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Return Generating Process and the Determinants of Term Premiums

Abstract

This paper examines asset pricing theories for treasury bonds using longer maturities than
previous studies and employing a simple multi-factor model. We allow bond factor loadings to
vary over time according to term structure variables. The model examines not only the time
variation in the expected returns of bonds but also their unexpected returns. This allows us to
explicitly test some asset pricing restricions which are difficult to study under existing
frameworks. We confirm that the pure expectation theory of the term structure of interest rates is
rejected by the data. Our empirical study of a two-factor model finds substantial evidence of time-
varying term-premiums and factor loadings. The fact that factor loadings vary with long term
interest rates and yield spreads suggest that bond return volatilities are sensitive to interest rate

levels.

Key words: nonlinear cross-equation restriction, asset pricing, bond returns.






One of the major topics in empirical finance has been the
testing of asset pricing theories. The vast majority of this
literature is concerned with explaining expected returns on common
equities. (For recent examples see Fama and French (1989) and
Campbell and Mei(1993)) However, recently a number of authors have
examined asset pricing theories for bonds. These studies can be
placed in two categories.

One type of research is concerned with explaining changing
risk premiums over time. Campbell (1987), Campbell and Hamao
(1991), Fama and French (1989), Keim and Stambaugh (1986), and
Stambaugh (1988), all related returns on bond indexes to other
economic variables to explain changing risk premiums over time. A
gsecond type of research has involved tests of the Cox, Ingersoll
and Ross (1985) valuation model and its generalizations. (See
Brown and Dybvig (1986), Longstaff and Schwartz (1992), and Pearson
& Sun (1989)).

In this paper, we will use a multi-factor model to explain
bond returns. Tests of single factor models have generally found
that one factor provides a poor explanation of bond prices. Most
researchers have found at least two factors as useful in explaining
the structure of bond returns (See Elton, Gruber and Michaely
(1990), Brennan and Schwartz (1983), Nelson and Schaefer (1983), or
Longstaff and Schwartz (1992)). Our model extends the work of
Stambaugh (1988) and other authors cited above by modeling not only
the time-variation in expected returns but also by characterizing
the movements in unexpected returns. We believe a good bond model

should be able to describe both types of movements in bond prices.



We will examine our model for government bonds using a
maturity range longer than that employed in previous studies. The
data are McCulloch’s estimates of spot and forward rates. The
advantage of this choice is that we can examine a broader range of
maturities.' We find that some of the characteristics of risk
premiums change when longer maturities are utilized.

The paper is divided into four sections. In the first section
we specify the multi-factor model and discuss the test procedures
that are used. In the second section we discuss the data. In the
third section we discuss the results of our tests. The fourth

section summarizes the results.

I. Modeling Rates of Return

In the spirit of much of the recent empirical works on bond
valuation, we start by assuming that the price of all default free
bonds can be modeled in. terms of a small set of state variables.?
We will illustrate the models we use in terms of the assumption of
two state variables although the methodology we employ later in the
paper allows us to explicitly test this assumption against other

alternatives (either a larger number or a smaller number of

Researchers using pure discount bonds to estimate spot
rates have generally focused on spot rates up to 6 months (See Fama
(1984)) or occasionally 12 months (See Stambaugh (1988)). The
exceptions to this are Fama and Bliss (1987) and Jorion and Mishkin
(1991), who did examine spot rates with up to 5 years to maturity.

’See Brennan and Schwartz (1983), Cox, Ingersoll and Ross
(1981), Nelson and Schaefer (1983) for examples of this approach.
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relevant state variableé).3 The two variables we use are the long
rate and the spread between the long rate and the short rate.
These can be viewed as the two state variables determining bond
prices. Alternatively, as Cox, Ingersoll and Ross (1981) have
shown, if prices are deterministic functions of two unknown state
variables, such that its possible to invert the system then two
interest rates can be used as proxies for the unknown state
variables. We will refer to our two interest rates as state
variables though we understand they may in fact be proxies for two
other unobservable state variables.® In this paper we will
restrict our attention to zero coupon bonds. This is not
unnecessarily restrictive as any coupon paying bond can have its
price expressed as a weightedbaverage of a set of zero coupon
bonds. To represent the price of a zero coupon bond as a function

of the state variables, let us define

YL = the spot rate on a long bond

Yy = the spot rate on a long bond minus the spot
rate on a short bond (term spread)

t = the time a bond is valued

i = the time at which the bond matures

*The assumption of two state variables in bond returns is made

by Brennan and Schwartz (1983), Nelson and Schaefer (1983), and
Longstaff and Schwartz (1991). Elton, Gruber and Michaely
(1990) provide empirical-evidence that support this assumption.
“ We use the long rate and the spread rather than the long
rate and the short rate because as Nelson and Schaefer (1983) have
shown the long rate and the spread are nearly uncorrelated. We
have repeated much of the analysis sing the long rate and the short
rate rather than the long rate and spread. The results are almost
identical and the conclusion unchanged.
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P(y,,¥s,t,1) = the price of the bond which is a function of
the four variables in parenthesis
vy, ¥s,t,1) = the interest rate on a zero coupon bond of

maturity i.

The price of any zero coupon bond can be expressed as

Py, vs t, 1) = 0V & (1)

To value a bond we need to model the process driving the
relevant state variables. We assume that both the long rate and
the spread follow a Weiner process which exhibits mean reversion
and that the long rate has a standard deviation which is

proportional to the square root of the long rate itself.

Thus,
dy, = K (u-y)dt + Vygdz (2)
dys = K¢(ug-yg)dt + 0sdzg (3)
Where
1. v and ug are éhe mean long rate and spread respectively.
2. g, and og are the instantaneous standard deviations.
3. K, and K are reversion parameters.
4. dz, and dzg are standard Weiner processes.

While both the long rate and the spread are assumed to revert
to their respective means, the proportionality assumed in the

stochastic term for the long rate precludes the possibility of long



rates turning negative.5 Spreads while reverting to the mean can
in fact be negative.

Employing Ito’s Lemma we find that®

dp_ ap op dp PP 2
> ayLdy e dy$+a dt+1/2a yLoLdt+l/2

YL aYs

dt (4)

Employing equation (2), (3) and (4) we can express the rate of

return on any bond as

9Py, dt-(i- t)oL\/y_Ld dz,-(i-t) 0S¥ C‘fy dz, (5)

Where u; = f(y,,¥s,t,1i). While this expresses the return on any
bond at any point in time we can learn more about the return
process by using relative pricing relationships and the no-
arbitrage condition. More specifically at any moment in time we

can write the above equation as

R; = Ry(t,y,¥s) + By (t,y,¥s)dz + Bis(t,y,ys)dzg (6)

1

Notice that expected values for any bond are not fixed but are

functions of at least t, y,, and ys. Furthermore, from (5), the

"Other powers of the long rate in the stochastic process will
also preclude negative rates. Thus in the empirical section we
will examine the sensitivity of our analysis to including the long
rate raised to powers other than one half.

6 : . ; ; .

The term which contains the covariance of 2z zg; is omitted
because of the assumption, based on previous empirical work, that
z, and zg are uncorrelated and thus the term is zero.
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sensitivity coefficient of any bond to dz and dzg are functions
of at least t, the long rate and the spread (both directly in the
coefficients and indirectly through the derivatives). This
equation must hold exactly for any bond. If we examine three
arbitrary government bohds A, B, and C and let X;, stand for the
fraction of funds invested in bond i, we can always form a

portfolio for which

XBay + XgBg, + (1 - X, - X)By =0

and

|
o

X,Bys + XgBgg + (1 - X, - X,) B =

Since these bonds have zero default risk, a portfolio with
zero sensitivity to the long and short rate must return the

rigkless rate or
XR, + XgRg + (1 - X, - X)R. = R;

for there to be no arbitrage available in the market. Thus, we
must have,

Ri= Rey = MBjre *+ Ast Bises (7)
where the N’s represent the price of the systematic risk associated
with the long rate and the spread and where the A’s and B’s are

conditional values depending on a set of information which is

available at the time expectation are formed. As pointed out



above, B; , B;s and A’s are functions of the long rate and the spread
at the time expectation are formed. Restricting the information
set'to contain only the long rate and the spread and assuming the
conditional risk premiums (and B’s) are linear in the state

variables, we have

>
~
i

Cy+C,Y | +C3¥s
= BBy +8i3Ys

Bis= B, +Bi5y, +Bi6Ys

The linear form we have assumed is a simple alternative to
constant risk premiums and betas.’ It follows naturally from the
linear form used for conditional expected returns by Campbell
(1987), Ferson (1990), and others. It nests constant risk premiums
and betas as special cases. It can be thought of as a Taylor
approximation to some nonlinear relationships of risk premiums and

betas with the state variables.

Combining equation (6), (7), and (8) we have
2 2 ~
Tip = Dig+bi1¥ e +Pi¥ee *PisY oY setPisY e tPisYse + €ie (9)
where r;, = R;, - R; 1is the excess return on a bond and &; is the

unexpected excess return: €&; = B;dz + B;sdz,.

"For conditions under which risk premiums are linear in state
variables see Duffie and Kam (1993).
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Given that (9) is derived from (7) and (8), the coefficients

matrix of (9) should satisfy the following relationship:

< Cy Cs 0 0 0
0 (o 0 cC; ¢ O
(b;o'b“_biz’bg'b“ ’ bij ) = | Bﬂ ,B"Z,BB’G“,BL’, Bié) 0 0 C, 0 C, G

The above restrictions hold for each of the N maturities. Thus the

constraint becomes

b = £68 (10)

where b and £ are matrices with 6 columns and N rows and 6 is 6

by 6. It is easy to see from the above equation that

rank (b) < min [rank (8), rank (8)] (11)

By employing a latent variable test in the spirit of Campbell
(1987) and Ferson (1989), we can examine the rank of b. Gaining
insight into the rank of b may give us added insight into the
structure of the model. For example, a rank of b greater than zero
implies that some coefficients in 6 are not zero, which rejects the

pure expectation theory of term structure (no term premiums). As



a second example, if the rank of b is greater than three, then we
might have a two-factor model with time-varying betas or a three-
factor model with constant betas.’

The rank restriction test in the latent-variable framework
does not exploit the unique structure of the 8 matrix. Recognizing
in equation (9), &;, = B;dz + B;dzs, substituting in the expression
for B's contained in equation (8) and using the symbol Az rather
than dz for the random component since we approximate a continuous
series with discreet data, we arrive at the following equation
Tie = Djg + Dj¥e + Dig¥se + DisYiYer * biz.YLZt + biSYszt + BjlAz +

B,y AZ, + BV Az, + B Az + Bisy Azg + Biy Azg + e, (12)

where e;, is the approximation error. Equation (12) can be utilized
to estimate the beta coefficients explicitly and to test the
restrictions given by (10). Equation (10) can be viewed as cross-
equation restrictions with some parameters unknown.

Equation (12) is similar in spirit to the multi-factor model
of Ferson (1990), in which he uses residuals from regressions to
proxy for the factors. However, we assume that the yield and
spread variable follow discreetized Weiner processes. Ferson
estimates his model in a single step, while we estimate equation
(12) in two-steps. First, we estimate the innovations in the

discreetized Weiner processes (the Az, and Az.), and then we use the

8We can not distinguish the two models unless we specify what
the factors are.



innovations as factors in estimating equation (12). Following
Ferson (1990), we also test the cross-sectional asset pricing
restrictions imposed on the parameters of (12) by equation (10).
To test the cross-sectional asset pricing restrictions, we
estimate the unrestricted model (12) jointly for all bonds and
obtain a variance-covariance matrix for all the parameter
estimates. Then, we solve for the 6 matrix in equation (10) using
the parameter estimates. 6 is a nonlinear function of the parameter
estimates. The exact procedure 1is explained in detail in the
appendix. It is easy to see from equation (10) that the elements
in 6 are restricted in certain ways, namely, some elements are
restricted to be zero or the same as others. We will test these
restrictions using a Wald-test given the 6 estimates and its
variance-covariance matrix. Unlike the chi-square test of Hansen
(1982), the Wald-test only require us to estimate the unrestricted
model, which can be performed with a simple seemingly unrelated
regressions (SUR) procedure. Thus, (10) can be tested without
using a nonlinear optimization procedure. Because of the large
number of parameters and orthogonality conditions involved in a GMM
estimation, we think a simple linear regression approach is
preferable.9 In the study, we also use the Wald-test to test
various simplifications of the 8 matrix. In particular, we test

whether the risk premiums, A, and A;,, are constant over time, as

We need to solve a nonlinear optimization problem for 48
parameters if we use the GMM approach to estimate equation (12) for
seven bonds. As is well known, GMM estimation of large number of
parameters with nonlinear restrictions often result in lack of
convergence.
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well as the hypotheses that the sensitivities, B; and B, are
constant over time.

To obtain estimates of innovations in the long rate and the
spread, Az, (and Azg), a simplified version of the three-step Ferson
and Foerster (1994) approach is used to estimate residuals from the

following discreet form of (2) and (3),

Ay, = a + b y,, + Vy 04z (13)
Ay, = ¢ + d yg, + 0gAzZg (14)

In the first step, an OLS regression is used to estimate the
a and b parameters in equation (13). In the second step, a WLS
regression is used to re-estimate (13) with the weights being the
absolute wvalues of the residuals calculated from the OLS
regression. Then in the last step, we construct the Az series by

taking the residuals from that WLS regression and deflating them by

7 10
Y.

II. Data

The data we use are the McCulloch estimates of spot and
instantaneous forward rates. The exact procedure used to derive

these estimates is discussed in McCulloch (1987) and Shiller

(1990) . The McCulloch estimates have become the standard for

10 Ideally, we should deflate them by Vy, 0, but the constant

o, will not affect our study, since it only affects the scales of
the betas in regression (12) but not the cross-equation restriction
(10) . Az, is obtained by a similar procedure.

11



extracting estimates of spot rates from a full set of yield data.’
McCulloch utilizes a full data set which makes it possible to
average out errors introduced by bid ask spreads, non synchronous
trading, and random pricing errors. Campbell and Shiller (1991)
compare the McCulloch data to the Fama and Bliss data and find the
estimates are very similar over the maturities included in the Fama
and Bliss data. However, the McCulloch data includes bonds of much
longer maturities. Among the techniques that utilize the full data
set, the McCulloch estimates are widely accepted as the best, even
by researchers who developed alternative procedures (See Nelson and
Schaefer (1983)).

The data supplied to us were continuously compounded spot and
forward rates for thirty-one maturities of 1, 2, 3,..., 18 months,
21 months, 2 years, 3 years,..., 13 years.12 The estimates were
provided at a monthly interval over the 40 year period January 1947
to March 1987, a total of 483 observations for each maturity.

To estimate (12), Qe needed to convert spot rates to rates of
return. For maturities up to eighteen months the procedure was
straight forward since we have spot rates (and hence bond prices)
for all relevant maturities. For maturities greater than 18
months, monthly spot rates are not in our data set for all required

maturities and thus must be estimated. How this estimation is

" McCulloch assumes a constant tax rate in his estimation. The
issue of bond clienteles (and therefore multiple tax rate) has been
a subject of recent research (see Ronn and Shin (1992)).

2 There are some missing data for bonds with maturities

longer than 13 years. Since we require data in each month, 13
years is the maximum maturity we can include.
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accomplished is best explained by an example. To estimates the 23
month continuously compounded spot rate, we subtracted the
instantaneous forward rate associated with the 24-month bond from
the 24 month rate times 24 and dividing the resulting number by 23.
Tests of this procedure over maturities where both actual and

estimated yields were available showed a very close fit.

IV. Empirical Results

Summary statistics for selected treasury bonds are presented
in Table 1. The excess returns are calculated as continuously
compounded monthly holding period returns in excess of the one-
month treasury bill rate. They are given in percent per month.
The first row of panel A presents the mean excess returns for bonds
with different maturities, which first increase and then decrease
with maturity. The second row is the standard deviation of the
monthly returns. The standard deviation displays a monotonic
increasing relationship with maturity. Panel B of Table 1 gives
correlations of excess return across different maturities. Excess
returns on bonds with similar maturities are highly correlated
while the correlation is much smaller for bonds with different
maturities. |

Figure 1 provides the time series plot of the long rate y, and
the spread ys;. We utilized the yield to maturity on a ten year
zero-coupon bond as the long rate and the spread between the yield

to maturity on a ten year bond and a three month bill as the
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spread.13 As one can see, the long rate and spread are a lot more
volatile during the late 70’s and early 80’s, which reflect the
change 6f monetary policy during that time period.

Table 2 presents the results of the regression of excess
returns on the state variables and their quadratic terms, which are
known at the beginning of the period. The t statistics have been
corrected for heteroscedasticity based on the White (1980)
procedure.

The explanatory power is similar to that reported by Campbell
(1987), and Stambaugh (1988). This is true even though we use a
different set of lagged variables and we examine the relationship
not just for maturities less than one year, but rather for
maturities up to 13 yearsf‘ Note that from the F-test we can
reject at very high 1level of  statistical significance, the
hypothesis that all slope coefficients in equation (9) are jointly
zero. Thus, we could rule out the pure expectation theory of the
term structure of interest rates which states that the risk
premiums should be zero. We also perform the test of Db;z;=b;,=b;s=0

for each bonds. The significance level for the F-tests are 0.012,

13 We tried a number of other combinations. The results are

described below.
"% We tried alternative state variables and obtained similar
results. These alternatives include the yield on a 10-year pure
discount instrument and the spread in yield between a 10-year and
6-month, a 7-year yield and the spread between a 7-year and a 3-
month yield, a 4-year yield and the spread between a 4-year yield
and 8-month yield and a 1l-year yield and the spread between a one
year and a three month yield. Using very ;hort rates, l-year and
3-months did prodyce a slightly higher R" in equation (9), but
produced a lower R" for equation (12).
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0.038, 0.019, 0.011, 0.033, 0.030, and 0.019 respectively. Thus,
we reject the hypothesis of b;;=b;,=b;5=0.

Table 3 presents tests of the Rank restrictions described
earlier. This methodology is the same as that employed by
Stambaugh (1988). From Table 3 we can begin to draw conclusions
about the rank of the b matrix. From Table 3 we can see that there
is mixed evidence concerning rejection of the hypothesis that the
rank (b) = 1. While on the basis of the overall sample, we can not
reject the rank one at the 10% level, we could reject it at
slightly higher 1levels. When we split our sample into two
subperiods we find that Fank one is rejected at the 5% level in one
of the two subsamples.15 This means that we could rule out the
one factor model with constant sensitivity or a constant premium
model with time-varying sensitivity proportional to the state

variables.16 However, Table 3 shows that we are unable to

differentiate between a rank of 2 or greater for b.

5 gimilar results are obtained with the choice of other pairs

of interest rates as instrumental variables._  An alternative test
based on the Wald-test also rejects H,: rank(b)=1 at the 5% level.

16Stambaugh (1988) found that this procedure provided
significant insight into pricing assets. His study differed from
ours in both the maturity of the assets studied (he didn’t examine
maturities beyond 12 months) and the choice of predetermined state
variables. He used the forward premiums from two-months to six-
months as state variables. We also replicated Stambaugh’s latent
variable-model test with a full range of maturities for both excess
returns and forward rates. Our results were in general consistent
with those of Stambaugh. For the constant beta latent-variable
model, we found strong evidence against the one-, two- and three-
factor models. We also found that using forward rates with a wide
range of maturities improves the statistical power of the latent-
variable model tests. These results could be obtained from the
authors upon request.
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While the rank restriction test allows us to reject the
gimplest form of the return model, it doesn’t answer all questions
about our model, such as whether we have constant A’s or B’s. By
estimating equation (12) without the restrictions imposed by
equation (10), and then testing various restrictions we can learn
more about the structuré of the model.

Examining the top panel of Table 4 we see that the single
factor model in which there is only one state variable either y, or
Ys 1s rejected by the data. The data does not reject the model in
which B;, is only a function of y, and the model in which B;s is only
a function of y,. The model with either the N’s forced to be
constant or the B’s forced to be constant is rejected. The
rejection of constant betas implies that the conditional bond
return volatilities are closely associated with long-term bond
yield and spread.

We also find from Table 4 that the linear asset pricing
restriction of (10) is rejected by the data. One possible
explanation of the rejection is due to the power of the tests.
Equation (10) imposes thirty restrictions on the eighty-four
parameters estimated from regression (12). The Wald-test is a joint
test of all thirty restrictions. The test will pick up some small
but statistically significant deviation from the equation.

This claim is partly supported by panel B of table 4, where we
provide R? for fitted values of bond excess returns using both the
restricted and unrestricted model. The panel shows that R’ for both

models are quite similar with a range of .85 to almost 1.0. 1In
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general, the methodology employing cross-equation restrictions and
systematic factors (Az, and Az;) is much more powerful than the
latent variable methodology in allowing us to choose among
alternative specifications]7 This claim is partly supported by
the fact that the restriction is not rejected by the Schwartz
(1978) test, which in this context is that the statistic should be
greater than the logarithm of sample size, which is 6.18, if the
restriction is rejected (see Deaton (1988)). We think the Schwartz
(1978) test to be a more appropriate test here because it takes
into consideration the dimension of the restriction and sample
size. Nevertheless we report results using the Wald test as well
as the Schwartz test for the Wald test has become standard in the
literature.

We can learn more about the model from examining the time
gseries performance of the sensitivities and risk premiums. This is
done in Figures 2, 3, and 4. Examining Figure 2 shows that the
long risk premium (A ) was generally negative and stable over the
early years but varied somewhat in the late 70’s to early 80’s.
Examing Figure 3 shows that the sensitivities to the long rate are
also negative. The negative risk premiums and sensitivities result
in positive expected returns. The risk premium for spread (\g) was
positive over most of - the period and volatile throughout the

period. Examing Figure 4 shows that the sensitivities to the

" Another p0331ble rejectlon of equation (10) could be due to
either some kind of mispricing in the bond market, or approx1matlon
errors in equation (8) and return computations, or errors- in-
variables because of the multi-step approach for estimating
innovations in the long rate and the spread.
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spread were positive for all but the longer maturity bond.
Comparing Figures 3 and 4 and noting the scale shows that the
sensitivity to the spread for short maturity bonds was fairly
stable over time, but for other bonds the sensitivity varied quite
a bit. The sensitivity on long bonds was fairly stable in early
years, but varied considerably from the 70’s on. This clearly
indicates that bond return volatilities are closely associated with
long-term bond yield and spread, which is consistent with our test
that the constant beta model is rejected.

It is interesting to examine the conditional term premium that
arises from our model. The conditional term premium is equal to
the prediction of the excess return (over the riskless rate) which
is equal to the sum of the product of the betas and A’'s examined in
Figures 2, 3, and 4. This is equivalent to fitting the restricted
form of our model.

Figure 5 shows the conditional term premium for a 10-year
bond, 1l-year bond, and a 6-month bond. This figure confirms
results from previous studies that the term premiums are much more
variable for long term bonds than for short term bonds. In fact,
the low variance of thé predictable part of the term premium for
short term bonds makes it clear that studies which only analyze the
behavior of short term debt instruments may reach misleading
conclusions about the stability of the term structure of interest

rates.

Figure 5 presents inconclusive evidence about which theory of

term premium is correct. We can say that predictable term premiums
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appear to exist. However, we can not state that the term premium
are always positive or that they increase with maturity. On the
other hand the premiums on the one year and 6 month bond are always
positive and the one year term premium is always higher than the 6
month premium. However, There are long periods of time where the
predicted term premium on the 10-year bond is negative and there
are long periods where the 10-year bond has a lower term premium
than the 1 year or é6-month bond. Thus, the results are consistent
with a more complex explanation of term premiums such as preferred
habitat.' Our study <omplements a recent study by Boudoukh,
Richardson, and Smith (1993), where they also find some
inconclusive evidence against the liquidity preference theory,
using treasury bills from one to eleven month in maturities.

All of the above results involved assumptions about the
process driving the long interest rate and the spread and the
particular choice of maturities used for the state variables. It

is worthwhile briefly discussing the robustness of our results

under alternative assumptions.

V. Robustness

In the Stochastic, Model of long rates (equation (8)) we
agssumed that the coefficient of the Az term contained the long rate
to the one half power. The reason for utilizing the long rate in

this term is that the stochastic process can not lead to a negative

18 . . . ,
Similar results were obtained for the unconstrained version

of the model.
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long rate. However, utilizing the long rate to any power would
accomplish this goal. An important empirical question is which
power is most consistent with observed data. We examined four
different values for thé power on the interest rate variable-zero,
one half, one and three halves. While we recognize that zero has
the undesirable property of allowing the stochastic process to
become negative, an important question is does utilizing the long
rate to a positive power in the stochastic process significantly
affect how well the model describes the data.

When alternative powers of y, were tried in the model we found
that'

1) The performance of the model was unchanged whether the

square root of y, was used in the estimation of dz or it was

omitted from the term

2) Including y, to powers higher than 1/2 resulted in a

poor fit of the model.
Thus, utilizing the long rate to the one half power in the
stochastic process has the desirable property of generating long
rates which can not take negative values while maintaining the same
explanatory power as a model without this property. Utilizing the
long rate to the power of one-half works better than alternative

values of the power.

" Varying the power on the long rate affects the estimate of

dz in equation (8). Recall that equation (8) was estimated using
a weighted least square procedure. The estimate of dz was obtained
by first estimating it for the long rate to a power of zero and
then adjusting it by dividing this estimate by r to the various
powers.
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The second choice that we made was the specific rates to use
as state variables. Figure 6 shows the explanatory power of the
unconstrained model for a number of alternative choices. It is
easy to see that all choices of state variables capture a great
deal of the variation in excess returns across maturities. The
same result was true when we tested the expected return process
(equation 10). Our choice once again generally explained the
greatest amount of expected return with the exception of very short
rates which was discussed earlier. Finally, we examined the tests
of our model for alternative choices of state variables. These
results are shown in Panel B to D of Table 4. Comparing these
results to Panel A shows the conclusions are the same. Our model
cannot be rejected by the Schwartz test in most cases, but constant
A's or B’s can be rejected. Thus, for all of our tests the results
are robust across choice of state variables.

We have also performed two additional regressions to see if
our model has captured inflation risk in bond pricing. In the
first regression, we add lagged inflation to equation (4). We find
no evidence of inflation offering any extra explanatory power over
the time variation of risk premium. In the second regression, we
added unexpected inflation to equation (12) (computed from
residuals of a VAR process including the original state variables
plus inflation). We also see no evidence of the inflation factor
offering any significant explanatory power over bond excess
returns. Thus, inflation can explain neither the expected nor the

unexpected returns in our model, which suggest that inflation risk
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is spanned by our factors.>?

Conclusion

In this paper we examined the ability of a two-state return
generating process to explain both the expected and unexpected
returns. While others have examined this type of model for asset
pricing using short maturities (generally under 6 months), this is
the first paper to test such models for bonds with maturities over
5 years. For a wide range of choices concerning state variables,
we are able to reject both constant risk premiums and constant
sensitivities. Both the restricted and the unrestricted models are
found to be capable of capturing most of the variation in bond
excess returns. The predicted risk premiums change over time with
long bonds sometimes having a greater and sometimes smaller risk
premium than short bonds. The paper has also made an methodology
contribution by accounting for both the expected and unexpected
bond returns. This allows us to explicitly test some asset pricing
restrictions which are difficult to study wunder existing

frameworks.

O7hese results can be obtained from the authors upon request.
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Appendix
To test the rank restriction, we first partition the excess return matrix R= (R ,Ry), where

R is a TxK matrix of excess returns of the first K assets and Ry is a Tx(N-K) matrix of excess
returns on the rest of the assets. Using equations (9), we can perform the following regression

analysis:

(al) Ri=X0+
R =Xa+ wp

where X is a TxL matrix of the state variables, ©® and O are regression coefficents. If the pricing
relationship in (7) and linear expectation in (8) hold, they imply that the data should not be able to
reject thenull hypothesis Hy: o = ©B, where B is a matrix of Kx(N-K) elements. The regression
system of equation (al) given the restriction in equation (10) can be estimated and tested using
Hansen's (1982) Generalized Method of Moments (GMM), which allows for conditional
heteroskedasticity and serial correlationin the error terms. It is easy to see from equation (9) that
the error term in system (al) has conditional mean zero given the instruments Xp=(1, yL. ¥s,
Y1¥s Y12, ¥s2). Following Hansen, we begin by constructing a N x L sample mean matrix: GT =
U’X/T. Next, we stack the column vectors on top of each other to obtain a NIx1 vector of gT.
A two-step algorithm s then used to find an optimal solution for gT “W-1lgT by minimizing over the
parameter space of (©, ). In the first step, the identity matrix is used as the weighting matrix W.
After obtaining the initial solution of ®¢ and O, we next calculate the residuals p1 and pg from the

system of equationsin (al) and construct thefollowing weighting matrx:

@) W=z Z (utu;) ®(zz).
where ® is the Kronecker product. Then we use the weighting matrix as given by (a2) to resolve
the optimization problem of minimizing gT W-lgT over the choice of (@, ). It can be shown
(see Hansen (1982)) that under the null hypothesis, T times the weighted sum of squares of the

residuals, g W-1gr, is asymptotically chi-square distributed, with the degrees of freedom equal to



the difference between the number of orthogonality conditions and the number of parameters
estimated: (N-K) (L-K), where N is the number of assets studied, K is the rank, and L is the
number of colunms in Xp. After obtaining the weighted sum of squared residuals, we can perform
a chi-square test fo determine if the data rejects the restricted regression system (al).

To testrestriction (10) directly, we estimate (12)jointly for all bonds. After obtaining the b

~

and B estimates, we solve for ® as:
P
(a3) ®@=(f'B) B

To calculate the variance-covariance matrix associated with the estimation error for ®, we first let y

and V represent the entire set of parameters and the variance-covariance matrix respectively. Next,
we write © as a nonlinear function f(y) of the parameter vector y. The variance-covariance matrix
for the © estimates is then estimated as [fy(¥) Vfy(y)]. After obtaining the variance-covariance
matrix for S, E, and @, it is straightforward to perform the Wald-type test based on various

 restrictions imposed on the parameters. More specifically, if we want to test the restriction Hy: R®

-b=0, we can construct the following test statistic:
(ad) Wald = (RO - b)(RQR')- RO - b)/m,

where Q is the variance-covariance matrix for ® and mis the number of rows in matrix R Under
the null hypothesis, the Wald-statistic asymptotically has a F-distribution, with the degrees of
freedom equal to m and the number of observations minus the number of regressors in equation

(12).



Tablel

Summary Statisticas

A. Mean and Standard Deviation for Selected Bond Retumnsin Excess of One-Month T-bill

3-month  6-month  S-month  l-year S-year 10-year 13-year
Mean 0.042 0.064 0.063 0.066 0.082 0.053 0.042
S.D. 0.100 0.243 0.386 0.507 1.820 2.930 3.660

B. Correlation Matrix for Selected Bond Excess Returns

3-month 6-month S-month  l-year S-year 10-year 13-year
3-month 1 - 0.935 0.882 0.838 0.627 0.526 0.504
6-month 1 0.976 0.945 0.757 0.658 0.639
9-month 1 0.989 0.822 0.715 0.693
l-year 1 0.859 0.747 0.716
S-year 1 0.927 0.869
10year 1 0.971
13-year 1

Notes: Excess Returns are calculated in excess of one-month t-bills. The sample period for this

tableis 1947:1-1987:3, with 483 observations. Units on excess returns are percentage per month



Table?2

Regression of excess returns on forecasting variables from 1947:1-1987:3. The t-statistics are
adjusted for heteroskedasticity. The following are the parameter estimates for equation (9). The y1
is the yield ona 10-year zero coupon bond. The yg is spread between the yield on a 10-year zeto

coupon bond and the yield on a 3-month zero coupon bond.

Tit = bg + by yr¢+ b2 Y+ B3YL2 + baYe® + bs YLyt €it

Maturity  bg by b, bs by bs F-test R°  DW

3m 0.072 -0.011 -0.034 0.002 0.001 0.006 0.001 0.084 1.67
(3.420) (-1.650) (-1.670) (1.080) (1.540) (0.933)

6m 0.138 -0.027 -0.074 0005 0002 00l6 0.018 0054 162
(2.720) (-1.530) (-1.520) (1.070) (1.230) (0.868)

9m 0.217 0052 -0.116 0.009 0.003 0028 0.023 0.044 166
(2.720)  (-1.900) (-1.570) (1.290) (1.300) (0.576)

ly 0.281 -0.073 -0.151 0.014 0004 0.040 0.008 0.048 1.66
(2.670) (-2.070) (-1.590) (1.490) (1.390) (1.070)

Sy 0.754 0248 -038 0049 0014 0115 0016 0048 183
(1.880) (-1.870) (-1.110) (1.450) (1.200) = (1.020)

10y 1.100 -0.407 -0.557 008 0022 0178 0.009 0060 1952
(1.630) (-1.910) (-0.969) (1.520) (1.240) (1.040)

13y 1.470 -0.554 -0684 0.107 0.031 0.212 0005 0.061 191
(1.690) (-1.970) (-0.950) (1.500) (1.290) (0.942)

Note: t-statistics are in parenthesis. The number shown under F-test gives the p-value for the joint
test Ofbil = bi2 = bl3 = bi4 = bi5 =0.



Table3
Chi-square statistic for test of rank restrictions in expected excess returns of zero-coupon bonds
with maturities up to 13 years. We test the rank restrictions on the coefficients of regression of
excess retumns on a set of instruments by the latent variable specificaion. The p-value (in
parentheses) is the significancelevel at which the rank restriciion is rejected. The tests use the

generalized methods of moments and allow for heteroscedasticity.

Rank (degrees of freedom)
Sample Periods 1(30) 2(20) 3(12) 4(6)
47:1-87:3 39.85 13.93 2.40 0.45
(0.107) (0.834) (0.998) (0.998)
47:1-70:1 47.21 21.54 3.84 0.32
(0.023) (0.365) (0.986) (0.999)
70:2-87:3 39.19 11.82 3.13 0.56
(0.121) (0.921) (0.994) (0.997)

Note: Excess return on bonds with seven different maturities are used in the rank restriction test
Thc‘y are bonds with 3-months:, 6-months, 9-months, 1-year, 5-years, 10-years, 13-years to
maturity. We use a constant, long rate, spread and their quadratic terms as the state variablesin the
test. The long rate, yg, is the yield ona 10-year zero coupon bond. The spread, yg, is the spread

between the yield on a 10-year zero coupon bond and the yield on a 3-month treasury ball.



Table4

A. F-statistics for tests of various restrictions.

no yr, no ys noypinBs noysinf;  cons. cons A eq.(10)
(DF=14) (DF=14) (DF=7) (DF=7) (DF=28) (DF=12) (DF=30)

TestA 384.0 3.925 1.423 1.266 311.2 2.074 4312
(0.00) (0.00) (0.19) (0.28) (0.00) (0.02) (0.00)
TestB 183.2 2.789 4.964 2.4438 114.5 1.443 5.003
(0.00) (0.00) (0.00) (0.01) (0.00) 0.14) (0.00)
TestC 136.8 3.028 1.632 0.987 147.1 2.216 2.472
(0.00) (0.00) 0.12) (0.43) (0.00) (0.01) (0.00)
TestD 117.2 8.485 2411 3.828 101.3 3.151 8.536
(0.00) (0.00) (0.02) (0.00) (0.00) (0.02) (0.00)

B. R2 for bond excess returns

~ 3-months 6-months 9-months 1-years S-years 10-years 13-years

Unrestricted 0.919 0.915 0.882 0.855 0.897 0999  0.946
Restricted 0.885 0.910 0.885 0.847 0.872 0977 0930

Note: Excess return on bonds with seven different maturities are used in the test They are bonds
with 3-months, 6-months, 9-months, 1-year, 5-years, 10-years, 13-years to maturity. The p-value
(in parentheses) is the significance level that the restricition is rejected. The yy, is the yield ona
10-year zero coupon bond, the yy is the spread between the yield on a 10-year zero coupon bond
and the yield on a 3-month treasury bill in Test A. The yp is the yield on a 4-year zero coupon
bond, the yj is the spread between the yield on a 4-year zeto coupon bond and the yield on a &
month treasury bill in Test B. The yp_is the yield on a 1-year zero coupon bond, the yg is the
spread between the yield ona 1-year zero coupon bond and the yield on a 3-month treasury bill in
Test C. The yj is the yield on a 7-year zero coupon bond, the yg is the spread between the yield on
a 7-year zero coupon bond and the yield on a 3-month treasury bill in Test D. The yy_ is the yield

on a 10-year zero coupon bond, the ys is the spread between the yield on a 10-year zero coupon

bond and the yield on a 3-month treasury bill in Panel B.



M I T L L T O L L L LR L R L L T L T O L O L L P T P L I ST T S T e e pT R A e A ST
w h
— L -1
~~ o { -
e : '
— i 7
L= -
= - Nl —
C N[ ; : ]
g 3
C T r FEoon .
Uot : % -
r— : : —-
- - .
(D) - .
Q.®@r - AL £
e = 51 3 : "
I e K R
~——0 - ol s -
) r S . :
o _F : i B i
q) <t - - .:\~ —tam : H
e r B ]
Q. F B
oy NE- .
R OF ]
L [ N
oML = long rate | 3
>~ 'L spread 3 _
L N
© :ulmlmhu'xnhnlmhnlmlu_lhnlmlmhnhuhulunhulmlmhuhulnnhu!mlmlnxlmluzhulmhulmhulvvl'yulmlm!zuhn'vu :

48 51 54 57 60 63 66 69 72 75 78 81 84 87
Time Period: 1947.1—1987.2

Figure 1. Plot of the long rate (y1) and the spread (y¢). yp is the yield on a 10-year
zero coupon bond. yj is the spread between the yieldon a 10-year zero coupon bond and the yield
on 2 3-month treasury bill. The sample period for this figure is 1947.1-1987.3, with 483

observations.
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Figure 2. Plot of risk preminm Ay, and Ag. Ay, is the risk premium compensating for
taking risk on unexpected changes in yield of a long term bond Ag is the risk premium
compensating for taking risk on unexpected changes in the spread between yield on a long term

bond and yield on a short term bond. The sample period for this figure is 1947.1-1987.3, with 483

observations.
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Figure 3. Plot of sensitivities, B;;,, towards nnexpected changes in the long rate.

Thesensitivitiesare estimated for six-month treasury bills, one-year and ten-year treasury bonds.
In general, the longer the maturity, the more sensitive the bond towards the unexpected changesin

the long rate. The sample period for this figure is 1947.1-1987.3, with 483 observations.
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Figure 4. Plot of sensitivities, Bj;, towards unexpected changes in the spread. The
sensitivities are estimated for six-month treasury bills, one-year and ten-year treasury bonds. In
general, the longer the maturity, the more sensitive the bond towards the unexpected changesin the

spread. The sample period for this figure is 1947.1-1987.3, with 483 observations.



T Ty [ e T T o ey [ Ty oy ooy T T Ty T T v T Y T T T e e T T i Ty e v Iy

3.5

2.5

1.5

0.5

expected excess return

-0.5

staegbogetopefpesfene iy

aeebegefoneloopdoentony Cogafonelonafoaelpapdoentons denn?onsfpnatoee touptonstinaone iaslungtos s bogsdunetoontosshensterstony boartasn bin

48 51 54 57 60 63 66 69 72 75 78 81 84 87
Time Period: 1947.1—-1987.3

-1.5

Figure 5. Conditional term premium for short and long term bonds. Conditioﬁal
term premium is defined as the sum of the product of the B's and A's in figure 3-5. yy is the yield
on a 10-year zero coupon bond. y, is the spread between the yield on a 10-year zero coupon bond

and the yield on a 3-month treasury bill. The sample period for this figure is 1947.1-1987.3, with

483 observatons.
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Figure 6. R2 for the regression of eqmation (12) under four alternative

specifications: a) The yp is the yield on a 10-year zero coupon bond. The yg is the spread
between the yield ona 10-year zero coupon bond and the yicld on a 3-month treasury bill. b) The
y1is the yield on a 4-year zero coupon bond. The ys is the spread between the yield on a 4-year
zero coupon bond and the yield on a 8-month treasury bill. ¢) The yy, is the yield on a 7-year zero
coupon bond. The yg is the spread between the yield on a 7-year zero coupon bond and the yicld
on a 3-month treasury bill. d) The yy is the yield on a l-year zero coupon note. The yq is the

spread between the yield on a 1-year zero coupon note and the yield on a 3-month treasury bill.

Az and Azs areinnovations of y1 and ys.
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