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1 Introduction

Fine art is usually sold in a traditional auction, and the same piece of art is
often traded repeatedly. Real estate is sometimes traded in auctions, and a
house is often held by several owners during its life. Similarly, planes, land,
and many other durable goods are repeatedly traded in auctions. Further,
most financial securities are traded using auction-like mechanisms, and se-
curities are often turned over many times before they mature. Important
examples include blocks of shares, bonds, OTC derivatives, and, recently,
the right to use shares for shorting.

This paper studies the effect of the information structure and trading
mechanism on prices, volume, and welfare in a dynamic economy with double-
sided asymmetric information.

Auctions have been studied extensively, starting with the seminal pa-
per by Vickrey (1961).! This literature is based on the assumptions that
the current owner must sell, and that the buyer of an asset keeps the asset
throughout its life. In many situations, however, such as those mentioned
above, the sale decision is endogenous, and the buyer of an asset antici-
pates later resale of the asset. Although resale motives are important in
many markets, resale has received little attention in the auction literature.
Bikhchandani and Huang (1989) consider an auction model in which bidders
in the “primary market” must sell immediately after the auction in a compet-
itive “secondary market.” This makes the model essentially a single-period
model in which interesting issues regarding information revelation through
bidding arise. Haile (1999) studies a generalized version of the model by
Bikhchandani and Huang (1989), while Haile (2001) finds resale to be im-
portant in U.S. timber sales. Further, Haile (2003) considers resale due to
new information immediately after the auction, Ausubel and Cramton (1999)
and Zheng (2002) consider (multiple unit) auctions with asymmetric agents
and efficient secondary markets, and Nyborg and Strebulaev (2000) study
short squeezes in the secondary market.

Common among these papers is that they take the initial sale as exoge-
nous, consider an immediate possible resale, and, therefore, the main focus
is on the signaling problem associated with the information revealed by bids.
These assumptions are natural for Treasury auctions, timber auctions, and
in other markets with active secondary markets.

IFor an overview of auction theory see Klemperer (2000).



A work by Picasso, a plane, a piece of land, or a block a shares, on the
other hand, are sold when the owner chooses to do so, and such an asset is
usually not bought with the intention of immediate resale. Rather, such an
asset is typically held for a significant time period before it is resold, and,
at the time of resale, the information revealed in the previous auction is no
longer of first-order relevance. In order to study repeated trade of such assets,
we consider a multi-period model in which (%) every period, the owner and
the possible buyers receive private information about the value of owning
the asset this period (the asset’s agent-specific use value or “dividend”), (i)
based on his information, the current owner decides whether to keep the asset
or to sell it, and (7ii) the private information is short lived in the sense that
what is known privately this period is made public or becomes irrelevant next
period.

These assumptions imply that on owner’s sale decision depends on his
expected dividend this period, the expected price he can raise in an auction,
the value of owning the asset in the future periods, and the value of not
owning the asset depends on the possibility of buying the asset at a relatively
low price. In case of a sale, bidders are concerned with the information
revealed by the owner’s decision to sell, the value of the future dividends, the
ease with which the object can be sold in the future, and the possible rents
that one can extract as a buyer in the future. A straightforward implication
is that, in a Markov equilibrium, bidders bid as in a single-period auction in
which the “prize” is the next dividend plus the (continuation-)value of being
an owner less the value of being a buyer (similarly to Haile (2001) and Haile
(2003)). Bidders take into account the (adverse) information revealed by the
fact that the owner has decided to sell. Hence, solving our dynamic auction
model is similar to standard single-period auctions with the complication
that one must determine the equilibrium set of signals for which the owner
decides to sell, a fixed point problem.

We give conditions under which the owner’s decision to sell, expected
prices, and expected continuation values are the same for a large class of
auction mechanisms. The most important condition underlying this result is
that private signals are independent conditional on the public signal. This
generalizes the Revenue Equivalence Theorem? to a multi-period setting, and

ZVickrey (1961) showed that certain different auction methods have the same expected
revenue. General revenue equivalence results were derived first by Myerson (1981) and
Riley and Samuelson (1981). That allocation equivalence implies the equivalence of value
functions is a general property of games in which agents have (conditionally) independent,



incorporates irrelevance with respect to allocations as well as revenue.

Further, under these assumptions, we can investigate the circumstances
under which trade is impossible (or liquidity “dries up”) without specifying
a trading mechanism. It follows intuitively from the No-Trade Theorems of
Kreps (1977) and Milgrom and Stokey (1982) that no trade is an equilibrium
if the dividend does not depend on who owns the asset (pure common values).
We derive a robust version of the No-Trade Theorem by showing that there
cannot be trade if the values are “too common.” Said differently, trade can
only occur if the gains from trade are greater than some threshold. This
threshold equals the owner’s expected cost of selling, which is due to the
rents extracted by buyers because of their private information.

So far, we have discussed the simple benchmark case of (conditionally)
independent signals. In common-value auctions, however, it may be the
case that agents have correlated signals. In particular, these signals may
satisfy the intuitively appealing condition of affiliation, which, informally,
means that if one agent’s signal is good then the other agents’ signals are
likely to be good, as well. When private signals are affiliated (conditional
on the public signal), Milgrom and Weber (1982) show that the expected
revenue of an English auction is higher than that of a second-price auction,
which, in turn, has a higher expected revenue than a first-price auction.
We give general conditions under which “revenue ranking” implies “volume
ranking” and “welfare ranking.” By this, we mean that the owner sells on a
larger set of signals when using the auction mechanism that generates higher
expected revenue for a fized (anticipated) sale set, and that this leads to a
more efficient allocation of the asset. In particular, we show that volume and
welfare are higher with English auctions than with second-price auctions, and
volume and welfare are higher with second-price auctions than with first-price
auctions, under certain conditions.

The intuition for these results is as follows. Consider, for instance, the
case of the first-price and the second-price auctions, and an equilibrium for
the first-price auction with sale set X. If the owner had to use a second-price
auction instead, and the bidders still expected X to be the sale set, then
the owner would have a higher expected price conditional on any signal he
might have. (See the discussion below.) Hence, the owner would still want

short-lived private information, and such a results are derived in a different dynamic
settings by Athey, Bagwell, and Sanchirico (2000) and Haile (2003). We note that the
allocation equivalence is part of our result, namely that the sale sets are the same.



to sell for signals in X, and also if he had (slightly) better signals, so he
would sell on a larger set, X2 D X, of signals. If the bidders anticipated that
the owner sold if his signal were in X?, then they would bid more. Taking
this into account, the owner would sell on an even bigger set, X® D X2, of
signals, and so on. In the limit we find an equilibrium sale set, U; X?, for
the second-price auction, which is clearly larger than the first-price-auction
sale set. This argument also shows that the expected price is higher for the
second-price auction if the continuation values in the two mechanisms are
the same — as is the case in the last period. In earlier periods, however, the
expected price may not be higher for the second price auction, as is discussed
further in the paper. The second price auction has, nevertheless, the larger
sale set in all periods.

Note that the argument above uses the fact that, for a given (antici-
pated) sale set, the second-price auction has a higher expected price than
the first-price auction conditional on any signal the owner might have. This
is a stronger result than that of Milgrom and Weber (1982), who show that
the price is higher when averaging over the owner’s signals. We show that
this “strong revenue ranking” applies when comparing the first- and second-
price auctions. The strong revenue ranking may not apply, however, when
comparing the English and second-price auctions. The English auction has a
smaller winner’s curse, which increases expected prices (Milgrom and Weber
(1982)), but it also has the effect of partially revealing the owner’s signal
in the course of the auction. Therefore, conditional on a low owner sig-
nal the expected price in an English auction could be lower than that of a
second-price auction. For high owner signals, on the other hand, we have the
standard ranking of expected prices. The highest owner signal in the sale
set is the signal for which the owner is indifferent between selling and not
selling. This “marginal” signal is what determines the equilibrium, and since
revenue ranking applies conditional on this signal, the English auction has a
larger equilibrium sale set than the second-price auction.

In addition to this volume ranking, we also rank mechanisms in terms of
welfare. The intuition for welfare being higher with a higher-volume mech-
anism is as follows: When the owner decides to sell, the expected price is
higher than his expected utility of keeping the asset. Further, the buyer
expects a higher utility than the price. Therefore, the buyer’s utility of
owning is higher than the seller’s, and the trade is welfare improving. This
intuition over-simplifies the problem slightly by ignoring conditioning infor-
mation, but, under certain conditions, it is correct at least for high owner
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signals, implying that a higher-volume mechanism indeed is associated with
higher welfare.

The paper is organized as follows. Section 2 lays out our model of re-
peated auctions. Section 3 provides our results regarding multi-period rev-
enue equivalence and no trade. Section 4 considers the case of conditionally
affiliated signals, and Section 5 concludes. Proofs are in the appendix.

2 A Model of Repeated Auctions

In this section we present a model of repeated auctions and show how to
compute its equilibria.

A finite set, N' = {0,1,...,n}, of (ex-ante) identical risk-neutral agents
trades one object® in each of periods 0,1,...,7 —1 < oo. If agent i owns
the security at the beginning of period ¢, then he receives a dividend given
by the real-valued random variable V. We denote the probability space
on which all random variables are defined by (Q,F, Pr), and let o € N
denote the owner at the beginning of period t. After the dividend is paid,
each agent, 4, receives a private signal, i, and a public signal, y,. Here, x!
and y; are random variables with compact supports, X and Y, respectively,
that are subsets of Euclidean spaces. These signals help agents predict the
next period’s dividend, V}’;. After the owner of the security has seen his
information, he decides whether to keep the object or to offer it for sale. If
the owner decides to sell, the object is sold using an auction mechanism M.

An auction mechanism, M = (O, z, «), consists of a measurable
space,! O, of allowed “bids”® and a triplet, (7, z, ), of mappings defined as
follows. To an n-tuple of bids,® 7 : ©® — A,, assigns the probabilities with
which each of the bidders acquires the object and z : ©" — R"™ assigns the

3Some of our results extend to multi-object models in which each agent can hold one
object only.

4Also, a mechanism must specify a o-algebra on ©. We require throughout that all
mappings and subsets considered to be measurable. We use the Borel o-algebra on Eu-
clidean spaces.

5For sealed-bid auctions, a bid is just a real number. However, for other auction
mechanisms a “bid” can be a complicated strategy. In an English Auction, for example,
a “bid” is a specification of the price level at which to drop out conditionally on the
price levels at which other bidders have dropped out. This is why we allow a general
specification of ©.

CHere, A, = {(21,...,2n) € [0,1]" : Y1 | @; = 1} is the n-simplex.



amounts to be paid by the bidders. The mapping a: ©" x {1,...,n} — Z,

for some measurable space Z, is such that «(6,...,60,,7) is the informa-
tion revealed by the mechanism to all of the participants when the bids are
01,...,0,, and 7 is the agent who receives the object. We assume that all

agents receive the same information through the mechanism. In particular,
the information, «, reveals the identity, 0.1, of the new owner. The price
received by the seller, p : ©" — R, is the sum of the transfers from the bid-
ders. That is, p = > | z;. We could also assume that there is a transaction
cost associated with the auction. While such a feature may add realism, we
abstract from it since it does not affect our results.

We do not consider reserve prices for the following reasons. First, if
the owner would set a reserve price and the object is not sold, then he
would be tempted to hold another auction in the same time period. This
inability to commit to a reserve price reduces its effect — see McAfee and
Vincent (1997) and Horstmann and LaCasse (1997). Second, Myerson and
Satterthwaite (1983) show that double-sided asymmetric information implies
that all efficient trades cannot take place no matter what mechanism is used.
Third, we can envisage a model in which the owner sells the object to a risk-
neutral competitive intermediary, who has no use for the object and who sells
the object immediately to the other traders. This assumption means that
the current owner has no price risk, and the intermediary has no reason to
keep the asset. In such a model, nothing changes in the case of conditionally
independent signals, while the same qualitative results obtain” when signals
are affiliated.

The repeated-auction game is defined as follows. At each time the owner
decides whether to sell or keep the asset and buyers decide how much to
bid in case there is a sale. A strategy for agent i is defined as a process
A= (At)f:_ol, where A; : Q — {sell, keep} U O is measurable with respect
to the information® F; available to agent 7 at time ¢. A strategyA for agent
i is said to be feasible provided A, € {sell, keep} if and only if agent i is
the owner at the beginning of period t (i.e. o, = 1).

"In fact, the analysis is cleaner, in that fewer assumptions are necessary.

8Formally, F; = o(B-1,28, Y0, Boy---»Ti_1,Yt—1, Bt—1, 2%, y¢), where for u > 0, 3, =
a(by,...,0,,1) if a sale took place at w with bids 0y, ...,60, and bidder i receiving the
asset, and otherwise g is a fixed constant (conveying no information). We assume that
(_1 contains the identity, og, of the owner at time 0, and the initial value, y_1, of the
public signal.



The utility, 11, of agent i is given by

T T-1
IT(A°,... A" = E <Z 0Vil(imon) — > 0", ‘ 51> ,
u=1 u=0

where, z' is the net cash payment (receipt if negative) made by agent i at
time w. That is, if there is a sale, 2! = 2! for i # o, and z! = —p, for i = o,,.
If there is no sale, then z/, = 0 for all i. We are ready to define an equilibrium
in the repeated auction game.

Definition 1 An equilibrium for (M, z,y,V,T) is a set of feasible strate-
gies, A= (A% AL ... A™), such that, for alli € N,

I(A) > TI(A%... A7H A AT A, (1)
for all strategies, A’, feasible for agent i.

It would be natural to impose an equilibrium refinement in the spirit of Per-
fect Bayesian Nash Equilibrium. This would rule out, for instance, equilibria
in which the owner never sells, and conditionally on a sale, all bidders bid
“minus infinity.” To keep notation simple, however, we will not impose such
a refinement since our results do not depend on it.

Assumption 1 The process y is Markov, and given y;, T, = (¥,... x7) is
independent of (xs,ys) for s < t. There exist vy : X x X x X" ! x Y — R,
and u; : X x X" x Y — R, such that for i # oy,

E(‘/tl—i-l | o5 Yoy - - -5 Tty yt) = Uf('réa x?t> (xg>j€{i,0t}7 yt)’ (2>
and®

E(V;f(—)ffl | X0, Yo, - - -5 Tt yt) = ut(x?t7 (xg)j?fotv yt)' (3)

This assumption implies that when agents have received the public signal,
Yt, at time ¢, their assessments of future dividends do not depend on beliefs
about past private signals. Hence, we are considering “short-lived” private
information. Private information is short lived, for instance, if it is only
relevant for the next dividend payment. If the private information is relevant

9Here, (x{ )ig{i,or} can be interpreted as the ordered sequence of signals. Later, however,
we assume that v is symmetric in these arguments. The same holds for u. See Footnote 11.
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for all future dividends is also short lived, however, if it is made public in
the next period regardless if the agents’ actions. While this is a strong
assumption, it is not unrealistic, for instance, if the potential auction times
are relatively far apart. We allow for agent ¢’s dividend, V/’,,, to depend on
his own information, z%, and the current owner’s information, z{*, in different
ways than it depends on the information (z7) je{i,ory Of the other agents.
Additionally, Assumption 1 allows us to focus on Markov equilibria. We
further restrict our attention to symmetric equilibria, that is, equilibria in
which all agents use the same strategy.! For a symmetric equilibrium to
obtain naturally, we assume that: v is symmetric in its last n — 1 arguments
taking values in X; u is symmetric in its last n arguments taking values in
X;! agents’ signals, x;, are symmetrically distributed? conditionally on ;
the auction mechanism M treats agents symmetrically.!® Finally, we call an
equilibrium, A = (A% A', ..., A"), a symmetric Markov equilibrium if
for all ¢ there exists some A; : X x Y x {0,1} — {sell, keep} U O, such that
for all i, A} = Ai(2}, yt, Lizo(r)})- In a symmetric Markov equilibrium, the
strategies can be characterized by a set, X; = X(¢,y;) C X, of private signals
on which an agent decides to sell if he owns the asset at time ¢, and a bidding
strategy, b; : X X Y — O, used by any agent who does not own the asset.
Here, X : {0,...,T — 1} x Y — 2%X is a correspondence with a measurable
graph.*  When computing any player’s optimal strategy, his own future
equilibrium strategy (as well as the strategies of all other players) can be
taken as given.'> Moreover, in a symmetric Markov equilibrium, continuation
values (at time t) depend only on current signals (x! and y;) and on whether
the agent owns the asset.'® Hence, we can define S; = S(¢, xi, ;) as the value
at time t, after the dividend is paid and information is received, conditional
on owning the object, and By = B(t, x!, ;) as the value function conditionally

10Most of our results generalize to a setting in which agents are not symmetric. For
simplicity we restrict attention to the symmetric case.
' That is, for any permutation, p, of {1,....,n — 1}, v(a,b,c1,...,cn_1,y) =

v(a, b, cp1), -+ Cpn—1),¥), and for any permutation, o, of {1,...,n}, u(a,by,...,bn,y) =
u(a, bg(l), ey bg(n), y)

12This means that for any permutation, p, of {0,...,n}, (29,...,2%) and
(@ . 2?™) are identically distributed (conditionally on ;).

13That is, for any permutation, p, of {1,...,n}, we require that m;(zy,...,7,) =
Tp@i)(Tp1)s - - - » Tp(ny) for all 4. Similar conditions are required for z and a.

14Measurability is with respect to the product o-algebra.
15This is called the one-stage-deviation principle (see Fudenberg and Tirole (1998)).
16This follows from Assumption 1.



on not owning the object.!” Supposing, without loss of generality, that agent
0 owns the asset and agent 1 considers how much to bid, the respective
Bellman equations are:

St(x7?7 yt) = sup E (1(a:sell) [pt + 5Bt+1] (4)

ac{sell,keep}
+1(0L=keeza)(S [Vﬁq + St—ﬁ—l} } x?,yt) (a.s.)

By(why) = supE (1pexy |57 (Vi + Sia) = 2(0) (5)
be©

+6 (1 . 7%(3)) Btﬂ] + 1a0gx 0B

a:y) (a5,

where the supremum is to be taken state by state. We have used the simplify-
ing notation: p, = p(by(w¢, 1), - - - bi@y, 1)), 7(0) = ma (b, be(aF, ye), - - -, be(2F s wi)),
and 2(b) = 21(b, by (22, ys), ..., b (2}, y¢)). Equation (4) states that the owner
chooses optimally whether or not to sell. When he sells he receives the price,
p¢, paid in the auction, and the value of being a buyer at the next period.
The price depends on the buyers’ strategies, b,(-,v;), which are taken as
given by the seller. When the owner does not sell, he receives the dividend
and the value of being the owner next period. Similarly, Equation (5) states
that the buyer must choose his bidding strategy optimally.

It can be shown by standard dynamic-programming arguments that a
symmetric Markov equilibrium, (b, X), is characterized by the following prop-
erties:

1. S; is the maximum in (4), and selling for any (z?,,) with 2 € X;(y,)

maximizes the right-hand side of (4), taking b;, S;11, and By as given.

2. By is the maximum in (5), and b; is a measurable selection from the
maximand of the right-hand side of (5), taking X;, Siy1, and By as
given, as well as the fact that the other bidders use b;.

3. Sy = Br =0if T < oo and limy_ o, 6'S; = lim;_,o, 0'B; = 0 otherwise.
We note that (5) shows that the equilibrium bidding strategy, b;, is a
solution to the optimization problem
sup B (#(B)0(Vy + S = Buy) = 20) | ahyaf € X) | (6)
beo

which yields the following proposition.

"Hence, S and B are mappings from {0,1,...,7 — 1} x X x Y into R.
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Proposition 1 The equilibrium bidding strategies form an equilibrium in a
standard™® (single-period) auction in which the asset is worth 6(Vy; + Sip1 —
Bi11) to agent i, bidders’ signals are drawn from the distribution conditional
on y; and x? € Xy, and it is common knowledge that J}(t) € X;.

Proposition 1 is straightforward but useful, for it means that solving this
dynamic auction equilibrium is not much harder than solving standard single-
period auctions — the only added complications are the derivations of the
set, X¢(y;), on which the owner chooses to sell, and the value functions. The
equilibrium sale set solves a fixed-point problem: The sale set must be the
owner’s best response given that the bidders bid as if the owner is using this
sale set. The value functions are easily computed recursively.

3 Conditionally Independent Private Signals

The case in which private signals are independent conditionally on ¥, is an
important benchmark. We show that, under this condition, we can generalize
the Revenue Equivalence Theorem (RET)' to our multi-period model with
endogenous trade, and derive a robust No-Trade Theorem. Although inde-
pendence is strong assumption, it may not be unreasonable in some cases,
especially since private signals are allowed to be marginally correlated. What
must be independent is the agents’ information over and above what is pub-
lic information. (This is also true in the standard RET.) In Section 4 we
consider the case of conditionally correlated (affiliated) signals.

Assumption 2 Conditional on vy;, the random variables z9,x},... a7 are
id, and x, has a strictly positive density on X = {z € R™ : x <z < X},
for some m > 1, where x € R™ us strictly smaller, coordinate-wise, than
X € R™.

Whenever there is a sale, buyers are bidding as in a single-period auction
in which the prize (to agent i > 0) is
w(x;btu (xi)]§{071}7 t7 Y, Xt) -Dt) =

OB (ve(wy, @, (#])jgqoay, ve) | @7 € Xe, ()50, 5) + D, (7)

18See, for instance, Klemperer (2000).
19Gee Myerson (1981).
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where Dy = JE(Siy1 — Bt } y), w : X x = — R is a mapping defined
(a.s.) by (7), and = is the product of {0,...,7 —1}, Y, the set of measurable
subsets of X, and R. We note that under Assumption 2, the distribution
of the bidders’ signals is not affected by conditioning on (29 € X;). We let
& = (t,y;, Xy, Dy), and let € denote a generic element of =. We make a
technical assumption on the (expected) dividend value.

Assumption 3 The function w is continuously differentiable in its first ar-
gument in X.

We say that a bidding strategy, b* : X — O, is a symmetric equilibrium
in the single-period auction (M, z;, w(-,€)) given®® y; = y if, for (almost) all

1
Ty

(o) € argmax B (*(EJw(el (w])o1.) — 20) | by =y),  ©
S

where #(b) = m (b, b5(2),...,b5(x})), and 2(b) = 2 (b, b5(a2), ..., b5 (x})).
We will not focus on the question of solving a standard single-period auc-
tion but, rather, we take such a solution as given, and show how standard
results generalize to a multi-period setting. Hence, we consider the following
condition.

Condition 1 For the mechanism M, for each & = (t,y, X, D) € =, there ex-
ists a symmetric equilibrium, b, in the single-period auction (M, x, w(-,§)),
qren y; = y.

Condition 1 is satisfied by many standard auction mechanisms under stan-
dard distributional assumptions — see, for instance, Milgrom and Weber
(1982), Klemperer (2000), and references therein.

For any mechanism M (that satisfies Condition 1), we fix an equilibrium
bidding strategy b¢, and denote by 7™ : X" x = — A,, the auction allocation
(corresponding to M),2 by 2 : X"x = — R" the payments, and by UM : Xx

20Here, we use the concept of regular conditional probabilities. A regular conditional
probability always exists on Euclidian spaces (see Breiman (1968), page 79). This allows
us to write “E(- | 3 = y)” with some abuse of notation even when the set {y; = y} has
zero probability.

21'We are implicitly using the Revelation Principle. (See, for instance, Myerson (1981).)
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= — R the expected surplus. That is, assuming (without loss of generality)
that agent 0 is the owner,

Mt 2 € = w(b5(xt),. .., b5 (a"))

and

UM(J:; ét) = E( w(x;’ (‘rg%g{l,()}a gt) 7TiM(3’3%7 ceey x?a ft)
- szw(xz:fl? ce 7x?75t) | 1‘;, yt)
We note that UM is the expected “rent” from the auction for any bidder
(given that there is a sale), whereas B is each bidder’s value function before
the bidder knows whether the owner will decide to sell. From (5),

By = Pr(z) € X, | y)U(2},&) +SE(B1 | ). (9)

Our Multi-Period Revenue Equivalence Theorem states that the auction
allocations, 7™ and the surplus of the lowest type, UM (x, -), determine
the decision to sell, the value functions, and the expected price. As a conse-
quence, many auctions used in practice are “multi-period revenue equivalent”
under the assumption of conditional independence of signals. This is due to
the fact that the following two properties are shared by most auction mech-
anisms: (i) The bidder with the “best news” wins the auction. (i) A bidder
with the worst possible news neither gets the object nor must pay anything.
(For general multi-dimensional signals, however, there may not be a clear
concept of what “the best news” is.)

Theorem 2 (Multi-Period Revenue Equivalence) Suppose that Assump-
tions 1-3 hold. Let M be a mechanism that satisfies Condition 1, and suppose
that {(Xy, b))} is a symmetric Markov equilibrium for (M, x,y,V,T). Then,
for any other mechanism, M', that satisfies Condition 1, with ©™ = 7™’
and UM(x,-) = UM (x,-), there exists b, such that {(Xy,b)} is a symmet-
ric Markov equilibrium for (M, x,y,V,T). Moreover, these equilibria have
the same value functions (S, B, and U ), and the same conditional expected

prices (given y, ).

We note that the theorem has the following implications about the equilibria
of mechanisms with the same auction allocation, 7, and lowest-type surplus.
First, (under the assumptions of the theorem) if M has a unique symmetric
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Markov equilibrium, then M’ also has a unique symmetric Markov equi-
librium. Second, if there are multiple equilibria then the set of symmetric
Markov equilibria for M (as characterized by X, S, B, and U) is identical
to the set of symmetric Markov equilibria for M.

It is difficult to weaken our assumptions in Theorem 2. First, if informa-
tion is long-lived (that is, if Assumption 1 is not satisfied) then agents have
an incentive to use their bids to signal information. Since different auction
mechanisms create different incentives to signal, revenue equivalence may
fail to apply. See Bikhchandani and Huang (1989) for this effect. Second,
Assumption 1, that signals are 1;-conditionally independent across agents,
cannot be eliminated. For instance, Milgrom and Weber (1982) show (in
a single-period auction) that the expected price varies for different auctions
when agents have correlated signals. (Assumption 3 is an innocuous technical
assumption. )?2

The next result shows that trade occurs only if agents have significantly
different values for the object. If these values are “too common,” then there
can be no trade. To make this statement precise, we parameterize (in the
most general way) the commonality of agents’ values.

Assumption 4 For each t, there exist functions g; : [0,1] x X x X x X"~1 x
Y—R, h 1 [0, 1] xXXxX*"xY — R, and f; : Xx X" XY — R, increasing in
their arguments in X, and symmetric in their last n —1, n, and n arguments
in X, respectively, such that for all (2°,... 2" y) € X" x Y,

vt(:cl,xo, :CQ,...,:I;”),y) =
gt )\7 xl’x()? ('IQ?""xn)’y) +ft($07 (ml’x27"'7wn)7y)
ut(xo,(acl,...,x"),y) =
1

he(\, 2% (2h, .. 2™),y) + fiula® (2t 22 2™, y).
Further, g and h converge uniformly to 0 as A\ approaches 0.

Here, f is the common value, g is a non-owner’s private value, and h is the
owner’s private value. The parameter A measures the extent to which the
asset has a private-value component. If A = 0, then the asset has the same

22We also note that, as long as the allocation ensuing from two mechanisms is the same,
Theorem 2 also holds if reserve prices are allowed. In order to get the same allocations,
though, stronger assumptions on the values need to be made because, in general, different
mechanisms reveal different information and consequently give rise to a sale on different
subsets of the state space.
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value to all agents (common values). We also use some regularity conditions
given in Assumption 4’ in the appendix.?

Theorem 3 (No Trade) Under Assumptions 1-4 and J, there exists** a
real number A > 0 such that if X\ < X, then, for any symmetric Markov
equilibrium, and for all t, there is no trade, that is, Pr (z? € Xy (y;)) = 0.

This is related to the No-Trade Theorems of Kreps (1977) and Milgrom
and Stokey (1982). Our result is robust, however, in that it shows that there
cannot be trade when agents have valuations that are sufficiently close to each
other. This result is driven by the fact that we are considering an economy
with (a finite number of) strategic agents who have private information.
This private information implies that buyers can extract positive rents — we
show these rents to be bounded below away from zero independently of the
mechanism — which lowers the owner’s willingness to sell. Hence, the gains
from trade must be greater than the threshold implied by any frictions in the
economy.

The robust No-Trade Theorem presented here relies on the analysis used
to prove the Multi-Period Revenue Equivalence Theorem. One might wonder
whether it applies more generally. Indeed, if the value is common (A =
0), no trade is an equilibrium regardless of distributions. The robustness
result, however, does not apply generally because there exist mechanisms
that extract all surplus from bidders when signals are correlated (see Crémer
and McLean (1988)). It has been noted, though, that the implementation of
such mechanisms is demanding, since they rely on perfect knowledge of the
distributions of signals.

4 Conditionally Affiliated Private Signals

In this section we compare allocations, welfare, and revenues associated with
different auction mechanisms when signals are affiliated. We build on the
work of Milgrom and Weber (1982), who show that the expected revenue
in a first-price auction is dominated by that generated by a second-price
auction, which in turn is dominated by the expected revenue in an English

23We require that a bidder’s probability of winning increases in her signal, that bidders
do not lose money, on average, by participating, and some boundedness.

24Here, A\ depends on g and f of Assumption 4, and on the distribution of signals, but
not on t.
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auction. It is important to ask how auction mechanisms differ in terms of
their welfare and volume of trade, too. Answering these question requires a
dynamic model with endogenous trade, such as the one presented here. We
show that a mechanism that has higher revenue for a fixed sale set generates
more trade in our endogenous-sale equilibrium (volume ranking). We further
show that, under certain conditions, the equilibrium trades are efficient, so
that higher volume implies higher welfare (welfare ranking).

We proceed by first providing a set of general conditions that capture the
intuition behind the results, and then show that these conditions are met
for the first-price, second-price, and English auctions under natural distribu-
tional assumptions.

4.1 General Results

We consider only one-dimensional private signals here because the charac-
terization of optimal sale sets is otherwise more complicated. We intro-
duce some natural notation for a mechanism, M, that satisfies Condition 1
and an associated fixed equilibrium. First, the price paid to the seller is
pM(x}, ... 2 &) with & = (t,y, Xi, Dy), where X; is the sale set, bidders
have signals x}, ...,z and D; = 0E(Siy1 — By ‘ y¢). Second,

PM('Ig?gt) :E [pi\/‘[(fia,x?,ft) } f?:?/t}
is (a.s.) the conditional expected price, given the owner’s signal, z9. Third,
E(Ig,ft) =F [Ut(.%?, s ,LL’?) ‘ xg?%ﬁ} + Dt

is the expected value associated with keeping the asset for an owner with
signal z?, and, fourth,

o(z),&) = E [vt(wﬁl)w& () 22) | l‘?,yt] + Dy

is the owner’s belief about the asset value to the bidder with highest signal.
(ngj ) denotes the kth highest among z}, ..., x7.) This quantity is the expected
value to the auction winner in the equilibria that we consider.

An owner with private signal 20 wants to sell if and only if the expected
price PM (29, €) is greater than the value of keeping the asset, u(z, £). Hence,
the following condition implies that the owner chooses to sell on a connected
subset of X containing its smallest element.
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Condition 2 For all £ € =, the set {2° € X : u(a® &) < PM(2% &)} is
either of the form [x, a] for some a € X, or is empty.

Another natural condition is that enlarging the sale-set by adding higher
signals increases the expected price:

Condition 3 For anyt < T,y €Y, D € R, 2° € X, and (a,b) such that
a < b<¥, it holds that PM(2° t, vy, [x,a],D) < PM(29 ¢y, [x,0], D).

We also impose the following innocuous condition stating that the (expected)

price increases by D if the prize is increased by a commonly known constant
D.

Condition 4 For anyt < T,y €Y, D € R, 2° € X, and a, it holds that
PM(a2% ¢y, [x,a], D) = PM(2% t,y, [x,al,0) + D.

Finally, in order to make welfare comparisons, we state one more condition
on the equilibrium and make an additional distributional assumption.

Condition 5 The winner of the auction is the bidder with the highest signal
(a.s.) and PM(a,t,y,[x,a], D) < v(a) for alla € X.

The first part of Condition 5 simply says that the bidder with the best
news wins. The second part says that the expected price is lower than the
winning bidder’s utility if the owner has the best possible selling signal. The
price is lower in part because the bidders extract rents and in part because
the bidder’s face an adverse-selection problem and expect the owner’s signal
to be lower than a.

Assumption 5 The function u(x°,&) — v(z°, ) increases in V.

This assumption states that the owner’s utility is more dependent on his
signal than is the winning bidder’s utility. This is a natural assumption, and
is satisfied, for instance, if the signals are distributed according to a (trun-
cated) normal distribution with all correlations positive, implying affiliation,
and if

U(Z[),...,Zn,y) = a(y)ZO‘f'h(ZOa---,Zmy) (10)
U(z07"'7zn7y) = ﬁ(y)ZO‘i‘h(ZO;---;Zmy)’

where h is symmetric and increasing in the first n + 1 arguments and «a(y) >

B(y) > 0.

We are ready to make precise our claim that revenue ranking implies
volume and welfare ranking;:
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Theorem 4 (Volume and Welfare Ranking) Suppose Assumption 1 holds.
Consider two mechanisms, M and N, satisfying Conditions 1—4, such that

PMY(a,t,y, [x,al,D) > PN(a,t,y, [x,al, D) (11)

forallae X, t <T,y €Y, and D € R. If {(XM,b})} is a symmetric
Markov equilibrium for M, then there exists a symmetric Markov equilibrium,
{(XN b)), for N with XN C XM for all t. Conversely, if {(XN,bN)} is a
symmetric Markov equilibrium for N, then there exists a symmetric Markov
equilibrium, {(XM,0M)}, for M with XM O XN for all t. The equilibrium
{(XM bM)) has a higher single-period revenue than {(X},bN)}, in the sense
that

E (P t,y, X", D) | 2° € XM) > E (P"(2%t,y,X",D) | 2° € XV).

If, in addition, Assumption 5 holds and M satisfies Condition 5, the welfare
in the M -equilibrium s higher than that in the N -equilibrium.

From now on, we shall find it convenient to say, whenever the conclusion
of the theorem regarding the existence and comparison of the sale sets of
equilibria holds, that mechanism M has higher volume then mechanism
N. If the conclusion regarding welfare holds, we shall say that mechanism
M has higher welfare than mechanism V.

In the statement of the theorem, inequality (11) states that for any fixed
anticipated sale set, mechanism M yields a higher expected revenue than
mechanism N, conditionally on the owner’s signal being the best possible
signal for which he sells. The intuition for the volume ranking is as follows.
Suppose that [y, a'] is an equilibrium sale set for mechanism N in the last
time period. Consider the owner’s best response if the trading mechanism
is changed to M, but bidders keep anticipating the same sale set. Then,
because of the revenue ranking, the owner will sell for a larger set of signals,
say [x,a?]. Now, suppose that the bidders anticipate the sale set [x,a?].
Then, by Condition 3, they will bid more since now they think that the
owner might have a better signal. This, in turn, will lead the owner to sell
with even better signals, and by iterating this argument, we end up (in the
limit) with an equilibrium that has larger sale set and expected price than
for mechanism V.

The same argument shows that mechanism M has higher volume in earlier
periods, t < T — 1, because the sale decision does not depend on the value
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functions. Further, it shows that prices are higher in the M-equilibrium as
long as the value functions are such that DM = SM — BM is at least at high
as DY¥. This is trivially the case in the last period since D¥ = DN = 0,
but in earlier periods, DM can be higher or lower than DY depending on
the model specifics. Hence, mechanism M may have lower expected prices,
for t <T — 1, than does mechanism N. This can happen because, in earlier
periods, the buyers bid not only for the dividend next period, but also for
the value of owning the asset over and above the opportunity cost of not
owning it (Proposition 1). Using a mechanism that generates higher average
revenues makes owning the asset more valuable (that is, yield a higher S),
but has an ambiguous effect on the value, B, of not owning: A higher-
revenue mechanism allows buyers to extract fewer rents if there is a sale, but
makes a sale more likely. Hence, whether S — B is higher for the higher-
revenue mechanism depends on the relative benefits from the efficiency gain
to owners and non-owners. For instance, if (y;) is iid over time, then DM —
DN = (DM | — DN (1 —§T=%)/(1 — §), and there are two possible price
patterns: (i) M has higher expected prices than N for all ¢, or (i) M has
lower expected prices than N for small ¢ and higher expected prices for large
t, when DX  — DN | <0 and ¢ is high enough.?® The former case seems the
more natural.

The intuition for the welfare result is also very simple. Condition 5 implies
that trade is welfare improving given that the owner has the highest signal
for which he would sell. This is because the owner’s utility is smaller than
the price, which in turn is smaller than the buyer’s utility. Assumption 5,
then, implies that trade is welfare improving for all equilibrium sales, whence
a smaller sale set is welfare reducing.

We briefly note how Theorem 4 extends to a setting in which the owner
sells to an uninformed intermediary, who then resells to the informed bid-
ders. In that case, Condition 2 is satisfied trivially, since the price does not
depend on the owner’s information, and the theorem goes through as stated.
Furthermore, the sale set is always smaller than the one that obtains when
the owner sells directly, which implies a lower welfare.

%In an infinite-horizon model, with iid (y;), the expected prices are the same at each
point in time.
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4.2 First-Price, Second-Price, and English Auctions

Milgrom and Weber (1982) show that the average revenues yielded by first-
price and second-price auctions can be ranked when bidders’ signals are affil-
iated.?® To examine how this result generalizes to our setting, we make the
following assumption.

Assumption 6 Conditional on vy, the random variables z9,x},... a7 are

symmetrically and absolutely continuously distributed and affiliated. The sup-
port of their y,-conditional joint distribution is a subset of X", with X =
k, Y]. Further, v, and u; are increasing in their first n + 1 arguments.

In order to use the results of Milgrom and Weber (1982) we would want
bidders’ signals to be affiliated conditional on the event that the owner sells,
which is implied by our next result.

Lemma 5 Suppose Zy, Zy, ..., Z, are affiliated random variables in R, and
A is a measurable subset of R with Pr(Zy € A) > 0. Then, given Zy € A,
1y ..y Ly are affiliated.

First, we verify that the first-price, second-price, and English auctions all
have the property that bidders bid more if the owner is assumed to sell for a
larger set of signals (as required in Condition 3), that prices are additive in
constants (Condition 4), and that the highest-signal bidder wins the auction
and that the price is lower than the buyer’s value for large z (Condition 5).

Lemma 6 If Assumptions 1 and 6 hold, each of the first-price, second-price,
and English auctions has an equilibrium that satisfies Conditions 3, 4, and 5.

In order to apply Theorem 4 above, we must show that (11) holds, that
is, that revenue ranking holds conditional on an owner’s highest signal that
would make him sell, i.e., conditional on z¥ = a. (We note that this is
different from the revenue ranking on average across an owner’s signals as
in Milgrom and Weber (1982).) When comparing the first-price and second-
price auctions, we get an even stronger result, namely that revenue ranking

holds conditionally on any seller signal.

Lemma 7 For allz° € X and £ €

P*(a%€) > P'(a",¢), (12)

26See Milgrom and Weber (1982) for a definition of affiliation.
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where P! and P? are the expected prices in the symmetric equilibria of the
first-price and second-price auctions, respectively.

Hence, the following corollary follows immediately from our previous results.

Corollary 8 Suppose Assumptions 1 and 6 hold, and that the first-price and
second-price auctions satisfy Condition 2. Then the second-price auction has
higher volume than the first-price auction. If, in addition, Assumption 5 is
satisfied, then the second-price auction has higher welfare than the first-price
auction.

Now, we turn to the comparison of the second-price and English auctions.
Milgrom and Weber (1982) show that the winner’s curse is smaller for the
English auction, and therefore that the revenue is higher on average across
the seller’s signals. We find, however, that this revenue ranking may not
apply conditional on all seller signals. Fortunately, it does apply for the
owner’s highest selling signal, as required in Theorem 4, (11). Here is the
intuition. During the English auction, the information of those bidders with
low signals is revealed. This not only diminishes the winner’s curse, but also
reveals information about the owner’s signal. If the owner has a low signal,
then this information revelation is bad for him. If he has the best possible
selling signal, however, the information revelation is good for the seller, and
reinforces the (conditional) revenue ranking.

Lemma 9 Forallae X, t<T,yeY, and D € R,
PE(a7 t? y7 [X? a}? D) Z P2<a’7t7 y’ [X’ a:l’ D) ) (13>

where P? and P¥ are the expected prices in the symmetric equilibria of the
second-price and English auctions, respectively.

These results yield the following corollary.

Corollary 10 Suppose Assumptions 1 and 6 hold, and that the second-price
and English auctions satisfy Condition 2. Then the English auction has
higher volume than the second-price auction. If, in addition, Assumption 5
is satisfied, then the English auction has higher welfare than the second-price
auction.
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Finally, let us see that Condition 2 is not excessively restrictive and is,
in fact, satisfied by a large class of models. It is clear that this condition is
satisfied if the owner’s expected value for the dividend is more sensitive, in the
sense of having a larger derivative, to the owner’s signal than is the expected
price. This intermediate condition is itself natural. One way to ensure it,
independently of the mechanism M, is to require that the owner’s utility «
depends more strongly on his signal 2 than does the conditional distribution
of (z},-+-,a7) given (29, y;). The following lemma®’ makes this precise. We
note that, for any distribution of (2, 1;), the utility  can be chosen such that
this condition is satisfied. Further, a very similar condition would ensure that
Assumption 5 holds. (We do not state this condition because Assumption 5 is
already stated independent of the mechanism.) For instance, the parametric
models given in (10) satisfy Assumption 5 and Condition 2 when « is large

enough.
Lemma 11 Suppose that, for allt (a.s.),
1/2
s yt) )

dlo 2
x?ayt> >kt E (( aﬁ)ct(x%,,x? | w??%ﬁ))

(14)

(9ut n
E (@(x?w"?xtayt)

where®® (, is the conditional density of =}, ..., z7 given (22,vy,), and
Y t t 9 t: Y

. . 9 1/2
kt:E<<U(I£ )7at,l’(1)...,$§ )7?Jt)> ‘ x??i%f) )

with a; the largest sale signal. Then Condition 2 is satisfied for the first-price,
second-price, and FEnglish auctions.

5 Conclusion

This paper investigates repeated trade in a dynamic economy in which both
buyers and sellers have private information. The model shows how the infor-
mation structure and market mechanism affect prices, volume of trade, and
welfare.

2"The lemma could be stated so as to apply generally to any mechanism satisfying a
boundedness condition on the price.

280f course, part of the assumption is that u; and log(; are differentiable (almost
everywhere), and that the conditional expectations in (14) exist as finite random variables.
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The model’s features — endogenous sale decisions, repeated trade, and
short-lived information — make it a realistic and useful tool for studying
markets for (illiquid) durable goods, blocks of securities, and other assets. For
example, the model yields the policy implication that if an organization (for
instance, a government) needs to sell a long-lived asset then it must not only
choose the mechanism with the lowest winner’s-curse problem, but should
also ensure the existence of an environment in which subsequent trade is
easy. Such a trading environment is especially helpful if it makes allocations
more efficient and if it is “seller-friendly.” Buyers bid more today if they
know (i) that they can easily sell the asset in the future, should they not
need it anymore, and (7i) that possible future sales by others do not generate
the opportunity to buy the asset at a large discount (in “fire sales”). An
additional benefit from such trading environments is increased welfare due
to the efficiency of the allocations. Consistently, it is common for investment
banks that underwrite initial public offerings to also play a role as a market-
maker in the secondary market, and when Drexel Burnham Lambert began
issuing junk bonds, it also put in place a secondary market for these bonds
(Cornell (1992)).
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A Appendix

Proof of Theorem 2 (Multiperiod Revenue Equivalence): Proceed by
backward induction. Assume that there exists b/, s > ¢, such that {(Xj, b))} 51,
is a repeated-auction equilibrium for M’, and such that the value functions
for s > t are given by S, and B,. This claim holds for ¢ = T — 1, since
St = Br = 0 for any mechanism. It will be apparent that the induction step
only requires that S, and Byy; be the value functions for the mechanism
M’ as well.

In order to verify that X;(y;) is an equilibrium decision to sell, at ¢, when
the mechanism M’ is employed, we make use of the fact, which we prove
below, that the two mechanisms yield the same expected price if the sale
set, denoted by X, is the same in the two cases. Let that expected price
be P(X). Since the owner finds it optimal to sell for 2° € X;(y;) under
mechanism M, he also does under mechanism M’, because in both cases the
owner is faced with the same problem: The value to the owner of not selling
is 0E (V5 | 2, y:) + 8541 in both cases, and the expected value of selling
is P(X)+ 0By41 in both cases. Thus X;(y) is an equilibrium sale set, and S;
is the owner’s value function, when M’ is employed.

The argument that, for a given public signal y;, a given sale set X, and
given value functions at ¢ + 1, the two mechanisms yield the same expected
price is a standard envelope theorem one. Let D = E(S;11 — By ‘ Y =1Y),
€= (t,y,X, D), and let PN(¢) denote the expected price for mechanism N,
where N € {M, M'}. Note that

PN(E) = E(ZZZN(ZE{O,S) | ytzy,x?GX)

=1

=1
—F (Z UN(‘T;5> | Y = y> :
i=1

Here, the first term is the social surplus and the second is the sum of the
bidders’ surpluses. Note that only the second part depends on z. A sufficient
condition for PM = PM" is therefore, UM (z,&) = UM (z,¢). This condition
is also sufficient for the bidders’ value function, B;, to be the same for M
and M’', which follows from (9).

- F (Z Vi m (27%,8) | =y, 2] € X)
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We define W& : X x X x Z — R so that W¥(#,z,¢) is the expected
surplus at time ¢ of a bidder of with private signal x who plays the equilibrium
strategy of an agent with signal . That is,

Wh(&,2,6) = E(w(x, (2])51, ) (&, (2])51,€)

—2 (2, (7)) 1, &) ‘ Yt :y) :

Fix z € X and take v : [0,1] — X continuously differentiable such that
7(0) = x and y(1) = x. A particular case of agent i’s problem is to maximize
YWN(F r, &) == WN(y(7),~(r),€) over # in [0,1], for each r € [0,1]. If w is
continuously differentiable, on the compact set X, in its first argument, then
YW is continuously differentiable in its second argument, and the envelope
theorem can be applied to yield

UN(@6) = UN(x.€) + / E [Duw(y(r), (#9) 51, €) (A1)
X W{V(V(T)v (xj)j>1a€) | Yy = y] : D’Y(T‘) dr.

Here D;w denotes the differential of w with respect to the first argument,
while D~ the differential of v. By assumption, neither U (x), nor 7N de-

pends on N, and certainly nor does 7, proving that UM (z, &) = UM (z, €).
[

The following assumption is used in the statement of Theorem 3.

Assumption 4’ (i) The probability of acquiring the object, conditional on all
signals, increases in one’s own signal; that is, Q™ (x,€) := E (! (z, 27, ..., 2}, €))
increases i v € X for all £ € =.

(ii) The density ((xi;y;) of the distribution of x% has a finite L* norm,
bounded uniformly in y;.

(i1i) The norm of the differential Dy f(a, b, ..., by,y) is uniformly bounded
away from zero, (which follows if f is C'.)

(iv) A participation constraint is satisfied, in that an agent with any signal
weakly prefers participating in the auction to not participating. Precisely,

UM(x,€) >0 for all (x,€) € X x =.

Proof of Theorem 3 (No Trade):
Consider any mechanism, a given A, and an equilibrium for which Pr (X:(y)) >
0 for some y € Y. Let x; = (xf,...,27). If the owner sells the object, then
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her expected surplus, conditionally on her signals, is:

PY(€) + 0By (y)

— 5E<2Vt+17r (24, & \xteXt()ytzy)

i=1

+ 5St+1 —F (Z UM xta | Yt = y>

= OF (f(ff?,$’t, | It S Xt( )7yt = y)

+ 0E (ZW mt? )\ xtaxtht (01)7 ) ’ l’? € Xt(y)vyt = y)

+ 5St+1 (Z UM CEt, | Yt = y) .

A bidder’s surplus, UM (xi, £), is non-negative, since otherwise he will not par-
ticipate. In fact, we show below that E (Z UM(xi, € ‘ Y = y) is bounded
below away from 0 independently of A and the mechamsm uniformly in &.
Hence, there exists w > 0 (not depending on A, &, or the mechanism) such
that:

PYP (1)) + 6By (y) <
oF (f($?7$tu | ) € Xo(y),ye = y) + 051 (y) —w

+5E (Zﬂ- It’ )\ l’t,ZL’t7l’t (Ol) ) ‘ ZL’? eXt(y)vyt:y> .
Consider now that the owner keeps the object; then, she gets the surplus

E(f(l’g, xtay) + h()\,l'?,l't, y) | l’g, Ye = y) + 5St+1(y>‘

Taking expectations over the set on which the sale occurs and writing out
explicitly the condition that the sale occurs, we obtain:

5E(Z7T 'Tta )‘xtvxtaxt(OZ)ay>

_h()‘7 .ZU?, T, y)

x? € X (y),y = y> > w.
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Since g, h, and 7 are bounded, and g and h approach 0 as A approaches 0,
a symmetric equilibrium with sale can exist only if A is large enough (which
follows by dominated convergence). This proves the theorem

It remains to be shown that the E (37, UM(x},&) | v =y) can be
bounded below away from 0 independently of A and the mechanism, uni-
formly in ¢ € =. Tt suffices to prove that UM (z¢, £) is bounded below, away
from 0, on a set of values of x! of non-zero probability, uniformly in . To
that end, we use the Envelope Theorem as in (A.1), and show that the inte-
grand is bounded away from 0. First, take a point z such that y < T < ¥
and consider the set C' = {z € X : x > z}. Fix a point z' in the interior of
C'. Choose v to parameterize the straight line joining x and x!, which makes
D~ into a constant vector. Note that each entry of D'y_is bounded away from
0 uniformly in z' € C. Then for v(r) € C,

E; (watﬂ(x,},x?, (x{)j>1)D7(r) (24, } l"t € X, 9575 =),y = ?/)

= Et(<Dz1f<x?7xt7 )+D lg<)‘ xtammxt (01)7y))

< Dy (,6) | 42 € Xt = (r)om =)

> 0By (m (2, €) | @ =9(r),ue =)
= 1 QY (7(r),9),

where ¢; > 0 is a uniform lower bound on D, f(2?, 2, y) D~(r) for v(r) € C.
(The term containing D,1g is always positive.)

We now show that, on a set of positive probability, @* is bounded below
uniformly away from 0. We first note, using the Cauchy-Schwartz inequality
and symmetry, that

[ @) @odr [ epae= (2@70) - 2

Then we use the fact that @ is increasing and bounded above (by 1) and
the uniform bound on [ (*(x,y) da to deduce the existence of a point Z < ¥
such that QM (Z) > ¢, > 0 for any mechanism. Consequently, invoking the
envelope-theorem result, on the set of points in X that are larger than both
(T +%)/2 and (T +X)/2, U(x,€) is bounded below. This finishes the proof.

0
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In the proofs to follow we omit from the notation the dependence on any
other variable, including time, than the private signals.

Proof of Theorem 4:

We prove the result for any given values of ¢, y;, and D; = §E(Sy11—Bii1
y¢), and suppress notational dependence on these variables. Although D,
depends on the mechanism, the sale decision does not depend on it because
both the owner’s utility, @, and the expected price, P, are additive in Dy
(Condition 4).

Let the sale set associated with mechanism N be XV = [x,a"], with o™ €
X. We define § : X — X by S(z) = z, where z satisfies P (z, [y, z]) = u(2)
if PM(x,[x,z]) > u(X), and z = Y otherwise. That is, if buyers anticipate
the sale set [x, 2] then the owner will sell on the set [y, S(z)]. Hence, a sale
set, [y, z], is and equilibrium if z is a fixed point for S, that is, if S(z) = z.
We note that S is well-defined because of Condition 2. We are looking for a
fixed point, ™, which is larger than a”. It follows from Condition 3 that S
is (weakly) increasing. Further, it follows from (11) that S(a’¥) > a”, and
it is obvious that S(%) < X. Now, Lemma 12 (below) implies that S has a
fixed point in [aV,Y]. One proves analogously that, given an equilibrium for
M with sale set [x, a™], an equilibrium exists for N with a smaller sale set
[x. a”].

The welfare claim follows immediately. The welfare is higher for mecha-
nism M than for mechanism N if and only if

E[(’I_}(lﬂ) - a(:EO))leG(aN,aM]] > 0.

Condition 5 ensures that the value of the integrand is positive at 2° = a?,
while Assumption 5 states that it is decreasing. Consequently, the expecta-
tion is positive.

Lemma 12 Suppose that f : [a,b] — R, for a,b € R, is (weakly) increasing,
and that f(a) > a and f(b) <b. Then, f has a fized point in [a,b].

Proof: This lemma is a special case of the lattice fixed-point theorem of
Knaster-Tarski. See, for instance, Dugundji and Granas (1982). We provide
a simple proof for the readers’ convenience.

If f(b) = b then we are done, so assume f(b) < b. Then, z = inf{z €
la,b] : f(z) < x} is well-defined. We claim that z is a fixed point. Consider
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a sequence, (y;), in {z € [a,b] : f(z) < 2} converging to z and, an increasing
sequence, (z;), also converging to z. Then, we have the inequalities

7z < f(z) < f(2) < fys) < i
and the proof is completed by letting ¢ approach infinity.
O

Proof of Lemma 5:

Let Z = (Z1,...,7Z,). Consider any nondecreasing function g : R" — R, and
any sublattice S of R". Then, since a product of sublattices is a sublattice,
and since Zy, Z1, ..., Z, are affiliated, Theorem 23, (i) = (ii), of Milgrom
and Weber (1982) gives

E [g(Z)h(Z) ‘ ZeS 7€ A} >
E[g(Z) ‘ Z €S, 7 eA} E[h(Z) ‘ Z €S, Z GA],
which is equivalent to
E(%0Ed) [g(Z)h(Z) ‘ Ze s} >
E#0ed) [g(Z) ‘ Ze s} E(#ed) [h(Z) ‘ Ze S],

where E(%€4) denotes expectation with respect to the conditional distri-
bution given (Z, € A). The latter inequality shows, using Theorem 23,
(17) = (1), of Milgrom and Weber (1982), that the conditional distribution
of Z1,...,7Z, given (Zy € A) is affilated.

O

Notation:

In the following proofs, we make use of some results in Milgrom and
Weber (1982), to which we refer as “MW.” For this reason we use notation
that is very close to that of MW. The analysis relies on Lemma 5, which
implies that the random variables !, ..., 2™ are affiliated conditionally on a
sale, that is, 2° € X. We isolate bidder 1 and let Y;,...,Y,_; be the bids of
the other n — 1 bidders, arranged in descending order.
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Proof of Lemma 6:

The fact that Condition 4 is satisfied is trivial to verify. Contion 5 is also
clearly satisfied by the equilibria displayed by Milgrom and Weber (1982).
Hence, we turn to Condition 3.

First, we show that Condition 3 applies for the second-price auction. This
follows from the fact that the equilibrium bids, which are given by

E (v(z,xo,x, (Y;);>2) ‘ =Y, =2,2"< a) )

increase in a, which is an immediate consequence of Theorem 5 in Milgrom
and Weber (1982).

Second, showing that Condition 3 applies for the English auction is anal-
ogous to the argument given for the second-price auction.

Lastly, we show that Condition 3 holds for the first-price auction. We
work under the (unrestrictive) assumption that the optimal bids in the first-
price auction, denoted by b(x, X), where z is the bidder’s signal and X
the sale-set, are differentiable in the first argument. Let b; designate the
derivative of b with respect to the first argument. MW show that the optimal
bid in the first-price auction must obey the differential equation

f Yy (Z ’ 2, X )

bi(z, X) = (0(x, 2, X) — b(z, X)) Fo(elz. X)’ (A.2)

where fy, (+|z, X), respectively Fy, (:|z, X) is the probability density function,
respectively cumulative distribution function, of Y; conditionally on 2! = 2

and on the owner’s signal being in the sale set X, and
@("L‘aan) =EB (U(xlvmoa (xj)ji{o,l}) ‘ zt = z,Y) = yaxo S X) .

Now, let a and o' be such that y < o’ < a < X. Then, the equilib-

rium condition b(x, X) = o(, X,?() and Theorem 5 in MW imply that
b(x, [x,a’]) < b(x, [x,a]). Suppose, in order to apply Lemma 14 below that
b(x, [x,a]) < b(z,[x,a]) for some x. Then, by (A.2) and Lemma 13 (below),

we conclude that by (z, [x, a']) < bi(, [x,a]). Hence, using Lemma 14 we see

that Condition 3 is also satisfied by the first-price auction.
O

Lemma 13 Fy,(-|z,[x,a])/fv.(:|z, [x,a]) is decreasing in a.
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Proof: Use the notation fy, ,o( -, - | 2) for the joint probability density func-
tion of the signals Y; and 2° conditional on the signal of bidder 1, 2! = z.
Take o’ < a and 2’ < x, and integrate the affiliation inequality to obtain

/ Jyia0(x,ul2) du/ Jyyz0(2', ulz) du
X a
< / fyy 20 (2’ ulz) du/ fyy 0 (2, u|2) du.
X a’
By adding f;, Jyvy.0(,u|2) du f; fyv,.00(2',u|z) du to both sides, we get

f; Jyvy.0 (2, ulz) du f;l Jyvy.00 (2, ulz) du
f; Sy w0 (2, ulz) du — f;' fyizo(x,ulz) du’

Now integrate both sides over 2" € [x, z] to finish the proof.

O
Lemma 14 Let g and h be differentiable functions for which (i) g(x) > h(x)
and (ii) g(x) < h(z) implies g'(x) > h'(x). Then g(x) > h(x) for all z > .
Proof: This is Lemma 2 in Milgrom and Weber (1982).

U

Proof of Lemma 7:

We denote by W (z, z, X) the conditional expected payment made by bidder
1 in auction mechanism M if (i) the other bidders follow their equiibrium
strategies, (ii) bidder 1’s estimate is z, (iii) he bids as if it were x, (iv)
he wins, and (v) all bidders believe that the owner’s signal lies in X. To
prove inequality (12), we use that W?(z,2, X) > W'(z,2,X). (See MW’s
Theorem 15 and its proof.) Hence, (12) follows because

PM(z%) = E(WM(xl,xl,X) ! ! >Y1,a:0) ,
for M € {1,2}.
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Proof of Lemma 9:

It follows from MW, that when the anticipated sale set is X, and X; > Y7,

then the price in the second price auctions is v(Y;, Y7, X), where
v(z,y, X)=E(\V' | X1 =2,Y1 =y, Xp € X),
and the price in an English auction is w(Y7, Y1, (Ya,...,Y,), X), where

w(z,y,2,X)=EBEV' | Xi=2,Y1=y,(Ys,...,Y,) = z,Xo € X).

Let X = [x,a] and = > y, and consider the inequality
v(y,y, X)
= BEw(, Y1, (Ys,...,Y,),X) | Xi=y, Y1 =y, X, €X)
< Bw(Y1,Y1, (Ya,....Y,), X) | Xi=2,Y1 =y, Xo = a).
This implies that
P*a,X) = E@(Y,Y1,X) | X1 >V, Xg=aq)
< EBw(Yy,Y:, (Ye,...,Y,),X) | X1>Y1, X0 =aq)
= P¥(a, X).

Proof of Lemma 11:

It sufﬁces to show that u(20,&) — PM(29,€) is a strictly increasing function
of 2%, since in that case there can surely be no more than one solution to
the equatlon u(2°, &) — PM(2°,¢) = 0. Evaluating the expressions below at

2% = 2%, we have
ou(z°,&) u 0 "
e = E( ") )+@E(( s )
> E( — ") 1:0)
1/2
> E((v(x ..,:c(l)))2 x0>
1/2
dlog ¢ . 2
xE(( 550 (z',... 2 x0)> :co)
dlog ¢ I
Z |: .T ét) ) aio ( yeey L :CO)
_ OPM(x
N 8300 ’
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where the first inequality follows because w is increasing and the signals
affiliated, the second follows from the assumption of the lemma, and the
third follows from Cauchy-Schwartz and the fact that

p(zt, ... 2™ (t,y, [x,a], D)) < v(zW a2, 2W y)+ D

for the three mechanisms considered.
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