions costs they may
face, but we take as given their demand of stocks as a function of the stock price.

While trade is given exogenously, infrequent traders’ market orders are filled at prices
which are determined endogenously. This is an important difference with respect to a mod-
ified Lucas (1978)-“tree” economy, where the supply of risky and riskless trees were subject
to infrequent exogenous changes. In our economy, the endogenous prices at which assets are
exchanged determine the after-trade asset allocation.

We discuss a first example where infrequent traders sell stocks in return for all the bonds
in the hands of the speculators, when stock prices reach a lower threshold. This behavior has
the flavor of a stop-loss strategy on the part of infrequent traders. The example highlights
equilibrium effects which may contribute to explain actual stock-price behavior.

Stock prices are depressed in anticipation of a wave of price-triggered sales, but after the
trade, stock prices may quickly rebound to higher values as the possibility of similar sales
in the future disappears. This behavior is reminiscent, for example, of what happened after
the 1987 stock-market crash when by Wednesday, October 21st, stock prices had recovered
close to half of their October 19th loss.

In this example, dividend growth rates are i.i.d., while before-trade stock returns are
more volatile than dividend growth rates and heteroskedastic, and dividends help predict
future rates of return on stocks. In our framework, prices react to news on current dividends
not only because they affect expected future dividends, but also because, by changing the
price, they affect the likelihood and timing of future trades.

We then discuss the robustness of our findings to asset allocations, relative position of
the price threshold triggering the trade, and risk aversion. We consider additional scenarios
where infrequent traders’ behavior has, alternatively, the flavor of a “contrarian” or a “trend-
chasing” strategy. Across scenarios, expectations of stock sales depress stock prices relative

1Even with proportional transactions costs, trades would occur only when the portfolio is sufficiently far
“out of line” [Constantinides (1986) and Davis and Norman (1991)]; with continuous trading opportunities,
however, the amount traded is finite only if part of the transactions costs is fixed, as in Duffie and Sun

(1990).



to the no-trade case, while expectations of stock purchases tend to inflate them; and these
effects are found to be stronger the higher the speculators’ relative rate of risk aversion.
Both price depression and price inflation bring about heteroskedasticity and predictability
of stock returns. The conditional volatility of stock returns may be higher or lower than in
the no-trade case, depending on the relative position of the price threshold triggering the
trade.

Closely related to ours, both for techniques and issues considered, is the paper by Brennan
and Schwartz (1989) on the effects of portfolio-insurance strategies. Their model is similar to
ours in that the pricing kernel is also identified with the marginal utility of the speculators,
and the presence of portfolio insurers depresses stock prices and enhances their volatility
(as in our first trade scenario). Like our infrequent traders, portfolio insurers’ behavior is
specified exogenously, although they are allowed to trade continuously to implement their
hedging strategy. Basak (1993) develops a model where portfolio insurance schemes are
derived endogenously from a constraint on final wealth. Since he takes both speculators’
and portfolio insurers’ marginal rates of substitution to concur to determine prices, he finds
the implications of portfolio insurance to be the opposite of Brennan and Schwartz’s: stock
prices are higher, and less volatile relative to an economy with no portfolio insurers.

Another paper which looks at the implications of exogenous trades for asset prices’ dy-
namics is Campbell and Kyle (1993). Their model shares with ours the formal decomposition
of asset prices into fundamental value and “noise,” where the noise component is induced
by current and future expected trade on the part of noise traders. Their empirical findings
show that, in order to contribute to the explanation of actual stock price behavior, noise
trading needs to be correlated with the dividend process. This feature is captured in the
examples of our paper, by assuming a specific level of the dividend flow to trigger the trade
(through prices).

Finally, Gennotte and Leland (1990) and Donaldson and Uhlig (1991) are also related
to the present work, in that their one-period models are capable to generate discontinuities
in prices (crashes) when exogenous traders take positions in stocks which are negatively
correlated to the price of stocks themselves. Our model differs from theirs in the obvious
sense that it is a dynamic description of asset markets’ equilibrium; and in the less obvious
sense that it generates price discontinuities (jumps) immediately after trade has occurred,
rather than at the occurrence of trade.

Section 2 presents the model. Here, we observe that it is useful to identify a component
of asset prices which reflects the value of trading the asset at some point in the future.
This observation is the basis of a solution technique for equilibrium prices developed in
Section 3, in the context of a first example. Section 4 discusses the relevance the example
for actual stock price behavior. Section 5 looks at alternative trade scenarios to assess the
robustness of our analysis to asset allocations, relative position of the price threshold, and
risk aversion. Section 6 concludes, highlighting extensions of our framework to more realistic
trade scenarios.



2 Trade and prices

We begin our analysis with a description of the structure of the economy.

Assumption 1. The economy is populated by two groups of investors: speculators and
infrequent traders. Speculators are identical, maximize their utility from consumption, and
have rational expectations about the dynamics of future cash flows generated by available
assets, and about the structure of possible trades. Infrequent traders submit market orders
of finite size at discrete points in time. The deeper determinants of these trades are not
modeled.

Assumption 2. Two assets exist in positive net supply: stocks, which entitle their owner
to a stochastic flow of dividends {¢}, and bonds (consols), which entitle to a certain and
constant coupon flow {r}. The time horizon is infinite. We abstract from issues of physical
investment and economic growth, and assume that no storage technology is available.

Assumption 3. The state of the economy is summarized by a vector of state variables
[€,8, B,Y], where ¢ is the dividend flow on stocks, and S and B denote per-capita holdings
of stocks and bonds, respectively, among speculators. The probabilistic structure of trade is
summarized by the state vector Y, which contains information relevant to the speculators’
assessment of the likelihood and size of market orders at every point in the economy’s state
space.

Speculators’ optimum. Let ¢ denote the speculators’ consumption flow, U(:) an in-
creasing and concave utility function, and p the rate of time preference. Also, let P, and
P, denote the prices of stocks and bonds. The following first-order conditions link optimal
speculator’s consumption to asset prices (these conditions follow directly from the Bellman
equation, as shown in Appendix A):

pU'(€)P. = U'(e)é + 3 BddU'(0) ]}, (1)

pU'(c)P, = U(r + - EAdIU ()R]} (2)

After adjusting prices and payoffs by the marginal utility of consumption, all assets should
yield the same expected rate of return, p. Also, speculators’ consumption need satisfy the
following transversality conditions

lim BJU () Pr)le " =0, i=s, b ®)
Equilibrium. As we have assumed away storage or physical investment, speculators
consume dividends and coupons generated by the stocks and bonds they own:
c= S¢+ Br.
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Consider next the prices supporting the equilibrium. We define risk-adjusted asset prices
p; and cash-flows f;,

Ps = U/(C)Ps7 fs = UI(C)€> Py = U,(C)Pln fb = U’(C)'f’,

and rewrite (1) and (2) as:

1 .
ppi = fi + EEt(dPi), i=3s, b (4)

The differential equations (4) must be satisfied at all points in the economy’s state space,
regardless of the likelihood of trade.

No-expected-jump conditions. Given (4), E(dp;) cannot be of order larger than dt,
and this rules out expected jumps in risk-adjusted price paths. It follows that

Ei(Ap) =0, i1=s,0b, (5)

at trading times. Hence, when trade takes place, the discrete change in asset prices is
“compensated” by a discrete change in the marginal utility of consumption so that expected
risk-adjusted price paths remain continuous.

Trade and prices. Note that unlike in Lucas (1978), consumption and risk-adjusted
payoffs f;(7) are affected by trade as well as by dividends. Hence it is useful to decompose
risk-adjusted prices in the form

pi(g,SaBaY):gi(£7SaB)+hi(€15)B)Y)v i:S, b7 (6)
for
gi = / * Bfi(7)|no trade]le?t="dr, i=s, b, (7)
i .

where [f,(7)|no trade] = U’(Si&, + Bir)é., and [fy(7)|no trade] = U'(Siér + Byr)r. The
function g; takes the speculators’ portfolio composition as given and immutable, and would
be the asset’s equilibrium value if trade could be disregarded. Hence, h; reflects the effects
of trade on the asset’s price, and can be viewed as the value of trading the asset at some
point in the future.

3 An application

We now specialize our framework in terms of preferences, cash-flow dynamics, and structure
of trade. We confine ourselves to situations where the stock price is a monotonic function of
the dividend flow.



Assumption 4. The speculators’ instantaneous utility function has the form

where 7 is the relative risk aversion parameter.

Assumption 5. Dividends follow a geometric random walk
d¢ = pédt + oédw,
with g and o positive constants.

Expanding E;(dp;) in (4) by the usual stochastic calculus arguments, we find that in the
interior of no-trade regions the p; functions satisfy the valuation equations

[ o / 0‘262 1 s b
ppi = fi+ wlpi + ——pi, =3, 0. (8)

No-trade solutions. When either B = 0 or S = 0, the solution for the no-trade component
gi in (6) is obtained from evaluation of the integral in (7). We have

r

_ & T
B=0 = gs—(Sé.),yds? gb_(Sé),de, (9)

where d, = [p+ (y = )i — (v — 1)y0?/2], dy = [p+ 70 — (v + 1)o*/2]; and

_ ¢ _
$=0= e =G " B 1o

Goods-denominated prices P; are computed from the risk-adjusted prices p; by the relation
P, = p;c", with ¢ = S¢ in the B = 0 case, and ¢ = Br in the § = 0 case. To ensure that
prices are positive and finite, parameter values must be such that d; > 0, d, > 0, and p > .

Homogeneous solutions. The second component of asset prices in (6), k;, can be found
as the homogeneous solution of (8). The solution has the form

hi = Qi(S, B,Y)¢M 4+ Ni(S,B,Y)E?, i=s,0b, (11)

where \; and ), solve the characteristic equation associated with (8) (see Appendix B), and
Q@; and N; are constants of integration.

In the following we consider an explicit trade scenario where infrequent traders sell off
stocks, in exchange for all the bonds held by the speculators, when stock prices reach a lower
threshold.



Assumption 6. Initially speculators do not hold stocks: B = By > 0, S = 0. Infrequent
traders buy all of the speculators’ bonds, selling S; shares of stocks when P, hits a lower
threshold P,;. After the barrier is hit, it disappears and no more trades take place at Py or
any other price.

We do not model infrequent traders’ motives and constraints, but we take as given their
demand of stocks (and bonds) as a function of stock prices. The infrequent and finite trades
postulated in Assumption 6 can be rationalized by considering realistic frictions. With
transactions costs, for example, it is not optimal to trade unless the portfolio composition
is sufficiently far out of line. The optimal no-trade region when transactions costs are
proportional to the amounts traded has been studied by Constantinides (1986) and Davis
and Norman (1991) in a continuous-time setting similar to ours. When trade can take place
continuously, however, trade will not be finite unless part of the costs is fixed, as in the
framework considered by Duffie and Sun (1990).

While the initial and final asset allocations assumed here are extreme, this allows us to
use the formulas in (9) and (10) to compute explicit solutions for before- and after-trade
prices. Also, trade occurs only once. This may not be taken literally: we may think that
after one trade takes place, other trades are expected in the future, but that the likelihood
of them occurring soon is low.

In equilibrium there is a unique level of dividends & at which trade takes place. Such level
of dividends is implicitly defined by the condition Py = Py(;,0, By, Yo). The state variable
Y = Y, summarizes the information in Assumption 6 on the possible future trade at &, and
Y =Y, indicates that no trade is expected to ever take place after the barrier is hit.

At ¢ = £ the no-jump conditions (5) reduce to
pi(gl,O,BO,YE)) :pi(€l>5170>)/1)a i = S, b. (12)

As trade occurs with certainty at &, (12) implies that the risk-adjusted price of each asset
cannot jump at the time of trade. '

Trade and asset allocation. Since no trade takes place after the barrier is hit, the
amount of stocks held by speculators after the trade is endogenously determined by the
budget constraint:

— Pb(é.l;Sl’O) Yi)
PS(élwgl,OaYl)

_ e(€1, 51,0,Y1)c™” _ pb(ﬁz,Sl,O,Yl)Bo _ rd,
ps(é1, 51,0, Y1) 0 T py(&,81,0,Y1) &1,

Note that because of the boundary conditions (12), the relative price at which trade takes
place can be obtained as the ratio between after-trade prices. Equation (13) illustrates
how traded quantities are endogenous, and how trade events are not the same as endow-
ment shocks in a modified Lucas (1978)-“tree” economy: the number of stocks received by
speculators in exchange for bonds is determined by endogenous prices.

By,  (13)

S1 By
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As shown in Appendix C, the transversality conditions (3) require Q; = N; = 0 after
trade takes place, and Q; = 0 before trade takes place. Moreover, the constants N; in the
before-trade price functions must satisfy the following version of (12)

51 A2 ﬁl
o e = Ty 14
r A2 . T
p(Bor)” + N§? = dp(S1&)

where the after-trade allocation S; can be obtained from (13).

In the rest of the paper we shall focus our discussion on the behavior of stock prices, for
explicit choices of parameter values. The behavior of bond prices is similar, if less interesting,
due to the absence of fluctuations in the coupon flow.

Risk-adjusted vs goods-denominated prices. Figure 1 illustrates the before-trade,
after-trade, and no-trade risk-adjusted stock pricing functions p,, for the choice of parameter
values: v = 1.5, p = .075, u = .018, and o2 = .015. We further set { = 1 and By = 1, and

normalize r = 1.

Figure 1 shows that trade cannot induce discrete changes in the risk-adjusted price p;.
On the other hand, Figure 2 shows that actual prices jump because the speculators’ marginal
utility of consumption changes at trade times.

For our choice of parameter values, stock prices rebound promptly after the trade.

The next section further discusses the implications of the example above, and relates
them to actual price behavior.

4 Implications for stock price behavior

About crashes and rebounds

Our Assumption 6 postulates a demand function for stocks on the part of infrequent traders
which is positively related to stock prices; this demand resembles that of the “hedgers,
rebalancers, and others who use dynamic strategies akin to portfolio insurance” considered
by Gennotte and Leland (1990) (p.1003). The trade situation described in the previous
section can be viewed as a stop-loss sale by which infrequent traders try to protect the value
of their portfolio.

Our infrequent-traders strategy may not ensure that their portfolio value is a “convex
function of some underlying [...] reference portfolio,” as Brennan and Schwartz (1989) define
portfolio insurance, pp.455-456, since they sell stocks in exchange for risky bonds, and bond
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Figure 1 shows the~ risk-adjusted pricing function for stocks p, before and after trade, and compares it to
the pricing function without trade opportunities. The speculators’ initial endowment is Bo = 1 and Sy = 0,
and we set v = 1.5, p = .075, u = .018, and o = .015.



Figure 2
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Figure 2 shows thé pricing function for stocks P before and after trade, and compares 1t to the pricing
function without trade opportunities, where P, = p,/U’(c). The speculators’ initial endowment is Bp =1
and Sp = 0, and we set v = 1.5, p = .075, u = .018, and o2 = .015.



prices may decline after the trade. For the parameter values of Figure 1, however, the bond
price does not fall.

In a quite different setting, Gennotte and Leland (1990) show that the uncertainty about
price-triggered trades plays a crucial role in reducing market liquidity and argue that even
mildly negative news could have been sufficient to cause a stock-market crash like that of
October 1987. They find that a rebound, which in their context is a “melt-up” to pre-crash
levels, is conceivable, but unlikely.

In our example, stock prices decline before the trade as dividends fall. The decline in
price due to news on dividends is more pronounced than without infrequent traders (see the
no-trade curve of Figure 2), but it is too smooth to have the flavor of a stock-market crash.
The price increase in Figure 2, instead, is reminiscent of the increase of stock prices following
the 1987 stock-market crash, when, by Wednesday, October 21st, stock prices had recovered
close to half of the previous “Black Monday” loss. Our analysis suggests that stock prices
may rebound after a wave of price-triggered stock sales if speculators try yet to increase their
stock holdings when portfolio insurers stop selling stocks.

Volatility, heteroskedasticity, and predictability of stock returns

The pricing function in Figure 2 is everywhere steeper than its no-trade counterpart, and
becomes steeper as dividends approach the trade-trigger point: expectations of trade increase
the sensitivity of stock prices to current dividends, and hence the volatility of stock returns.
If no trade is expected in the future, the sensitivity of stock prices to dividends is 0P, /0¢ =
1/(p — ). When dividends carry information on the likelihood of trade in the future we

have
0P, 1

—_— Y )\2—1
65 —p—/j,+NS)‘2(BOT)£ .

In fact, one can decompose the elasticity of prices with respect to dividends as in Lucas

(1978),
EOP,[0¢ _ _£0U'/OE | €0p,/OE

P, U’ Ps

thus making it explicit that a larger dividend has both an income and an “information” effect.
The income effect (the first term) is always positive, as rational investors attempt to pass
part of a positive windfall over to future dates through purchases of securities. This effect
drives securities prices up. In our example, however, before-trade utility does not depend on
dividends (So = 0) and the income effect is nil. We can then focus exclusively on the second
term, which reflects two types of information carried by decreasing dividends. First, since
dividends are autocorrelated, lower dividends signal lower future cash flows, lowering stock
prices. Second, the current size of dividends relative to the trigger level affects the likelihood
and timing of future trade.
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Moreover, in the no-trade case the rate of return on stocks is given by

dP, + ¢dt

P, = pdt + o dw.

Absent trade, rates of return on stocks are i.i.d. normal variates, with mean p7 and vari-
ance o1 over non-overlapping time-segments of length 7. Thus, rates of return on stocks
are as volatile as dividend growth rates, homoskedastic, and current dividends provide no
information as to future rates of return.

Conversely, the possibility of trade increases the volatility of rates of return on stocks,
and makes them heteroskedastic and predictable. Since P, = £/(p — ) + Ny(Bor)é*, the
instantaneous return on stocks is

1
dPS + €dt = l:__ﬂé.__ + HNSAZ(BOT)’YfAz + 6 + ENS)\Q(AQ — ].)(BOT')’Y€/\20'2 dt
p—p
+lig—+aNJﬂBMW@2dw
p—p
The diffusion term for the instantaneous before-trade return on stocks (the term in the
second square brackets) exceeds its no-trade counterpart by the quantity

UNS)\2(BOT)’Y£>\2

whose sign is positive, since N, < 0 [see equation (14)] and A; < 0 (see Appendix B). Also,
the before-trade stock price is lower than its no-trade counterpart (again, N, < 0). Hence,
the conditional volatility of rates of return on stocks is higher than in the no-trade case, and
changes over time, since it depends on the level of dividends.

Also, unlike in the no-trade case, the conditional expectation of rates of return on stocks
is a function of the dividend level. Hence, stock returns are predictable, since dividends are
serially correlated. '

The price depression and increased volatility of stock prices are apparent in Figure 2,
where the before-trade pricing function is everywhere lower and steeper than the no-trade
one.

5 Robusfness

The example of Section 3 suggests that rationally anticipated trade may lead to a depression
of stock prices and an increase in their volatility relative to the no-trade case. Here, we
discuss the robustness of these two findings to asset allocations, relative position of the price
threshold triggering the trade, and risk aversion.
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Alternative trade scenarios

For concreteness, we frame our discussion in the context of the four specific trade scenarios
illustrated in Figure 3.

We assume infrequent traders to buy all the bonds in the hands of the speculators in
exchange for stocks (top two panels), or to buy all the stocks in the hands of the speculators
in exchange for bonds (bottom two panels). Also, trade may occur at a lower price threshold
(left two panels), or at an upper price threshold (right two panels). The solution technique
is analogous to that of Section 3, and parameter values are the same as in Figures 1 and 2.
The constant of integration @, has been set as to satisfy the transversality condition (left
two panels), or to ensure no jumps in risk adjusted prices (right two panels). Similarly, the
constant of integration N, has been set as to satisty the no-jump conditions (5) (left two
panels), or to ensure that stock prices do not diverge to +oo as dividends tend to zero (right
two panels).

The main message from Figure 3 is that stock prices are depressed, relative to the no-trade
case, when a sale of stocks is anticipated; while they are inflated when a purchase of stocks
is anticipated. Both price depression and price inflation become stronger as the market gets
closer to the price threshold. Hence, both the conditional volatility and the conditional
mean of stock returns depend on the dividend flow, and stock returns are heteroskedastic
and predictable.

Moreover, when before-trade stock prices are depressed relative to their no-trade coun-
terparts, they are likely to jump upwards after the occurrence of trade, as in the top two
panels of Figure 3. On the other hand, when before-trade stock prices are inflated, they
are likely to jump downwards after the occurrence of trade, as in the bottom two panels of
Figure 3.

Finally, volatility can be either higher (Panels a and d) or lower (Panels b and c) than
in the no-trade case, depending on the relative position of the price threshold, together with
the depression or inflation in prices discussed above.

In the following, we further discuss each of the four trading scenarios of Figure 3:

Panel a. For sake of comparison, here we have replicated the situation of Figure 2.
Infrequent traders purchase all the bonds in the hands of the speculators in exchange for
stocks, when the stock price hits a lower threshold. Stock prices rebound after the trade.

Panel b. The initial and final asset allocations are the same as in Panel a, but trade takes
place at an upper threshold. Similar to Panel a, the stock price is depressed in anticipation
of the trade, but this translates into a lower volatility relative to the no-trade case. We
can think of infrequent traders as implementing a contrarian strategy, where stocks are sold
when their price is increasing. This strategy is rationally anticipated by speculators, and
hence the stock price does not increase much with dividends: a wave of sales is expected

12



Figure 3
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Figure 3 shows the pricing function for stocks P, before and after trade, and compares it to the pricing
function without trade opportunities, where P, = p,/U’(c). The speculators’ initial endowment is By = 1
and Sy = 0 (top two panels), and By = 0 and Sg = 1 (bottom two panels). The price threshold is either
lower (left two panels), or higher (right two panels) than the before-trade price. We set v = 1.5, p = .075,
4 = .018, and o2 = .015.
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soon. Again, stock prices rebound after the trade, as no other sell orders are expected.

Panel c. The initial and final asset allocations are the opposite of Panels a and b: infrequent
traders purchase all the stocks in the hands of the speculators in exchange for bonds; trade
takes place at a lower threshold. Again, infrequent traders’ behavior has the flavor of a
contrarian strategy: stocks are purchased when their price is falling. The price depression
of the previous two scenarios is here reversed: as dividends decrease a wave of purchases
is expected soon, and the fall in stock prices reduced. As a consequence, volatility is also
reduced. Stock prices fall after the trade since no other buy orders are expected.

Panel d. Initial and final asset allocations are the same as in Panel c, while trade
takes place at an upper threshold. In this scenario infrequent traders behave like trend-
chasers, purchasing stocks as their price is already increasing. Stock prices increase further
in anticipation of a buy order, and this increases stock-price volatility in the proximity of
the threshold. Again, stock prices fall after the trade.

In summary, the effects of trade on prices and price volatility depend on the specific trade
scenario under scrutiny. Stock prices are depressed if stock sales are expected soon, whereas
they are inflated if stock purchases are expected. The implications for volatility crucially
depend on the relative position of the price threshold, that is on the type of strategy followed
by infrequent traders. Stop-loss and trend-chasing strategies exacerbate the trend in stock
prices, leading to an increase in volatility. Contrarian strategies, on the other hand, dampen
the trend in prices and reduce volatility.

Risk aversion, price effects, and welfare

Experimenting with different values of the speculators’ relative risk aversion parameter 7, we
found both the price-depression and the price-inflation effect to be stronger the higher 7. In
fact the two effects can be so strong that in the scenarios of Panels b and c the monotonicity
of the before-trade pricing function can be lost. This is not a problem in general, but it
prevents the inversion of the price-dividend correspondence, and the intuition of a price
threshold (rather than a dividend threshold) triggering the trade would be lost.

The mechanisms driving the price effects above go as follows: Consider, for example,
the trade scenario of Panel a in Figure 3, which replicates the scenario discussed in Section
3. Before trade we have p, = g, + N;£*2, whereas, if trade were ruled out, we would have
p, = g5. Since Py = p,U '(¢), the difference between before- and no-trade stock prices is given
by the quantity

N,£2(Bor)”. (15)

It can be shown that N, is always negative and decreasing with v, and hence the quantity
in (15) is the more negative the higher 7. A similar argument holds for the trade sce-
nario of Panel b. Here, the difference between before- and no-trade stock prices is given by
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Q&M (Bor)", which is also negative and decreasing in 7. Hence, the higher «, the stronger
the price-depression effect.

In Panels ¢ and d, the difference between before- and no-trade stock prices is given by
N,£*2(S5€)7 and Q.6 (Sof)?, respectively. It can be shown that both N, and @, are here

positive, and increasing in 7. Hence, the higher -, the stronger the price-inflation effect.

The economics behind the price effects of anticipated trade has to do with welfare effects.
In Appendix D we show how to calculate the speculators’ expected lifetime utility before
trade, after trade, and in the no-trade case, for the four trade scenarios of Figure 3. We find
that when infrequent traders buy bonds in exchange for stocks (top two panels) speculators’
expected lifetime utility is higher than in the absence of trade, the more so the closer the
trade. Hence, stock prices are depressed because speculators look forward to higher welfare,
are less willing to save, and their demand for stocks is weaker. When infrequent traders
buy stocks in exchange for bonds (bottom two panels) the opposite holds true: specula-
tors’ expected lifetime utility is lower than in the absence of trade, and this effect is more
pronounced the closer the trade. Stock prices are inflated because speculators expect lower
welfare, are more willing to save, and their demand for stocks is stronger.

Whether trade has a positive or a negative effect on welfare depends, in turn, on the
relative price at which stocks and bonds are exchanged. Risk-adjusted prices at the time
of trade must equal (in expectation) their after-trade counterparts [see (5)]: equilibrium
conditions fix the rate at which the two assets are exchanged. A welfare-decreasing trade,
at these prices, will be accepted by speculators only if they are somehow “committed” to
trade, much like market makers on the floor of an exchange.

The parameter 7 regulates the degree of intertemporal substitution as well as risk aver-
sion. Hence, the higher v, the more speculators try to hedge future changes in welfare and
the stronger are the price effects discussed above.

6 Conclusions

This paper studies equilibrium prices when trades are triggered by stock prices reaching
some threshold level, corresponding to a specific value of the dividend flow. The trade
involves two types of agents: speculators, expected-utility maximizers always present in the
market, and infrequent traders, whose trading motives are not explicitly modeled. While
we take as given the amount of stocks or bonds that infrequent traders supply when the
stock price reaches a threshold level, infrequent traders’ market orders are filled at prices
which are determined endogenously. Our analysis contributes towards the goal of calculating
the equilibrium of an economy with realistic frictions, where it should be optimal for some
investors to trade infrequently and by finite amounts. Also, we gain a better understanding
of the equilibrium effects of a variety of trading strategies, which mechanically generate
market orders in response to changes in stock prices.
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For tractability, we limited our analysis to situations where closed-form analytical solu-
tions are available: only one trade may occur, and both initial and final speculators’ asset
allocations are extreme (either all bonds or all stocks). In an appendix available upon request,
we extend our analysis to trade scenarios were the initial asset allocation is intermediate,
infrequent traders’ market orders are uncertain, and trade may take place at two trigger
prices. In the following, we highlight the main features of such extensions.

When we allow for initial speculators’ asset allocations to include both stocks and bonds,
closed-form analytic solutions for asset prices are elusive. Still, approximate solutions can
be obtained by approximating speculators’ marginal utility with an n-degree polynomial in

the dividend flow €.

Uncertainty as to the infrequent traders’ market orders requires a modification of the
no-jump conditions (12). Assume, for example, that when P; hits the lower threshold Py,
infrequent traders buy all speculators’ bonds with probability =, and buy all speculators’
stocks with probability (1 — ). This trading structure is summarized by ¥ = ¥,. When the
threshold is reached, the barrier disappears forever: ¥ = Y. The no-jump conditions would
be modified as follows:

Pi(él,SO,Bo,YE)) = Wpi(fl,Sl,O,Y]) + (1 - W)pi(élaO’BlaYl)a 1= S, b.

Immediately after trade, risk-adjusted prices would be either pi(&, 51,0, Y7), if stocks are
sold, or p;(&,0, By, Yy), if stocks are purchased. In this case, even risk-adjusted prices jump
as uncertainty is resolved: the occurrence or absence of trade becomes relevant news itself,
and risk-adjusted prices respond to it.

The presence of both an upper and a lower price threshold can be handled as follows.
The four constants of integration @,, Ns, @y, and N, must satisfy four boundary conditions
of the kind illustrated above, requiring no expected jumps in risk-adjusted prices at both
price thresholds.

While the analysis employed in these extensions is more involved, the main implications
are the same as those of the scenarios of Sections 3 and 5. Again, we find stock prices being
depressed when an imminent sell order is likely, while they are inflated when an imminent
buy order is likely.
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Appendix

A First-order conditions

Let W = SP, + BP, be the speculator’s wealth, and I = I(W,¢, S, B,Y) denote the value

function:

T e = maxe(s) o()b(r) /t B (Ule(r)]} e~ dr.

The speculator’s optimal program obeys the relations

1
_ —pt = —pt
0 = maXe(r),s(r).b(r) {6 ""U(c) + Ey [dtd (16 ’ )]} (16)

st.—cdt = As (P, + AP,) + Ab (P, + AB,) — (s€ 4 br) dt.

The first order condition for optimal equity holdings is given by
0 1
—ptry! — — —nt =
e U (c)€ + 83Et [dtd(Ie )] 0.
Hence, we obtain

, 9 .11 _
U'(0)€ + 5P [Ei (—pldt + dI)] o,

, 1 oW 1 (01 oW
Vet = pg s + 5 [Ed<aw 9s )] =0

Using the envelope condition 01/0W = U’(c) and the definition of wealth, yields equation
(1). A similar argument yields (2).

and thus

B Homogeneous solutions

The homogeneous solutions of (8) have the form
hi(€) = Qi€™ + Nig™,

where @Q; and N; are constants of integration and ), Ay are the roots of the characteristic
equation associated with (8):

—(1 = 0*/2) + /(4 = 0*/2)* + 290"

)\1 - 0_2 > 0,
—(1 = 0%/2) = /(s — 0?/2)" + 2p0”
)\2 = 02 < O
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C  Prices and transversality conditions

Consider again the transversality conditions
lim Efpi(6,5,6,Y)]e™™0 =0, i=s b

Writing p; = gi + h: as in (6), we note that the particular solution satisfies the transversality
condition by construction. As to h;, we compute

B(€))e-7-0 = )l 4umet i=alr=)
and since \; and )y solve (62/2)A2 + (p — 0?/2)A — p = 0, we have
lim Ey[hi(&)]e™7™) = Q& + Ni&?, i= s, b.

Hence, homogeneous solutions h; satisfy the transversality conditions only if @; = N; = 0.

D Welfare and price effects of trade

Here, we demonstrate the correspondence between welfare and price effects of anticipated
trades.

From equation (16) we have

ol = U(c) + %Et(dl). (17)

Given (17), E;(dI) cannot be of order larger than dt, and this rules out expected jumps in
the value function I,

Et(AI) = O, ]
at trading times.

It is useful to decompose the value function I, in equilibrium, in the form
16,5, B,Y) = maxumyotmatn [ BAUL(r)]) e 0dr
t
= MaXg(r),s(r),b(r) / E; {U[c()|no trade]} e?=0dr 4+ V(£,8,B,Y), (18)
¢

where V (£, S, B,Y) summarizes the effects of trade on expected-lifetime utility.

Expanding F¢(I) in (17) by the usual stochastic calculus arguments, we find that in the
interior of no-trade regions the value function I satisfies

242
ol = U() + utl' + fzil".
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When either B = 0 or S = 0, the solution for the no-trade component of the value
function is obtained as follows. When B = 0 we have

maXe(r),s(r),b(r) /t°° E; {U[c(7)|no trade]} e~ Pr=tqr

S oo - ¥ M. S <2
=1 | E{IsemnTem) e ’d“ﬁ(sé)vds’

where it is useful to recognize that the integrand function corresponds to f, = (5¢)77¢.
When S = 0, we have

maXe(r),s(r),b(r) /t E, {U[c(7)|no trade]} =P8 g7

B B r
— E = —p(T—t) -
= J; t{(Br) r}e dr T (B’

where the integrand function corresponds to f, = (Br)™r.

The function V is thus analogous to the homogeneous solutions (11), and has the form
V = Qu(S,B,Y)EM + N,(S, B,Y)£.

The constants of integration @, and N, are chosen as to ensure no-expected jumps of the
value function at trading times. Moreover, depending on the trade scenario, we impose the
before-trade value function to be finite as ¢ — 0, and to converge to its no-trade counterpart
as £ — oo.

It can be shown that the function V is always negative for the trade scenarios illustrated
in the two top panels of Figure 3: infrequent traders buy stocks in exchange for bonds. The
opposite holds true when infrequent traders buy stocks in exchange for bonds (Figure 3,
bottom two panels): the function V is always negative. These findings are stronger the
higher v, and are robust to different values of ¢ triggering the trade.
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