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1. Introduction.

Recent evidence has documented a predictable component in stock returns which is
particularly large at low frequencies (see for example Fama and French [1988] and [1989]). Most
previous studies have examined the predictability of bond portfolios, stock indices, size deciles and
industry portfolios. A question which follows from these studies is the predictability of individual
stock returns using the same information variables. Of particular concern is the stability of the
predictive regresssion coefficients through time for individual stocks.

This study uses the NYSE/AMEX file of monthly returns to examine the period 1/68 to
12/89. Five information variables are employed: 1) a term spread variable; 2) the yield on a one
month t-bill; 3) lagged return on a equal weighted stock index; 4) a dividend yield variable; and, 5)
a January dummy. The coefficients are likely to be time-varying so a five year window is used for
the individual stock predictive regressions.

A related question is the behavior of portfolios formed on the basis of the coefficients from
the predictive regressions for individual stocks. More precisely, can the five year predictive
regressions be used to form portfolios with desired coefficient values? Two types of portfolios are
formed: 1) pairs of portfolios are formed with extreme coefficients on a given information variable;
and, 2) portfolios with weights chosen such that the weighted average of the coefficients on a given
information variables is maximized (minimized) subject to the constraint that the weighted average
of the other coefficients is equal to the cross sectional average. For each year in the sample, rolling
predictive regressions are run over the previous five years, portfolio weights are determined and post
ranking returns are calculated for the next twelve months. The portfolio formation approach is
analogous to that of Fama and French [1991]. The major result is that the first procedure produces
pairs of portfolios with significantly different coefficients on the relevant information variables while
the second procedure does not produce portfolios with equal coefficients on the other information
variables.

Gibbons and Ferson [1985] proposed a test of asset pricing models which does not require
the underlying risk factors to be specified. Instead, conditional risk premia are hypothesized to be

linear in a set of information variables. Further, the conditional risk loadings are assumed to be
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constant (proportional)! implying that conditional expected return is linear in the set of information
variables. The latent variables methodology can only detect more than one factor if the risk premia
are time varying. Thus, the literature documenting return predictability (see for example Fama and
French [1989]) has provided candidate information variables which can be used in latent variables
tests.2 A number of recent studies have employed Hansen's [1982] GMM methodology and these
candidate information variables to determine the minimum number of factors which do not allow
rejection of the restriction obtained under the proportional (constant) risk factor assumption.
Generally, only proportional beta models with less than two factors are rejected by the data.®

One possible reason why these tests in general are unable to reject a two factor, constant beta
model is a lack of power. There are considerably more securities on the CRSP tapes than the number
of assets which can be handled computationally when implementing GMM. It may be possible to
improve the power of the GMM test by forming stock portfolios on some criteria other than size or
industry. Some evidence on this point is presented in this paper. Specifically, portfolios of the first
type described above are used together with extreme size and market beta deciles to perform latent
variables tests. A priori, using these portfolios would be expected to improve power relative to using

size deciles since we are ranking on more than one dimension. In fact, the extreme portfolios detect

I The weakest condition which gives the result is that the ratio of the risk loadings is constant.
Hereafter, this condition will be referred to as the proportional risk loading condition.

2 Variables found to have predictive ability include a term spread yield variable, a default spread
yield variable and dividend yield (Fama and French [1989]), the one month T-bill rate (Campbell
[1987] and Ferson [1989]) and a January dummy (Keim [1983]).

3 Specifically, Ferson [1990] uses seven information variables (plus a constant) and quarterly
return data for size quintiles and three bond portfolios to reject a one factor constant beta model
but not a two factor version. Daily returns on the Dow Jones 30 common stocks are found by
Ferson, Foerster and Keim (1991) to conform to a two factor model using two or three information
variables plus a constant. In fact, their evidence against a one factor model is weak. Their GMM
tests for monthly returns on size and industry portfolios which use five information variables plus
a constant indicate that no more than two factors are needed to describe stock returns. Ferson,
Foerster and Keim also test the restriction imposed by asset pricing models without the assumption
that conditional expected return is linear in the information variables. Using GMM, they are able to
reject a two factor model but not a three factor one. Also see Campbell [1987] and Ferson

[1989] for monthly bond and stock data.
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an extra factor relative to the size deciles. This result indicates that a greater number of factors may
be needed to describe individual stock returns than has been suggested by the latent variables testing
to date. Descriptive evidence is also provided on the relative power of GMM latent variable tests
and principal component analysis of the predictable (using the information variables) component of
returns.

Finally, all portfolio formation procedures and tests are performed on three data sets: 1)
NYSE and AMEX combined; 2) NYSE only; and, 3) AMEX only. One motivation for this
partitioning of the sample comes from Reinganum [1990] who compared the pricing of NYSE and
NASDAQ securities. He found that small firms on NYSE earn higher risk adjusted returns than
comparable firms on NASDAQ.* The implication is that the pricing of assets may vary across
exchanges. Some very preliminary evidence on this issue is provided for the NYSE and AMEX
exchanges by the latent variables testing performed in this paper. The number of factors needed to
describe returns using a proportional risk loading model is reduced by at least one going from the
combined sample to either the NYSE or AMEX samples.

The paper is organized as follows. The data and portfolio formation technique are described
in Section 2 while Section 3 contains a discussion of latent variables testing and its implementation

using GMM. Results are presented in Section 4 and Section 5 concludes.

2. Information Variables and Portfolio Formation Procedures.
Table 1 contains a brief description of the symbols used in the paper to represent the

information variables and portfolios employed in the testing.

2.1. Information Variables.
Five variables plus a constant are used to explain variation in expected return. Each is
discussed in turn.

Fama and French [1989] document that asset returns are predictable using dividend yield and

4 He then provided some evidence supporting the argument that the difference is due to different
liquidity services across exchanges for small firms.



5

a term spread variable. Excluding market inefficiency as an explanation, the most likely explanation
for their result is that these variables track expected returns. Dividend yield VDP(t-1) is defined to
be VD(t-1)/VP(t-1) where VD(t-1) is the dividend paid on the value weighted index of NYSE over
the twelve months prior to period t and VP(t-1) is the value of the index at the start of period t.°
Variation in the term structure is measured by TRM(t-1) = YB5(t-1) - YBL(t-1) where YB5(t-1) and
YBL(t-1) are respectively the nominal yields on a five year bond and a one month bill known at the
end of t-1. The former is obtained from the CRSP riskfree rate files while the latter is extracted from
the Fama-Bliss discount bond file.

It is well documented that returns are higher in January than in other months of the year and
that this effect is greatest for small firms (Keim[1983]). So a January dummy JAN(t-1) is used to
help explain expected return variation. A negative relationship has been documented between the
nominal one month t-bill yield and real stock returns (see Ferson [1989]). For this reason, YBL(t-1)
is used as an information variable. RCE(t-1) is the continuous real return on the NYSE equal
weighted index provided by CRSP over the month prior to the start of period t. Conrad, Kaul and
Nimalendran [1991] provide evidence that expected short horizon returns are autocorrelated and
lagged index return may capture the common component of this autocorrelation.

So in this paper, the Z, | vector is defined to be
[1, TRM(t-1), YBL(t-1), RCE(t-1), VDP(t-1), JAN(®)]'. All these variables have been used in prior
latent variables studies (see Ferson, Foerster and Keim [1991], Campbell [1987] and Ferson and
Foerster [1991]). Their correlations are reported in Table 1 and all but two are less than .5 in
absolute value with none greater than 0.66. When a principal components analysis is performed the
first component explains less than 40% of the variation. These results suggests that the information

variables are not highly collinear.

2.2 Return Data and Portfolio Formation Techniques.

2.2.1 Return Data.

5 The VDP(t-1) series is obtained using the CRSP value-weighted index of NYSE stocks and
calculated using a discrete return version of the algorithm described in Fama and French
[1988Db].
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This study uses monthly return data for individual stocks obtained from the NYSE and
AMEX file maintained by CRSP. Three samples of stocks are examined over the 22 year period
1/68 to 12/89:¢ NYSE and AMEX; NYSE only; and, AMEX only. For the combined NYSE and
AMEX sample, all available returns on the file are used. For the other two samples, if portfolios are
being formed for the year y, then for that year each stock is assigned to the exchange it belongs to
at the start of that year.

The value weighted size deciles (S1 to S10) for each exchange or set of exchanges used in
the tests are obtained from the CRSP monthly index series for the relevant exchange(s). The deciles
are formed at the start of each calendar year on the basis of market capitalization at the end of the
previous year. Let RSp(t) denote the real return on the pth size decile where the 10th decile contains
the largest stocks. Two long term bond series are also used. RGB(t) denotes the real return on the
long term government bond portfolio described above. The other bond series is a low grade bond
portfolio whose real return is denoted RHY (t) and which consists of those bonds which are rated Baa
or under in a random sample of 100 corporate bonds. Both bond series are obtained from Ibbotson
and Associates.

All portfolio returns are discretely compounded,” and deflated by discretely compounded

6 When forming portfolios on the basis of a firm characteristic like size, it is important that the
properties of the set of stocks used do not alter over time. Otherwise the characteristics of the
ranking portfolios will also vary over time, making it easier to reject a given factor model in the
testing. (To see why this is true, suppose a one factor constant beta model holds for individual
stocks. Then form portfolios each consisting of two stocks with weights which vary through time.
These porfolios will not have constant betas even though the individual assets do.) Consequently,
the sample period could not start before 1/68 and still use AMEX stocks, since AMEX is not
available on CRSP until 7/62 and a five year window is used in the monthly rolling regressions.

7 If continuous compounding is used, portfolio return is no longer a linear combination of security
returns. Thus, portfolio regression coefficients are no longer a weighted average of stock
regression coefficients. Since this study forms extreme portfolios and deciles using coefficients from
rolling regressions of asset returns on the information variables, discrete compounding is
preferred. An analogous argument is made by Ferson and Koraj czyk [1991] who also use discrete
compounding.
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inflation measured using the U.S consumer price index.® Excess real return on asset i is defined by
ri(t) = Ri(t) - RTB(t) where Ri(t) is the real return on asset i, and RTB(t) is the discretely
compounded holding period return over month t on the shortest maturity treasury bill maturing at

or after the end of that month.

2.2.2 Portfolio Formation Techniques: Size Portfolios.

Although the value weighted size deciles (S1-S10) are just the relevant CRSP indices, the
following size based portfolios used in this paper are constructed from the CRSP file of NYSE and
AMEX stocks. Both the NYSE and AMEX samples were formed into portfolios (denoted A1-A10)
using the combined NYSE and AMEX size decile break points. A portfolio Uj was formed from Sj
(=1,2,...,10) for the combined sample using the following procedure. For each firm in Sj for a year,
a number q distributed Uniform [0,1] and independant of all other g's was drawn and if q > 0.5 that

firm was omitted from the portfolio. On average, portfolio Uj will have half the firms of Sj.

2.2.3 Portfolio Formation Techniques: Extreme and Constrained Portfolios.

For each year in the sample period, real excess return is regressed on the five instruments
plus a constant using the previous five years for all firms on the relevant exchange satisfying the
following: 1) listed on the exchange over the five year period; and, 2) there are at least 30 usable
returns over the previous five years. Portfolios of post ranking real excess returns are then formed
using several construction procedures. For each information variable, the stocks are ranked
on the basis of that variable's coefficient and the top and bottom 10% are used to form extreme
portfolios over the sample year. For each month in the given year, an equal weighted portfolio is
formed using those stocks in the top and bottom 10% with usable returns for that month. Repeating
this for every year in the sample gives 5 pairs of portfolios of post ranking returns, a pair for each

information variable (denoted "10% EXTREME" portfolios).

This technique is designed to form portfolios with extreme values for the coefficients on the

8 Since excess returns are used in the tests, the use of real as opposed to nominal returns should
have little effect on the returns. If continuous compounding were used, the choice of deflator would
have no effect on the results.
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information variables. It will only be successful if these coefficients for individual stocks are stable
over time and exhibit cross-section dispersion.

Also, the true coefficients are measured with error by the rolling regressions. Thus, a better
spread on the ranking coefficient may be obtained by scaling each individual firm coefficient
estimate by a measure of its precision. For this reason, five pairs of portfolios are formed in the
following way and denoted "10% SCALED EXTREME" portfolios. For any given year, the
procedure for obtaining a pair of portfolios is the same as for the extreme portfolios except firms are
ranked using a scaled version of the relevant coefficient. Each individual firm coefficient is scaled
by the estimated standard deviation obtained from the firm specific regression which produced the
coefficient. Thus, the estimated standard deviation for a coefficient varies across firms and across
years. Specifically, consider the following time series regression which is run for i=1,... N, over the
five years prior to year y:

ri(t) = e, ;; + oy R TRM(E-1) + ey ypr ; YBL(t-1)

+ ot gepi RCE(t-1) + oy ypp; VDP(t-1)
+ oy v JAN(t-1) + €, =1,...T;, (D

where s is the standard deviation of a,;; as estimated by the OLS regression,

VAR
j=TRM,YBL,RCE,VDP,JAN. Define «; to be the mean of a,;;; and, 8;; to be (ey;; - oy;)/Sy ;5
Then the pair of portfolios for variable j and year y are obtained by ranking on 8.

Pairs of portfolios (denoted "5% CONSTRAINED" portfolios) are also formed each year by
choosing weights in the following manner. The weighted average of the rolling predictive regression
coefficients on a given variable is maximized (minimized) subject to the constraint that the weighted
average of the coefficients for the other variables is equal to the cross-sectional mean. Portfolio
weights are constrained to be positive but less than 5%. The same procedure is also used to form
pairs of portfolios using the scaled coefficients. These portfolios are denoted " 5% SCALED
CONSTRAINED" portfolios. Using monthly real returns, the portfolio formation procedure

described above is also utilized to form deciles (B1 to B10) ranked on the basis of Dimson [1979]



market Beta.’

3. Methodological and Econometric Issues.
3.1 Portfolio Formation and Tests of Coefficient Stability.

For each of the three samples, the 5 year rolling regressions are performed using OLS on
those stocks which satisfy the criteria for inclusion in the extreme and constrained portfolios.
Average R”s and error variances for size deciles are calculated by first averaging across firms in the
decile in a given year and then averaging over time.'” The size deciles are formed on the basis of
capitalisation at the end of the five year window."'

The time series behavior of the predictive regression coefficients for individual stocks is also
an issue. Evidence on this point can be obtained by performing hypothesis tests on the coefficients
of the S1-S10 deciles and the EXTREME and CONSTRAINED portfolios.”> These tests are
performed using both a standard Wald test and a Wald statistic that employs White's [1980]
heteroscedasticity consistent covariance estimator. If both statistics give the same conclusion, it is

less likely that the result is being driven by small sample properties.

9 The return on the equal weighted NYSE index and one lag are the two independent variables
in the rolling regression. One lag is used by Fama and French [1991] when calculating Beta in an
attempt to adjust for the effects of infrequent trading.

1° No diagnostic checks are performed due to computational considerations. However, if the
information variables are able to capture most of the time series variation in expected returns, then
it is possible that the OLS errors are serially uncorrelated. At the same time, it unlikely that the
constant variance assumption of OLS is satisfied. Even so, in the face of heterogeneity of unknown
form, the OLS estimates are still consistent.

I The usual argument against using preranking variables is not applicable here since the aim of
the exercise is to characterize the predictive regressions as a function of firm size.

12 For example, consider a pair of extreme portfolios with respect to a given information variable.
If there is a spread on that variable's coefficient across assets and this coefficient is stable through
time, then the regression of post ranking returns for the pair of extreme portfolios on the information
variables will produce coefficients for the given variable that are reliably different. Also, if the
coefficient on a given information variable varies across size portfolios, then it can be concluded
that there is some cross-sectional dispersion on that coefficient.
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3.2. Latent Variable Testing.
This subsection provides a brief discussion of latent variables tests of asset pricing models
and their implementation using GMM. The power of a latent variable test with a K factor null

against a J>K factor model alternative is explicitly considered.

3.2.1. Latent Variables Restrictions.

Suppose returns conform to a conditional J factor model
of asset pricing:

E[RJI" ] =2 T iy +A'(T) BI',) forallt (2)
where
R, is a 1xM vector whose mth element R, , is the real returns on  the mth asset over period t;
I', , is the available information at the start of period t;
A"(I"..) is the return on an asset whose risk loading are all 0;
iy is a Mx1 vector of 1s;
A'(I"..) is a 1xJ vector of risk premia on the J factors; and
B(I’, ) is a JxM matrix of risk loadings, the mth column B,

containing the J risk loadings for the mth asset.

Define an excess return vector r, = R, - iy Ry;,1, Where Ry, is the real return on an arbitrary asset
which is not necessarily riskless. Further, assume b(I".;) = b ¢(I';) where c¢(I",;) is a scalar and
b(I",,) is a JxXM matrix whose mth column is (B,(I'..,) - Bysi(I',.1)). The law of iterated expectations
implies:

E[r/l,]=AI.,)b forallt 3)
where I, is a subset of I, ;; and, A(I.;) = E[A"(I",.)) c(I" D]
Suppose that the conditional risk premia in (3) are linear in a 1xL vector of information variables
Z., contained in the information set I ;. Then for any N portfolios formed from the M assets using
information contained in I :

E[r’, 1,]=7Z., ¢ b? for all t (4b)

where
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¢ is a LxJ matrix such that ¢, is the kth column and (Z, | ¢,) =
M)
X is a MxN matrix of portfolio weights contained in contained in I , with the nth column X
containing the weights for the nth  portfolio;
r’, =r, X is a 1xN vector of returns on the N portfolios; and,

bP=b X is a JXN matrix of portfolio risk loadings.

Now reorder and partition the N portfolios into J and (N-J) such that bP,, the JxJ matrix of factor

loadings for the first J assets is nonsingular. Consider the regression:

r’,=7Z._ o +u’ (5a)

E[uw’ I =0 for all t (5b)
where « = [ «;| ay ]; &; is a LxJ matrix; and, ay is a JX(N-J) matrix. Gibbons and Ferson [1985]
show that (4b) implies:
a;=¢ b?; and, ey = o; (bP)" bP; (5¢)

where b = [ b | b? ].

3.2.2 Power of a K Factor Test against a J>K Factor Alternative.
Under the J factor alternative, the return generating process conforms to (4) and (5). Using
a null of a K<J factor model, the GMM procedure minimizes g;' Wy g, with u?, replaced by:
wo=rr-Z, o [Ik:iv]
=Z,{db” o [Ic:y ]} +ud (6)
Now, E[w,®Z,]
=E[(Z, { &b - [Ix: v DO Z]
=E[(Zo {¢obX-a;[L:v 1) BZ] (7
which in general will not be zero. The question is how to choose X to maximize the power of aK

factor test against a J>K factor alternative."

13 [ntuition tells us that asymptotically the power of GMM will be increasing in the deviation of
E[u’, ® Z,,] from zero and decreasing in the size of E[(u, ® Z,,)'(u", ® Z,)] (sce Ferson and
Foerster [1991]). As can be seen from (8), the deviation of E[u”, &® Z, ] from 0 depends on the size
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While analytically, this problem seems highly intractable, intuition can provide some
guidance. Appendix 1 contains a discussion of situations when the power of the latent variables test
will be low. This discussion of power suggests that forming portfolios with extreme values for the
factor loadings may produce a more powerful test than using just size or industry portfolios. Briefly,
the latent variables test of a K factor model is essentially a test whether the rank of the coefficient
matrix o is less than or equal to K. Using portfolios with extreme values on the factor loadings
ensures that the coefficient matrix has rank J>K.

Treating the coefficients on the predictive regression as risk loading proxies provides a
motivation for using the EXTREME portfolios in latent variables tests.'* The same argument
provides a rationale for including the extreme deciles for both size and market beta (i.e., S1, S10,
B1 and B10) in the testing. Fama and French [1991] interpret their evidence by viewing size as a

risk loading proxy while the arguments for market wealth as a priced factor are well known.

3.2.3. Implementing Latent Variables Testing Using GMM.

Equation (5) can be tested and estimated using Hansen's [1982] GMM" which exploits the
fact that (5b) implies E[u?, ® Z,,] = 0 for all t. Define gy(a;,y) = (1I/T) X7, (w?, ® Z, )", a (NL)x1
vector. Testing whether (5) is misspecifed against a general alternative involves minimizing the
function g;' Wy g; where Wy is a weighing matrix. Given W —, W, the choice of W, which
minimizes the asymptotic covariance matrix of the coefficient estimators is given by

E[W", ® Z) (" ® Z.)])". ®)

of {pb” -o;[Ix: v ]}

14 A similar argument could be used to motivate the use of the CONSTRAINED portfolios in
latent variables tests. However, the inclusion of these portfolios leads to numerical problems when
performing GMM.

15 The advantage of using GMM over maximum likelihood (ML) techniques is that very general
specifications of u’, can be handled with relative ease. GMM provides less efficient estimators than
ML when the latter is not misspecified but requires less information about the processes and so is

more robust.
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Asymptotically under the null, the minimized value of (T g;' W, g;) is chi-share distributed with
degrees of freedom equal to the number of restrictions imposed by (5): NL-JL-(N-J)J=(N-J)(L-J).

A consistent estimator of W, in (8) is obtained by defining W:

UM X[ ®Z) (" R Z )]} ©)
where u”, is obtained using the GMM parameter estimates and so W depends on the parameter
estimates. A two step procedure for obtaining the GMM statistic has been proposed by Hansen and
Singleton [1982]. First, g;' Wq g is minimized with respect to the parameters after setting Wy equal
to the NLxNL identity matrix. The estimated parameters are then used to form W according to (9).
Second, g;' W, g; is again minimized using the W, formed from the previous step. The new
parameter estimates are used to reform Wy and the value of the objective function from the second
step is calculated using this new Wy. An iterative procedure has also been proposed where this
second step is repeated until the objective function converges or reaches a minimum.
Asymptotically, these two methods are equivalent, but the bootstrap evidence of Ferson and Foerster
[1991] indicates that the two step procedure rejects too frequently in small samples using the
asymptotic null distribution of (T g;' Wy g;). For this reason, the iterated procedure is employed in

this paper.

3.3. Principal Components.

Principal components analysis is performed for all sets of assets used in the latent variables
testing. The purpose is to assess the ability of the principal components technique to detect factors
in a constant (proportional) risk loading model. Any latent variables test is a test of the rank of the
coefficient matrix from regressing r?, on Z,. Thus, principal components may have some ability
to detect additional factors. For each set of assets, principal components is performed on the
predictable portion of returns which is obtained by regressing asset return on the five information

variables plus a constant.

4, Results.
Table 3 reports some summary information from the 5 year rolling predictive regressions for

individual stocks. The results of the portfolio predictive regressions run over the entire sample
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period (1/68 to 12/89) are contained in Tables 4 and 5 while Table 6 presents the latent variables and
principal components results. In each of Tables 4 through 6, three panels of results are reported,
each corresponding to a different sample. Panel A forms portfolios using both NYSE and AMEX
stocks while the second and third panels use only NYSE and AMEX stocks respectively.

4.1. The Predictive Regressions.

Table 3 contains results for the rolling five year predictive regressions. Average regression
R?'s and error variances are obtained for size deciles by first equally weighing across stocks in a
decile and then averaging over time for each decile. Deciles are formed using market capitalization
at the end of each 5 year window. The major finding is that both the average R? and average error
variance are higher for the small firm deciles, irrespective of the sample being considered. For the
combined NYSE and AMEX sample, the average R? range from 0.133 for the largest decile to 0.168
for the smallest. In comparison, the average R* of the smallest NYSE (AMEX) decile is 0.158
(0.174). Thus, the fact that AMEX has smaller firms than NYSE leads to a higher average R* for
its smallest decile than for NYSE or the combined sample.

Results of running predictive regressions over the entire period for the two bond portfolios
(GB and HY), the CRSP index file size deciles and post ranking portfolio returns are reported in
Table 4. Thirty stock portfolio regressions are reported for each of the three samples used: S1 to
S10; 10% SCALED EXTREME,; and, 5% SCALED CONSTRAINED. For the combined NYSE
and AMEX size deciles, the R? range from 0.097 for the top decile to 0.347 for the bottom.
Comparing across exchanges, the smallest decile for NYSE (AMEX) alone has a lower (higher) R?
than for the combined sample, reflecting the greater concentration of small firms in the AMEX
exchange. Notice that irrespective of the exchange, the R*'s for the large (small) firm deciles are
smaller (much larger) than the average R*s reported in Table 3 for the rolling 5 year regressions.
The implication for small stocks is that a large proportion of unpredictable variation is diversified
away when they are formed into small firm deciles. The evidence suggests this implication does not
hold for large stocks. Instead, time series variation in the coefficients is allowing the 5 year
regressions to have greater predictive ability than the entire period regression. For TRM, 82/90

of the coefficients are negative but only 4 of those 82 are significantly different from zero at the 5%
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level; the non-negative coefficients are in the combined and NYSE samples while the rejections are
in the AMEX sample. The coefficient for YBL is significantly different from zero at 5% and
negative for all 90 regressions.

Focusing on the size deciles, all 30 coefficients are positive on the RCE variable. Further,
all are significantly different from zero at 5% for the AMEX sample while only the bottom eight
(five) deciles are significant for the combined (NYSE) sample. Thus, the RCE coefficient is only
significantly nonzero for sufficiently small firms. This result is consistent with the argument
(described in more detail below) that infrequent trading is driving the predictive power of the RCE.

For VDP, all 90 coefficients are positive and significantly different from zero at 5%.
Considering the size deciles, all 30 coefficients are positive on the JAN variable. While all but the
top decile are significantly different from zero at 5% for the AMEX and combined samples, only the
bottom 6 deciles are significant for the NYSE sample.

The implication is that the coefficient on the JAN and RCE variables can be used to proxy
for size. Examining these coefficients for the five pairs of 10% SCALED EXTREME portfolios and
the five pairs of 5% SCALED CONSTRAINED portfolios suggests that ranking on any of the other
variables also leads to a ranking on size even when the remaining nonranking variables are being
constrained.

The formal hypothesis testing reported in Table 5 provides additional evidence. For each
variable, tests of the equality of that variable's coefficient across the other 4 pairs of 10% SCALED
EXTREME portfolios can be rejected at 5% using either the usual or heteroscedasticity consistent
Wald statistic, irrespective of the sample; the only exception is the heteroscedasticity consistent
statistic for TRM in the NYSE sample. Identical tests for the 5% SCALED CONSTRAINED
portfolios are unable to reject equality at the 5% level for TRM (both tests) and RCE (both tests) in
the combined sample, for VDP (both) and TRM (heteroscedasticity consistent only) in the NYSE
sample, and for TRM (both), YBL (heteroscedasticity consistent only) and RCE (both) in the AMEX
sample.

For the pairs of 10% SCALED EXTREME portfolios, one-sided tests of coefficient equality
on the ranking variable can be rejected in all the samples (with the exception of the YBL pair in the

AMEX sample). The implication is that the portfolio formation procedure is producing pairs of
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portfolios with spread on the ranking coefficient.'s

When identical tests are performed on the pairs of 5% SCALED CONSTRAINED portfolios,
fewer rejections are observed at the 5% level. For all three samples, it is not possible to reject a one
sided test on the YBL and VDP coefficients. The one sided test on the TRM coefficient is only
rejected by both tests for the AMEX sample. Thus, the constraints on the other coefficients imposed
when forming the 5% SCALED CONSTRAINED portfolio pairs is reducing the dispersion on the
ranking coefficient, particularly for the YBL and VDP pairs.”” What is puzzling is that the lack of
dispersion on the ranking variables within each pair does not translate into a lack of dispersion for
that coefficient across the other pairs (see the discussion of the relevant tests above).

Finally, the finding of spread on the ranking coefficient for pairs of 10% EXTREME and
10% SCALED EXTREME result offers hope that the latent variables tests performed using these
portfolios may have greater power than using size deciles. The latent variables results are described

in the next section.

4.2. Latent Variables Testing using GMM and Principal Components Analysis.

Table 6 presents the principal components evidence and the results from testing the latent
variables restrictions using GMM. Four sets of portfolios are tested for each of the three monthly
return samples. The first set consists of size deciles plus the two bond portfolios (denote this set
"SIZE-S") while the third consists of the five pairs of 10% SCALED EXTREME portfolios, top and

bottom size deciles, top and bottom market beta deciles plus the two bond portfolios (denote this set

16 Similar results (available on request) are obtained using pairs of 10% EXTREME portfolios.

17 Similar results (available on request) are obtained when portfolios are formed using the
unscaled coefficients. For the 5% CONSTRAINED portfolios, a one-sided test of ranking
coefficient equality cannot be rejected for the VDP pair in all three samples
nor for the TRM or YBL pairs in the combined or NYSE samples. The ability to obtain dispersion
subject to constraints on the other variables is also largely unaffected by reducing the maximum
portfolio weight from 5% to 1%. Wald statistics testing the hypothesis that the ranking coefficient
for the maximum portfolio is greater than or equal to the ranking coefficient for the minimum
portfolio are both insignificant at the 5% level for the VDP and YBL pairs in all three samples and
for the TRM pair in the NYSE sample.
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"S:EXTM-10"). The fourth set is the same as the third except that the five pairs of 10% SCALED
EXTREME portfolios are replaced by the five pairs of 10% EXTREME portfolios (denote this set
"U:EXTM-10"). For the NYSE and AMEX samples (Panels B and C respectively), the second set
is the size portfolios formed using combined NYSE and AMEX breakpoints plus the two bond
portfolios (denoted "SIZE-A"). For the combined NYSE and AMEX sample, the portfolios (U1 to
U10) randomly formed from the size deciles constitute the third set, together with the two bond
portfolios (denoted "SIZE-U"). To identify the sample of assets being referred to, the following
suffixes will be employed:"NYSE","AMEX" and "COMBINED".

Using the SIZE-S COMBINED set of assets allows a two factor model to be rejected, while
forming the size deciles using only NYSE (AMEX) stocks allows no (only one) factor to be rejected.
Possible explanations include:

§)] the combined NYSE and AMEX deciles have a greater spread on size than either the NYSE
deciles or the AMEX deciles;

2) the latent variables test for the combined sample has greater power because the combined
NYSE and AMEX deciles have a larger number of assets in each decile than the NYSE
deciles or the AMEX deciles; or,

3) there are factors whose risk loadings vary across NYSE stocks but not AMEX stocks, and

vice versa.

The three other sets of size portfolios described in Section 2.2.2 were used in the latent
variables tests in an attempt to rule out the first two explanations. Since the result is found to persist
when SIZE-S NYSE and SIZE-S AMEX are replaced by SIZE-A NYSE and SIZE-A AMEX, it
seems that explanation 1) is not driving the greater number of factors in the combined sample.
However, the SIZE-U COMBINED set of assets only rejects a one factor model suggesting that the
tests performed on the combined sample may have greater power because of larger numbers of
stocks in the portfolios.

Turning to the sets of assets which include extreme portfolios, up to a three (one) factor
model can be rejected for the S:EXTM-10 COMBINED (NYSE) set of assets. For both these
samples, the U:EXTM-10 set is only able to reject the same number of factors as the SIZE-S set.
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When the AMEX sample is used, both the S:EXTM-10 and U:EXTM-10 sets of assets can reject an
extra factor relative to the SIZE-S set which could only reject one. So using scaled rather than
unscaled coefficients to form the extreme portfolios provides greater power in the latent variables
tests for the combined and NYSE samples.

To summarize, the pairs of extreme portfolios formed using scaled coefficients provide
greater power than size deciles for all three samples. Possible reasons for the improved power of
the S:EXTM-10 sets of assets are as follows: 1) Inclusion of the top and bottom market Beta deciles
may capture a risk dimension in addition to the one captured by size; 2) The variation in the
predictive regression coefficients on the ranking variable exhibited by the pairs of SCALED
EXTREME portfolios may capture an additional risk dimension; and, 3) A greater number of
portfolios (16 versus 12) are contained in the extreme portfolios and the small sample properties of
GMM may depend on the number of assets in the test (see Ferson and Foerster [1991]).

The other main result is that the minimum number of factors which can not be rejected varies
across samples. The caveat is that the result may be driven by different sample sizes. In the
discussion to follow, the results for each of the S:EXTM-10 set of assets will be taken as
characterizing the return generating process for stocks in each of the three samples. While up to a
three factor constant beta model can be rejected for the COMBINED sample, no more than one
(two) factors can be rejected for the NYSE (AMEX) sample. The ability to reject a K but not a
(K+1) factor model for a set of assets implies that at least (K-+1) factors must be employed to price
all the assets in the set: 1) conditioning on at least the information variables used in the testing; and,
2) using conditional risk loadings that are proportional through time. Possible explanations for the
subsamples needing a smaller minimum number of factors are:

1) A four factor model is needed for the COMBINED sample but for all stocks in the NYSE,
the factor loadings on the other two of the factors are the same linear combination of the
factor loadings on the first two factors. For all stocks in the AMEX sample, the factor
loading on one of the first two factors is the same linear combination of the factor loadings
of the other three variables.

2) The two markets are segmented.



19

The challenge presented by these preliminary results is to identify economically meaningful factors
whose factor loadings would be expected to have the properties described in the first explanation.

One problem associated with including AMEX stocks in the samples is that a larger
proportion of individual stock returns are contaminated by infrequent trading. The use of
information variables which involves stock index price at the start of the period (RCE and VDP)
means that ability of these variables to predict return could be due to infrequent trading effects and
not the predictability of expected return. As discussed above, the RCE coefficients from the entire
period predictive regressions using S1 to S10 provide support for this argument. Thus, the ability
of a latent variables tests on portfolios from either the combined or AMEX samples to reject a higher
factor model than for the NYSE sample could be due to the spurious effect of infrequent trading on
observed returns. This possibility is an important qualification to the results for the combined
sample.

The second section of each panel contains the results of principal components analysis
performed on the sets of portfolio returns used in the latent variables tests. The cumulative
proportion of the total variation explained by the first five principal components is reported for the
predictable portion of returns. The predictable portion is obtained by regressing portfolio return on
the information variables plus a constant. In each sample, the cumulative proportions explained by
the first two principal components are larger for the two sets of assets which include EXTREME
portfolios. The cumulative proportion explained by any number of principal components greater
than two is similar across the four sets of assets irrespective of the sample. So the principal
components evidence is ambiguous and not susceptible to a clear interpretation. It seems that
principal components is unable to discriminate between different pricing models and fails to provide

any useful incremental information relative to the GMM results.

5. Conclusions.

This study presents summary statistics obtained from running 5 year rolling predictive
regressions for monthly returns on individual stocks listed on NYSE and AMEX. Five information
variables plus a constant are used: 1) a term spread variable; 2) the yield on a one month t-bill; 3)

lagged return on a equal weighted stock index; 4) a dividend yield variable; and, 5) a January
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dummy. Three samples are considered: 1) combined NYSE and AMEX; 2) NYSE; and, 3) AMEX.
The major finding (which holds for all three samples) is that the R? of these regressions for firms in
the top (bottom) size decile is greater (much smaller) than the R? for the predictive regression run
over the entire period for the largest (smallest) firm decile. Both the average individual stock R? and
the portfolio R? increase going from the large to the small firm deciles. At the same time, average
error volatility increases going from the large to small deciles.

There is also some evidence that the coefficients from these individual stock predictive
regressions are time varying. The major supporting evidence is the inability to form portfolios with
equal coefficient values using the results of the individual stock regressions. Further research is
needed to fully characterize the time series behavior of these coefficients.

An attempt is made to perform latent variables tests which have greater power than previous
testing. The suggested strategy for improving power is to form extreme portfolios on the basis of
factor loading proxies. Size, market beta and predictive regression coefficients are used as proxies
in this paper. If size deciles and two bond portfolios conform to a K factor constant Beta model, then
at least one of the sets of extreme portfolios formed using the stated proxies does not conform to a
K factor model: in all three samples, one extra factor is needed. The important message is that the
use of portfolios in the testing may mask factors which are needed to price individual stocks using
a constant (proportional) Beta model.

Fama and French [1991] recently reported that the ratio (Book Equity/Market Equity) has
ability to explain the cross section of returns which is distinct from the size effect. A suggestion for
future research is to form extreme portfolios on the basis of Book to Market and include them in
latent variable tests.

The paper also presents some evidence of different pricing structures across the NYSE and
AMEX exchanges. Fewer factors are needed in a proportional (constant) factor loading model to
describe returns for sets of assets formed from NYSE or AMEX stocks alone than is needed to
describe returns for a set of assets formed using both NYSE and AMEX stocks. This intriguing
result suggests that a fruitful avenue for future research may be to better characterize the asset
pricing structures across the domestic U.S. stock exchanges. This type of research would be

analogous to the work reported in a number of recent papers examining pricing differences across



countries (see De Santis [1991]).
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Table 1

The information variables used are described in detail in Section 3.1 while the portfolio formation
procedures are discussed in Section 3.2.

Symbol Descriptions

Information Variables

YBL(t-1): the nominal yield on a one month bill known at the end of t-1;

TRM(t-1): YB5(t-1) - YBL(t-1) where YB5(t-1) is the nominal yield on a five year bond known at
the end of t-1.

RCE(t-1): the continuous real return on the NYSE equal weighted index provided by CRSP over the
month prior to the start of period t;

VDP(t-1): VD(t-1)/VP(t-1) where VD(t-1) is the dividend paid on the value weighted index of
NYSE over the twelve months prior to period t and VP(t-1) is the value of the index at the
start of period t;

JAN(t-1): a January dummy set equal to 1 if t=January;

Portfolios

Sj: jth value weighted size decile for the given exchange(s), j=1, 2, ..., 10 (1=small);

Aj: jth value weighted size portfolio using NYSE and AMEX breakpoints;

Uj: For each firm in Sj in a year, a number q distributed U[0,1] is drawn and if q > 0.5 that firm is
omitted from the portfolio;

Bj: jth equal weighted Beta decile formed for the given exchange(s), j=1, 2, ..., 10 (1=small);

s:j10 & s:j1: the top and bottom 10% SCALED EXTREME portfolios for information variable j,
j=TRM, YBL, RCE, VDP, JAN;

s:;jmn & s:;jmx: the minimizing and maximizing 5% SCALED CONSTRAINED portfolios for
information variable j, j=TRM, YBL, RCE, VDP, JAN;

w;j10 & s:j1: the top and bottom 10% EXTREME portfolios for information variable j, j=TRM,
YBL, RCE, VDP, JAN;

GB: long term government bond portfolio; and,

HY: low grade corporate bond portfolio.
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Sample correlations of the information variables over the period 1/68 - 12/89 (264 observations).
Symbols are defined in Table 1 while the information variables are described in detail in Section 3.2.

Principal components analysis for the information variables is contained in the second section. The
proportion of the total variation explained by the first five principal components is reported.

Information Variables
Correlation TRM YBL RCE VDP JAN
TRM 1.0
YBL -4740 1.0
RCE 1227 -.1080 1.0
VDP .0303 6359 -.0330 1.0
JAN .0659 -.0601 0320 .0028 1.0
Princ. Comp. Ist 2nd 3rd 4th 5th
I Z | 3625 2221 .1943 1828 .0384
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Table 3

Summary statistics for the 5 year rolling individual stock predictive regressions run using the five
information variables (plus a constant) defined in Section 2.1. and monthly returns. The five year
window starts with 1/63-12/67 and ends with 1/85-12/89. There are three samples of stocks: the
combined NYSE and AMEX sample; NYSE alone; and, AMEX alone. The criteria that a stock must
satisfy for inclusion in a sample are discussed in Section 2.2.3.

For each sample, average R? and error standard deviations are reported by size decile for the
following rolling 5 year OLS regression (symbols are as defined in Table 1):

ri(t) = a1 + a,,; UTS(t-1) + oy 5; ECI(t-1) + ey 4; RCE(t-1)

+ay5; VDP(t-1) + oy ; JAN(t-1) T €,5(1) y=1,....Y.
For each five year window, stocks are formed into deciles on the basis of capitalization at the end
of the five years, and decile average R? and error standard deviations are calculated using equal
weights. These cross-sectional averages are then averaged over time to obtain the figures reported
in the table.

Panel A: Panel B: Panel C:

NYSE & AMEX NYSE AMEX
Size Av Av ! Av Av | Av Av
Decile R? STD ERR | R? STD ERR | R? STD ERR

| l

1 0.168 0.153 | 0.158 0.125 | 0.174 0.162
2 0.162 0.135 | 0.156 0.111 | 0.168 0.150
3 0.155 0.125 | 0.154 0.106 | 0.163 0.145
4 0.158 0.117 | 0.151 0.102 | 0.163 0.137
5 0.153 0.111 | 0.147 0.097 | 0.161 0.134
6 0.149 0.105 | 0.142 0.093 | 0.156 0.132
7 0.143 0.096 | 0.138 0.090 | 0.154 0.130
8 0.138 0.092 | 0.131 0.084 | 0.156 0.126
9 0.131 0.083 | 0.130 0.079 I 0.148 0.127
10 0.133 0.075 | 0.133 0.073 | 0.138 0.112
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Table 4

Results of running the following OLS regression using monthly post ranking returns over the period
1/68 - 12/89 (264 observations):
p(t) = e, + &y, TRM(t-1) + a3, YBL(t-1) + o, , RCE(t-1)
+ w5, VDP(t-1) + ag, JAN(t-1) + €,(t)
forp=
i. a long term government bond portfolio (GB) and a low grade bond portfolio (HY);
ii. the value weighted size deciles (S1-S10);
iii. the five pairs of 10% SCALED EXTREME portfolios (s:TRM1,s:TRM10,...,s:JAN10); and,
iv. the five pairs of 5% SCALED CONSTRAINED portfolios (s: TRMmn,s: TRMmX,...,s:JANmX).

Descriptions of the symbols are contained in Table 1. All portfolios are described in detail in
Section 2.2 with the five information variables as defined in Section 2.1. Briefly, the SIZE deciles
are obtained from the CRSP index series. The 10% SCALED EXTREME portfolios consist of five
pairs of weighted extreme portfolios formed in the following manner. Each firm's coefficients for
a given 5 year regression are scaled by their standard deviations as estimated by that regression.
Each year, the scaled coefficients for each information variable are ranked and the top and bottom
10% are used to obtain a pair of weighted extreme portfolios for the next 12 months. Portfolio 1 has
the 10% of stocks with the smallest coefficients. To obtained a pair of 5% SCALED
CONSTRAINED portfolios for a given information variable, portfolio weights are chosen each year
to maximize (minimis) the portfolio's scaled coefficient for the relevant information variable subject
to the following constraints:

1) all weights are non-negative but less than 0.05; and

2) the portfolio's scaled coefficient for each of the other information variables equals the cross-
sectional average.

Each firm's coefficients for a given 5 year regression are scaled by their standard deviations as
estimated by that regression. Each year, the scaled coefficients for each information variable are
ranked and the top and bottom 10% are used to obtain a pair of weighted extreme portfolios for the
next 12 months. Portfolio 1 has the 10% of stocks with the smallest coefficients.

Starred (*) coefficients are more than 1.96 standard errors from zero using White's [1980]
heteroscedasticity consistent covariance estimator. Hypothesis test results are reported in Table 2.

CONST TRM YBL RCE VDP JAN R?

GB -0.022" 0.003  -0.001 0.003 0.722" 0.015° 0.106
HY -0.011"  0.002° 0.000 -0.044 0.164  -0.000 0.055
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Panel A: Monthly Returns, NYSE & AMEX, 1/68 - 12/89 (T=264,Y=22)

CONST TRM YBL RCE VDP JAN R?

Post-Ranking Size Decile Returns: Regression Coefficients

S1 -0.061"  -0.009 -0.012" 0.348" 3.844" 0.146" 0.347
S2 -0.067° -0.007 -0.011" 0.289" 3.786" 0.098" 0270
S3 -0.071* -0.005 -0.011" 0214" 3.7777 0.075" 0.231
S4 -0.069° -0.005 -0.011" 0.175" 3.715° 0.066° 0214
S5 -0.067° -0.005 -0.011" 0.168" 3.653" 0.053" 0.191
S6 -0.065° -0.004 -0.011" 0.158" 3.623" 0.040" 0.184
S7 -0.057°  -0.003  -0.009° 0.124" 3.207° 0.033" 0.163
S8 -0.053*  -0.002  -0.009" 0.103" 2.967° 0.023° 0.149
S9 -0.048" -0.002  -0.008"  0.059 2.714"  0.017° 0.124
S10 -0.033*  0.001  -0.006" 0.044 1.825°  0.006 0.097

Post-Ranking 10% SCALED EXTREME Port. Returns: Reg. Coefficients
TRM1  -0.065° -0.007 -0.010° 0.197° 3.627° 0.064" 0.225

TRMI10 -0.053" -0.001 -0.008" 0.145° 2.898" 0.037° 0.173
YBL1  -0.068" -0.007 -0.012" 0.235° 3.991" 0.066° 0222
YBL10 -0.044 -0.001  -0.008"  0.082 2.563"  0.034" 0.162
RCE1 -0.043"  -0.000 -0.005"  0.021 2.101"  0.026" 0.130
RCE10 -0.072° -0.005 -0.011" 0.286" 3.750° 0.087" 0.270
VDP1  -0.039" -0.003 -0.006" 0.090 2.178°  0.047° 0.167
VDP10 -0.071" -0.004 -0.011" 0208 3.881" 0.052" 0.199
JAN1 -0.042" -0.000  -0.006"  0.063 2.155°  0.017 0.119
JAN10 -0.064" -0.006 -0.012" 0279 3.752° 0.112° 0.297

Post-Ranking 5% SCALED CONSTRAINED Port. Returns: Reg. Coefficients
TRMmn -0.039 -0.006 -0.010° 0.176" 2.864" 0.099" 0.217

TRMmx -0.063° -0.002 -0.013* 0.161" 3.931" 0.018 0.166
YBLmn -0.049° -0.006 -0.013" 0252 3.559" 0.121" 0.255
YBLmx -0.053" -0.001 -0.009" 0.153° 3.013° 0.008 0.123
RCEmn -0.050° 0.002  -0.005"  0.088 2.231°  0.032° 0.140
RCEmx -0.082° -0.003 -0.009" 0.296" 3.721° 0.087" 0.230
VDPmn -0.054° -0.007 -0.013" 0.245  3.760" 0.126"  0.267
VDPmx -0.058" -0.000 -0.010" 0.185" 3.177°  0.005 0.132
JANma -0.039° -0.002 -0.007" 0.097° 2.430" 0.025 0.111
JANmx -0.060° -0.005 -0.009° 0.194° 3.142" 0.085" 0.186
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CONST TRM YBL RCE VDP JAN R?

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10

TRM1
TRM10
YBLI
YBL10
RCEl
RCE10
VDP1
VDP10
JAN1
JANI10

TRMmn
TRMmx
YBLmn
YBLmx
RCEmn
RCEmx
VDPmn
VDPmx
JANmn
JANmMx

Post-Ranking Size Decile Returns: Regression Coefficients

0.220
0.213
0.194
0.183
0.169
0.157
0.143
0.124
0.115
0.094

0.184
0.150
0.188
0.149
0.118
0.190
0.134
0.169
0.113
0.211

0.214
0.129
0.236
0.110
0.136
0.174
0.224
0.111
0.113
0.167

-0.064° -0.006 -0.011" 0.168° 3.714° 0.092°
-0.071* -0.005 -0.011" 0.135° 3.787° 0.068"
-0.065* -0.004 -0.010" 0.148" 3.484" 0.053"
-0.063* -0.004 -0.010" 0.130" 3.519" 0.040"
-0.057° -0.003  -0.009" 0.120° 3.180° 0.036"
-0.056" -0.002  -0.009"  0.097 3.051°  0.030"
-0.054"  -0.002  -0.009" 0.098 2957  0.018

-0.047°  -0.002  -0.008"  0.049 2.744"  0.018

-0.046" -0.000 -0.007" 0.051 2.430"  0.012

-0.031"  0.001 -0.005*  0.040 1.735%  0.005

Post-Ranking 10% SCALED EXTREME Port. Returns: Reg. Coefficients

-0.067° -0.005 -0.010" 0.145" 3.554"  0.049"
-0.052"  -0.000 -0.008" 0.077 2.762°  0.021

-0.068* -0.006 -0.012" 0.183° 3.965° 0.052"
-0.051"  0.000 -0.007" 0.025 2.529"  0.024

-0.044"  0.000 -0.005"  -0.001 2.038"  0.024°
-0.062" -0.004 -0.011" 0.178" 3.554"  0.048"
-0.041"  -0.001 -0.005" 0.026 2.037° 0.035"
-0.066* -0.003 -0.011" 0.172° 3.689° 0.039°
-0.043*  -0.000 -0.006" 0.071 2210 0.014

-0.056° -0.004 -0.011" 0.162° 3.475° 0.067°

Post-Ranking 5% SCALED CONSTRAINED Port. Returns: Reg. Coefficients

-0.045* -0.006 -0.011° 0.151° 3.164"  0.093"
-0.047° -0.001 -0.010" 0.151° 3.119°  0.004

-0.046° -0.006 -0.012" 0.181" 3391 0.112°
-0.055"  0.001 -0.008" 0.117 2.835  -0.004
-0.056°  0.001 -0.005"  0.023 2375 0.029"
-0.060° -0.004 -0.011" 0.182° 3.608°  0.044°
-0.042 -0.006 -0.011" 0.172° 3.183" 0.112°
-0.058"  0.001 -0.008" 0.146" 2,901 -0.008
-0.039°  -0.002 -0.008" 0.067 2.513"  0.026

-0.045*  -0.004 -0.010" 0.185" 2.977°  0.045°
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CONST TRM YBL RCE VDP JAN R?

Post-Ranking Size Decile Returns: Regression Coefficients

S1 -0.063*  -0.009 -0.013" 0.391" 4.020° 0.180° 0.384
S2 -0.063"  -0.009 -0.012" 0.314" 3.869° 0.140° 0.335
S3 -0.072° -0.007 -0.011" 0.325° 3.758" 0.110° 0.295
S4 -0.062° -0.006 -0.011" 0.299" 3.528" 0.093"  0.267
S5 -0.072° -0.007 -0.012" 0.255" 4.053° 0.085"  0.241
S6 -0.072"  -0.005 -0.011" 0.254" 3.729° 0.070°  0.243
S7 -0.067" -0.005 -0.011" 0.199" 3.725" 0.059"  0.207
S8 -0.068° -0.006 -0.011" 0.236" 3.754" 0.050° 0.194
S9 -0.065° -0.006 -0.012° 0.203° 3.839" 0.032° 0.158
S10 -0.040° -0.006 -0.010" 0.150" 2970 0.019 0.114

Post-Ranking 10% SCALED EXTREME Port. Returns: Reg. Coefficients
TRM1  -0.058* -0.009° -0.011" 0.2927 3.630" 0.085” 0.274

TRM10 -0.062° -0.003 -0.010° 0.259" 3.371" 0.066" 0.221
YBL1  -0.061" -0.009° -0.012" 0328  3.807° 0.084" 0.258
YBL10 -0.045" -0.003 -0.010° 0.240° 2964 0.066" 0.223
RCEI1 -0.049° -0.005 -0.010" 0.183° 3.176" 0.060° 0.224
RCEI0 -0.079° -0.005 -0.011" 0.347° 4.046" 0.126° 0319
VDP1  -0.047° -0.005 -0.008" 0.239" 2.763" 0.070" 0.252
VDP10 -0.075° -0.006 -0.012" 0.269" 4.066~ 0.080"  0.237
JANI1 -0.049°  -0.002 -0.007° 0215 2.666" 0.039° 0227
JAN10 -0.071" -0.007 -0.013" 0330 4.145° 0.136° 0.322

Post-Ranking 5 SCALED CONSTRAINED Port. Returns: Reg. Coefficients
TRMmn -0.055° -0.010° -0.012" 0.335 3.647° 0.162° 0.366

TRMmx -0.086" -0.004 -0.012" 0.206° 4396  0.037 0.173
YBLmn -0.054" -0.010 -0.014°" 0.391° 4.032" 0.151" 0.323
YBLmx -0.072° -0.002 -0.010" 0.246° 3.573"  0.027 0.162
RCEmn -0.040" -0.005 -0.009° 0.220° 2.670° 0.056" 0.184
RCEmx -0.082° -0.005 -0.011" 0315 4.066° 0.121" 0.276
VDPmn -0.056° -0.012° -0.015° 0386 4224 0.157° 0.329
VDPmx -0.073° -0.002 -0.011" 0.231° 3.784" 0.026 0.161
JANmn -0.044 -0.004 -0.008" 0246 2.740" 0.055° 0.189
JANmx -0.075° -0.005 -0.010" 0.280" 3.637° 0.097° 0219
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Table 5

Results of performing hypothesis tests on the coefficients of the following OLS regression using
monthly post ranking returns over the period 1/68 - 12/89 (264 observations):

1p(t) = @, + @y, TRM(t-1) + a3, YBL(t-1) + a,, RCE(t-1)
+ a5, VDP(t-1) + ag,, JAN(t-1) + €,(t)

forp=

i. a long term government bond portfolio (GB) and a low grade bond portfolio (HY);

ii. the value weighted size deciles (S1-S10);

iii. the five pairs of 10% SCALED EXTREME portfolios (s:TRM1,s:TRM10,...,s:JAN10); and,
iv. the five pairs of 5% SCALED CONSTRAINED portfolios (s:TRMtan,s: TRMm,...,s:JANMX).

Descriptions of the symbols are contained in Table 1. All portfolios are described in detail in
Section 2.2 with the five information variables as defined in Section 2.1.

Briefly, the SIZE deciles are obtained from the CRSP index series. The 10% SCALED EXTREME
portfolios consist of five pairs of weighted extreme portfolios formed in the following manner. Each
firm's coefficients for a given 5 year regression are scaled by their standard deviations as estimated
by that regression. Each year, the scaled coefficients for each information variable are ranked and
the top and bottom 10% are used to obtain a pair of weighted extreme portfolios for the next 12
months. Portfolio 1 has the 10% of stocks with the smallest coefficients. To obtained a pair of 5%
SCALED CONSTRAINED portfolios for a given information variable, portfolio weights are chosen
each year to maximize (minimise) the portfolio's scaled coefficient for the relevant information
variable subject to the following constraints:

1) all weights are non-negative but less than 0.05; and

2) the portfolio's scaled coefficient for each of the other information variables equals the cross-
sectional average.

Each firm's coefficients for a given 5 year regression are scaled by their standard deviations as
estimated by that regression. Each year, the scaled coefficients for each information variable are
ranked and the top and bottom 10% are used to obtain a pair of weighted extreme portfolios for the
next 12 months. Portfolio 1 has the 10% of stocks with the smallest coefficients.

For each test, two statistics are reported. The "Wald" statistic is a standard Wald test while the value
labelled "Het" is a Wald statistic obtained using White's [1980] heteroscedasticity consistent

covariance estimator.
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Hypothesi

Size
Hyio 0= 55 Waldy? | 1545 | 17.49 | 57.23 | 3421 | 2087
= =ag pval | 0794 | 0416 | 0000 | .0001 | .0000
450 Hety’ | 1245 | 13.58 | 4430 | 2461 | 2616
pval | .1892 | .1380 | 0000 | .0034 | .0000
Hy oty =00 7= - Waldy? | 1662 | 2656 | 64.44 | 41.68 | 219.1
=0, 1=t =%y pval | .1197 | .0054 | 0000 | .0000 | .0000
.y Hety? | 1438 | 2135 | 57.66 | 3116 | 2702
pval | 2124 | .0299 | 0000 | .0010 | .0000
10% SCALED EXTREME
Ho:uj,s:jlguj’s:jlo Waldx2 8.07 6.53 40.57 16.12 107.1
pval | .0023 | .0053 | .0000 | .0001 | .0000
df=1°
Hety’ | 7.87 | 722 | 2073 | 1072 | 4428
pval | .0025 | .0036 | .0000 | .0005 | .0000
ot 0= 10 Waldy? | 21.80 | 26.05 | 3140 | 33.75 | 95.55
= o =t p-val | .0028 | .0005 | 0001 | .0000 | .0000
dle;""nﬂ Hety? | 18.85 | 24.39 | 2430 | 2927 | 52.90
p-val | .0087 | .0010 | 0010 | .0001 | .0000
5% SCALED CONSTRAINED
Hlo: 0 o % jmx Waldy? | 178 | 133 | 1400 | 060 | 33.52
pval | .0913 | .1244 | 0001 | 2189 | .0000
di=1 Hety> | 160 | 087 | 1415 | 033 | 15.09
pval | .1028 | .1759 | .0001 | 2836 | .0001
Hl: 0 g emn™0% ke waldy? | 1409 | 3120 | 13.18 | 18.90 | 93.70
S pval | .0496 | .0001 | 0679 | .0085 | .0000
dleé’""nﬂ Hety> | 13.60 | 2898 | 11.70
p-val | 0589 | .0001 | .1110

a Since the test is one sided, the appropriate p-value is half the chi-square p-value.
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Hypothesis

Size

Hozaj,S]=uj’Sz Waldxz 13.88 18.14 34.84 34.68 98.13
= .. =t p-val | .1267 | .0336 | .0000 | .0000 | .0000
49 Hety> | 13.10 | 14.57 | 3124 | 28.16 | 4461
p-val | 1582 | .1034 | .0003 | .0009 | .0000

Hyiot; 1=t 5= Waldy? | 1529 | 28.57 | 3847 | 4431 102.9
=aj,510=0!,j’GB=aj,HY p'Val .1694 .0026 .0000 .0000 .OOOO
dEe11 Hety> | 14.24 | 2461 | 3791 | 3840 | 5492
pval | 2199 | .0104 | .0000 | .0000 | .0000

10% SCALED EXTREME

Hyiet, 1< 510 Waldy? | 779 | 808 | 2464 | 1394 | 5423
p-val | .0027 | .0023 | .0000 | .0001 .0000

di=1 Hety> | 670 | 794 | 2692 | 10,09 | 19.53
p-val | .0048 | .0024 | .0000 | .0007 | .0000

Hy: ] 3= 10 Waldy? | 15.58 | 2698 | 17.10 | 3825 | 33.67
= . =t om0 p-val | .0292 | .0003 | .0168 | .0000 | .0000

K,...n%i

i A7 Hety> | 1130 | 27.48 | 23.49 | 3468 | 19.81

p-val 1259 .0003 .0003 .0000 .0060

5% SCALED CONSTRAINED
Ho: e, jon< ;s Waldy?> | 289 | 1.96 | 13.80 | 0.15 6.70

p-val | .0446 | .0806 | .0001 | 3489 | .0097

di=1 Hety? | 241 | 135 | 1320 | 0.09 4.50
p-val | .0601 | .1228 | .0001 | 3801 | .0169

Ho: 0 kona= s mx Waldy? | 14.80 | 2445 | 17.80 | 1129 | 7826
= =0 o p-val | 0386 | .0009 | .01290 | .1263 | .0000

k,....,n#j

df=7 Hety? 11.54 20.97 18.72 9.82 20.62

p-val 1167 .0038 .0091 1990 .0044
a Since the test is one sided, the appropriate p-value is half the chi-square p-value.
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Size
Ho:o; 5= ;52 Waldy? | 10.21 995 | 31.63 | 11.29 234.1
= ... =g p-val 3642 3543 .0002 2567 .0000
df=9 Hety? 10.39 10.24 27.82 14.63 177.2
p-val 3198 3315 .0010 .1017 .0000
Hy: o) 1= 0t 507 - Waldy? 17.47 27.41 48.23 33.59 2472
=0 510~ 0% oB= %) HY p-val .0948 .0040 .0000 .0004 .0000

2

af=11 Hety 16.54 27.10 51.64 31.02 245.6

p-val 1222 .0044 .0000 .0011 .0000

10% SCALED EXTREME

Hy: ;.15 ;10 Waldy? | 733 | 201 | 1749 | 1002 | 1035
p-val | .0034 | .0782 | .0000 | .0008 | .0000

df=10
Hety> | 7.0 | 240 | 1630 | 637 | 5588
pval | .0038 | .0605 | .0000 | .0058 | .0000
Ho' e o= 10 Waldy? | 1840 | 1647 | 1495 | 1601 | 10438
= = oo pval | 0103 | 0211 | 0367 | 0250 | .0000
df=1§""n*1 Hety? | 18.48 | 1741 | 1475 | 1660 | 68.48

p-val .0100 .0149 .0393 .0202 .0000

5% SCALED CONSTRAINED

Ho:uj,s:jmnS “j,s:jmx Waldx2 352 2.12 3.20 037 16.16
p-val .0303 .0727 0367 2728 .0000

Hety? 3.90 1.51 3.70 0.23 8.96
p-val .0248 .1095 0271 3158 .0014

Ho: 0 s m™ siem Waldy?> | 836 | 1492 | 1089 | 1991 | 1657

df=1°

T pval | 3023 | 0371 | 1437 | .0058 | .0000
df:I;""’n*J Hety? | 579 | 1045 | 1243 | 1453
pval | 5643 | .1647 | 0871 | .0425

a Since the test is one sided, the appropriate p-value is half the chi-square p-value.
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The first section in each panel contains GMM tests of J factor models (5) over the sample period
1/68 to 12/89 using monthly real returns for various sets of assets (T=264). Z., consists of the five
information variables described in Section 2.1 plus a constant (L=6). The following sets of assets
are used:

SIZE-S SET = {S1,..., S10, GB, TB};

SIZE-U SET = {Ul,..., U10, GB, TB};

SIZE-A SET = {Al,..., A10, GB, TB};

S:EXTM-10 SET = {s:TRM1, s:TRM10,..., s:JAN10, GB, TB, S1, S10, B1, B10};

U:EXTM-10 SET = {u:TRMI1, w:TRM10...., u:JAN10, GB, TB, S1, S10, B1, B10};

The portfolios used to form the sets of assets are described in Section 2.2. while the symbols used
to denote the portfolios are described in Table 1.

Assumptions required to imply (5) from a J factor model are discussed in Section 3.2 together with
the statistical assumptions of the GMM methodology and the iterated estimation method employed.

Principal components analysis for the same sets of assets is contained in the second section of each
panel. The cumulative proportion of the total variation explained by the first five principal
components is reported for the predictable portion of returns. The predictable portion is obtained
by regressing asset return on the five information variables plus a constant.
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Table 6 cont

Panel A: NYSE and AMEX

Set of Assets J Tg Wrgd df p-value

77.679
56.864
32.271

76.972
52.603

S:EXTM-10 118.470

87.538
55.126
27.645

U:EXTM-10 115.424
81.325
51.070

Principal Components

r Set of Assets 1st 2nd 3rd 4th 5th I

E[SIZE-S|Z] .8387 9597 .9945 9997 1
E[SIZE-U|Z] .8405 9639 9946 9998 1
E[S:EXTM-10|Z] .8623 .9684 9937 .9988 1

E[U:EXTM-10|Z] .8678 9712 9955

a Asymptotically, the GMM statistic is chi square distributed with (N-J)(L-J) degrees of

freedom.
*

The objective function (T g Wr g*) had not converged or stopped declining
monotonically after 40 iterations. The 40th iteration result is reported if the difference between the
objective function at the 40th and 39th iteration is greater than 0.01. Otherwise an iteration is
reported for which the difference from the previous iteration is less than 0.01.
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Table 6 cont
Panel B: NYSE Only
Set of Assets J Tg/ Wrgd df p-value

SIZE-S 68.038 55
SIZE-A 64.691 55

S:EXTM-10 102.706 75
70.385 64

U:EXTM-10 95.786 75

Principal Components

r Set of Assets 1st 2nd 3rd 4th 5th I

E[SIZE-S|Z] 8611 | .9619
E[SIZE-A|Z] 8237 | 9557 | 9949 | .9993 1

E[S:EXTM-10|Z] .8709 9673 9927 9985 1

E[U:EXTM-10|Z] 8770 | .9699

a Asymptotically, the GMM statistic is chi square distributed with (N -N)(L-J) degrees of
freedom.
* The objective function (T g;' Wy g;%) had not converged or stopped declining

monotonically after 40 iterations. The 40th iteration result is reported if the difference between the
objective function at the 40th and 39th iteration is greater than 0.01. Otherwise an iteration is
reported for which the difference from the previous iteration is less than 0.01.

** A singularity in the matrix used to calculate the direction vector was encountered at the 9th
iteration using the L-M Gauss Newton procedure. The results for the 8th iteration are reported.
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Table 6 cont

Panel C: AMEX Only

Tgr Wrgr'

df

SIZE-S

76.416
48.024

SIZE-A

78.925
51.398

S:EXTM-10

122.599
82.513
43.817

U:EXTM-10

121.905
82.920
46.907

Principal Components

r Set of Assets Ist 2nd 3rd 4th 5th I
E[SIZE-S|Z] .8426 | 9574 | .9962 9987 1
E[SIZE-A|Z] 8195 | 9465 | .9954 9984 1
E[S:EXTM-10|Z] 8844 | 9622 | .9842 9884 1
E[U:EXTM-10|Z] .8868 | 9744 | .9959 .9990 1
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a Asymptotically, the GMM statistic is chi square distributed with (N-D(L-J) degrees of
freedom.
* The objective function (T g;' W; g;%) had not converged or stopped declining

monotonically after 40 iterations. The 40th iteration result is reported if the difference between the
objective function at the 40th and 3%th iteration is greater than 0.01. Otherwise an iteration is
reported for which the difference from the previous iteration is less than 0.01.
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Appendix 1: Some Useful Facts about Latent Variables Tests

It is worth noting the following result. Suppose returns conform to a J factor model such that
K= ¢p¥ Q where ¥ is a LxK matrix such that ¢ = [ ¢* : "™ ] and Q is a Kx(J-K) matrix of
constants. In other words, each of the last J-K risk premia can be expressed as a linear combination
of the first K risk premia. Under these assumptions, ¢ b? can be expressed as ¢* (bP* + Q bPUY)
irrespective of the choice of X, where bP* KxN matrix such that b? = [bP : b»?¥''. Tt follows that
there exists «, and Iy such that E[u®, ® Z_] = 0. So the GMM test has no power to detect an

additional factor whose risk premium is a linear combination of the risk premia of the first K factors.

Yet the stated assumption guarantees that there exists K new factors each a linear
combination of the J old factors such that a K factor pricing model holds for these K new factors.
Thus, the GMM approach can detect only the minimum number of factors needed for the risk
loadings to vary proportionally through time. At the same time, the number of detectable factors
declines monotonically as the number of information variables declines.

Lets assume that there is a J factor model such that the rank of ¢ is J. The rank condition is
assumed to illustrate that the result is not being driven by the issue raised in the previous subsection.
Further assume that b? = [b*¥!" : bPK+D']" where bPX! is a (K-1)Xn matrix,
and b,PO%*D is a (K-1)x1 vector. In other words, all assets have the same factor loadings on the last
J-K+1 factors. Then there exists ¢" a LxK matrix and b*? a KxN matrix such that

Z.,obP=2Z_ ¢* b'P.

Thus, under these assumptions, the GMM test has no power to detect more than a K factor model.

The above result can be used to assess the power of forming portfolios on the basis of a proxy
for one of the risk loadings Suppose the true model is a J>2 factor model where the rank of ¢ is J.
A GMM test is conducted whereby portfolios are formed on the basis of a proxy for the risk loading
on the first factor and this proxy is independent of the loading on any other factor, i.e. by, is
independent of b;, for all k » 1 where b’; is the proxy for the first factor loading and by, is the risk
loading on factor k for the ith asset. Then for these N portfolios, the E[b,,] 's will vary
systematically from p=1 to N while for k>1, E[b,,] = E[b,] for all p. So, invoking the argument of
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the previous paragraph for K=1, GMM would be able to reject a one factor model but the addition
of an additional factor in the null kills any power the test has. This could explain why GMM tests
using size deciles are usually only able to reject a one factor model. The assumption that size
proxies for a risk loading is reasonable (see Fama and French [1991]) but the assumption of
independence across factor loadings is less so. Notice that orthogonalizing the factor is not sufficient
to guarantee that the loadings are independent.®

Suppose a ] factor model holds and there exist proxies for the factor loadings such that each
factor loading proxy is independent of the other factor loadings. Then forming extreme portfolios
on the basis of each of the J proxies insures that the GMM test has at least some power to detect all
J factors. So a way to potentially improve the power of the GMM test is to use extreme portfolios
obtained from ranking on a number of risk loading proxies. Using industry portfolios is a step in this
direction since it would be expected that the risk loadings of more than one factor would vary with

industry.

18 The reason is that independence of the factors per se places no restrictions on the factor
loadings.



