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Abstract

We study how intermediation and asset prices are affected by illiq-
uidity associated with search and bargaining. We compute explicitly
marketmakers’ bid and ask prices in a dynamic model with strategic
agents. Bid-ask spreads are lower if investors can more easily find
other investors or have more easy access to multiple marketmakers.
This distinguishes our theory from the information-based intermedia-
tion, which implies higher spreads in connection with higher investor
sophistication. With a monopolistic marketmaker, bid-ask spreads
are higher if investors have easier access to the marketmaker. We dis-
cuss several empirical implications and study endogenous search and
welfare.
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In over-the-counter (OTC) markets, an investor who wants to sell to an-
other investor must search for a buyer, incurring opportunity or other costs
until a buyer is found. This search problem has lead to the existence of
intermediaries who facilitate easier trade. The identification of relevant in-
termediaries is, however, also not immediate, and intermediaries must often
be approached sequentially. Hence, when two counterparties meet, their
bilateral relationship is inherently strategic. Prices are set through a bar-
gaining process that reflects each investor’s or marketmaker’s alternatives to
immediate trade.

These search-and-bargaining features are empirically relevant in many
markets such as those for mortgage-backed securities, corporate bonds, emerging-
market debt, bank loans, derivatives, certain equity markets, among others.
Also, real-estate values are influenced by imperfect search, the relative im-
patience of investors for liquidity, outside options for trade, and the role and
profitability of brokers.

We build a dynamic asset-pricing model that captures these features. We
derive analytically the equilibrium allocations, prices between investors, and
marketmakers’ bid and ask prices. We show how these equilibrium prop-
erties depend on investors’ search abilities, marketmaker accessibility, and
bargaining powers. We determine the search intensities that marketmak-
ers choose, and derive the associated welfare implications of investment in
marketmaking.

Our model of search is a variant of the coconuts model of Diamond
(1982).1 A continuum of investors contact each other, independently, at
some mean intensity λ, a parameter reflecting search ability. Similarly, mar-
ketmakers contact agents at some intensity ρ, a parameter reflecting dealer
availability. When agents meet they bargain over the terms of trade. Gains
from trade arise from heterogeneous costs or benefits of holding assets. For
example, an asset owner can be anxious to sell because of a liquidity need
or because of hedging motives. Marketmakers can off-load their inventory in
a frictionless inter-dealer market and trade with investors to capture part of
the difference between the inter-dealer price and investors’ reservation values.

Market frictions have been used to explain the existence and behavior
of marketmakers. Notably, marketmakers’ bid and ask prices have been ex-

1The search-and-bargaining structure of our trading model is similar to that of the
monetary model of Trejos and Wright (1995), although their objectives are different and
they do not study marketmaking.
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plained by inventory considerations (Garman (1976), Amihud and Mendelson
(1980), and Ho and Stoll (1981)), and by adverse selection arising from asym-
metric information (Bagehot (1971), Glosten and Milgrom (1985), and Kyle
(1985)). In contrast, our marketmakers have no inventory risk because of
the existence of an inter-dealer market, and all our agents are symmetrically
informed. In our model, bid and ask prices are set in light of investors’ out-
side options, which reflect the accessibility of other marketmakers as well as
investors’ own abilities to find counterparties.

We show that prices are higher and bid-ask spreads are lower if investors
can find each other more easily.2 The intuition is that an investor’s improved
search alternative forces marketmakers to give better prices. This result
is supported by the experimental evidence of Lamoureux and Schnitzlein
(1997).

An investor also improves his bargaining position towards a marketmaker
if he can more easily find other marketmakers. Hence, despite the bilateral
nature of bargaining between a marketmaker and an investor, marketmakers
are effectively in competition with each other over order flow, given the option
of investors to search for better terms. Consistent with this intuition, we
prove that competitive prices and vanishing spreads obtain as marketmakers’
contact intensities become large, provided that marketmakers do not have
total bargaining power.

To summarize, if investors are more sophisticated (i.e. have better access
to other investors or to marketmakers who do not have total bargaining
power), they receive a tighter bid-ask spread. This implication sets our
theory of intermediation apart from the information-based models, in which
more sophisticated investors (i.e. better informed) receive a wider bid-ask
spread.

When comparing across markets, the inventory-based theories could also
imply that more frequent meetings between investors and marketmakers re-
sult in lower spreads because of lower inventory costs. These theories would
not imply any differential treatment of different investors. On the other hand,
we show — in an extension of our search model with heterogeneous investors

2We show that our model specializes in a specific way to the standard general-
equilibrium paradigm as bilateral trade becomes increasingly active, under conditions
to be described, extending a chain of results by Rubinstein and Wolinsky (1985), Gale
(1987), Gale (1986a), Gale (1986b), and McLennan and Sonnenschein (1991), in a manner
explained later in our paper. Thus, “standard” asset-pricing theory is not excluded, but
rather is found at the end of the spectrum of increasingly “active” markets.
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— that more sophisticated investors (those with better access to market-
makers) receive a tighter bid-ask spread because of their improved outside
options. Further, under certain conditions, investors less able to search op-
timally refrain from trading altogether. These testable implications set our
theory apart also from the inventory models.

Our result seems consistent, for instance, with certain markets for fixed-
income derivatives and foreign exchange in which asymmetric information
is limited. Anecdotal evidence suggests that “sales traders” give more com-
petitive prices to sophisticated investors, perceived to have better outside
options.

We also consider the case in which the marketmaker has total bargaining
power, that is, the case of a monopolistic marketmaker. The bid-ask spread
of a monopolistic marketmaker vanishes as investors meet each other more
frequently, just like in the case of competing marketmakers. In contrast, if
investors meet the monopolistic marketmaker more frequently, this actually
leads to wider spreads. The wider spreads are due to the worsening of the
investors’ outside options. Specifically, an investor’s threat to find a counter-
party himself is less credible if the marketmaker has already executed most
of the efficient trades, making it harder to find potential counterparties.

Our results regarding the impact of investors’ search for each other on
dealer spreads are similar in spirit to those of Gehrig (1993) and Yavaş
(1996), who consider monopolistic marketmaking in one-period models.3 We
find, however, that the dynamics of our setting are important in determining
agents’ bargaining positions, and thus asset prices, bid-ask spreads, and in-
vestments in marketmaking capacity. Rubinstein and Wolinsky (1987) study
the complementary effects of marketmaker inventory and consignment agree-
ments in a dynamic search model.

We consider marketmakers’ choices of search intensity, and the social
efficiency of these choices. A monopolistic marketmaker imposes additional
“networking losses” on investors because his intermediation renders less valu-
able the opportunity of investors to trade directly with each other. A mo-
nopolistic marketmaker thus provides more intermediation than is socially
efficient. Competitive marketmakers may provide even more intermediation,
as they do not consider, in their allocation of resources to search, the effect

3See also Bhattacharya and Hagerty (1987) who introduce dealers into the Diamond
(1982) model, and Moresi (1991) who considers intermediation in a search model in which
buyers and sellers exit the market after they trade.
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that their intermediation has on the equilibrium allocation of assets among
investors.4

1 Model

We fix a probability space (Ω,F , P r) and a filtration {Ft : t ≥ 0} of sub-σ-
algebras satisfying the usual conditions, as defined by Protter (1990). The
filtration represents the resolution over time of information commonly avail-
able to agents.

There are two kinds of agents: investors and marketmakers. A single
non-storable consumption good is used as a numeraire. All agents are risk-
neutral and infinitely lived, with time preferences captured by a constant
discount rate r > 0. Marketmakers hold no inventory and maximize profits.

Investors can invest in a risk-free bank account with interest rate r and
in a consol, meaning an asset whose dividend rate is constant at rate 1.5

The consol can only be traded when an investor meets another investor or
a marketmaker. This search process is described below. The bank account
can also be viewed as a liquid security that can be traded instantly.

A fraction s of investors are initially endowed with one unit of the asset.
Investors can hold at most one unit of the asset and cannot shortsell. Because
agents have linear utility, we can restrict attention to equilibria in which, at
any given time and state of the world, an investor holds either 0 or 1 unit of
the asset.

An investor is characterized by whether he owns the asset or not, and by
an intrinsic type that is “high” or “low.” A low-type investor, when owning
the asset has a holding cost of δ per time unit. A high-type investor has
no such holding cost. Hence, low-type investors have lower valuations of the
asset. There are multiple interpretations of the investor types. For instance,
a low-type investor either (i) has low liquidity (that is, a need for cash), (ii)
has high financing costs, (iii) has hedging reasons to sell,6 (iv) has a relative

4Studying endogenous search in labor markets, Mortensen (1982) and Hosios (1990)
find that agents may choose inefficient search levels because they do not internalize the
gains from trade realized by future trading partners. Moen (1997) shows that search
markets can be efficient under certain conditions.

5Duffie, Gârleanu, and Pedersen (2003) consider extensions with risky securities and
risk-averse investors.

6Formalized in Duffie, Gârleanu, and Pedersen (2003).
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tax disadvantage,7 or (iv) has a lower personal use of the asset. The investor’s
intrinsic type switches from low to high with intensity λu, and switches back
with intensity λd. For any pair of investors, their intrinsic-type processes are
assumed to be independent.

The full set of investor types is T = {ho, hn, lo, ln}, with the letters “h”
and “l” designating the investor’s intrinsic liquidity state, as above, and with
“o” or “n” indicating whether the investor owns the asset or not, respectively.

We suppose that there is a “continuum” (a non-atomic finite-measure
space) of investors, and let µσ(t) denote the fraction at time t of investors of
type σ ∈ T . Because the fractions of each type of investor add to 1 at any
time t,

µho(t) + µhn(t) + µlo(t) + µln(t) = 1. (1)

Because the total fraction of investors owning an asset is s,

µho(t) + µlo(t) = s. (2)

Any two investors are free to trade the asset whenever they meet, for a
mutually agreeable number of units of current consumption. (The determina-
tion of the terms of trade is to be addressed later.) Investors meet, however,
only at random times, in a manner idealized as follows. At the event times of
a Poisson process with some intensity parameter λ, an investor contacts some
other agent, chosen from the entire population “at random,” meaning with
a uniform distribution across the investor population.8 Hence, an investor
from a group C contacts an investor from another group D with intensity
λµD. The total contact rate between C and D investors is 2λµCµD.

Also, marketmakers are found through search, which captures the idea
that an investor must bargain with each marketmaker sequentially. There is
a unit mass of independent non-atomic marketmakers with a fixed intensity,
ρ, of meeting an investor.9 When an investor meets a marketmaker, they
bargain over the terms of trade as described in the next section. The mar-
ketmakers also have access to an immediately accessible inter-dealer market,

7Dai and Rydqvist (2003) provide a tax example with potential search effects.
8The exponential inter-contact-time distribution is natural. The analysis further relies

on independence assumptions and an application of the law of large numbers. We also
suppose that random switches in intrinsic types types are independent of the matching
processes. For details see Duffie, Gârleanu, and Pedersen (2003).

9It would be equivalent to have a mass k of dealers with contact intensity ρ/k, for any
k > 0.
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on which the unload their positions, so that they have no inventory at any
time.

2 Dynamic Search Equilibrium with Compet-

ing Marketmakers

In this section, we explicitly compute the allocations and prices forming a
dynamic search-and-bargaining equilibrium. In particular, we compute mar-
ketmaker’s bid and ask prices, the price negotiated directly between investors,
and the inter-dealer price.

In equilibrium, low-type asset owners want to sell and high-type non-
owners want to buy. When these agents meet, they bargain over the price.
Similarly, when these investor types meet a marketmaker, they bargain about
the price. An investor’s bargaining position depends on his outside option,
which in turn depends on the availability of other counterparties, both now
and in the future, and a marketmaker’s bargaining position depends on the
inter-dealer price. In deriving the equilibrium, we rely on the insight from
bargaining theory that trade happens instantly.10 This allows us to derive a
dynamic equilibrium in two steps. First, we derive the equilibrium masses of
the different investor types. Second, we compute agents’ value functions and
transaction prices (taking as given the masses).

The rate of change of the mass µlo(t) of low-type owners is

µ̇lo(t) = − (2λµhn(t)µlo(t) + ρµm(t)) − λuµlo(t) + λdµho(t), (3)

where µm(t) = min{µlo(t), µhn(t)}. The first term reflects the fact that agents
of type hn contact those of type lo at a total rate of λµhn(t)µlo(t), while agents
of type lo contact those of type hn at the same total rate λµhn(t)µlo(t). At
both of these types of encounters, the agent of type lo becomes one of type
ln. This implies a total rate of reduction of mass due to these encounters of
2λµhn(t)µlo(t). Similarly, investors of type lo meet marketmakers with a total
contact intensity of ρµlo(t). If µlo(t) ≤ µhn(t) then all these meetings lead to
trade, and the lo agent becomes a ln agent, resulting in a reduction of µlo of

10In general, bargaining leads to instant trade when agents do not have asymmetric
information. Otherwise there can be strategic delay. In our model, it does not matter
whether agents have private information about their own type for it is common knowledge
that a gain from trade arises only between between agents of types lo and hn.
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ρµlo(t). If µlo(t) > µhn(t), then not all these meetings result in trade. This is
because marketmakers buy from lo investors and sell to hn investors, and, in
equilibrium, the total intensity of selling must equal the intensity of buying.
Marketmakers meet lo-investors with total intensity ρµlo and hn-investors
with total intensity ρµhn, and, therefore, the “long-side” of the investors
are rationed. In particular, if µlo(t) > µhn(t) then lo agents trade with
marketmakers only at the intensity ρµhn. In equilibrium this rationing can
be the outcome of bargaining because the marketmaker’s reservation value,
i.e. the inter-dealer price, is equal to the lo-investor’s reservation value.

Finally, the term λuµlo(t) reflects the migration of owners from low to
high intrinsic types, and the last term λdµho(t) reflects owners’ change from
high to low intrinsic types.

The rate of change of the other investor-type masses are,

µ̇hn(t) = − (2λµhn(t)µlo(t) + ρµm(t)) + λuµln(t) − λdµhn(t) (4)

µ̇ho(t) = (2λµhn(t)µlo(t) + ρµm(t)) + λuµlo(t) − λdµho(t) (5)

µ̇ln(t) = (2λµhn(t)µlo(t) + ρµm(t)) − λuµln(t) + λdµhn(t), (6)

As in (3), the first terms reflect the result of trade, and the last two terms
are the result of intrinsic-type changes.

In most of the paper we focus on stationary equilibria, that is, equilibria
in which the masses are constant. In our welfare analysis, however, it is more
natural to take the initial masses as given, and, therefore, we develop some
results with any initial mass distribution. The following proposition asserts
the existence, uniqueness, and stability of the steady state.

Proposition 1 There is a unique constant solution µ = (µlo, µln, µho, µhn) ∈
[0, 1]4 to (1), (2), and (3)-(6). From any initial condition µ(0) ∈ [0, 1]4

satisfying (1) and (2), the unique solution µ(t) to this system of equations
converges to µ as t→ ∞.

With these equilibrium masses, we can determine the price, P , between
investors, the “bid” price, B, at which investors sell to marketmakers, the
“ask” price, A, at which investors buy from marketmakers, and the inter-
dealer price. To do this, we use dynamic programming and compute first
an investor’s utility at time t for remaining lifetime consumption. For a
particular agent this “value function” depends, naturally, only on the agent’s
current type σt ∈ T , his current wealth, Wt, in his bank account, and time.
Because of risk neutrality, the value function has the form Wt + Vσt

(t), and
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any rate of consumption withdrawals from liquid wealth (Wt) is optimal; we
simply assume that agents adjust their consumption so that Wt = 0 for all
t. As shown in the appendix, the value functions satisfy:

V̇lo = rVlo − λu(Vho − Vlo) − 2λµhn(P + Vln − Vlo) − ρ(B + Vln − Vlo) − (1 − δ)

V̇ln = rVln − λu(Vhn − Vln)

V̇ho = rVho − λd(Vlo − Vho) − 1 (7)

V̇hn = rVhn − λd(Vln − Vhn) − 2λµho(Vho − Vhn − P ) − ρ(Vho − Vhn − A)

where the value functions (Vσ), prices (P,A,B), and masses (µσ), depend on
time unless the initial masses are the steady-state ones.

These value functions imply that an lo-investor will benefit from a sale at
any price greater than Vlo−Vln, and an hn-investor will benefit from a buying
at any price smaller than Vho−Vhn. Bargaining between these investors leads
to a price somewhere in between:

P = (Vlo − Vln)(1 − q) + (Vho − Vhn)q (8)

This is the outcome of Nash (1950) bargaining in which the seller’s bargaining
power is q, of a simultaneous-offer bargaining game described in Kreps (1990),
or of the alternating-offers bargaining game in Duffie, Gârleanu, and Pedersen
(2003).

Similarly, the bid and ask prices are determined through bargaining be-
tween investors and marketmakers, where the marketmakers’ outside option
is to trade in the interdealer market at a price of M . Marketmakers have a
fraction, z ∈ [0, 1], of the bargaining power when facing an investor. Hence,
a marketmaker buys from investors at the bid a price, B, and sell at the ask
price, A:

A = (Vho − Vhn)z +M (1 − z) (9)

B = (Vlo − Vln)z +M (1 − z) (10)

As discussed above, in equilibrium, the marketmakers and the investors
on the long side of the market must be indifferent about trading. Hence, if
µlo ≤ µhn, the marketmakers meet more potential buyers than sellers and,
therefore, the inter-dealer price, M , is equal to the ask price, A, and to any
buyer’s reservation value, Vho − Vhn. Similarly, if µlo > µhn, then M = B =
Vlo − Vln.
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In steady state, it is easy to see which side of the market is rationed
because the steady-state fraction of high-type agents is λu(λd + λu)

−1, so we
have

µhn + (s− µlo) =
λu

λd + λu

.

Hence, µlo < µhn in steady state if and only if the following condition is
satisfied.

Condition 1 s < λu/(λu + λd).

The equations for prices and value functions can be solved explicitly.
Condition 1 seems the natural case, and the solution in that case is given by
the following theorem; the complementary case is treated in the appendix.

Theorem 2 For any given initial mass distribution µ(0), there exists a subgame-
perfect Nash equilibrium. There is a unique steady-state equilibrium. Under
Condition 1, the ask, bid, and inter-investor prices are

A =
1

r
− δ

r

λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq + ρ(1 − z)
(11)

B =
1

r
− δ

r

zr + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq + ρ(1 − z)
(12)

P =
1

r
− δ

r

(1 − q)r + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq + ρ(1 − z)
. (13)

These explicit prices are intuitive. Each price is the present value, 1/r, of
dividends, reduced by an illiquidity discount. All these prices decrease in the
bargaining power, z, of the marketmaker since a higher z makes trading more
costly for investors. The prices increase, however, in the ease of meeting a
marketmaker (ρ) and in the ease of finding another investor (λ) for, respec-
tively, ρ and λ large enough. Higher search intensities make allocations more
efficient and improve the investors’ bargaining positions, hence reducing the
illiquidity discount and increasing the prices. This effect is discussed in detail
in Section 4.

Further, the bid-ask spread (A − B) is clearly increasing in the market-
maker’s bargaining power z. The bid-ask spread is decreasing in λ since a
high λ means that an investor can easily find a counterparty himself, which
improves his bargaining position. The bid-ask spread is also decreasing in ρ
if z < 1. A higher ρ implies that an investor can quickly find another market-
maker, and this “sequential competition” improves his bargaining position.
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If z = 1, however, then the bid-ask spread is increasing in ρ. The case of
z = 1 is best interpreted as a monopolistic marketmaker as we show in the
next section.

3 Monopolistic Marketmaking

We assume here that investors can trade with the monopolistic marketmaker
only when they meet one of the marketmaker’s non-atomic “dealers.” There
is a unit mass of such dealers who contact potential investors randomly and
pair-wise independently, letting ρ be the intensity with which a dealer con-
tacts a given agent.

Dealers instantly balance their positions with their marketmaking firm,
which, on the whole, holds no inventory. When an investor meets a dealer, the
dealer is assumed to have all of the bargaining power since the marketmaker’s
profit is not affected by any one “infinitesimally” sized trades. Hence, the
dealer quotes an ask price, A, and a bid price, B, that are, respectively, a
buyer’s and a seller’s reservation value.

With these assumptions, the equilibrium is computed as in Section 2.
The masses are determined by (3)–(6) and the prices are given by Theorem 2
with z = 1. In equilibrium, B ≤ P ≤ A.

It might seem surprising that it is equivalent to have a monopolistic mar-
ketmaker and many “competing” non-atomic marketmakers with full bar-
gaining power (z = 1). The result follows from the fact that a search econ-
omy is inherently un-competitive, in that each time agents meet, a bilateral
bargaining relationship obtains. With many non-atomic marketmakers it is,
however, more natural to assume that z < 1, and, hence, this difference in
marketmaker bargaining power distinguishes the two kinds of intermedia-
tion. The distinction between monopolistic and competitive marketmakers
is clearer when search intensities are endogenized in Section 7.

4 Does Fast Search Lead to Competitive Prices?

A competitive Walrasian equilibrium is characterized by a single price process
at which agents may buy and sell instantly, such that supply equals demand
at each state and time. A Walrasian allocation is efficient and all assets are
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held by agents of high type, if there are enough such agents,11 which is the
case in steady state if s < λu/(λu + λd). If s > λu/(λu + λd), all high-type
agents own assets, and the rest of the assets are held by low-type investors.
Finally, if s = λu/(λu + λd), the number of sellers is equal to the number of
buyers.

In the former case, the unique Walras equilibrium has agent masses

µ∗
ho = s

µ∗
hn =

λu

λu + λd

− s (14)

µ∗
lo = 0

µ∗
ln =

λd

λu + λd

,

and the Walrasian price is

P ∗ = Et

[
∫ ∞

0

e−rs ds

]

=
1

r
.

The Walras equilibrium price, a version of what is sometimes called the
“Gordon dividend growth model” of valuation, is the value of holding the
asset forever for a hypothetical agent who is always relatively liquid.

In case of s > λu/(λu+λd), the masses are determined similarly and since
the marginal investor has low liquidity, the Walrasian price is the expected
value of holding the asset indefinitely for a (hypothetical) agent who always
has a low type, i.e., P ∗ = (1 − δ)/r. If s = λu/(λu + λd), then any price P ∗

between 1/r and (1 − δ)/r is a Walrasian equilibrium.
Clearly, fast search by either investors or marketmakers implies that al-

locations approach the efficient allocations, µ∗, prevailing in a Walrasian
market. The following theorem further determines the circumstances under
which prices approach the competitive Walrasian prices, P ∗.

Theorem 3 Let (λk, ρk, µk, Bk, Ak, P k) be a sequence of stationary search
equilibria.

1. [Fast investors.] If λk → ∞, (ρk) is any sequence, and 0 < q < 1 then
µk → µ∗, and Bk, Ak, and P k converge to the same Walrasian price.

11The number of such agents can be thought, for instance, as the capacity for taking a
certain kind of risk.
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2. [Fast competing marketmakers.] If ρk → ∞ and z < 1 then µk → µ∗,
and Bk, Ak, and P k converge to the same Walrasian price.

3. [Fast monopolistic marketmaker.] If λk = λ is constant, ρk → ∞ and
z = 1 then µk → µ∗, and the bid-ask spread, Ak −Bk, is increasing.

Part one shows that prices become competitive and the bid-ask spread
approaches zero when investors can find each other fast, regardless of the
nature of intermediation. In other words, the investors’ search alternative
forces the marketmakers to offer relatively competitive prices, consistent with
the evidence of Lamoureux and Schnitzlein (1997).12

Part two shows that fast intermediation by competing marketmakers also
leads to competitive prices and vanishing bid-ask spreads. This, too, may
seem surprising since an investor trades with the first marketmaker he meets,
and this marketmaker could have almost all bargaining power (z close to 1).
As ρ increases, however, the investor’s outside option when bargaining with
a marketmaker improves, because he can more easily meet another mar-
ketmaker, and this sequential competition ultimately results in competitive
prices.

Part three shows that fast intermediation by a monopolistic marketmaker
does not lead to competitive prices. In fact, the bid-ask spread widens as the
dealer availability increases. This is because an investor’s potential “threat”
to search for a direct trade with another investor becomes increasingly less
persuasive, since the mass of investors with whom there are gains from trade
shrinks.

Contrary to our result, Rubinstein and Wolinsky (1985) find that their
bargaining equilibrium (without intermediaries) does not converge to the
competitive equilibrium as trading frictions approach zero. Gale (1987) ar-
gues that this failure is due to the fact that the total mass of agents entering
their economy is infinite, which makes the competitive equilibrium of the
total economy undefined. Gale (1987) shows that if the total mass of agents
is finite, then the economy (which is not stationary) is Walrasian in the limit.
He suggests that, when considering stationary economies, one should com-
pare the bargaining prices to those of a “flow equilibrium” rather than a

12This result holds, under certain conditions, even if the monopolistic marketmaker can
be approached instantly (“ρ = +∞”). In this case, for any finite λ, all trades are done
using the marketmaker, but as the investors’ outside options improve, even a monopolistic
marketmaker needs to quote competitive prices.
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“stock equilibrium.” Our model has a natural determination of steady-state
masses, even though no agent enters the economy. This is accomplished by
letting agents switch types randomly.13

We are able to reconcile a steady-state economy with convergence to
Walrasian outcomes in both a flow and stock sense, both for allocations and
for prices, and both by increasing investor search and marketmaker search.14

5 Numerical Example

We illustrate some of the effects of marketmaking with a numerical example.
Figure 1 shows the marketmakers’ bid (B), and ask (A) prices, as well as
the inter-investor price (P ). These prices are plotted as a function of the
intensity, ρ, of meeting dealers. The left panel deals with the case of com-
peting marketmakers with bargaining power z = 0.8, whereas the right panel
shows the result with a monopolistic marketmaker (z = 1). The parameters
that underly these graphs are as follows. First, λd = 0.1 and λu = 1, which
implies that an agent is a high liquidity type 91% of the time. An investor
finds other investors every two weeks, that is, λ = 26, and selling investors
have bargaining power q = 0.5. The supply is s = 0.8, and the interest rate
is r = 0.05

Since allocations become more efficient as ρ increases, in both cases, all
prices increase with ρ. Interestingly, the bid-ask spreads is decreasing with ρ
in the case of competing marketmakers (z = 0.8), but increasing in the case of
a monopolist (z = 1). The intuition for this difference is as follows. When the
dealers’ contact intensity increases, they execute more trades. Investors then
find it more difficult to contact other investors with whom to trade. If dealers
have all of the bargaining power, this leads to wider spreads. If dealers don’t
have all of the bargaining power, however, then higher marketmaker intensity
leads to a narrowing of the spread because of any investor’s improved threat
of waiting to trade with the next marketmaker.

13Gale (1986a), Gale (1986b), and McLennan and Sonnenschein (1991) show that a
bargaining game implements Walrasian outcomes in the limiting case with no frictions
(that is, no discounting) in much richer settings for preferences and goods. See also
Binmore and Herrero (1988).

14Other important differences between our framework and that of Rubinstein and Wolin-
sky (1985) are that we accommodate repeated trade, and that we diminish search frictions
explicitly through λ rather than implicitly through the discount rate. See Bester (1988,
1989) for the importance of diminishing search frictions directly.
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Figure 1: The solid line shows the price P used when investors trade with each other;
the dashed lines show the bid (B) and ask (A) prices used when investors trade with a
marketmaker. The prices are functions of the intensity (ρ) with which an investor meets a
dealer, which is plotted on a logarithmic scale. The bargaining power of the marketmaker
is z = 0.8 in the left panel, and z = 1 in the right panel.
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6 Heterogeneous Investors

So far, we have assumed that all investors could find counterparties at the
same speed. Larger companies with sophisticated finance groups may, how-
ever, be faster at locating other investors and may have access to more in-
termediaries. To capture the latter effect, we assume that there are two
different investor classes, ”sophisticated” of total mass µs and “unsophis-
ticated” investors of mass 1 − µs. We assume that sophisticated investors
meet marketmakers with an intensity ρs, while unsophisticated investors meet
marketmakers at intensity ρu, where ρu < ρs. We assume here that investors
cannot trade directly with each other, that is, λ = 0. If this assumption
is relaxed so that investors find each other (possibly with type-dependent
speed), then the nature of the equilibrium would change for certain param-
eters. In particular, sophisticated investors would, under certain conditions,
profit from executing as many trades as possible, and would start acting like
marketmakers. This interesting effect is beyond the scope if this paper; we
focus on how marketmakers react to differences in investor sophistication.

Any investor’s type is observable to the marketmakers, who have bargain-
ing power z < 1. When a sophisticated investor meets a marketmaker then
the outcome of their bargaining is a bid price of Bs or an ask price of As.
When an unsophisticated investor needs to buy or sell, locating a market-
maker takes time. This results in higher expected holdings costs associated
with illiquidity and, importantly, in a poor bargaining position. Hence, un-
sophisticated investors receive different bid and ask prices, which we denote
by Bu and Au, respectively.

When the supply of shares is so low that the sophisticated investors are
“marginal” buyers, then any unsophisticated investor optimally stays out of
the market, that is, he never buys any shares. Similarly, when the supply
of shares is large, the sophisticated investors are marginal sellers, and any
unsophisticated investor holds a share that he never sells. With an interme-
diate supply, all investors trade, but the unsophisticated investors trade at a
larger spread.

The following theorem characterizes the most important properties of
the equilibrium with heterogeneous investors; a full characterization is in the
appendix.

Theorem 4 If s < µs λu

λu+λd

or s > 1 − µs λd

λu+λd

then unsophisticated in-
vestors do not trade. Otherwise, all investors trade, and the unsophisticated
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investors get a larger bid-ask spread from the marketmakers than the sophis-
ticated investors, that is, Au −Bu > As −Bs. More precisely, an agent who
meets a marketmaker with intensity ρ faces a bid-ask of

A−B =
zδ

r + λu + λd + ρ(1 − z)
. (15)

7 Endogenous Market-Maker Search and Wel-

fare

Here, we investigate the search intensities that marketmakers would opti-
mally choose in the two cases considered above: a single monopolistic mar-
ketmaker and non-atomic competing marketmakers. We illustrate how mar-
ketmakers’ choices of search intensities depend on: (i) the marketmakers’
influence on the equilibrium allocations of assets, and (ii) the marketmakers’
bargaining power. We take investors’ search intensities as given. Consider-
ing the interactions arising if both investors and intermediaries choose search
levels endogenously would be an interesting issue for future research.15

Because the marketmakers’ search intensity affects the masses, µ, of in-
vestor types, it is natural to take as given the initial masses, µ(0), of in-
vestors, rather than to compare based on the different steady-state masses
corresponding to different choices of search intensities. Hence, in this section,
we are not relying on a steady-state analysis.

We assume that a marketmaker chooses one search intensity and abides
by it. This assumption is convenient, and can be motivated by interpreting
the search intensity as based on a technology that is difficult to change. A
full dynamic analysis of the optimal control of marketmaking intensities with
small switching costs would be interesting, but seems difficult. We merely
assume that marketmakers choose ρ so as to maximize the present value,
using their discount rate r, of future marketmaking spreads, net of the rate
Γ(ρ) of technology costs, where Γ : [0,∞) → [0,∞) is assumed for technical
convenience to be continuously differentiable, strictly convex, with Γ(0) = 0,
Γ′(0) = 0, and limρ→∞ Γ′(ρ) = ∞.

The marketmaker’s trading profit, per unit of time, is the product of the
volume of trade, ρµm, and the bid-ask spread, A−B. Hence, a monopolistic

15Relatedly, Pagano (1989) considers a one-period model in which investors choose be-
tween searching for a counterparty and trading on a centralized market.
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marketmaker who searches with an intensity of ρ has an initial valuation of

πM(ρ) = E

[
∫ ∞

0

ρµm(t, ρ) (A(t, ρ) −B(t, ρ)) e−rt dt

]

− Γ(ρ)

r
, (16)

where µm = min{µlo, µhn}, and where we are using the obvious notation to
indicate dependence of the solution on ρ and t.

Any one non-atomic marketmaker does not influence the equilibrium
masses of investors, and therefore values his profit at

πC(ρ) = ρE

[
∫ ∞

0

µm(t) (A(t) −B(t)) e−rt dt

]

− Γ(ρ)

r
.

An equilibrium intensity, ρC , for non-atomic marketmakers is a solution to
the first-order condition

Γ′(ρC) = rE

[
∫ ∞

0

µm(t, ρC)
(

A(t, ρC) −B(t, ρC)
)

e−rt dt

]

. (17)

The following theorem characterizes equilibrium search intensities in the case
of “patient” marketmakers.

Theorem 5 There exists a marketmaking intensity ρM that maximizes πM(ρ).
There exists r̄ > 0 such that, for all r < r̄ and for each z ∈ [0, 1], there exists
a unique number ρC(z) that solves (17), satisfying: ρC(0) = 0, ρC(z) is in-
creasing in z, and ρC(1) is larger than any solution, ρM , to the monopolist’s
problem.

In addition to providing the existence of equilibrium search intensities, this
result establishes that: (i) competing marketmakers provide more market-
making services if they can capture a higher proportion of the gains from
trade, and (ii) competing marketmakers with full bargaining power provide
more marketmaking services than a monopolistic marketmaker, since they
do not internalize the consequences of their search on the masses of investor
types.

To consider the welfare implications of marketmaking in our search econ-
omy, we adopt a notion of “social welfare,” the sum of the utilities of investors
and marketmakers. This can be interpreted as the total investor utility in
the case in which the marketmaker profits are redistributed to investors,
for instance through share holdings. With our form of linear preferences,
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maximizing social welfare is a meaningful concept in that it is equivalent to
requiring that utilities cannot be Pareto improved by changing allocations
and by making initial consumption transfers.16 By “investor welfare,” we
mean the total of investors’ utilities, assuming that the marketmaker profits
are not redistributed to investors. We take “marketmaker welfare” to be the
total valuation of marketmaking profits, net of the cost of intermediation.

In our risk-neutral framework welfare losses are easily quantified. The
total “social-loss rate” is the cost rate Γ(ρ) of intermediation plus the rate
δµlo(t) at which dividends are wasted through mis-allocation. At a given
marketmaking intensity ρ, this leaves the social welfare

wS(ρ) = E

[
∫ ∞

0

(s− δµlo(t)) e
−rt dt

]

− Γ(ρ)

r
.

Investor welfare is, similarly,

wI(ρ) = E

[
∫ ∞

0

(s− δµlo(t, ρ) − ρµm(t, ρ)(A(t, ρ) −B(t, ρ))) e−rt dt

]

,

and the marketmakers’ welfare is

wM(ρ) = E

[
∫ ∞

0

ρµm(t, ρ)(A(t, ρ) −B(t, ρ))e−rt dt

]

− Γ(ρ)

r
.

We consider first the case of monopolistic marketmaking. We let ρM be
the level of intermediation optimally chosen by the marketmaker, and ρS

be the socially optimal level of intermediation. The relation between the
monopolistic marketmaker’s chosen level ρM of intensity and the socially
optimal intensity ρS is characterized in the following theorem.

Theorem 6 Let z = 1. (i) If investors cannot meet directly, that is, λ =
0, then the investor welfare wI(ρ) is independent of ρ, and a monopolistic
marketmaker provides the socially optimal level ρS of intermediation, that is,
ρM = ρS.
(ii) If λ > 0, then wI(ρ) decreases in ρ, and the monopolistic marketmaker
over-invests in intermediation, that is, ρM > ρS, provided q is 0 or 1.

16Also, this “utilitarian” social welfare function can be justified by considering the utility
of an agent “behind the veil of ignorance,” not knowing what type of agent he will become.
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The idea of this result is that, if investors cannot search, then their util-
ities do not depend on the level of intermediation because the monopolist
extracts all gains from trade. In this case, because the monopolist gets
all social benefits from providing intermediation and bears all the costs, he
chooses the socially optimal level.

If, on the other hand, investors can trade directly with each other, then
the marketmaker imposes a negative externality on investors, reducing their
opportunities to trade directly with each other. Therefore, investor welfare
decreases with ρ. Consequently, the marketmaker’s marginal benefit from
intermediation is larger than the social benefit, so there is too much inter-
mediation.17

We now turn to the case of non-atomic (competing) marketmakers. In
Section 7, we saw that the equilibrium level of intermediation of non-atomic
marketmakers depends critically on their bargaining power. If they have no
bargaining power, then they provide no intermediation. If they have all of the
bargaining power, then they search more than a monopolistic marketmaker
would.

A government may sometimes be able to affect intermediaries’ market
power, for instance through the enforcement of regulation (DeMarzo, Fish-
man, and Hagerty (2000)). Hence, we consider the following questions: How
much marketmaker market power is socially optimal? How much market
power would the intermediaries like to have? Would investors want that
marketmakers have some market power? These questions are answered in
the following proposition, in which we let zI , zS, and zM denote the market-
maker bargaining power that would be chosen by, respectively, the investors,
a social-welfare maximizing planner, and marketmakers.

Theorem 7 It holds that zI > 0. There is some r̄ > 0 such that, provided
r < r̄, we have zI < zS ≤ zM = 1.

Investors in our model would prefer to enter a market in which non-atomic
marketmakers have some market power, because this gives marketmakers
an incentive to provide intermediation. The efficient level of intermediation
is achieved with a higher market power to marketmakers. Marketmakers
themselves prefer to have full bargaining power.

17If 0 < q < 1, then increasing ρ has the additional effect of changing the relative
strength of investors’ bargaining positions with the marketmaker, because it changes their
outside options, which complicates the calculations.
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8 Empirical Implications

This paper concentrates on an aspect of marketmaking that is very different
from the information aspect studied traditionally (e.g. Glosten and Milgrom
(1985)).

In our model, marketmakers offer an investor prices based on the in-
vestor’s outside options, that is, based on the investor’s ability to trade with
other investors or marketmakers.

This describes well marketmaking in OTC fixed-income derivatives. In
the fixed-income markets, customers rarely have private information so stan-
dard information-based explanations of the spread seem less plausible. In
these markets, the “sales trader” sets the price mainly based on the cus-
tomer’s (perceived) outside option, not so much based on the fear that the
customer might have superior information. The customer’s outside option
depends on how easily he can find a counterparty himself (proxied by λ in our
model) and how easily he can access other banks (proxied by ρ in our model).
To trade OTC derivatives with a bank one needs, among other things, an
account and a credit clearing. Small investors often only have an account
with one or few banks, implying that such investors have lower search op-
tions. Hence, a testable implication of our search framework is that (small)
investors with lower search options receive less competitive prices. We note
that these investors are less likely to be informed, so the information-based
models would have the opposite prediction.

The model also helps explain the effect of search frictions on marketmak-
ing in equity markets. In particular, the model shows that even a monop-
olistic marketmaker has a tight bid-ask spread if investors can easily trade
directly with each other (that is, high λ). This resembles the situation at the
NYSE where there is a single specialist for each stock, but floor brokers can
relatively easily find each other and trade directly, and outside brokers can
“find each other” and trade around the specialist by submitting limit orders.
Nasdaq, on the other hand, is a phone market with several dealers for each
stock. On Nasdaq it can be difficult for investors to find each other directly,
and, before the reforms in 1994, 1995, and 1997, it was difficult for investors
to compete with the marketmakers through limit orders.18 This may help
explain why spreads were higher on Nasdaq than on NYSE (Huang and Stoll
(1996)). Consistent with this view, Barclay, Christie, Harris, Kandel, and

18See Barclay, Christie, Harris, Kandel, and Schultz (1999) and references therein.
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Schultz (1999) find that the “Securities and Exchange Commission began
implementing reforms that would permit the public to compete directly with
Nasdaq dealers by submitting binding limit orders ... Our results indicate
that quoted and effective spreads fell dramatically.”

The marketmakers’ competition from direct trade between investors can
be measured by the participation rate of marketmakers, that is, the fraction
of trades that are intermediated by a marketmaker. Our model suggest that,
with equal marketmaker availability and stock characteristics, stocks with
higher participation rates have lower λ’s and, hence, higher bid-ask spreads.
On Nasdaq the participation rate used to be close to 100%, which corresponds
in our model to λ close to zero. On NYSE the participation rate was between
18.8% and 24.2% in the 1990s (New York Stock Exchange (2001)).

A Appendix: Proofs

Proof of Proposition 1: Start by letting

y =
λu

λu + λd

and assume that y > s. The case y ≤ s can be treated analogously. Setting
the right-hand side of Equation (3) to zero and substituting all components
of µ other than µlo in terms of µlo from Equations (1) and (2) and from
µlo + µln = λd(λd + λu)

−1 = 1 − y, we obtain the quadratic equation

Q(µlo) = 0, (A.1)

where

Q(x) = 2λx2 + (2λ(y − s) + ρ+ λu + λd)x− λds. (A.2)

It is immediate that Q has a negative root (since Q(0) < 0) and has a root
in the interval (0, 1) (since Q(1) > 0).

Since µlo is the largest and positive root of a quadratic with positive
leading coefficient and with a negative root, in order to show that µlo < η
for some η > 0 it suffices to show that Q(η) > 0. Thus, in order that µho > 0
(for, clearly, µho < 1), it is sufficient that Q(s) > 0, which is true, since

Q(s) = 2λs2 + (λu + 2λ(y − s) + ρ)s.
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Similarly, µln > 0 if Q(1 − y) > 0, which holds because

Q(1 − y) = 2λ(1 − y)2 + (2λ(y − s) + ρ) (1 − y) + λd(1 − s).

Finally, since µhn = y − s+ µlo, it is immediate that µhn > 0.
We present a sketch of a proof of the claim that, from any admissible

initial condition µ(0) the system converges to the steady-state µ.
Because of the two restrictions (1) and (2), the system is reduced to two

equations, which can be thought of as equations in the unknowns µlo(t) and
µl(t), where µl(t) = µlo(t) + µln(t). The equation for µl(t) does not depend
on µlo(t), and admits the simple solution:

µl(t) = µl(0)e
−(λd+λu)t +

λd

(λd + λu)
(1 − e−(λd+λu)t).

Define the function

G(w, x) = −2λx2− (λu +λd +2λ(1−s−w)+ρ)x+ρmax{0, s+w−1}+λds

and note that µlo satisfies

µ̇lo(t) = G(µl(t), µlo(t)).

The claim is proved by the steps:
1. Choose t1 high enough that s+µl(t)−1 does not change sign for t > t1.
2. Show that µlo(t) stays in (0, 1) for all t, by verifying that G(w, 0) > 0

and G(w, 1) < 0.
3. Choose t2 (≥ t1) high enough that µl(t) changes by at most an arbi-

trarily chosen ε > 0 for t > t2.
4. Note that, for any value µlo(t2) ∈ (0, 1), the equation

ẋ(t) = G(w, x(t)) (A.3)

with boundary condition x(t2) = µlo(t2) admits a solution that converges
exponentially, as t→ ∞, to a positive quantity that can be written as (−b+√
b2 + c), where b and c are affine functions of w. The convergence is uniform

in µlo(t2).
5. Finally, using a comparison theorem (for instance, see Birkhoff and

Rota (1969), page 25), µlo(t) is bounded by the solutions to (A.3) corre-
sponding to w taking the highest and lowest values of µl(t) for t > t2 (these
are, of course, µl(t2) and limt→∞ µh(t)). By virtue of the previous step, for
high enough t, these solutions are within O(ε) of the steady-state solution
µlo.
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�

Proof of Theorem 2: In order to calculate Vσ and P , we consider a partic-
ular agent and a particular time t, let τl denote the next (stopping) time at
which that agent’s intrinsic type changes, let τi denote the next (stopping)
time at another investor with gain from trade is met, τm the next time a
marketmaker is met, and let τ = min{τl, τi, τm}. Then,

Vlo = Et

[
∫ τ

t

e−r(u−t)(1 − δ) du+ e−r(τl−t)Vho1{τl=τ}

+ e−r(τi−t) (Vln + P ) 1{τi=τ}

+ e−r(τm−t) (Vln +B) 1{τm=τ}

]

Vln = Et

[

e−r(τl−t)Vhn

]

(A.4)

Vho = Et

[
∫ τl

t

e−r(u−t) du+ e−r(τl−t)Vlo

]

Vhn = Et

[

e−r(τl−t)Vln1{τl=τ} + e−r(τi−t) (Vho − P ) 1{τi=τ}

+e−r(τm−t) (Vho − A) 1{τm=τ}

]

,

where Et denotes expectation conditional on the information available at
time t. Differentiating both sides of Equation (A.4) with respect to t, we get
(7). In steady-state, V̇σ = 0 and hence (7) implies the following equations
for the value functions and prices:

Vlo =
(λuVho + 2λµhnP + ρB + (2λµhn + ρ)Vln + 1 − δ)

r + λu + 2λµhn + ρ

Vln =
λuVhn

r + λu

(A.5)

Vho =
(λdVlo + 1)

r + λd

Vhn =
(λdVln + (2λµlo + ρ)Vho − 2λµloP − ρA)

r + λd + 2λµlo + ρ

(We note that agents on the “short side” of market are rationed when they
interact with the marketmaker, and, therefore, their trading intensity with
the marketmaker is less the ρ. This does not affect the equations in (A.5),
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however, because the price is the reservation value.) Define ∆Vl = Vlo − Vln

and ∆Vh = Vho − Vhn to be the reservation values. With this notation, the
prices are determined by

P = ∆Vl(1 − q) + ∆Vhq

A = ∆Vhz +M(1 − z) (A.6)

B = ∆Vlz +M(1 − z)

M =

{

∆Vh if s < λu

λu+λd

∆Vl if s > λu

λu+λd

and M ∈ [∆Vl,∆Vh] if s = λu

λu+λd

. Let

ψd = λd + 2λµlo(1 − q) + (1 − q̃)ρ(1 − z)

ψu = λu + 2λµhnq + q̃ρ(1 − z) ,

where

q̃







= 1 if s < λu

λu+λd

= 0 if s > λu

λu+λd

∈ [0, 1] if s = λu

λu+λd

This this notation, we see that appropriate linear combinations of (A.5)–
(A.6) yield

[

r + ψu −ψu

−ψd r + ψd

] [

∆Vl

∆Vh

]

=

[

1 − δ
1

]

Consequently,
[

∆Vl

∆Vh

]

=
1

r

[

1
1

]

− δ

r

1

r + ψu + ψd

[

r + ψd

ψd

]

, (A.7)

which leads to the price formula stated by the theorem.
A formal proof of the optimality of the proposed strategies can be given

along the same lines as in Duffie, Gârleanu, and Pedersen (2003).

�

Proof of Theorem 3: The convergence of the masses µ to µ∗ is easily
seen using (A.1), whether λ or ρ tends to infinity. Let us concentrate on the
prices.
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1. If s < λu/(λu +λd), then we see using (A.1) that λµhn tends to infinity
with λ, while λµlo is bounded. Hence, Equation (A.7) shows that both ∆Vl

and ∆Vh tend to r−1, provided that q > 0. If s > λu/(λu + λd), λµlo tends
to infinity with λ, while λµhn is bounded. Hence, ∆Vl and ∆Vh tend to
r−1(1− δ), provided that q < 1. If s = λu/(λu +λd), then λµhn = λµlo tends
to infinity with λ, and ∆Vl and ∆Vh tend to r−1(1− δ(1− q)). In each case,
the reservation values converge to the same value, which is a Walrasian price.

2. Equation (A.7) shows that both ∆Vl and ∆Vh tend to the Walrasian
price r−1(1 − δ(1 − q̃)) as ρ approaches infinity.

3. When z = 1, Ak−Bk increases with ρ because A−B = δ(r+ψu+ψd)
−1

and both ψu and ψd decrease, since µlo and µhn do.

�

Proof of Theorem 4: Let the value function of a sophisticated type-σ
investor be V s

σ , and the value function of an unsophisticated type-σ investor
be V u

σ . These value functions and the prices (As, Bs, Au, Bu) are computed as
in (A.5)–(A.6), with the modification that the interdealer priceM is different.
For any fixed inter-dealer price M , an agent who meets the marketmaker
with intensity ρ, and who sells as a lo type and buys as a hn type (i.e. with
∆Vl ≤M ≤ ∆Vh) has value functions given as follows :

Vho(r + λd) = 1 + λdVlo

Vhn(r + λd + ρ) = λdVln + ρ(Vho − [z∆Vh + (1 − z)M ])

Vln(r + λu) = λuVhn

Vlo(r + λu + ρ) = 1 − δ + λuVho + ρ(Vln + [z∆Vl + (1 − z)M ])

The system is reduced to

∆Vh(r + λd + ρ(1 − z)) = 1 + λd∆Vl + ρ(1 − z)M

∆Vl(r + λu + ρ(1 − z)) = 1 − δ + λu∆Vh + ρ(1 − z)M.

which implies that
[

∆Vl

∆Vh

]

=
1 + ρ(1 − z)M

r + ρ(1 − z)

[

1
1

]

(A.8)

− δ

r + ρ(1 − z)

1

r + λu + λd + ρ(1 − z)

[

r + λd + ρ(1 − z)
λd

]
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Hence, this agent faces a bid-ask spread of

z(∆Vh − ∆Vl) =
zδ

r + λu + λd + ρ(1 − z)

We show below, for each case, that M is given by

M =



















∆V s
h if s < µs λu

λu+λd

∆V u
h if µs λu

λu+λd

< s < λu

λu+λd

∆V u
l if λu

λu+λd

< s < 1 − µs λd

λu+λd

∆V s
l if 1 − µs λd

λu+λd

< s

(A.9)

(a). Consider first the case s < µsλu/(λu + λd). The claim is that it is
an equilibrium that the unsophisticated investors do not own any shares and
do not trade. Assuming this to be true, the market has only sophisticated
investors, the interdealer price is M = ∆V s

h , and the buyers are rationed.
It remains to be shown that, with this interdealer price, there is no price

at which marketmakers will sell and unsophisticated investors will buy. First
of all, we note that the optimal response of an investor to the Markov (time-
independent) investment problem can be chosen to be Markov, which means
that one only needs to check the payoffs from Markov strategies that stipulate
the same probability of trade for a give type at any time. The linearity of
the problem further allows one to assume that the trading probability is 1
or zero. (When indifferent, the choice does not matter, so we may assume a
corner solution.)

There are three possible Markov strategies for the unsophisticated in-
vestor that involve buying: buying as type h and selling as type l, buying as
type l and selling as type h, and buying and holding (never selling).

If the unsophisticated investor buys as an h type and sells as an l type,
then her value function satisfies (A.8), implying that ∆V u

h < ∆V s
h = M since

ρu < ρs. The reservation values are even lower if she buys as an l and sells as
an h type. Finally, if the unsophisticated investor buys and never sells, then
her value function is also smaller than M . This is inconsistent with trading
with the marketmaker, meaning that she never buys.

(b). For the case µs
h < s < µh, the equilibrium is given by an inter-dealer

price of Au = M = ∆V u
h = A(ρu). This is also the price at which unsophis-

ticated hn-agents buy from the marketmaker, and these agents are rationed.
The sophisticated types hold a total µs

h = µsλu/(λu +λd) of the supply, while
the unsophisticated types hold the rest. This is clearly an equilibrium for
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the unsophisticated types. We have to ensure that sophisticated types also
behave optimally. In particular, we have to check that ∆V s

l ≤ M ≤ ∆V s
h .

For this, we use (A.7) and (A.8):

∆V s
l ≤M ⇔

1 + ρs(1 − z)M

r + ρs(1 − z)
− δ(r + λd + ρs(1 − z))

r + ρs(1 − z)

1

r + λu + λd + ρs(1 − z)
≤M ⇔

r + λd + ρs(1 − z)

r + λu + λd + ρs(1 − z)
≥ λd

r + λu + λd + ρu(1 − z)

where the last inequality is satisfied because ρs ≥ ρu. Similarly, it can be
verified that M ≤ ∆V s

h using the same formulae.
(c). The remaining two cases are dual to the ones that we just proved. To

see this, take the following new perspective of an agent’s problem: An agent
considers “acquiring” non-ownership (i.e. selling). The number of “shares”
of non-ownership is 1− s. If an l-type acquires non-ownership then he gets a
“dividend” of −(1− δ) (that is, he gives up a dividend of 1− δ). If a h-type
acquires non-ownership then he gets a “dividend” of −1. Said differently, he
gets a dividend of −(1− δ) like the l-type, and, additionally, he has a cost of
δ. Hence, from this perspective h and l types are reversed, and the supply
of “shares” is 1 − s.

This explains why the equilibria in the latter two cases are the mirror
images of the equilibria in the former two cases. In particular, if λu

λu+λd

< s <

1 − µs λd

λu+λd

both sophisticated and unsophisticated investors trade, and the
unsophisticated l type is rationed.

If 1 − µs λd

λu+λd

< s, each unsophisticated investor owns a share and does

not trade. (Using the alternative perspective, they are out of the market
for non-ownership). The sophisticated investors hold the remaining (1 − µs)
shares, they trade, and the selling sophisticated investors are rationed.

�

Proof of Theorem 5:

There exists a number ρM that maximizes (16) since πM is continuous
and πM(ρ) → −∞ as ρ→ ∞.

We are looking for ρC ≥ 0 such that

Γ′(ρC) = rE

∫ ∞

0

µm(ρC)(A(ρC) −B(ρC))e−rt dt. (A.10)
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Consider how both the left and right-hand sides depend on ρ. The left-hand
side is 0 for ρ = 0, increasing, and tends to infinity as ρ tends to infinity. For
z = 0, A(t, ρ) − B(t, ρ) = 0 everywhere, so the the right-hand side (RHS)
is zero, and, therefore, the unique solution to (A.10) is clearly ρC = 0. For
z > 1, the RHS is strictly positive for ρ = 0. Further, the steady-state
value of the RHS can be seen to be decreasing, using the fact that µm is
decreasing in ρ, and using the explicit expression for the spread provided by
(A.7). Further, by continuity and still using (A.7), there is ε > 0 and T
such that ∂

∂ρ
µm(A − B) < −ε for all t > T and all r. Further, note that

r exp(−rt) is a density function for all r, and that the closer r is to zero, the
more weight is given to high values of t (that is, the more important is the
steady-state value for the integral). Therefore, the RHS is also decreasing in
ρ for any initial condition on µ if r is small enough. These results yield the
existence of a unique solution.

To see that ρC > ρM when z = 1, consider the first-order conditions that
determine ρM :

Γ′(ρM) = rE

∫ ∞

0

[

µm(t, ρM)(A(t, ρM) −B(t, ρM)) (A.11)

+ρM ∂

∂ρM

(

µm(t, ρM)(A(t, ρM) −B(t, ρM))
)

]

e−rt dt.

The integral of the first integrand term on the right-hand side of (A.11) is
the same as that of (A.10), and that of the second is negative for small r.
Hence, the right-hand side of (A.11) is smaller than the right-hand side of
(A.10), implying that ρC(1) > ρM .

To see that ρC(z) is increasing in z, we use the Implicit Function Theorem
and the dominated convergence theorem to compute the derivative of ρC(z)
with respect to z, as

rE
∫ ∞

0
µm(ρC)(Az(ρ

C , z) −Bz(ρ
C , z))e−rt dt

Γ′′(ρC) − rE
∫ ∞

0
d
dρ
µm(ρC)(A(ρC , z) −B(ρC , z))e−rt dt

. (A.12)

If we use the steady-state expressions for µ, A, and B, this expression is seen
to be positive because both the denominator and the numerator are positive.
Hence, it is also positive with any initial masses if we choose r small enough.

�
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Proof of Theorem 6: (i) The first part of the theorem, that the monopolis-
tic marketmaker’s search intensity does not affect investors when they can’t
search for each other, follows from (A.5), which shows that investor’s utility
is independent of ρ.

(ii) We want to prove that the investor welfare is decreasing in ρ, which
directly implies that the marketmaker over-invests in intermediation services.

We introduce the notation ∆Vo = Vho − Vlo, ∆Vn = Vhn − Vln, and φ =
∆Vh −∆Vl = ∆Vo −∆Vn, and start by proving a few general facts about the
marketmaker spread, φ.

The dynamics of φ are given by the ordinary differential equation (ODE)

φ̇t = (r + λd + λu + 2λ(1 − q)µlo + 2λqµhn)φt − δ,

Let R = r + λd + λu + 2λ(1 − q)µlo + 2λqµhn. The equation above readily
implies that

∂φ̇t

∂ρ
= R

∂φt

∂ρ
+

(

2λ(1 − q)
∂µlo(t)

∂ρ
+ 2λq

∂µhn(t)

∂ρ

)

φt. (A.13)

This can be viewed an ODE in the function ∂φ

∂ρ
by treating φt is a fixed

function. It can be verified that 0 < ∂φ

∂ρ
< ∞ in the limit as t → ∞,

that is, in steady state. Further, a simple comparison argument yields that
∂µlo(t)

∂ρ
= ∂µhn(t)

∂ρ
< 0. Hence, the solution to the linear ODE (A.13) is positive

since

∂φt

∂ρ
= −

∫ ∞

t

e−R(u−t)

(

2λ(1 − q)
∂µlo(u)

∂ρ
+ 2λq

∂µhn(u)

∂ρ

)

φu du > 0.

Consider now the case q = 1, for which, since Vhn = Vln = 0,

V̇ho(t) = rVho(t) + λdφt − 1 .

Differentiating both sides with respect to ρ and using arguments as above,
we see that ∂Vho(t)

∂ρ
< 0 since ∂φt

∂ρ
> 0. Consequently, Vlo(t) = Vho(t) − φt also

decreases in ρ.
If q = 0, then (A.5) shows that Vlo and Vho are independent of ρ. Further,

V̇ln(t) = rVln(t) + λu(φt − ∆Vo(t)).

As above, we differentiate with respect to ρ and conclude that Vln(t) decreases
in ρ since ∂φt

∂ρ
> 0 and ∆Vo(t) is independent of ρ. Consequently, Vhn(t) =

Vln(t) − φt + ∆Vo(t) also decreases in ρ.
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Proof of Theorem 7:

To see that zI > 0, we note that with ρ = ρC(z),

d

dz
wI

∣

∣

z=0 = −δE
∫ ∞

0

d

dρ
µlo(t, ρ)e

−rt dt
dρC

dz
> 0,

where we have used that ρC(0) = 0, that dρC

dz
> 0 at z = 0 (see (A.12)), that

A−B = 0 if z = 0, and that for all t, d
dρ
µlo(t, ρ) < 0.

To prove that zI < zS ≤ zM = 1, it suffices to show that the marketmaker
welfare is increasing in z, which follows from

d

dz
wM = ρ

d

dz

[

E

∫ ∞

0

µlo(a− b)e−rt dt

]

=
ρ

r

d

dz
Γ′(ρC(z))

=
ρ

r
Γ′′(ρC(z))

dρC

dz
> 0,

suppressing the arguments t and ρ from the notation, where we have used
twice the fact that Γ′(ρ) = rE

∫ ∞

0
µlo(A − B)e−rt dt if ρ = ρC(z), and that

dρC

dz
> 0 (Theorem 5).

�
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