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ABSTRACT

In a model with housing collateral, the ratio of housing wealth to human wealth shifts
the conditional distribution of asset prices and consumption growth. A decrease in house
prices reduces the collateral value of housing, increases household exposure to idiosyncratic
risk, and increases the conditional market price of risk. Using aggregate data for the US, we
find that a decrease in the ratio of housing wealth to human wealth predicts higher returns
on stocks. Conditional on this ratio, the covariance of returns with aggregate risk factors
explains eighty percent of the cross-sectional variation in annual size and book-to-market
portfolio returns. Keywords: Asset Pricing, Risk Sharing.
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Introduction

House price fluctuations play an important role in explaining the time-series and cross-sectional
variation in asset returns. Given the magnitude of the housing market this is unsurprising. This
paper shows that the way in which housing affects asset returns is through the role of housing
as a collateral asset.

We identify a novel collateral channel that transmits shocks in the housing market to risk
premia. In a model with collateralized borrowing and lending, the ratio of housing wealth to
human wealth, the housing collateral ratio, changes the conditional distribution of consumption
growth across households. When the collateral ratio is low, the dispersion of consumption growth
across households is more sensitive to aggregate consumption growth shocks and this raises the
market price of aggregate risk.

This paper focuses on connecting the model to asset price data. The predictions of the model
are confirmed by US equity return data over time and in the cross-section. US investors seem to
demand a larger risk compensation in times when the housing collateral ratio is low, because the
housing collateral ratio predicts aggregate stock returns. In the cross-section, the model predicts
that assets whose returns are more tightly correlated with aggregate consumption growth shocks
when collateral is scarce trade at a discount. Conditional on the housing collateral ratio, the
covariance of returns with aggregate consumption growth shocks explains about eighty percent
of the cross-sectional variation in US stock returns, because the returns of value stocks are more
correlated with aggregate consumption growth shocks during low collateral periods than are
growth stocks.

In the model there are two main channels that transmit shocks originating in the housing
market to the risk premia in asset markets. First and foremost, a drop in the housing collateral
ratio adversely affects the risk sharing that enables households to insulate consumption from
labor income shocks. The distribution of consumption growth fans out as this ratio decreases.
When housing prices decrease, collateral is destroyed and households are more exposed to id-
iosyncratic labor income risk. The risk associated with these collateral constraints contributes
a risk factor to the stochastic discount factor.

Second, households want to hedge against rental price shocks or consumption basket compo-
sition shocks when the utility function is non-separable in non-durable consumption and housing
services. This introduces a new risk factor which is the focus of recent work by Piazzesi, Schnei-
der, & Tuzel (2002) and Yogo (2003). In particular, if housing services and consumption are
complements then households command a larger risk premium if returns and rental price growth
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are positively correlated. Dunn & Singleton (1986) and Eichenbaum & Hansen (1990) report
substantial evidence against the null of separability in a representative agent model with non-
durable consumption and durables, but they conclude that introducing durables does not help
in reducing the pricing errors for stocks.

The collateral effect does not hinge on the non-separability of preferences. Nevertheless, we
incorporate non-separability in the model to isolate the non-separability effect from the collateral
mechanism. Instead, it relies on imperfect consumption insurance among households induced
by occasionally binding collateral constraints. Without these collateral constraints our model
collapses to the standard consumption-based capital-asset-pricing model of Lucas (1978) and
Breeden (1979). That model prices only aggregate consumption growth risk and it has been
rejected by the data (e.g. Hansen & Singleton (1983)). Our paper addresses two empirical
failures of the consumption-based capital-asset-pricing model (CCAPM).

First, because US aggregate consumption growth is approximately i.i.d., the CCAPM implies
a market price of risk that is approximately constant. However, in the data, stock market
returns are predictable and this suggests that the market price of aggregate risk varies over
time (e.g. Fama & French (1988), Campbell & Shiller (1988), Ferson, Kandel, & Stambaugh
(1987), Whitelaw (1997), Lamont (1998), Lettau & Ludvigson (2003) and Campbell (2000) for
an overview). Our model delivers time variation in the market price endogenously through
the housing market. As the housing collateral ratio decreases, the conditional volatility of the
liquidity factor increases. In the data, the housing collateral ratio does predict the aggregate
US stock market return, mainly at lower frequencies.

Second, the covariance of asset returns with consumption growth explains only a small
fraction of the variation in the cross-section of stock returns of firms sorted in portfolios according
to size (market capitalization) and value (book-value to market-value ratio) characteristics (Fama
& French (1992)).1 Our model generates large value premia for stocks whose dividends are more
sensitive to the housing collateral ratio. In the data, the collateral model explains eighty percent
of the variability in annual returns of the Fama-French size and book-to-market portfolios. For
annual returns, this matches the empirical success of the Fama & French (1993) three-factor
model and recent conditional consumption-based asset pricing models (e.g. Lettau & Ludvigson
(2001b)). The estimated market price of consumption growth risk is positive and significant,

1In response to this failure, Fama & French (1993) directly specify the stochastic discount factor as a linear
function of the market return, the return on a small minus big firm portfolio, and a high minus low book-to-market
firm portfolio. The empirical success of this three-factor model has motivated quite some more recent research on
the underlying macroeconomic sources of risk for which their factors proxy (e.g. Bansal, Dittmar, & Lundblad
(2002), Lettau & Ludvigson (2001b), Santos & Veronesi (2001) and Cochrane (2001) for an overview).
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while an increase in the collateral ratio lowers the estimated price of consumption growth risk,
as predicted by the theory.

We measure the aggregate stock of housing collateral in three different ways: the value
of outstanding mortgages, the value of residential real estate (structures and land) and the
value of residential fixed assets (structures). The housing collateral ratio, which we label my, is
measured as the deviation from the cointegration relationship between the value of the aggregate
housing stock and aggregate labor income. Housing is by far the most important collateral
asset for households. In the US, two-thirds of households own their house. For the median-
wealth homeowner, home equity represents seventy percent of household net worth (Survey of
Consumer Finance, 1998). Residential real estate wealth accounts for twenty-eight percent of
total household net worth and sixty-eight percent of non-financial assets, while home mortgages
make up sixty-four percent of household liabilities (Flow of Funds, Federal Reserve, averages for
1952-2002). Currently, the value of residential wealth exceeds the total household stock market
wealth ($13.6 trillion) and the mortgage market is the largest credit market in the US ($6.1
trillion).

Our model contains the following essential ingredients. It is an endowment economy with
a continuum of agents who are subject to labor income shocks. As in Lustig (2001), we allow
households to forget their debts. The new feature of our model is that each household owns part
of the housing stock. Housing provides utility services and collateral services. When a household
chooses to forget its debts, it loses all its housing wealth but its labor income is protected from
creditors, and the household is not excluded from trading. This gives rise to collateral constraints
whose tightness depends on the abundance of housing collateral. We measure this by the housing
collateral ratio: the ratio of collateralizable housing wealth to non-collateralizable human wealth.

The stochastic discount factor contains a new component which we label the aggregate liq-
uidity shock (see Lustig (2001)). It is the growth rate of a cross-sectional moment of the con-
sumption share distribution. The household’s consumption share of the total endowment, both
for non-durables and housing services, increases whenever the household switches to a state
with a binding constraint. When a large fraction of households is constrained this growth rate
is high. We call this a liquidity shock. The housing collateral ratio changes the conditional
moments of the aggregate liquidity shock. When the housing collateral ratio is low, households
run into binding collateral constraints more frequently. This increases the conditional standard
deviation of the aggregate weight shock, and, by the same token, the market price of risk. Thus,
endogenous movements in the housing collateral ratio turn the liquidity shocks in the stochastic
discount factor on and off, and this induces heteroskedasticity and counter-cyclicality in the
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Sharpe ratio. This collateral mechanism is a novel feature of the model.
In Lustig & VanNieuwerburgh (2003) we fully calibrate and solve the model. The equilibrium

aggregate liquidity shock is a function of the primitives of the model: the preferences, the
household endowment process, the aggregate endowment process and the aggregate rental price
process. The model generates large, time-varying risk premia and a value premium for stocks
whose dividends are more responsive to collateral ratio shocks.

Our empirical strategy is to estimate the stochastic process for the aggregate weight shocks.
In a first step we allow this process to depend in a non-linear fashion on the aggregate pricing
factors. We estimate the parameters from the moment conditions implied by the Euler equations
for the aggregate market return, the risk-free rate, a long term bond and a limited number of
size and book-to-market portfolios. The Euler inequalities for the representative agent allow
us to precisely estimate the coefficient of risk aversion. The estimated coefficients of relative
risk aversion are plausible (between 2 and 5) and much lower than those for the other models
we consider, as shown by Figure 1. In addition, the parameters in the aggregate weight shock
specification are estimated precisely and have the sign predicted by the collateral channel. The
pricing errors are small and the model cannot be rejected.

The linear specification for the aggregate weight shock fits the data best and it allows us to
make contact with the linear factor models in empirical finance. This specification delivers a
conditional version of the CCAPM with the housing collateral ratio as the conditioning variable.
The housing collateral ratio summarizes the investor’s time-varying information set. This model
prices the 25 Fama-French size and book-to-market portfolios surprisingly well by imputing the
value premium to risk compensation for a higher consumption growth beta of value returns in
times when collateral is scarce. We provide evidence on dividend dynamics that potentially
explains why value returns respond differently to aggregate shocks when the collateral ratio is
small.2

We organize the paper as follows. In section 1, we briefly discuss other related literature.
Section 2 describes the essence of the model. The third section discusses the composition channel
and collateral channel in more depth. Section 4 contains the time-series predictability results
and sections 5 and 6 contain the empirical results for the cross-section. Section 7 concludes.
Appendix A contains technical remarks about the estimation and a more detailed description of
the data. The most important figures and tables appear in the main text, all others in Appendix
B.

2Our model generates significantly larger premia for claims to dividend processes that are highly sensitive to
collateral shocks (Lustig & VanNieuwerburgh (2003)).
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I. Related Literature

Our paper is closest to the work of Lettau & Ludvigson (2001b). We also develop a scaled
version of the CCAPM. Our state variable my summarizes information about future returns on
housing relative to human capital while the scaling variable in Lettau & Ludvigson (2001b) is
the consumption-wealth ratio, which summarizes household expectations about future returns
on the entire market portfolio.

In a different class of models, Cogley (2002) and Brav, Constantinides, & Gezcy (2002) find
that including higher moments like the standard deviation and skewness of the consumption
growth distribution reduces the size of Euler equation errors for stock returns. This evidence
is consistent with our model. In case of a large aggregate weight shock, the dispersion of the
consumption growth distribution increases, while its skewness decreases. This provides indirect
evidence for the consumption growth distribution shocks that drive our results. We provide a
theory of what governs these shocks.

Cochrane (1996) explores the explanatory power of residential and non-residential investment
for equity returns in the context of his production-based asset pricing framework (Cochrane
(1991a)). Li, Vassalou, & Xing (2002) find that investment growth, including household sector
investment which is largely residential, can help account for a large fraction of the cross-sectional
variation in equity returns. Similarly, Kullmann (2002) uses returns on residential and commer-
cial real estate to improve the performance of the capital asset pricing model. Finally, life-cycle
and portfolio choice models with housing such as Krueger & Villaverde (2001), Cocco (2000),
Yao & Zhang (2002), Flavin & Yamashita (2002) posit an exogenous price process for housing
and consider a limited menu of traded assets. We endogenize the price of the asset but we
abstract from life-cycle considerations.

II. Model

Our economy’s risk sharing technology is subject to shocks originating in the housing market
and these shocks determine the size of the wedge between the market’s valuation of payoffs and
the representative agent’s IMRS. The stochastic discount factor in our model is

mt+1 = ma
t+1g

γ
t+1,

where ma
t+1 is the IMRS of a representative agent who consumes non-durable consumption

and housing services, and gγ
t+1 is the liquidity factor contributed by the solvency constraints.
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This factor can be interpreted as the aggregate cost of the solvency constraints. When these
solvency constraints do not bind, the liquidity factor disappears and payoffs can be priced off
the representative agent’s IMRS ma

t+1. We show that this liquidity factor can explain some of
the variation in US stock returns over time and in the cross-section.

A. Endowments and Preferences

In our economy a continuum of agents are endowed with claims to stochastic labor income
streams. These agents consume non-durable consumption and housing services. We use st to
denote the history of events st = (yt, zt), where yt denotes the history of idiosyncratic events and
zt denotes the history of aggregate events.

{
ca
t (z

t)
}

denotes the aggregate endowment stream of
non-durable consumption and

{
ha

t (z
t)

}
denotes the aggregate endowment of housing services.

The evolution of the non-housing/housing expenditure ratio, defined as:

rt(zt) =
ca
t (z

t)
ρt(zt)ha

t (zt)
, (1)

where ρt denotes the rental price of housing services, governs the relative supply of housing
services in this economy.

The endowment processes are Markovian. The growth rate λt(zt) of aggregate non-durable
consumption

{
ca
t (z

t)
}

only depends on the current aggregate state zt and the expenditure ratio
is Markov in zt and rt−1. Finally, the household’s labor endowment share η̂t(yt, zt), as a fraction
of the aggregate non-durable endowment ca

t (z
t), depends only on the current realization of the

idiosyncratic shock yt and the aggregate shock zt.
Preferences are standard. The households rank stochastic consumption streams according

to usual criterion:

U ({c} , {h}) =
∑

st|s0

∞∑

t=0

δtπ(st|s0)u
(
ct(st), ht(st)

)
, (2)

where δ is the time discount factor and the power utility kernel is defined over a CES-composite
consumption good:

u(ct, ht) =
1

1− γ

[
c

ε−1
ε

t + ψh
ε−1

ε
t

] (1−γ)ε
ε−1

,

ψ > 0 converts the housing stock into a service flow and ε is the intratemporal elasticity of
substitution between non-durable consumption and housing services.3

3The preferences belong to the class of homothetic power utility functions of Eichenbaum & Hansen (1990).
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B. Markets

The markets for housing services are frictionless in that the ownership of the asset and the use
of its services are completely distinct. Households can purchase housing services

{
ht(st)

}
in the

spot markets at spot prices
{
ρt(zt)

}
as well as non-durable consumption

{
ct(st)

}
.

Although the households cannot sell claims to their labor income stream
{
ηt(st)

}
, they can

trade a complete set of contingent claims to insure against idiosyncratic labor income risk, but
these trades are subject to solvency constraints. The solvency constraints can be stated as a
restrictions on the value of a household’s consumption claim, net of its labor income claim:

Πst

[{
ct(st) + ρt(z

t)ht(st)
}] ≥ Πst

[{
ηt(s

t)
}]

,

where Πst

[{
dt(st)

}]
denotes the price of a claim to

{
dt(st)

}
.

The supply of housing wealth relative to human wealth governs the tightness of the solvency
constraints. The effectiveness of the risk sharing technology our economy is endowed with
depends on the ratio of the housing wealth to total wealth. We call this ratio the housing
collateral ratio my:

myt(zt) =
Πzt [{ρha}]
Πzt [{ca}]

Suppose the households in this economy derive no utility from housing services, then there is no
collateral in this economy and my is zero. All the solvency constraints necessarily bind at all
nodes and households are in autarchy. As my increases, perfect risk sharing becomes feasible.

Shocks to my change the conditional distribution of consumption across households and asset
prices, but this mechanism is only quantitatively interesting if the expenditure ratio r or rental
prices ρ are subject to large, persistent shocks that significantly change my:

myt(zt) =
Πzt

[{
ca

r

}]

Πzt [{ca}] ,

and this is borne out by the data. All of these processes are highly autocorrelated. Table I
reports the AR(1) coefficients for the log expenditure ratio and the log rental price of housing
services.

The housing collateral ratio is high today when the expenditure ratio r is low today, or if ε is
smaller than one, when the rental price ρ is high, and the effect on my grows as the persistence
of r increases. In the model, the aggregate housing collateral ratio my, the current expenditure

Special cases are separability (1− γ = ε−1
ε

) and Cobb-Douglas preferences (ε = 1).
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ratio and the rental price are all quasi -sufficient statistics for the risk sharing capacity of this
economy. In equilibrium the stock of collateral is allocated efficiently across households in a
stationary equilibrium and this absolves us from the need to track the entire distribution of
collateral across households. The next section explains exactly how shocks to my impinge on
allocations and prices.

C. Equilibrium Consumption

In equilibrium household consumption follows a strikingly simple pattern: as long as a household
does not switch to a state in which the solvency constraint binds, or, equivalently, net wealth
is zero, the household’s consumption as a fraction of total consumption decreases, but when
the household enters a state with zero net wealth, its consumption share jumps up.4 The size
of these jumps for the latter and the rate of consumption share decline for the former class
of households depends on the housing collateral ratio my. When the ratio is low, the cutoff
consumption shares at which at the household solvency constraint binds increase. As a result,
the other households will experience steeper declines in their consumption shares.

We use consumption weights ω to characterize the equilibrium prices and allocations. ω̃t(ω, st)
is the new consumption weight of a households that enters the period with consumption weight
ω. These consumption weights are constant as long as the agent does not switch to a state with
a binding constraint, but when it does, its new weight ω̃t(ω, st) is set to a cutoff weight ωt(yt, z

t).
To compute the aggregate consumption weight, we integrate over the new household weights at
aggregate node zt: ξa

t (z
t) =

∫
ω̃t(ω, st)dΦt(ω; zt). Φt(·; zt) is the distribution over weights at the

start of period t and this distribution depends on the entire aggregate history zt. The actual
consumption share of an agent equals the ratio of his individual stochastic consumption weight
to the aggregate consumption weight:

ct(ω, st) =
ω̃t(ω, st)
ξa
t (zt)

ca
t (z

t) and ht(ω, st) =
ω̃t(ω, st)
ξa
t (zt)

ha
t (z

t), (3)

ξa
t (z

t) is a non-decreasing stochastic process. These risk sharing rules clear the markets for
non-durable consumption and housing services by construction. At the end of the period we
store the household’s consumption share ω = ω̃t(ω,st)

ξa
t (zt) as its identifying label. The cutoff levels

for the consumption weights increase as the housing collateral ratio decreases. When there is no
housing collateral at all, the cutoff level for the consumption share equals the household’s labor

4When a household is not in a state with a binding constraint today, it may still face a binding constraint in
some state tomorrow.
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income share:
ωt(yt, z

t)
ξa
t (zt)

=↗ η̂(yt, zt) as my ↘,

where η̂(yt, zt) is the labor income share relative to the total non-durable endowment. The lower
the collateral ratio, the larger the increase in its consumption share when it switches to a state
with a binding solvency constraint. Household consumption becomes increasingly sensitive to
income shocks as the housing collateral ratio decreases, illustrated in figure 2.

In a stationary equilibrium, each household’s consumption share is drifting downwards as
long as it does not switch to a state with a binding constraint. The rate at which these shares
decrease is log(gt) ≡ ∆log(ξa

t ). This rate depends on the housing collateral ratio. When this
ratio is low, the solvency constraints are tight, many households are highly constrained and
the remainder experience large consumption share drops. The risk-free rate is low, inducing
households to decrease assets at a high rate. When this ratio is high enough, none of the
households are constrained and interest rates are high. The growth rate of the aggregate weight
process log(gt) determines the consumption growth of the unconstrained households and these
households price payoffs in each state of the world. That is the focus of the next section.

III. The Market Price of Aggregate Risk

Using the risk sharing rules in (3), the following expression for the intertemporal marginal
rate of substitution (IMRS) of the unconstrained household emerges: mt+1 = ma

t+1g
γ
t+1. This

is the stochastic discount factor (SDF) in the sense of (Hansen & Jagannathan (1991)) that
prices payoffs. The first section focusses on ma and it examines the data through the lens of
a representative agent model. The new risk factor contributed by the non-separability in the
utility function is referred to as composition risk. We show that the market price of composition
risk is likely to be small. The second section focusses on gt+1 and it examines the liquidity risk
factor contributed by the collateral channel more carefully.

A. Composition Effect

Without the collateral constraints, ours is a representative agent economy. If utility is non-
separable, the housing market introduces a novel risk factor: shocks to the non-housing expen-
diture share. The representative agent’s marginal utility growth is determined by aggregate
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consumption growth and non-housing expenditure share growth:

ma
t+1 = δ

(
ca
t+1

ca
t

)−γ (
αt+1

αt

) ε− 1
γ

1
γ (ε−1)

where αt is the non-housing expenditure share, γ is the coefficient of relative risk aversion
and ε is the intratemporal elasticity of substitution between housing services and non-durable
consumption. Composition risk is small. Piazzesi et al. (2002) show that only values for the
elasticity of intratemporal substitution ε close to but slightly larger than one, and low values
for the intertemporal elasticity deliver a volatile SDF, at the cost of overstating the volatility of
rental price growth by a factor ranging from 3 when ε is 1.05 to 15 when ε is 1.01. In addition,
this composition effect generates little or no variation in the conditional Sharpe ratio’s on risky
assets.

B. Liquidity Effect and the Collateral Channel

We now focus on the case of separable utility. The representative agent’s IMRS ma is the
aggregate consumption growth rate raised to the power −γ and the SDF reduces to:

mt+1 = δ

(
ca
t+1

ca
t

)−γ

gγ
t+1

For the liquidity effect to increase the volatility of the SDF, the liquidity factor needs to be
negatively correlated with aggregate consumption growth. There are two features that deliver a
negative correlation between aggregate consumption growth and the aggregate liquidity shock:
(1) an increase in the cross-sectional dispersion of labor income shocks, and (2) a decrease in the
amount of collateral, both when aggregate consumption growth is low. The first one relies on
the time series properties of labor income in the US, the second one on the time series properties
of rental prices in the housing market. Both of these channels amplify the effect of aggregate
consumption growth shocks on the SDF.

Dispersion of Labor Income Shocks Constantinides & Duffie (1996) build a negative cor-
relation between the dispersion of consumption growth across households and aggregate stock
returns in their model to generate large risk premia, drawing on earlier work by Mankiw (1986).
The first channel in our model is a different version of this (see Lustig (2001)). It delivers a
negative correlation between the standard deviation of the consumption growth distribution and

11



stock returns, but this correlation is the equilibrium outcome of the interaction between the sol-
vency constraints and the time series properties of the labor income process. A larger fraction of
agents draws higher labor income shares η̂(y, z) when aggregate consumption growth is low and,
as a result of the persistence of labor income shocks, higher cutoff levels ω̃t(ω, st). This increases
the size of the aggregate weight shock in low aggregate consumption growth states. There is
some empirical support for this channel. Storesletten, Telmer, & Yaron (2003) conclude that
the volatility of idiosyncratic labor income shocks in the US more than doubles in recessions.

Collateral Supply Shocks If the rental price of housing services declines in response to a
negative aggregate consumption growth shocks, liquidity shocks will tend to be larger when
aggregate consumption growth is low, because the destruction of collateral tightens the solvency
constraints. Table I lists the results of regressing log rental prices on aggregate consumption
growth and lagged rental prices. In the US rental prices do increase in response to a positive ag-
gregate consumption growth shock in the post-war sample. Over the entire sample the evidence
is mixed.

Time-Varying Market Price of Risk The housing collateral ratio governs the amount of
risk sharing that can be sustained and variations in the ratio endogenously generate heteroskedas-
ticity in the SDF. Low housing collateral ratios coincide with a high conditional volatility of the
SDF, because a large fraction of households will be severely constrained in case of an adverse
aggregate consumption growth shock. This mechanism leaves a huge footprint in the cross-
sectional standard deviation of consumption growth, plotted in Figure 3.

The next section concentrates on measuring the US housing collateral ratio directly. Our
measure reveals a surprising amount of historical variation that is consistent with the variation
in US stock returns.

IV. Time Series Evidence

In testing the model, we chose to measure the housing collateral ratio my directly, simply
because forces outside our model probably influence housing prices. In the model, both the
housing collateral ratio and the rental price or the expenditure share are valid state variables.
The first section concentrates on its measurement. The second section confronts our measure
with stock returns.

12



A. Measuring the Housing Collateral Ratio

my is defined as the ratio of collateralizable housing wealth to non-collateralizable human wealth.
In the model only the total supply of collateral matters, not the precise way in which it is allo-
cated across households, because the available collateral is used where the demand for insurance
is highest.5 We can safely abstract from the distribution of collateral across households. Still,
human wealth is unobserved. Following Lettau & Ludvigson (2001a), we assume that the non-
stationary component of human wealth H is well approximated by the non-stationary component
of labor income Y . In particular, log (Ht) = log(Yt)+εt, where εt is a stationary random process.
The assumption is valid in a model in which the expected return on human capital is stationary
(see Jagannathan & Wang (1996) and Campbell (1996)).

Housing Collateral We use three distinct measures of the housing collateral stock HV : the
value of outstanding home mortgages (mo), the market value of residential real estate wealth
(rw) and the net stock current cost value of owner-occupied and tenant occupied residential
fixed assets (fa). The first two time series are from the Historical Statistics for the US (Bureau
of the Census) for the period 1889-1945 and from the Flow of Funds data (Federal Board of
Governors) for 1945-2001. The last series is from the Fixed Asset Tables (Bureau of Economic
Analysis) for 1925-2001.

We use both the value of mortgages HV mo and the total value of residential fixed assets
HV rw to allow for changes in the extent to which housing can be used as a collateral asset,
and we use both HV rw, which is a measure of the value of housing owned by households, and
HV fa which is a measure of the value of housing households live in, to allow for changes in
the home-ownership rate over time. Appendix A provides detailed sources. Real per household
variables are denoted by lower case letters. The real, per household housing collateral series
hvmo, hvrw, hvfa are constructed using the all items CPI from the BLS, pa, and the total number
of households, N , from the Bureau of the Census.

Income Aggregate income is labor income plus net transfer income. Nominal data are from
the Historical Statistics of the US for 1926-1930 and from the National Income and Product
Accounts for 1930-2001. Consumption and income are deflated by pc and pa and divided by the
number of households N .

5In reality any given households may be constrained in terms of access to consumption insurance by the
remaining equity in its own house, but that is not a feature of our model, as was pointed by an anonymous
referee.
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Cointegration Log, real, per household real estate wealth (log hv) and labor income plus
transfers (log y) are non-stationary. According to an augmented Dickey-Fuller test, the null
hypothesis of a unit root cannot be rejected at the 1 percent level. This is true for all three
measures of housing wealth (hv = mo, rw, fa).

If a linear combination of log hv and log y, log (hvt) + $ log (yt) + χ , is trend stationary,
the components log hv and log y are said to be stochastically cointegrated with cointegrating
vector [1, $, χ]. We additionally impose the restriction that the cointegrating vector eliminates
the deterministic trends, so that log (hvt) + $ log (yt) + ϑt + χ is stationary. A likelihood-ratio
test (Johansen & Juselius (1990)) shows that the null hypothesis of no cointegration relationship
can be rejected, whereas the null hypothesis of one cointegration relationship cannot. This is
evidence for one cointegration relationship between housing collateral and labor income plus
transfers. Table II reports the results of this test and of the vector error correction estimation
of the cointegration coefficients:

[
∆log (hvt)
∆ log (yt)

]
= α [log (hvt) + $ log (yt) + ϑt + χ] +

K∑

k=1

Dk

[
∆log (hvt−k)
∆ log (yt−k)

]
+ εt. (4)

The K error correction terms are included to eliminate the effect of regressor endogeneity
on the distribution of the least squares estimators of [1, $, ϑ, χ]. The housing collateral ratio
my is measured as the deviation from the cointegration relationship:

myt = log (hvt) + $̂ log (yt) + ϑ̂t + χ̂.

The OLS estimators of the cointegration parameters are superconsistent: They converge to
their true value at rate 1/T (rather than 1/

√
T ). The superconsistency allows us to use the

housing collateral ratio my as a regressor without need for an errors-in-variables standard error
correction.

We also estimate the constant and trend in the cointegrating relationship while imposing
the restriction $ = −1. This is the second block of each panel in table II. For mo and fa,
we find strong evidence for one cointegrating relationship. The coefficient on log yt is precisely
estimated (significant at the 1 percent level, not reported), varies little between subperiods, and
the 95 percent confidence interval contains -1. The resulting time-series are stationary. The null
hypothesis of a unit root is rejected for mymo and myfa. For each subperiod, the correlation
between the residual estimated assuming $ = −1 and the one with $ freely estimated is
higher than 0.95. For rw, the evidence for a cointegrating relationship is weaker, except for
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the 1925-2002 period. Furthermore, the slope coefficient in the cointegration relationship varies
considerably between subperiods and does not contain -1 in its 95 percent confidence interval.
The correlation between the residual estimated assuming $ = −1 and the one with $ freely
estimated is 0.81 for the entire sample, 0.88 for 1925-2002 and 0.89 for the post-war period.

For consistency we impose $ = −1 on all three of these series. The housing collateral ratios
are labelled mymo, myrw and myfa. For the common sample period 1925-2001, the correlation
between mymo and myrw is 0.89, 0.76 between mymo and myfa and 0.86 between myrw and
myfa. Figure 4 displays my between 1889 and 2002. All three series exhibit large persistent
swings. They reach a maximum deviation in 1932-33. Residential wealth and residential fixed
assets are 30 and 34 percent above their respective joint trends with human wealth. Mortgage
debt is 53 percent above its trend. The series reach a minimum in 1944-45, when mymo is
−.92, myrw is −.57 and myfa is −.38. mymo and myrw have increased considerably since the
year 2000: from .24 to .36 and from 0.19 to 0.30 respectively. Figure 5 shows the cointegration
residuals my for that post-war period. Housing collateral wealth fluctuates within 30 percent
below and above the long-run trend with human wealth.

In the model my is the ratio of two asset prices and hence always positive. Our empirical
measure is the deviation from a cointegration relationship and therefore occasionally negative.
To put the model and the data on the same footing, we rescale the housing collateral ratio:
m̃yt = mymax −myt. The rescaled housing collateral measures collateral scarcity and is always
positive. In the remainder of the paper, mymax is the sample maximum in 1925-2002 (which
coincides with the sample maximum in the 1889-2002 sample). The only exception is when
we explicitly ask the question: If only post-war data were available, what would the housing
collateral model predict for the time series and cross-section of returns?

The next section provides some evidence that the housing collateral ratio predicts stock
returns before we look at the cross-section of stock returns.

B. Time-Series Predictability

In the model the market price for aggregate risk increases when housing collateral is scarce. We
document this positive relationship for the US market return at longer horizons. In addition,
we show that an increase in collateral scarcity predicts higher spreads on future value minus
growth returns, especially at horizons of less than five years: these stocks carry a higher risk
premium in bad times with little housing collateral. The cross-sectional results will shed light
on why this is.
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Market Return and Fama-French Benchmark Portfolios We use the cum-dividend
return on Standard and Poor’s composite stock price index, denoted Rvw

t . The market return
is expressed in excess of a risk-free rate, the return on six-month prime commercial paper. The
returns are available for the period 1889-2001 from Robert Shiller’s web site. In addition, we
create spreads on the basis of the six Fama-French benchmark portfolios, and we look at the
predictability of these spreads. The Fama-French benchmark portfolios are rebalanced annually
using two independent sorts, on size (market equity) and book-to-market (the ratio of book
equity to market equity). The returns are available for the period 1926-2002 from Kenneth
French’s web site.

Long Horizon Predictability The K-year continuously compounded log return on the mar-
ket is defined as rK

t+K,vw = (r1
t+1,vw + ... + r1

t+K,vw) where r1
t,vw equals log(1 + Rvw

t ). re,K
t+K,vw

is the log return on the market less the log return on the riskless asset over the same holding
period K. Figure 6 shows the housing collateral ratio (mymo) and the annualized ten-year
excess return. The series exhibit a negative correlation of −0.52.

In addition, we project long-horizon excess returns on the rescaled housing collateral ratio
m̃y. Row 1 of table III reports the least squares coefficient estimate on the housing collateral
ratio in the regression of holding period returns on the collateral ratio:

re,K
t+K,vw = b0 + bmym̃yt + et+1. (5)

We consider two samples. The first panel reports the 1889-2002 results. The second panel
reports the results for the 1926-2002 sample, the longest sample for which all three collateral
measures are available. The standard errors on bmy are the HAC Newey-West standard errrors
with lag length K.6 We also report the p-value of a two-sided test of the no-predictability
null computed by bootstrapping. The procedure consists of estimating the slope coefficients
in this predictability regression on simulated returns and collateral ratios under the null of no
predictability. The p-value is computed as the fraction of slope estimates above our least squares
estimate.7

6A VAR analysis shows that the innovations in my and unpredicted returns have correlation close to zero.
Therefore, there is no persistent regressor bias, see Stambaugh (1999).

7We estimate an AR(2) for the housing collateral ratio. The least squares coefficients for the long-horizon
predictability regression are computed off simulated cumulative returns and collateral ratios. Under the null of
no predictability, the one-year return is unforecastable and the K-period returns follow an MA(K) process with
mean equal to the K-period average return. We sample i.i.d. errors for the collateral ratio and the one-year
return processes and recursively build up the cumulative return and collateral ratio series. We estimate 20,000
long-horizon regressions and count how many of the bootstrap slope estimates are above the least squares slope
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All of the slope coefficients bmy are positive, except for the coefficients obtained using the
fixed assets measure of housing collateral myfa at short horizons. A low housing collateral ratio
(high m̃y) predicts a high future risk premium as predicted by the model . In the case of mymo,
the mortgage-based housing collateral measure, the R2 of the least-squares regression increases
to 26 percent for the entire sample (row 3, first panel) and 33 percent for the shorter sample
(row 3, second panel). Over the postwar-sample only the mortgage-based collateral measure
mymo and the expenditure share α, also a valid state variable, predict returns on the market.8

According to the theory, our collateral measures should also predict the spreads on value
minus growth portfolios. Table IV looks at the predictability of longer holding period spreads
between value and growth portfolios. We run the same regression as before but now r

spi,j

t+K is the
spread in log K-holding-period returns for two extremum portfolios i and j formed on the basis of
the six Fama French Benchmark Portfolios. The coefficients have the right sign for all collateral
measures: the scarcer housing collateral becomes, the larger the spread on value minus growth
portfolios. This is consistent with our findings in the cross-sectional pricing exercise: value stock
are riskier in times characterized by a low housing collateral measure. As a result, an increase
in m̃y should predict a larger spread in the longer horizon returns on value stocks. At short
horizons of less than five years the null of no predictability is rejected at the 10 percent level for
all three collateral measures, both for small and big firms. The results become less significant at
longer horizons. This provides evidence that the collateral ratio predicts returns even at shorter
horizons of less than five years.

V. Cross-sectional Evidence: Non-Linear Factor Model

We use returns on stock portfolios sorted by size and value characteristics, bond returns and
the return on a risk-free asset to test our model. Size and book-to-market value are asset
characteristics that challenge the standard CCAPM. Historically, small firm stocks and high
book-to-market firm stocks have had much higher returns. In the post-war period, the size
premium has largely disappeared, but the value premium is still prominent. The value premium
-the average return difference between the lowest and the highest book-to-market decile- is 5.7
percent over the entire sample.

estimate. This is the p-value for the null of no predictability.
8Not reported, but available upon request.
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Size and Book-to-Market Portfolios A total of twenty-five portfolios of NYSE, NASDAQ
and AMEX stocks are grouped each year into five size bins and five value (book-to-market ratio)
bins. Size is market capitalization at the end of June. Book-to-market is book equity at the
end of the prior fiscal year divided by the market value of equity in December of the prior year.
Portfolio returns are value-weighted. The stock returns are available for the period 1926-2001
from Kenneth French’s web site and are described in more detail in Fama & French (1992).
We also include the market return Rvw, the value-weighted return on all NYSE, AMEX and
NASDAQ stocks. The bond return is the annual holding period return on a 10-year government
bond (from CRSP). All returns are expressed in excess of an annual return on a one-month
Treasury bill rate (from Ibbotson Associates). The first column of table V shows mean and
standard deviation for the 26 excess returns. For comparison, the table also lists the mean and
standard deviation of equally-weighted returns and the book-to-market ratio of each portfolio.

A. Measuring the Liquidity Factor

In the model, the aggregate weight shock depends on the entire history of aggregate shocks
z∞ and my0. To solve the model numerically, we rely on an approximation of g(z∞,my0), the
growth rate of the aggregate weight process, using a truncated history of aggregate shocks and
the current myt.9

To bring the model to the data, we take a similar approach and use a flexible, non-linear
function of the relevant state variables to parameterize the investor’s forecast of aggregate weight
growth:

log(gt(z∞t ,my0)) ' φ(F a
t , F a

t−1, . . . , F
a
t−k; myt),

where F a
t denotes the vector of aggregate factors F a

t+1 = (∆ log(ca
t+1), ∆log(αt+1))′, consisting

of aggregate consumption growth and expenditure share growth. We use GMM to identify the
function φ in addition to the structural parameters from the moment conditions:

Et[ma
t+1exp(γ ∗ φ(F a

t+1, F
a
t , . . . , F a

t−k;myt+1))R
j
t+1] = 1,

where Rj
t+1, j = 1, . . . , n are the returns on the test assets. In addition, the theory imposes two

kinds of inequality constraints: (1) φ(F a
t+1, F

a
t , . . . , F a

t−k;myt+1) ≥ 0 and (2) Et[ma
t+1R

j
t+1] ≤ 1

that further restrict the set of feasible parameters. (1) follows from the fact that ξa
t (z

t) is a non-
9This is discussed in Lustig & VanNieuwerburgh (2003). These approximations work well, because the supply

of collateral is distributed efficiently across households. The percentage forecast error has a natural interpretation:
it equals the percentage deviation between aggregate consumption and the aggregate endowment.
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decreasing process and this immediately implies (2). The second set of inequality constraints
will prove useful in identifying the structural parameter γ.10

B. Non-Linear Factor Model and GMM

We use Chebyshev orthogonal polynomials to approximate the non-linear φ-function. The ad-
vantage is that the different terms of the polynomial have the usual interpretation as linear
pricing factors (Chapman (1997)).

Moment Restrictions The first moments are the average pricing errors for the test asset
returns and the risk-free rate:

E[mt+1R
j
t+1 − 1] = 0

The theory tells us that the aggregate weight shock is exactly equal to one when the con-
straints do not bind and strictly greater than one in all other periods. First, we impose para-
metric restrictions on the polynomial such that φ(F a

t , F a
t−1, . . . , F

a
t−k; myt) = 0 when my equals

mymax. In particular, we restrict ourselves to functions of the form φ(·) = (mymax − myt) ∗
φ̃(F a

t , F a
t−1, . . . , F

a
t−k).

11

Second, we impose the inequality restrictions E[ma
t+1R

i
t+1 − 1] ≤ 0 on the representative

agent’s Euler equations by adding the Kuhn-Tucker moment conditions to the standard moment
conditions:

λ(θ)E[ma
t+1R

j
t+1 − 1] = 0

We adopt the penalty function approach by parameterizing the Lagrangian multiplier λ as
exp(cE[ma

t+1R
j
t+1 − 1]) for a positive penalty parameter c. To solve saddle point problems

numerically, the shadow price of a binding constraint is usually approximated by the product
of the penalty parameter and the constraint violation (see Judd (1998) theorem 4.7.1.) The
algorithm prescribes that the penalty parameter be increased until convergence is achieved.
The parameter γ is the exponent on both components of the SDF. Without these inequality
constraints, γ is not separately identified.

In a first pass, we estimate the model using four test assets. In a second stage, we add size
and value portfolios to the set of test assets.

10Luttmer (1991) exploits such restriction to derive Hansen-Jagannathan bounds in an environment with sol-
vency constraints .

11We cannot allow the aggregate weight shock to be a function of aggregate consumption growth in isolation,
because that would preclude identification of γ.
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Results with Four Test assets First, we estimate our model using only four test assets:
the risk-free rate, the value weighted market return, the 10 year bond return and the return on
a portfolio that goes long in value and short in growth (the Fama-French benchmark portfolio
RHML). We use annual real, gross holding period returns from 1926 until 2002 (77 observa-
tions).12 There are four standard moment conditions and four Kuhn-Tucker moment conditions,
adding up to a total of eight moment conditions. We use the identity matrix as a weighting
matrix.

The Chebyshev polynomial (̃·) is restricted to be first order: It contains a constant and the
aggregate pricing factor, φ(·) = θ1(mymax − myt) + θ2(mymax − myt)F a

t . This restriction is
tested in the next subsection. We estimate the model for separable preferences: F a is aggregate
consumption growth. The coefficient estimates in table VI lend support to the collateral chan-
nel. The positive estimate for θ̂1 implies that periods with less collateral coincide with a high
value for the aggregate weight shock and SDF. The negative estimate for θ̂2 implies that, when
aggregate consumption growth is below average (the rescaled consumption growth is negative),
the aggregate weight shock is large. This effect increases as collateral becomes scarcer (higher
mymax −myt). This is the collateral effect predicted by the model.

Table VI also shows how the coefficient estimates converge as the penalty parameter c is
increased (reading from left to right in table). Interestingly, for high penalty parameters, the
inequality restrictions are satisfied and we obtain low risk aversion estimates. The representative
agent’s Euler inequalities rule out high γ estimates. Finally, when the penalty parameter is
increased, θ2 is estimated more precisely. The average pricing errors are small (the J-stat
decreases) and the null hypothesis that all pricing errors are zero cannot be rejected (p-value on
last line).

Results with Seven Test Assets Next, we use a more extensive set of seven test assets: a
three month T-bill, a 10 year government bond, the value weighted aggregate stock market and
the four extreme size and value portfolios S1B1, S1B5, S5B1, and S5B5. With the corresponding
inequality conditions this adds up to a total of fourteen moment conditions.

We estimate the collateral model under separable and non-separable preferences. To inves-
tigate the effect of non-linearities we vary the order of the Chebyshev polynomial from 1 to 3.
The left panel of table VII reports the estimates for the collateral model with separable prefer-
ences. In the first order specification of the aggregate weight shock (column 1) all coefficients
are estimated precisely and the point estimates are not very different from the ones we reported

12Results for quarterly data for 1952.1:2002.4 are discussed in section VI.
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in the case of four test assets. This model dominates the ones with higher order polynomial
terms (columns 2 and 3) on the basis of a likelihood ratio test, a Wald test and a Lagrange
multiplier test. The null hypothesis that all higher order polynomial coefficients are zero cannot
be rejected. 13 The right panel of table VII shows the results for non-separable preferences. The
growth rate of the non-durable expenditure share ∆ log αt+1 is an additional aggregate factor
in the aggregate weight shock with loading θ3. The evidence for non-separability is weak: θ3 is
measured imprecisely in columns 4-6. The first-order specification (column 4) fits the data best:
All parameter estimates have the right sign and θ2 is significant. Furthermore, the null that all
pricing errors are zero cannot be rejected for this specification. The p-value is .17 in the last
row.

Comparing Pricing Errors It is informative to examine in more detail the pricing errors on
the 7 test assets implied by the non-linear collateral model. Table VIII contrasts the collateral
model in columns 3-5 with the standard CCAPM in column 1 and the representative agent model
with non-separable preferences (HCAPM) in column 2. The pricing errors for the collateral
CAPM are much smaller for all test assets. Only the pricing error on the small value portfolio
(S1B5) is still significant for the collateral model with separability (Coll-CAPM 1). Under the
collateral model with non-separability (Coll-CAPM 2) this error is reduced to 2.5 percent and
no longer statistically different from zero. Coll-CAPM 3 in the last column allows for limited
history dependence in the aggregate weight shock. It contains lagged consumption growth in
φ̃(·). This specification does not produce significant improvements over the corresponding model
without history dependence Coll-CAPM 1.

By contrast, the CCAPM and HCAPM do a poor job at pricing the risk free rate and the long-
term bond, while massively overpricing growth portfolios and underpricing value portfolios.14

Since the higher order terms in the polynomials do not significantly improve the fit of the
collateral model, we henceforth impose linearity on φ̃. This allows us to make contact with the
linear factor model literature, and it also allows us to increase the number of test assets in the
estimation stage.

13When the unrestricted model is the second order and the restricted model is the first order polynomial model,
the p-values are : polynomial order 1 vs 2: LHR 1.00, Wald .93, LM .91 polynomial order 1 vs 3: LHR 1.00,
Wald .70, LM .76. We conclude that the first order polynomial specification for the aggregate weight shock is the
best fitting one.

14In addition, the estimated relative risk aversion for the CCAPM is high at 10.7. The null hypothesis tha all
pricing errors are zero for the CCAPM and HCAPM are strongly rejected.
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VI. Cross-sectional Evidence: Linear Factor Model

First, we assume φ̃ is linear in (F a
t , F a

t−1, . . . , F
a
t−k), and, second, we assume that the housing

collateral ratio follows an autoregressive process myt+1(myt, F
a
t+1) that interacts linearly with

the aggregate factors. The innovations to the aggregate factors are the structural innovations
in our model.

Aggregate Weight Shocks We propose a linear expression for φ (·):

φ(F a
t , F a

t−1, . . . , F
a
t−k; myt) = (mymax −myt)B(L)(F a

t −Υ) (6)

where B(L) is a polynomial of order k in the lag operator and Υ is the unconditional mean of
the aggregate factors F a

t . For now, we set k = 0, but we test for additional history dependence
in the estimation exercise by including up to four lags of the factors, F a

t−k for k = 1, 2, 3, 4, in
B(L). Bij denotes the coefficient on factor i in lag j.

A. Linear Factor Model and Fama-MacBeth

The factor model for the weight shocks and the autoregressive process for my provide a complete
description of the pricing model. By combining φt+1

(
myt+1, F

a
t+1

)
and myt+1(myt, F

a
t+1), the

stochastic discount factor can be stated in terms of the aggregate factors F a
t+1 and the state

variable myt. A first-order Taylor approximation of this expression delivers our linear factor
model:

mt+1 ≈ δ̃(const− θaF a
t+1 − θcF c

t+1 + γεt+1), (7)

where the constraint factors F c
t+1 are15:

F c
t+1 = (mymax −myt)(1, F a

t+1)

When the utility kernel is separable, the equity risk premium is determined by the conditional
15The associated factor loadings are:

θa =

(
γ − γ(1− ρ)B10mymax,

−ε + 1
γ

1
γ
(ε− 1)

− γ(1− ρ)B20mymax

)

θc = (γρ(B10Υc + B20Υρ),−γρB10,−γρB20)
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covariance of its returns with consumption growth and a state-varying market price of risk:

Et

[
Re,j

t+1

]
≈ δ̃Rf

t γ
[
(1 + Υc)

−1 −B10γ(1− ρ)mymax −B10ρ (mymax −myt)
]

Covt

(
∆log ca

t+1, R
e,j
t+1

)

where Rf
t is the risk-free rate at time t. If B10 is zero, the expression collapses to the stan-

dard CCAPM of Lucas (1978) and Breeden (1979). The market price of consumption risk is
determined by the coefficient of relative risk aversion γ. In contrast, our theory predicts an
increase in the size of the aggregate weight shock when aggregate consumption growth is low,
driven by an increase in idiosyncratic risk. Consumption growth has an effect on the liquidity
shock: B10 < 0. When housing collateral is scarce (mymax −myt is large), the market price of
consumption risk is high.

Non-separability introduces a second covariance in the risk premium equation: the covariance
with expenditure share changes. If B20 is zero, the market price of composition risk is constant.
In contrast, if B20 < 0, the market price of composition risk is high when housing collateral is
scarce (mymax −myt is large).

Unconditional β-Representation The discount factor consists of a representative agent and
a constraint component:

mt+1 = −θFt+1, (8)

where θ is a vector of constants, θ =
(
const, θ̃

)
and θ̃ = (θa, θc) and Ft+1 =

(
1, F̃t+1

)
.

F̃t+1 =
(
F a′

t+1, F
c′
t+1

)′ is a vector of representative agent and constraint risk pricing factors. The
conditioning information is embedded in the scaled constraint factors while θ itself is constant.

These constraint factors contain the original aggregate factors scaled by the housing collateral
ratio myt. myt is the conditioning variable that summarizes the investor’s information set. The
model can be tested using the unconditional orthogonality conditions of the discount factor and
excess asset returns j:

E
[
mt,t+1R

e,j
t+1

]
= 0. (9)

Using the definition of the risk-free rate and the covariance, the unconditional factor model
in (8) implies an unconditional β-representation:

E
[
Re,j

t+1

]
= δ̃R̄f θ̃Cov

(
F̃t+1, R

e,j
t+1

)
= λ̃β̃

j
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where R̄f is the average risk-free rate, β̃
j

is asset j’s risk exposure and λ̃ is a transformation of
the parameter vector θ̃16:

β̃
j

= Cov
(
F̃ , F̃ ′

)−1
Cov

(
F̃ , Re,j

)

λ̃ = δ̃R̄f θ̃Cov
(
F̃ , F̃ ′

)

This unconditional β-representation is the equation we estimate using the Fama-MacBeth pro-
cedure.

Computational Procedure We apply the two-stage Fama-MacBeth procedure and estimate
the unconditional β-representation E

[
Re,j

t+1

]
= λ̃β̃

j
. In a first time-series stage, for each asset j

separately, excess returns are regressed on factors to uncover the β̃’s. In a second cross-sectional
stage, average excess returns are regressed on the β̃’s from the first stage to obtain the market
prices of risk λ̃. Chapter 12 of Cochrane (2001) describes the procedure in more detail.

B. Results for the Collateral Model

We use all 25 size and book-to-market portfolios and the value weighted market return as test
assets.

Table IX reports the estimates for the market price of risk λ̃ obtained from the second-stage
of the Fama-MacBeth procedure. Below the estimates for λ̃, we report conventional standard
errors and Shanken (1992) standard errors, which correct for the fact that the β̃’s are generated
regressors from the first time-series step.

Row 1 shows the standard CCAPM. It explains 9 percent of the cross-sectional variation in
excess returns of the size and book-to-market portfolios between 1926 and 2002. Unsurprisingly,
the coefficient of relative risk aversion γ implied by the market price of consumption risk λ̃c

is very high (22, not reported). With non-separable preferences but perfect commitment, the
change in the non-durable expenditure share is an additional asset pricing factor. This is the
HCAPM of Piazzesi et al. (2002). The non-separability effect increases the R2 to 50 percent
(row 2). Rows 3 through 8 investigate the collateral model. With separable preferences, the new
asset pricing factors are the housing collateral ratio my and consumption growth scaled by my.
The fit improves to 73 - 88 percent for the respective measures of the housing collateral ratio

16Lettau & Ludvigson (2001b) point out that λ̃ does not have a straightforward interpretation as the vector of
market prices of risk. The market prices of risk λ depend on the conditional covariance matrix of factors which
is unobserved.
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(rows 3-5). The coefficients on the interaction terms λmy.c are positive and significant (column
5). With non-separable preferences, the interaction term of my with expenditure share growth
is an additional asset pricing factor (rows 6-8). The new interaction term has a positive factor
loading, but does not enter statistically significantly. Except for the conditioning variable myfa,
non-separability does not add much to the explanatory power of the collateral CAPM.

The intercept in the cross-sectional regression, λ̃0 should be zero. Its estimate is positive
and significant in rows 1 and 2, but becomes insignificant for the collateral CCAPM.

The coefficient estimates for λ̃ can be related to the structural parameters of the model,
and we can infer that a decrease in the housing collateral ratio myt increases the market price
of consumption risk. This follows because the estimated λ̃my.c is positive. The loadings θ̃ can
be backed out of the λ̃ estimates using λ̃ = θ̃

[
δ̃R̄fCov

(
F̃ , F̃ ′

)]
. These factor loadings θ are

listed in table X. The loadings on the constraint factors θc
1 and θc

2 are positive. Assuming the
persistence coefficient ρ for my is positive, this implies that B10 is negative. B10 is the coefficient
on aggregate consumption growth in the aggregate weight growth function. An adverse aggregate
consumption growth shock increases the the aggregate weight shock and hence the risk premium.
This is exactly the effect predicted by the theory.17 The implied B20 estimates are negative as
well (right panel of table X). The conclusion is the same.

Figure 7 compares the CCAPM and the collateral-CAPM under separability. The left panel
plots the sample average excess return on each of the 26 portfolios against the return predicted
by the standard CCAPM. The CCAPM hardly explains any of the variation in excess returns
across portfolios. The right panel, which corresponds to the estimates in row 4 of table IX,
shows the returns predicted by the collateral-CAPM. Most of the size and value portfolios line
up along the 45 degree line.

Table XI reports the sample average pricing errors on each of the 26 portfolios. Relative
to the CCAPM, the collateral-CAPM largely eliminates the overpricing of growth stocks and
the underpricing of value stocks. The root mean squared error (RMSE) across portfolios is 3.27
percent per annum for the CCAPM (first column, second to last row) but less than half as large
for the collateral-CAPM (1.21 percent, last column). The errors are comparable in size and sign

17A negative consumption growth shocks has two effects. First, a recession decreases my which makes the risk-
sharing bounds narrower. Second, a recession coincides with an increase in the income dispersion, which makes the
bounds narrower as well. In either case, the extent to which a recession narrows the bounds depends on the level
of my or, equivalently, the housing collateral ratio. When the risk-sharing bounds are narrower, agents run more
frequently into them and the aggregate weight growth is high. When housing collateral is scarce, mymax−myt+1

is large. A negative consumption growth shock increases φt+1 for B10 < 0. When myt+1 = mymax, there is
no effect of innovations to aggregate consumption and rental price growth on the expression for the aggregate
weights: φt+1 is one.
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to the Fama & French (1993) three-factor model (second column of table XI, see also section
C). However, the pricing errors on the small growth firms (S1B1 and S1B2) and large growth
and value firms (S5B1, S5B4, S5B5) are lower for the collateral model than for the three-factor
model. The last row of the table shows a χ2-distributed test statistic for the null hypothesis
that all pricing errors are zero. The collateral-CAPM is the only model for which the hypothesis
of zero pricing errors cannot be rejected at the 5 percent level.18

Robustness As a first robustness check, we relax the Markov assumption that we imposed on
the aggregate weight shock by including additional lags of the aggregate factors (consumption
growth and expenditure share growth) in the empirical specification of the aggregate weight
process. We set k ∈ 1, 2, 3, 4 in equation (6). This introduces additional asset pricing factors in
the unconditional β-representation. Table XII reports the estimation results for the sample 1929-
2002 and collateral measure myrw. Lines 1 and 5 repeat the reults for no history dependence
(lines 4 and 7 of table IX, note that the sample period is slightly different). Lines 2-4 add
the interaction of the housing collateral ratio with lagged consumption growth to the set of
factors for the separable model. Lines 6-8 do the same for the non-separable model. The fit of
the cross-sectional estimation does not improve significantly by adding more lagged aggregate
factors. The extra factors enter mostly insignificantly, while leaving the estimates on the factors
from the model with no history dependence largely unchanged. Only for k = 4 is there some
additional explanatory power. We conclude that the Markov assumption in the linear collateral
model fits the data well. This is consistent with our results for the non-linear model (column 5
in table VIII).

Second, the theory implies that the expenditure share αt and the relative rental price ρt

are valid state variables that measure the capacity of risk-sharing in the economy. We estimate
the collateral models with the expenditure share and the relative rental price as conditioning
variables instead of the housing collateral ratio my. The fit, as measured by the cross-sectional
R2 or by pricing errors, is very close to the results reported in the paper for my. Again, the
differences between the separable and non-separable model are small (results are available upon
request).

Third, the collateral model performs well when estimated on quarterly data. The flow of
18Because of the sampling error in the regressors the Shanken correction for the χ2 test statistics is large. This

is because the macro-economic factors have a low sample variance and the size of the standard-error correction is
inversely related to this variability. While increasing the standard errors on the estimated market prices of risk,
this correction reduces the χ2 test statistic. The result that the collateral-CAPM fails to reject the null hypothesis
of zero pricing errors should be interpreted in this light.
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funds data needed to construct our collateral measures start in 1952.1. The value of residential
fixed assets is only available through 2001.4, all other data are through 2002.4. Rows 3-8
of Table XIII shows the estimated market prices of risk for collateral model. Rows 1 and
2 show the standard CAPM and HCAPM. The CCAPM explains more of the cross-sectional
variation in stock returns in the postwar sample (R2 = .48). Irrespective of whether the collateral
effect is captured using the housing collateral ratio using outstanding mortgages, the housing
collateral ratio using the value of residential wealth, or the expenditure share (as described in
the previous paragraph), the data support the collateral effect. The parameters have the right
sign: scarcer collateral is associated with a higher market price of risk. For annual post-war
data, the collateral-CAPM with separable preferences explains between 70 and 83 percent and
the collateral-CAPM with non-separable preferences between 76 and 84 percent of the cross-
sectional variation in the 26 portfolios (results are available upon request).

Time-Varying Betas Why does the collateral-CAPM help explain the value premium? In
the model, a stock’s riskiness is determined by the covariance of its returns with aggregate risk
factors conditional on the state variable my. The conditional covariance reflects time-variation
in risk premia. If time variation in risk premia is important for explaining the value premium,
then stocks with high book-to-market ratios should have a larger covariance with aggregate risk
factors in risky times, when my is low (mymax−myt is high), than in less risky times, when my

is high (mymax −myt is low). This is the pattern we find in the data.
We estimate the risk exposure (the β’s) for each of the twenty-five size and book-to-market

portfolios and the value weighted market return. This is the first step of the Fama-MacBeth
two-step procedure. To make the point more forcefully we impose separability on the preferences
over housing and non-durable consumption:

Re,j
t+1 = β̃

j
0 + β̃

j
c∆log ct+1 + β̃

j
my(mymax −myt) + β̃

j
my.c(mymax −myt)∆ log ct+1. (10)

Equation (10) allows the covariance of returns with consumption growth to vary with my.
For each asset j, we define the conditional consumption beta as βj

t = β̃
j
c +(mymax −myt) β̃

j
my.c.

We estimate equation (10) and compute the average consumption beta in good states, defined
as times in which my is one standard deviation above zero, and in bad states (risky times)
when my is one standard deviation below zero. Table XIV shows that the high book-to-market
portfolios (B4 and B5) have a consumption β that is large when housing collateral is scarce and
small in times of collateral abundance. The opposite is true for growth portfolios (B1 and B2).
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Moreover, the value stocks have higher consumption betas than the growth stocks in bad states,
and vice versa for the good states. This is the sense in which value portfolios are riskier than
growth portfolios.

The left panel of figure 8 shows that the value portfolios (B4, B5) have a high return and
the growth portfolios (B1, B2) have a low return. The right panel plots realized excess returns
against β̃

j
my.c, the exposure to the interaction term of the housing collateral ratio with aggregate

consumption growth. Growth stocks in the lower left corner have a low exposure to collateral
constraint risk whereas value stocks have a large exposure. So, value stocks, are riskier than
growth stocks because their returns are more highly correlated with the aggregate factors when
risk is high (mymax −myt is high) than when risk is low (mymax −myt is low). Furthermore,
there is a substantial cross-sectional variation in these betas. Because both the estimates of
λ̃my.c and of β̃

j
my.c are positive, value stocks are predicted to have a higher risk premium. The

value premium is the compensation for the fact that high book-to-market firms pay low returns
when housing collateral is scarce and constraints bind more frequently.

C. Comparison Across Models

The cross-sectional explanatory power of the collateral-CAPM for size and value portfolios com-
pares favorably to other asset pricing models. We discuss model comparison in two ways. The
first one presents the Fama-McBeth regressions for other models, in the same fashion we dis-
cussed the results for the collateral model. The advantage of this approach is that we can infer
the structural parameters from the estimated market prices of risk.19 The second model com-
parison looks at spreads of portfolios that are correctly priced by our model and are predicted
to have a high expected return. It asks whether the alternative models also prices these spreads.
And conversely, what are the high return spreads that alternative models price correctly but fail
to be priced by our model. Here we focus on size and value premia, in section (D) we look at
other dimensions of cross-sectional variation in stock returns.

Fama-McBeth Regression Table XV compares return-based asset pricing models in rows
1-3 with consumption-based models in rows 4-6.

The capital asset pricing model relates the returns on stocks to their correlation with the
return on the wealth portfolio. In the standard CAPM of Lintner (1965), the return on the
wealth portfolio is proxied by the market return Rvw (row 1). It explains 28 percent of annual

19A drawback of comparing models by the cross-sectional R2 is that the mimicking portfolio of asset pricing
factors may be mean-variance inefficient, see Kandel & Stambaugh (1995).
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returns. Because stock market wealth is an incomplete total wealth measure, Jagannathan &
Wang (1996) include the return on human wealth in the return on the wealth portfolio. That
return is measured by the growth rate in labor income (plus transfers). The R2 in row 2
increases slightly to 37 percent. Kullmann (2002) investigates the improvements to the CAPM
when residential housing wealth is incorporated into the definition of wealth. In our model
housing wealth affects returns only through the collateral ratio. In the economy of Santos &
Veronesi (2001), times in which investors finance a large fraction of consumption out of labor
income (lc is low), are less risky. Their conditional CAPM explains 50 percent of the annual
returns (row 3).20

The Fama & French (1993) three-factor model adds a size and a book-to-market factor to
the standard CAPM. The size factor is the return on a hedge portfolio that goes long in small
firms and short in big firms (smb). The value factor is the return on a hedge portfolio that goes
long in high book-to-market firms and short in low book-to-market firms (hml). This model
accounts for 78 percent of the cross-sectional variation in annual returns (row 7). Given its good
fit, this model serves as the empirical benchmark.

In contrast to the previous models, consumption-based asset pricing models measure the
riskiness of an asset directly off the covariance with marginal utility growth. One of the objectives
of this literature has been to identify macroeconomic sources of risk that can explain the empirical
success of the Fama & French (1993) size and book-to-market factors. The fourth row reports
the standard CCAPM of Breeden (1979). Lettau & Ludvigson (2001b) explore a conditional
version of the CCAPM with the consumption-wealth ratio as scaling variable. The market price
of consumption risk increases in times with low cay (recessions). The Lettau-Ludvigson model
explains 86 percent of the annual cross-sectional variation.

Model 6 is our collateral-CCAPM under separability (as previously reported in row 4 of table
IX). The model goes a long way in accounting for the cross-sectional differences in returns on
the 25 Fama-French portfolios and the market return. The R2 of 88 percent improves upon the
fit of the Fama-French model.

For quarterly data, table XIII shows that the collateral model with separability prices the
cross-section of size and book-to-market potfolios as well as the Lettau-Ludvigson (row 9) and
Santos-Veronesi models (row 10).21

As a robustness exercise, we investigate residual explanatory power of the idiosyncratic
20The authors also investigate a scaled version of the CCAPM, as we do, but their results for the scaled CCAPM

are not as strong as for the scaled CAPM.
21We use quarterly data on the consumption-wealth ratio from Martin Lettau’s web page.
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portfolio characteristics, size (log market capitalization) and value (log value weighted book-to-
market ratio of the portfolio), for each of these 7 models. In contrast with the return-based
models and the static CAPM, there are no residual size nor value effects in the collateral-
CCAPM. The same conclusion is found for the post-war sample. Results are available upon
request.

Spreads We construct size and value spreads from the 25 size and book-to-market portfolios.
For each size quintile, the value spread is defined as the difference between the highest book-
to-market quintile return and the lowest book-to-market quintile return. Likewise, for each
book-to-market quintile, the size spread is defined as the difference between the highest size
quintile return and the lowest size quintile return.

Table XVI displays the observed value and size spreads (first column) and compares them
to the spreads predicted by the various consumption-based (left panel) and return-based models
(right panel).

The high return spreads with small pricing error that are identified by our model (column
2) are the value spreads V1 (smallest firms) and V5 (largest firms) and the size spreads S1, S4
and S5. With the exception of the cay-CCAPM in column 4, all other models fail to price these
high return spreads. The pricing error for the other models is especially big for the value spread
for small firms (V1), which is economically the most significant one. The negative size premium
for growth firms (S1) is only found for the cay-CCAPM and our model. Even the Fama-French
model, constructed to price these spreads, has a large abnormal return (alpha) associated with
V1, V5, S1 and S5 relative to our model. Our model and the cay-CCAPM show strong similarity
in the predicted pattern for the spreads. The cay-CCAPM has a larger error associated with
V5 and S5. Our model has a relatively larger pricing error associated with V3, S2 and S4.

Conversely, we ask whether high return spreads predicted by other models are priced by
our model. As apparent from Table XVI, the standard Consumption CAPM, the standard
CAPM, the human capital augmented CAPM, and conditional CAPM, with the labor income
to consumption ratio as conditioning variable, do not generate large expected returns which are
priced with small errors. The Fama-French three-factor model predicts a high return on the V2
and V3 spread. The V2 spread of 6.2 percent is lower than the spread in the data (8.2 percent),
V3 is higher. Our model predicts an even lower spread for V2 (4.4 percent) than the FF model.
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D. Other Dimensions of Cross-Sectional Variation

Sofar we have focused on explaining cross-sectional stock return variation along the size and
book-to-market dimensions. Here we briefly discuss the explanatory power of the collateral
model for cross-sectional return variation in momentum portfolios and portfolios sorted by
dividend-price and earnings-price ratios.

Momentum Portfolios We use monthly data from Bansal, Dittmar and Lundblad for 10
momentum decile portfolios and compound them to quarterly and annual returns. We calculate
the root mean squared pricing errors on the 10 momentum decile portfolios when the market
prices of risk are estimated by Fama-McBeth on the 25 size and book-to-market portfolios and
the 10 momentum portfolios. We also compute pricing errors using 10 size, 10 value and 10
momentum portfolios as test assets. We focus on the performance of the collateral CAPM
relative to the standard CCAPM and the three-factor model.

While the pricing errors on the momentum decile portfolios are large for all three models,
the pricing errors are noticeably smaller for the collateral CAPM than for the consumption
CAPM or the three-factor Fama French model. This is especially true for the quarterly data
(1952.1-1999.4) where the RMSE is .76 per quarter, compared to 1.2 percent for the other two
models. The pricing error on the lowest momentum decile portfolio (‘losers’) is 2.6 percent per
quarter for the CCAPM, 1.5 percent for the three-factor model and only .8 percent for the
collateral CAPM. Likewise, for highest momentum decile portfolio (‘winners’) the pricing errors
are -1.7 percent (CCAPM), -2.2 percent (FF) and -1.0 percent (Coll CAPM). For annual data on
momentum portfolios (1927-1999), there still is a reduction in RMSE, but it is less pronounced
(more detailed results are available upon request).

Dividend-Price and Earnings-Price Portfolios We look at 5 quintile portfolios formed
by sorting on the dividend-price ratio and 5 quintile portfolios sorted by earnings-price ratio.
We add these portfolios to the market return, 5 book-to-market quintile portfolios, and 5 size
quintile portfolios.22 For each characteristic, a spread is defined as the difference of the two
extremum quintile portfolio returns.

The data indicate a spread of 2.5 percent per year associated with the dividend yield sort.
This spread is priced well by our model (2.3 percent), as well as by the three-factor model (2.7
percent).

22The dividend-price portfolio returns are available for 1926-2002. The earnings-price portfolios are available
from 1952 on. All data are from Kenneth French’ web site.
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In the post-1952 period there is a spread of 9.3 percent per year associated with the portfolio
sorted by earnings-price ratio. With the exception of the Fama-French model, which predicts a
8.2 percent expected return, other models fall short of pricing this spread. Our model under-
prices the spread by 3.5 percent, but the unexplained return is smaller than for the CCAPM
and the cay-CCAPM. The lc-conditional CAPM does a good job at pricing the dividend-price
and earnings-price spreads but misprices the size and value spreads (more detailed results are
available upon request).

We conclude that, relative to other models, the collateral model does well at explaining
spreads on portfolios sorted by momentum, dividend yield and earnings-price ratios jointly with
size and value spreads.

E. Dividends on Value Portfolios

We found that the returns of value firms are more correlated with aggregate risk in times when
the housing collateral ratio is low. Here we take the next step by identifying one potential source
of this pattern by examining the response of dividends to collateral shocks.

We use annual dividend data on each of the 10 portfolios sorted on book-to-market. Book-
to-market is defined as book equity at the end of the prior fiscal year divided by the market
value of equity in December of the prior year. We follow Bansal et al. (2002) by constructing
dividends from value-weighted total returns and price appreciation rates on the decile value
portfolios (both from Kenneth French). We construct nominal annual dividends by summing
up monthly nominal dividends. The data are for 1952-1999.

Table XVII shows how dividends, normalized by the aggregate labor income plus transfers, of
the high book-to-market portfolios (B9, B10) are low when housing collateral is scarce. They are
strongly positively correlated with the housing collateral ratio. The normalized dividend process
for the low book-to-market ratio portfolios is strongly negatively correlated with my (B1, b2).
Using a bivariate VAR, we study the response of the normalized dividend process on the growth
(B1) and value (B10) portfolios to an impulse in the housing collateral ratio. Figure 9 shows
the impulse response graphs. The responses of the dividend shares to an innovation to myfa are
mirror images of each other. These different cash flow responses to collateral innovations can
potentially -endogenously- explain the joint distribution of returns and the collateral ratio in
the US data.

32



VII. Conclusion

House price fluctuations play an important role in explaining the time-series and cross-sectional
variation in asset returns. Given the magnitude of the housing market this is unsurprising. This
paper shows that the way in which housing affects asset returns is through the role of housing as
a collateral asset. The housing collateral mechanism endogenously generates heteroskedasticity
and counter-cyclicality in the market price of risk. In Lustig & VanNieuwerburgh (2003) we
solve for the equilibrium of the model numerically, while this paper focusses on connecting the
model to the data. We specify the liquidity factor in the SDF as a semi-parametric function of
the housing collateral ratio and the aggregate pricing factors.

The Euler equation restrictions for the stock market return, a short-term bond, a long-term
bond and a few size and book-to-market portfolios, in addition to the Euler inequality restrictions
for the representative agent, yield precise, low risk aversion estimates. The estimated liquidity
shocks are larger in times of low aggregate consumption growth when housing collateral is scarce,
as predicted by the model. A linear version of this model prices the 25 size and book-to-market
portfolios remarkably well.

Why does the collateral model work better than the standard CCAPM? The data suggest
that the answer lies in allowing for time-variation in risk-sharing. The standard CCAPM implies
that risk-sharing is always perfect. There is a wealth of empirical evidence against full consump-
tion insurance at different levels of aggregation: at the household level (e.g. Attanasio & Davis
(1996) and Cochrane (1991b)), the regional level (e.g. Hess & Shin (1998)) and the interna-
tional level (e.g. Backus, Kehoe, & Kydland (1992)). Blundell, Pistaferri, & Preston (2002)
find evidence for time-variation the economy’s risk sharing capacity. In a companion paper, we
provide direct empirical support for the underlying time-variation in risk-sharing (Lustig & Van-
Nieuwerburgh (2002)). Using US metropolitan area data, we find that the degree of insurance
between regions decreases when the housing collateral ratio is low. Our theory only predicts
strong consumption growth correlations when housing collateral is abundant. The data seem to
support this qualification; conditioning on the housing collateral ratio weakens the consumption
correlation puzzle for US regions.
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VIII. Figures and Tables

Figure 1. First and Second Moments of the Stochastic Discount Factor.
The Hansen-Jagannathan bounds are computed using annual data from 1926-2002 for the real value-weighted market return,
the risk-free rate, a 10 year bond and RHML, the return on the high value minus low value stock portfolio. The model
parameters for the consumption-CAPM, the Housing-CAPM, the Collateral-CAPM under separable preferences and the
Collateral-CAPM under non-separable preferences are estimated by GMM for these 4 test assets. The plot shows the
moments of the SDF, evaluated at the parameter estimates.
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Figure 2. The Consumption Share Cutoff of One Household and the Housing Collateral Ratio.
The dotted line is the housing collateral ratio and the full line is the cutoff
underlineomegat which determines the optimal consumption share. The graph shows a 200 period simulation of the model
at an annual frequency. The parameters are δ = .95, γ = 8 and ε = .15. The calibration is discussed in detail in Lustig &
VanNieuwerburgh (2003).
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Figure 3. The Standard Deviation of Consumption Growth, Liquidity Shocks and the Housing
Collateral Ratio.
The dotted line is the housing collateral ratio my. The left panel plots my against the cross-sectional standard deviation of
consumption growth (right axis). The right panel plots my against the aggregate liquidity shock g (right axis). The graph
shows a 200 period simulation of the model at an annual frequency. The parameters are δ = .95, γ = 8 and ε = .15. The
calibration is discussed in detail in Lustig & VanNieuwerburgh (2003).

0 50 100 150 200
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07
The Cross−sectional Std. of Consumption Growth

time
0 50 100 150 200

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200

0.04

0.05

0.06

0.07
The Liquidity Shocks

time
0 50 100 150 200

1

1.02

1.04

1.06

1.08

1.1

35



Figure 4. Estimated Housing Collateral Ratio, 1889-2002.
Deviation from the cointegration relationship between human wealth (y) and outstanding home mortgages (mo, full line),
non-farm residential wealth (rw, dashed line) and residential fixed asset wealth (fa, dash-dotted line). Data are for 1889-
2002.

1900 1920 1940 1960 1980 2000

0

Ou
tst

an
din

g M
ort

ga
ge

s (
my

mo
)

1900 1920 1940 1960 1980 2000

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Ho
us

ing
 W

ea
lth

 (m
yrw

 an
d m

yfa
)

mymo 

myrw 

myfa 

Figure 5. Estimated Housing Collateral Ratio, 1945-2002.
Deviation from the cointegration relationship between human wealth (y) and outstanding home mortgages (mo, full line),
non-farm residential wealth (rw, dashed line) and residential fixed asset wealth (fa, dash-dotted line). Data are for 1945-
2002.
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Figure 6. Ten-year Excess Market Return and the Housing Collateral Ratio.
The housing collateral ratio is mymo, the measure based on outstanding mortgages
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Figure 7. Realized versus Predicted Returns: The Consumption-CAPM and Collateral-CAPM.
Left Panel: Realized average excess returns on 25 Fama-French portfolios and the value weighted market return against
predicted excess returns by standard Consumption-CAPM. Right Panel: against predicted returns by Collateral-CAPM
(under separability).
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Figure 8. The Collateral CAPM and the Value Premium.
Left Panel: Realized average excess returns on 25 Fama-French portfolios and the value weighted market return against
excess returns predicted by the collateral-CAPM with myrw. Right Panel: Realized average excess returns against β̃my.c,
the exposure to interaction term of mymax−myt and ∆ log ct+1, estimated in the first-stage of the Fama-MacBeth regression.
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Figure 9. Response of the the log Dividend Share on Value and Growth Portfolio to Impulse
in Housing Collateral Ratio.
Left panel: Response of the log dividend share on the highest value decile (B10) to a one standard deviation innovation in
the housing collateral ratio myfa. Right panel: Response of the log dividend share on the lowest value decile (B1) to a
one standard deviation innovation in the housing collateral ratio myfa. The underlying VAR contains the log dividend to
labor income plus transfers ratio and the housing collateral ratio. The sample is 1952-2002. The dashed lines are standard
errors around the responses, computed from 5,000 Monte Carlo simulations.
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Table I
Expenditure Share and Rental Price Regression Results.

Panel A reports regression results for log(zt+1) = θlog(zt) + λ∆log(ct+1) + εt+1, where z is the expenditure share of
nondurable consumption. Panle B reports results for the regression log(ρt+1) = θlog(ρt) + λ∆log(ct+1) + εt+1, where ρ is
the rental price. Below the OLS point estimates are HAC Newey-West standard errors. The left panel reports the results
for the entire sample, while the right panel reports the results for the post-war sample. The variables with superscript 1
are available for 1926-2002. The variables with superscript 2 are only available for 1929-2002. The data appendix contains
detailed definitions and data sources for these variables.

Expl. Var. θ λ θ λ
1926/9-2002 1945-2002
Panel A: Expenditure Share

log(z1) .925 .950
(.039) (.033)

log(z1) .890 .824 .957 .824
(.033) (.141) (.033) (.180)

log(z2) .940 .936
(.037) (.026)

log(z2) .940 .816 .952 .816
(.032) (.159) (.027) (.181)

Panel B: Rental Price
log(ρ1) .953 .851

(.027) (.056)
log(ρ1) .955 .102 .817 .261

(.027) (.181) (.054) (.240)
log(ρ2) .941 .911

(.023) (.046)
log(ρ2) .932 -.321 .896 .259

(.023) (.158) (.047) (.172)
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Table II
Cointegration Analysis.

The vector error-correction model of housing collateral measure hv and labor income plus transfers yt is estimated for
1889-2002, 1925-2002, and 1945-2002 for the mortgages (hv = mo) in panel A and real estaate wealth (hv = rw) in panel B,
and for 1925-2001 and 1945-2001 for residential fixed assets (hv = fa) in panel C. The second through fourth columns show
cointegration coefficient estimates: $ for labor income yt, ϑ for the time trend and χ is a constant. These are the coefficients
in a regression of log hv on a constant, a time trend t and labor income yt. Coefficient estimates for autoregressive terms
(8 lags) are not reported. The fifth column shows the likelihood ratio statistic of the Johansen cointegration test (constant
and a trend in the cointegration relationship). The last column shows the value of the ADF test statistic (8 lags) of the
null hypothesis of a unit root in the resulting cointegration series. For both test, significance at the 10% level is denoted by
a ∗, significance at the 5% level by ∗∗, and at the 1% level by ∗∗∗. The second sub-panel of each panel, labelled Restricted,
imposes the restriction that $ = 1.

Sample Period $ ϑ χ LHR ADF
Panel A: Housing Wealth Measure: Mortgages mo

Unrestricted
1889-2002 -1.5164 -.0066 1.8010 21.07∗ -3.46∗∗
1925-2002 -1.2064 -.0164 2.3546 35.04∗∗∗ -5.38∗∗∗
1945-2002 -1.2987 -.0176 2.6511 30.77∗∗∗ -3.06 ∗∗

Restricted
1889-2002 -1 -.0102 1.6974 -3.08∗∗
1925-2002 -1 -.0148 2.0624 -4.16∗∗∗
1945-2002 -1 -.0233 2.8302 -2.89∗

Panel B: Housing Wealth Measure: Residential Wealth rw
Unrestricted

1889-2002 -1.8255 .0084 -.3659 15.16 -3.46∗∗
1925-2002 -.5480 -.0120 .1895 34.00∗∗∗ -4.01∗∗∗
1945-2002 -.4108 -.0147 .3311 25.00∗ -3.32∗∗

Restricted
1889-2002 -1 .0011 -.4434 -2.29
1925-2002 -1 -.0023 -.1720 -3.42∗∗
1945-2002 -1 -.0083 .3784 -3.51∗∗

Panel C: Housing Wealth Measure: Fixed Assets fa
Unrestricted

1925-2001 -1.0137 -.0004 -.2257 52.01∗∗∗ -4.70∗∗∗
1945-2001 -1.0055 -.0011 -.1624 28.45∗∗ -3.41∗∗

Restricted
1925-2001 -1 -.0005 -.2254 -4.65∗∗∗
1945-2001 -1 -.0026 -.0365 -2.88∗
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Table III
Long-Horizon Predictability Regressions.

The results are for the regression re,K
t+K,vw = b0 + bmym̃yt + εt+K , where re,K

t+K,vw are cumulative (log) excess returns on

the S&P Composite Index over a K-year horizon. Panel A reports results for for the full sample 1889-2002; the sample
size decreases from 113 observations for K = 1 to 104 years for K = 10. Panel B reports the results for 1926-2002; the
sample size decreases from 77 observations for K = 1 to 68 years for K = 10. The sub-panels report the results for the
different collateral measures. Sub-panel 1 reports results for the mortgage-based collateral measure mymo, sub-panel 2 for
the measure based on residential wealth myrw and sub-panel 3 for the measure based on fixed assets myfa. The housing

collateral ratio is rescaled so that it lies between 0 and 1 and measures collateral scarcity: m̃yt =
(

mymax−myt

mymax−mymin

)
, where

mymax and mymin are the maximum and minimum observation in the respective samples. The first row of each sub-panel
reports least squares estimates for b = bmy. Newey-West HAC standard errors σnw are reported in the second row of each
sub-panel. The standard errors correct for serial correlation of order K, where K is the holding period. The third row
reports the R2 for this OLS regression. The fourth row of each sub-panel reports the p-value of the null hypothesis of no
predictability, obtained by bootstrap.

Horizon K 1 2 3 4 5 6 7 8 9 10
Panel A: 1889-2002

Sub-panel 1: Collateral Measure: Mortgages mymo
b 0.08 0.19 0.29 0.32 0.48 0.74 1.12 1.65 2.15 2.54
σnw 0.04 0.07 0.11 0.15 0.19 0.24 0.29 0.33 0.36 0.40
R2 0.01 0.02 0.02 0.02 0.03 0.06 0.09 0.15 0.22 0.26
p− val 0.15 0.12 0.13 0.16 0.11 0.06 0.03 0.01 0.00 0.00

Sub-panel 2: Collateral Measure: Residential Wealth myrw
b 0.06 0.09 0.08 0.02 0.08 0.24 0.43 0.71 1.08 1.45
σnw 0.04 0.08 0.12 0.18 0.24 0.30 0.38 0.46 0.53 0.61
R2 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.05 0.08
p− val 0.21 0.27 0.34 0.44 0.38 0.27 0.19 0.11 0.05 0.02

Panel B: 1926-2002
Sub-panel 1: Collateral Measure: Mortgages mymo

b 0.14 0.28 0.39 0.47 0.71 1.05 1.50 2.00 2.51 3.04
σnw 0.04 0.07 0.11 0.15 0.19 0.24 0.29 0.34 0.39 0.44
R2 0.02 0.03 0.04 0.03 0.06 0.12 0.18 0.24 0.30 0.33
p− val 0.11 0.11 0.11 0.13 0.09 0.06 0.03 0.02 0.01 0.00

Sub-panel 2: Collateral Measure: Residential Wealth myrw
b 0.09 0.13 0.11 0.03 0.08 0.24 0.44 0.68 0.91 1.15
σnw 0.04 0.07 0.12 0.17 0.23 0.31 0.40 0.49 0.59 0.70
R2 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.05
p− val 0.20 0.26 0.34 0.44 0.41 0.33 0.25 0.17 0.13 0.09

Sub-panel 3: Collateral Measure: Fixed Assets myfa
b 0.06 0.04 −0.08 −0.17 −0.09 0.11 0.41 0.69 0.86 1.02
σnw 0.04 0.08 0.13 0.18 0.24 0.31 0.39 0.49 0.59 0.72
R2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.03
p− val 0.34 0.43 0.57 0.62 0.55 0.43 0.29 0.20 0.17 0.14
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Table IV
Long-Horizon Predictability Regressions

The results are for the regression r
spi,j

t+K = b0 + bmym̃yt + εt+K , where r
spi,j ,K

t+K is the spread in log K-period holding returns

for two extremum portfolios i and j formed on the basis of the six Fama-French Benchmark Portfolios (two independent
sorts, 2 by size and 3 by book-to-market). Panel A reports results for the mortgage-based collateral measure mymo, panel
B for the measure based on residential wealth myrw and panel C for the measure based on fixed assets myfa. The housing
collateral ratio is rescaled so that it lies between 0 and 1 and measures collateral scarcity. The first row of each panel
reports least squares estimates for b = bmy. Newey-West HAC standard errors σnw are reported in the second row of each
panel. The standard errors correct for serial correlation of order K, where K is the holding period. The third row reports
the R2 for this OLS regression. The fourth row of each panel reports the p-value of the null hypothesis of no predictability,
obtained by bootstrap. The estimation results are for 1927-2002.

Horizon K 1 2 3 4 5 6 7 8 9 10
Panel A: Collateral Measure: Mortgages mymo

Spread: Small Value minus Small Growth
b 0.32 0.56 0.75 0.93 1.04 1.10 1.07 0.99 0.84 0.69
σnw 0.03 0.06 0.09 0.13 0.16 0.19 0.22 0.24 0.26 0.28
R2 0.12 0.14 0.14 0.18 0.16 0.14 0.12 0.09 0.06 0.04
p− val 0.00 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.14 0.19

Spread: Big Value minus Big Growth
b 0.21 0.42 0.61 0.73 0.79 0.86 0.93 0.90 0.77 0.57
σnw 0.03 0.06 0.10 0.14 0.17 0.21 0.25 0.29 0.33 0.37
R2 0.05 0.09 0.12 0.11 0.10 0.10 0.10 0.08 0.05 0.02
p− val 0.03 0.02 0.03 0.04 0.06 0.06 0.08 0.10 0.15 0.22

Panel B: Collateral Measure: Residential Wealth myrw
Spread: Small Value minus Small Growth

b 0.28 0.46 0.60 0.73 0.79 0.82 0.78 0.70 0.54 0.41
σnw 0.03 0.06 0.09 0.12 0.15 0.17 0.19 0.22 0.24 0.25
R2 0.10 0.10 0.10 0.12 0.10 0.08 0.07 0.05 0.03 0.01
p− val 0.01 0.01 0.02 0.03 0.04 0.06 0.09 0.13 0.20 0.26

Spread: Big Value minus Big Growth
b 0.23 0.43 0.60 0.70 0.77 0.85 0.98 1.02 0.98 0.88
σnw 0.03 0.06 0.10 0.13 0.15 0.18 0.20 0.23 0.26 0.29
R2 0.06 0.10 0.13 0.11 0.10 0.10 0.12 0.11 0.09 0.06
p− val 0.02 0.02 0.03 0.04 0.06 0.07 0.06 0.08 0.10 0.13

Panel C: Collateral Measure: Fixed Assets myfa
Spread: Small Value minus Small Growth

b 0.37 0.54 0.59 0.66 0.74 0.76 0.68 0.52 0.34 0.17
σnw 0.04 0.07 0.10 0.14 0.17 0.20 0.23 0.26 0.28 0.30
R2 0.11 0.09 0.06 0.06 0.06 0.05 0.03 0.02 0.01 0.00
p− val 0.00 0.02 0.05 0.07 0.08 0.10 0.14 0.22 0.30 0.38

Spread: Big Value minus Big Growth
b 0.20 0.43 0.52 0.58 0.65 0.77 0.90 0.93 0.87 0.77
σnw 0.04 0.07 0.11 0.15 0.19 0.22 0.25 0.29 0.33 0.36
R2 0.03 0.07 0.06 0.05 0.05 0.06 0.06 0.06 0.05 0.03
p− val 0.08 0.06 0.09 0.12 0.13 0.12 0.11 0.12 0.15 0.18
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Table V
Annual Portfolio Returns 1927-2002.

Time-series mean and standard deviation of gross portfolio returns. All returns are in excess of a 1 month T-bill return. The
first two columns are value-weighted portfolios, the next two are equally-weighted portfolios and the last column denotes
the value weighted portfolio average book-market ratio. All data are from Kenneth French for 1927-2002.

Asset Mean St. Dev Mean St. Dev. B/M
Rvw 7.9 20.9
S1B1 3.8 38.0 7.3 40.4 0.35
S1B2 9.7 37.4 15.6 45.2 0.70
S1B3 13.8 35.9 17.6 40.1 1.03
S1B4 17.8 44.6 22.1 53.4 1.55
S1B5 18.2 37.6 26.2 48.6 5.52
S2B1 6.9 32.3 7.1 35.5 0.38
S2B2 11.8 30.3 12.6 32.6 0.70
S2B3 13.7 30.5 15.0 33.6 1.03
S2B4 14.7 32.8 15.3 35.1 1.52
S2B5 15.1 33.0 16.5 36.2 3.76
S3B1 8.5 30.5 8.0 30.2 0.38
S3B2 11.4 28.0 11.7 29.8 0.69
S3B3 12.3 27.2 12.8 28.2 1.02
S3B4 13.1 27.8 13.7 28.1 1.51
S3B5 13.9 32.6 14.9 32.8 3.40
S4B1 8.4 24.0 8.4 24.5 0.37
S4B2 9.2 25.6 9.4 26.2 0.69
S4B3 11.1 25.9 11.4 26.9 1.01
S4B4 12.1 27.0 12.4 27.8 1.49
S4B5 13.6 34.5 14.3 36.6 3.35
S5B1 7.6 21.6 6.9 21.1 0.33
S5B2 7.2 19.5 8.4 20.3 0.68
S5B3 8.8 22.1 9.5 23.7 1.00
S5B4 9.5 25.4 10.6 27.3 1.50
S5B5 11.0 33.7 11.5 34.4 1.59
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Table VI
Cross-Sectional Results Collateral Model: 4 Assets.

GMM Parameter estimates for the collateral model under separable preferences for 1926-2002. The estimates minimize
the pricing errors on the market return, the T-bill return, a 10-year bond and a portfolio that goes long in value and
short in growth (hml). GMM estimates also impose 4 inequality conditions. The Chebyshev polynomial is first order:

φ̃(·) = θ1m̃y + θ2m̃y∆log ct+1. γ is the coefficient of relative risk aversion. The time discount factor δ is fixed at .95 in the
estimation. The identity weighting matrix is used in the first stage. The Newey-West matrix with lag length 3 is used to
compute the standard errors. The penalty parameter c is varied between 10 and 500. The last line reports the J-statistic
and the p-value of the null that all pricing errors are zero.

Penalty Parameter c
Parameters 10 15 20 30 40 60 80 100 150 300 500

γ̂ 23.48 13.23 8.83 5.62 4.13 2.84 2.23 1.84 1.24 1.24 1.24
s.e. (16.32) (9.34) (5.79) (4.40) (3.46) (2.67) (2.52) (5.52) (.78) (.75) (.72)

θ̂1 .13 .18 .24 .34 .44 .62 .77 .92 1.34 1.34 1.34
s.e. (.05) (.09) (.14) (.25) (.36) (.59) (.880 (2.66) (.74) (.71) (.68)

θ̂2 -.34 -.60 -.90 -1.42 -1.93 -2.80 -3.56 -4.30 -6.41 -6.40 -6.39
s.e. (.39) (.74) (1.09) (1.89) (2.68) (4.20) (6.00) (15.16) (4.14) (4.05) (3.96)
J 31.56 9.68 3.83 1.61 1.16 .94 .89 .89 .79 .40 .27
p .000 .0847 .5748 .8999 .9487 .9671 .9729 .9708 .9779 .9953 .9982
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Table VII
Cross-Sectional Results Collateral Model: 7 Assets.

GMM Parameter estimates for the collateral model for 1926-2002. The estimates minimize the pricing errors on the market
return, the T-bill return, a 10-year bond and the 4 extremum size and value portfolios. The estimation also imposes 7
inequality conditions. The left panel imposes separability by fixing ε at 0, wile the left panel fixes ε at .85. In column 1
and 4, φ̃(·) is a first-order, in columns 2 and 5 a second order, and in columns 3 and 6 a third order Chebychev polynomial.
The penalty parameter c is 100 (columns 1), 12 (column 2), 11 (column 3), 300 (column 4), 2 (columns 5 and 6). The time
discount factor δ is fixed at .95 in the estimation. The identity weighting matrix is used in the first stage, the Newey-West
matrix with lag length 3 is used to compute standard errors.

Separability Non-Separability
Polynomial Order Polynomial Order

Parameters 1 2 3 1 2 3
γ̂ 4.78 4.96 4.67 2.07 1.35 1.35

s.e. [1.72] [1.68] [1.58] [.32] [.19] [.20]

θ̂1 .37 .63 -.31 -.15 7.31 .44
s.e. [.31] [3.15] [2.77] [2.43] [3.96] [6.78]

θ̂2 -2.00 -1.93 -6.61 -5.16 -8.14 6.44
s.e. [.92] [.85] [13.46] [1.78] [4.87] [7.40]

θ̂3 .33 -.77 -3.67 3.63 .23
s.e. [4.05] [3.16] [8.31] [28.37] [10.14]

θ̂4 -1.69 -.92 -6.59
s.e. [5.26] [19.73] [5.83]

θ̂5 7.56 6.53
s.e. [ 14.21] [3.13]

θ̂6 7.53
s.e. [7.95]

θ̂7 -.70
s.e. [13.37]
J 33.68 110.37 56.31 14.18 60.36 54.15
p .0000 .0000 .0000 .1671 .0000 .0000

45



Table VIII
Average Pricing Errors, Non-Linear Collateral Model.

Average pricing errors implied by the GMM estimations with 7 assets (see Table VII). GMM t-stats are in parentheses.
The Coll-CAPM pricing errors pertain to the model with first order polynomials only. Coll-CAPM 1 is the model with
separability, Coll-CAPM 2 is under non-separability, while Coll-CAPM 3 adds a lagged consumption growth term as a
factor in φ̃(·). The coefficient estimates for 2 and 3 are not reported. The errors for the inequality restrictions are not
reported. The penalty parameter c is 100, 300 and 12 in columns 3,4 and 5 respectively.

Test Asset CCAPM H-CAPM Coll-CAPM 1 Coll-CAPM 2 Coll-CAPM 3

Rf -.069 -.057 .016 .006 .015
(t− stat) (-3.11) (-3.78) (.68) (.30) (3.38)

Rvw -.016 -.000 -.010 -.002 -.010
(t− stat) (-0.85) (-.04) (-.73) (-.25) (-1.38)
RS1B1 -.060 -.042 -.017 .009 -.011

(t− stat) (-1.53) (-1.68) (-.19) (.23) (-.78)
RS1B5 .070 .078 .042 .024 .043

(t− stat) (1.83) (-3.44) (1.71) (.39) (1.42)
RS5B1 -.021 -.001 -.021 -.007 -.021

(t− stat) (-1.00) (-.09) (-1.58) (-.25) (-1.56)
RS5B5 .071 .070 .001 -.003 -.003

(t− stat) (2.20) (3.76) (.01) (-.14) (-.18)
Rbond -.059 -.045 -.013 -.029 -.017

(t− stat) (-2.72) (-2.73) (-.25) (-.88) (-2.98)
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Table IX
Cross-Sectional Results, Linear Factor Model.

Estimation of the market prices of risk λ̃, using the Fama-MacBeth procedure for 1926-2002. The asset pricing factors are
∆ log(ct+1) in row 1, ∆ log(ct+1) and ∆ log(αt+1) in row 2, ∆ log(ct+1), m̃yt, m̃yt∆log(ct+1) in rows 3-5 and ∆ log(ct+1),
∆ log(αt+1), m̃yt ,m̃yt∆log(ct+1) and m̃yt∆log(αt+1) in rows 6-8. The housing collateral variable is the mortgage-based
mymo in rows 3 and 6, the residential-wealth-based myrw in row 4 and 7 and the fixed-assets-based myfa in row 5 and
8. my is estimated with data from 1925-2002. OLS standard errors are in parenthesis, Shanken (1992) corrected standard
errors are in brackets. The last column reports the R2 and the adjusted R2 just below it.

Model λ̃0 λ̃c λ̃α λ̃my λ̃my.c λ̃my.α R2

1 8.87 1.61 9.4
CCAPM (2.55) (1.01) 5.6

[2.77] [1.18]
2 6.90 .51 .55 37.5

HCAPM (2.31) (.88) (.24) 32.0
[2.60] [1.08] [.30]

3 4.22 1.94 -.03 2.23 86.5
Separable Prefs. (2.29) (1.05) (.06) (.79) 84.6

mymo [3.31] [1.58] [.09] [1.17]
4 3.52 2.12 -.03 1.36 87.8

Separable Prefs. (2.25) (1.02) (.03) (.47) 86.1
myrw [3.33] [1.58] [.05] [.72]

5 2.81 .97 -.00 .66 73.3
Separable Prefs. (2.27) (.94) (.02) (.35) 69.7

myfa [2.93] [1.28] [.03] [.47]
6 2.87 2.59 .11 -.02 2.77 .05 87.4

Non-Sep. Prefs. (2.73) (.81) (.26) (.06) (.64) (.18) 84.3
mymo [4.45] [1.38] [.44] [.10] [1.09] [.30]

7 3.62 2.30 .25 -.03 1.45 .11 88.1
Non-Sep. Prefs. (2.48) (.92) (.20) (.03) (.41) (.08) 85.1

myrw [3.81] [1.47] [.33] [.06] [.65] [.13]
8 3.20 1.56 -.05 -.02 .94 .05 85.4

Non-Sep. Prefs. (2.44) (1.01) (.21) (.02) (.38) (.06) 81.7
myfa [4.11] [1.75] [.38] [.04] [.66] [.11]

Table X
Factor Loadings in Collateral CAPM.

Factor loadings θ implied by the Fama-MacBeth coefficient estimates for λ reported in table IX. The left panel reports
the θ estimates for the separable collateral model, the right panel for the non-separable model. The first row inverts the λ
estimates from row 3 in table IX (separable collateral model using mymo) and row 6 (non-separable collateral model using
mymo). The row labelled myrw (myfa) does the same for rows 4 and 7 (5 and 8) of table IX.

Separability Non-Separability
Collateral Measure θa

1 θc
1 θc

2 θa
1 θa

2 θc
1 θc

2 θc
3

Mortages mymo 44.17 0.91 29.42 57.67 8.10 1.17 38.09 4.43
Residential Wealth myrw 35.59 41 12.68 39.04 5.91 0.44 13.85 1.66

Fixed Assets myfa 16.19 0.11 5.02 25.39 3.74 0.17 7.85 1.06
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Table XI
Average Pricing Errors, Linear Collateral Model.

Pricing errors from the cross-sectional Fama-MacBeth Regressions. The set of returns is the value weighted market return
Rvw and the 25 size and book-to-market portfolio returns. The second column reports errors from the consumption CAPM,
the third from the three-factor Fama-French model and the last column reports average errors from the collateral CAPM
with scaling variable myrw (residential-wealth-based collateral measure) and separability in preferences (line 4 in table
IX). The last two rows report the square root of the average squared pricing errors (RMSE) and the χ2 statistic for the
null hypothesis that all pricing errors are zero. The degrees of freedom are 25, 23 and 23 respectively. Three stars denote
rejection of the null hypothesis at the 1 percent level, 2 stars at the 5 percent level and 1 star at the 10 percent level. The
sample is 1926-2002.

Test Asset CCAPM Fama-French Coll-CCAPM
Rvw 2.97 -.20 .07
S1B1 7.97 3.96 1.79
S1B2 1.89 2.51 1.23
S1B3 -1.01 -1.08 -.34
S1B4 -7.10 -2.07 1.53
S1B5 -5.29 -2.78 -.62
S2B1 4.64 1.94 2.03
S2B2 -.30 -1.15 -1.27
S2B3 -2.65 -1.23 -.96
S2B4 -3.31 -.79 -1.14
S2B5 -3.00 -.08 -1.72
S3B1 1.99 -1.41 2.00
S3B2 -.24 -1.12 .28
S3B3 -.50 -.62 -.55
S3B4 -1.28 .03 -1.40
S3B5 -1.92 1.58 .38
S4B1 1.65 -2.54 -1.25
S4B2 .90 .70 .85
S4B3 -.22 .24 -2.08
S4B4 -1.18 .64 .62
S4B5 -3.90 -.11 -2.38
S5B1 3.41 -2.52 -.07
S5B2 3.31 .73 -.21
S5B3 2.13 .46 -.59
S5B4 1.19 1.96 -.10
S5B5 -3.95 -.86 .10
RMSE 3.27 1.61 1.21

χ2 72.1∗∗∗ 61.1∗∗∗ 35.1∗
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Table XIII
Cross-Sectional Results, Fama-MacBeth, Quarterly Data.

Estimation of the market prices of risk λ̃, using the Fama-MacBeth procedure for 1952.1-2002.4. The asset pricing factors are
∆ log(ct+1) in row 1, ∆ log(ct+1) and ∆ log(αt+1) in row 2, ∆ log(ct+1), m̃yt, m̃yt∆log(ct+1) in rows 3-4 and ∆ log(ct+1),
∆ log(αt+1), m̃yt, m̃yt∆log(ct+1) and m̃yt∆log(αt+1) in rows 6-7. The housing collateral variable is mymo in rows 3
and 6 and myfa in row 4 and 7. my is estimated with data from 1925-2002. The conditioning variable is the non-durable
expenditure share αt in rows 5 and 8. In row 9 the asset pricing factors are ∆ log(ct+1), cayt, and cayt∆log(ct+1). cay
is rescaled to ensure positivity: we use cay/std(cay) + 3.5. In row 10 the asset pricing factors are Rvw

t+1, lct, and lctRvw
t+1.

In line 11 the asset pricing factors are Rvw
t+1, RSMB

t+1 , and RHML
t+1 . The OLS standard errors are in parenthesis. The last

column reports the R2 and the adjusted R2 just below it.

Model λ̃0 λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 R2

CCAPM -.09 1.18 48.2
(.79) (.41) [46.0]

HCAPM -.60 1.49 -.004 50.1
(1.06) (.45) (.04) [45.7]

Seperable Prefs. -.58 1.32 .16 .51 67.7
mymo (.81) (.43) (.06) (.11) [63.3]

Seperable Prefs. .43 1.36 -.001 .11 62.2
myfa (.85) (.40) (.01) (.04) [57.0]

Seperable Prefs. .51 1.09 .006 .90 70.0
α (.84) (.44) (.002) (.36) [65.9]

Non-Sep. Prefs. .52 .86 .01 .13 .33 -.02 78.8
mymo (.74) (.29) (.03) (.05) (.09) (.01) [73.5]

Non-Sep. Prefs. 1.38 .66 .01 -.02 .06 .007 72.6
myfa (.69) (.27) (.03) (.01) (.03) (.003) [65.7]

αt −HCAPM .52 1.03 -.01 0.006 .85 -.01 71.7
(.67) (.34) (.03) (.002) (.28) (.02) [64.6]

cayt − CCAPM 2.35 .79 -.71 2.58 66.6
(.97) (.30) (.41) (1.19) [62.1]

lct − CAPM 2.88 -1.17 .01 -1.14 64.3
(1.04) (1.17) (.02) (1.69) [59.5]

FF 3.78 -2.07 .46 1.27 74.0
(1.13) (1.27) (.41) (.43) [70.5]
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Table XIV
Consumption Betas.

Consumption betas are computed as βt = βc + βc.mym̃yt. Good states are states where the residential-wealth-based
collateral measure myrw is one standard deviation below zero and bad states are times where myrw is one standard
deviation above zero (11 observations each). The second column reports the average consumption beta. The third and
fourth column report the average consumption betas in good states and bad states respectively. The sample is 1926-2002.

Test Asset All States Good States Bad States
Rvw 1.56 0.89 2.34
S1B1 1.48 1.27 1.76
S1B2 2.28 .47 4.34
S1B3 3.20 1.70 4.95
S1B4 3.39 -.70 8.00
S1B5 3.96 .85 7.50
S2B1 1.94 .98 3.04
S2B2 2.23 1.25 3.37
S2B3 2.42 .33 4.80
S2B4 2.68 .49 5.17
S2B5 2.89 .58 5.51
S3B1 1.80 .33 3.46
S3B2 2.27 .61 4.17
S3B3 2.52 1.16 4.08
S3B4 2.53 .91 4.39
S3B5 2.99 .53 5.79
S4B1 1.05 .37 1.84
S4B2 1.58 .04 3.33
S4B3 1.71 .65 2.93
S4B4 2.34 .04 4.93
S4B5 1.62 -1.10 4.67
S5B1 1.54 1.20 1.95
S5B2 1.21 .76 1.74
S5B3 1.57 .77 2.50
S5B4 1.69 .32 3.25
S5B5 1.57 -1.66 5.18
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Table XV
Comparison of 7 Linear Factor Models, 1926-2002.

Reported are the market prices of risk λ̃, estimated from the second stage Fama-MacBeth procedure. Row 1 is the CAPM
with the value-weighted market return Rvw,e

t+1 as factor. Row 2 is the human capital augmented CAPM with factors Rvw,e
t+1

and Rhc,e
t+1 , the return on human wealth. Row 3 is the scaled CAPM model, with scaling variable the labor income to

consumption ratio lct. The other factors are Rvw,e
t+1 and lctR

vw,e
t+1 . Row 4 is the consumption-CAPM with aggregate

consumption growth as factor ∆ log (ct+1). Row 5 is the scaled consumption CAPM with the consumption wealth ratio cay
as scaling variable. The factors are ∆ log (ct+1), cayt, cayt∆log (ct+1). Row 6 is the collateral model under separability,
with factors ∆ log (ct+1), myrwmax −myfat, and (myrwmax −myfat)∆ log (ct+1). Row 7 is the three-factor model with

factors Rvw,e
t+1 , the excess return associated with size Rsmb,e

t+1 , and the excess return associated with value Rhml,e
t+1 . The

second column gives the zero-β return λ̃0. OLS standard errors are in parenthesis, Shanken corrected standard errors are
in brackets.

Model λ̃0 λ̃1 λ̃2 λ̃3 R2

1 −.30 9.35 28.3
Static CAPM (4.02) (4.68) 25.3
Sharpe-Lintner [4.40] [5.65]

2 2.24 7.13 3.91 37.2
Human Capital-CAPM (3.93) (4.58) (1.28) 31.7

Jagannathan-Wang [4.87] [6.16] [1.71]
3 1.47 7.48 −.00 5.57 49.3

lc-conditional CAPM (4.17) (4.82) (0.02) (4.99) 42.4
Santos-Veronesi [5.49] [6.42] [0.03] [6.62]

4 8.88 1.61 9.4
Static CCAPM (2.55) (1.01) 5.6
Breeden-Lucas [2.77] [1.18]

5 3.88 2.68 .02 .42 86.2
cay-conditional CCAPM (2.32) (1.05) (.02) (.30) 84.3

Lettau-Ludvigson [3.84] [1.80] [.03] [.53]
6 3.52 2.12 −.03 1.36 87.8

Collateral-CAPM (2.25) (1.02) (.03) (.47) 86.1
this paper [3.33] [1.58] [.05] [.71]

7 10.21 −2.46 2.71 6.30 78.1
Three-factor model (4.63) (5.17) (1.68) (1.74) 75.1

Fama-French [5.24] [6.32] [2.52] [2.56]
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Table XVI
Model Comparison: Value and Size Spreads.

Table reports the realized spreads and the model predicted spreads on value (panel A) and size portfolios (panel B), implied
by the Fama-MacBeth estimates of the market prices of risk. The first column reports the realized value spreads and
size spreads, computed as the difference in sample means between the constituent portfolios. The second through fourth
columns are the predicted spreads by the collateral CAPM, the standard consumption CAPM and the cay-CCAPM. The
fifth through eighth column are the predicted spreads by the CAPM, Human capital augmented CAPM, lc-conditional
CAPM and the Fama French three-factor model. We use annual data for 1926-2002.

Realized Spreads Predicted Spreads
Coll-CCAPM CCAPM cay-CCAPM CAPM HC-CAPM lc-CAPM FF

Panel A: Value Spreads
V1 14.41 12.00 1.14 11.54 .75 3.80 4.06 7.88
V2 8.18 4.43 .54 4.81 .15 .29 2.97 6.15
V3 5.38 3.75 1.46 5.17 -.18 2.75 .20 8.37
V4 5.26 4.12 -.28 4.05 3.02 2.96 3.14 7.70
V5 5.17 5.34 -2.18 6.79 .31 -1.76 -1.74 6.83

Panel B: Size Spreads
S1 -3.81 -1.95 .75 -1.91 4.02 2.17 .25 2.66
S2 2.49 3.93 1.08 2.32 5.26 4.11 2.64 4.27
S3 5.02 5.27 1.88 5.88 4.49 4.29 3.49 3.48
S4 8.33 9.95 .03 8.19 5.21 4.15 7.70 4.30
S5 5.43 4.70 4.08 2.85 4.47 7.72 6.05 3.51

Table XVII
Dividend Share and the Housing Collateral Ratio.

Regression results for log(dt)− log(yt) = b0 +b1myt +εt, where dt is the nominal dividend on each of 10 portfolios sorted on
book-to-market and yt is the nominal aggregate labor income plus transfers. The regressor is mymo in panel A, myrw in
panel B and myfa in panel C. The housing collateral ratios are estimated for the period 1889-2002. The dividend data are
annual for 1952 to 1999, constructed from the monthly dividend yield provided by Bansal, Dittmar and Lundblad (2002).
Each panel reports OLS estimates, their standard errors as well as the R2.

B/M Decile B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
Panel A: Collateral Measure: Mortgages mymo

b0 -5.08 -4.67 -4.59 -4.86 -3.94 -3.93 -4.32 -3.30 -3.25 -3.00
σ(b0) (0.12) (0.10) (0.09) (0.11) (0.08) (0.04) (0.04) (0.04) (0.06) (0.09)
b1 1.21 .51 .85 1.02 .48 .33 .70 .07 -.63 -1.12
σ(b1) (.30) (.26) (.23) (.29) (.21) (.10) (.10) (0.12) (0.14) (.23)
R2 0.266 0.074 0.225 0.207 0.100 0.179 0.490 0.007 0.304 0.344

Panel B: Collateral Measure: Residential Wealth myrw
b0 -5.41 -4.91 -4.86 -5.13 -4.26 -4.08 -4.35 -3.23 -3.06 -2.76
σ(b0) (0.10) (0.11) (0.08) (0.12) (0.06) (0.03) (0.05) (0.05) (0.04) (0.08)
b1 1.30 .73 .97 1.07 .87 .46 .45 -.09 -.71 -1.09
σ(b1) (.17) (.17) (.13) (.18) (.10) (.05) (.08) (0.08) (0.07) (.13)
R2 0.574 0.287 0.559 0.426 0.622 0.650 0.387 0.023 0.722 0.604

Panel C: Collateral Measure: Fixed Assets myfa
b0 -5.20 -4.97 -4.81 -5.05 -4.22 -4.03 -4.23 -3.05 -3.12 -3.01
σ(b0) (0.91) (0.16) (0.15) (0.19) (0.12) (0.07) (0.09) (0.06) (0.09) (0.17)
b1 .91 .82 .88 .91 .79 .36 .24 -.41 -.59 -.62
σ(b1) (.34) (.26) (.25) (.32) (.21) (.11) (.15) (0.11) (0.16) (.29)
R2 0.133 0.171 0.217 0.147 0.241 0.186 0.049 0.236 0.233 0.093
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A. Data Appendix

Labor Income plus Transfers 1929-2002: Bureau of economic Analysis, NIPA Table 2.1, Aggregate

labor income is the sum of wage and salary disbursements (line 2), other labor income (line 9), and proprietors’

income with inventory valuation and capital consumption adjustments (line 10). Transfers is transfer payments

to persons (line 16) minus personal contributions for social insurance (line 23). Prior to 1929, labor income

plus transfers is 0.65 times nominal GDP. Nominal GDP Between 1929 and 2002, the ratio of labor income plus

transfers to nominal GDP stays between .65 and .70 and equals .65 in 1929 and 1930. Nominal GDP for 1889-1928

is from Maddison (2001).

Number of Households For 1889-1945: Census (1976), series A335, A2, and A7. Household data are for

1880, 1890 1900, 1910, 1920, 1930, and 1940, while the population data are annual. In constructing an annual

series for the number of households, we assume that the number of persons per household declines linearly in

between the decade observations. For 1945-2002: U.S. Bureau of the Census, table HH-1, Households by Type:

1940: Present.

Price Indices All Items (pa) 1890-1912: Census (1976), Cost of Living Index (series L38). 1913-2002: CPI

(BLS), base year is 1982-84. In parenthesis are the last letters of the BLS code. All codes start by CUUR0000S.

Total price index (pa): All items (code A0). Shelter (ph): Item rent of primary residence (code EHA). Food (pc)

1913-2002: Item food (code AF1). Apparel (papp) 1913-2002: Item apparel (code AA).

Aggregate Consumption

Total Consumption Expenditures C 1909-1928: Census (1976), Total Consumption Expendi-

tures (series G470). The observations are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau

of economic Analysis, NIPA table 2.2. Total Consumption expenditures is personal consumption expenditures

(line 1).

Housing Services Consumption Crent 1909-1928: Census (1976), Rent and Imputed Rent (series

G477). The observations are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau of economic

Analysis, NIPA table 2.2. Housing services consumption H is nominal consumption on housing services (line 14).

Food Consumption Cfood 1909-1928: Census (1976), Food (series G471 + G472 + G473). The

observations are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau of economic Analysis,

NIPA table 2.2. Nominal consumption of food (line 7).

Apparel Consumption Ccloth For 1909-1928: Census (1976), Apparel (series G474). The observa-

tions are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau of economic Analysis, NIPA

table 2.2. Nominal consumption of clothing and shoes (line 8).

Housing Expenditure share A It is computed in two ways. The nondurable consumption share α =

1−A
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First, for 1909-2002, the housing expenditure share is computed as rent and imputed rent divided by total

consumption expenditures minus rent and imputed rent and minus apparel. The observations are for 1909, 1914,

1919, 1921, 1923, 1925, and 1927. The cell entries for 1920, 22, 24, 26, and 28 are the average of the adjacent

cells. The corresponding measure for the nondurable consumption share is α1 = 1−A1.

Second, for 1929-2002: The housing expenditure share is A is nominal consumption on housing services (line

14) divided by nominal consumption of non-durables (line 6) and services (line 13) minus clothing and shoes (line

8). The corresponding measure for the nondurable consumption share is α2 = 1−A2.

Real Per Household Consumption Growth dc It is computed in two ways. First, for 1922-

2002, we construct real nondurable consumption, as total consumption deflated by the all items CPI minus rent

deflated by the rent component of the CPI minus clothes and shoes deflated by the apparel CPI component. Per

household variables are obtained by dividing by the number of households. The missing data for 1924, 26, and

28 are interpolated using Mehra & Prescott (1985) real per capita consumption growth. The growth rate dc1 is

the log difference multiplied by 100. Second, for 1930-2002, we define real nondurable and services consumption

(NDS), as nondurable consumption deflated by the NIPA nondurable price index plus services deflated by the

NIPA services price index minus housing services deflated by the NIPA housing services price index minus clothes

and shoes deflated by the NIPA clothes and shoes price index. The basis of all NIPA price deflators is 1996=100.

They are not the same as the corresponding CPI components from the BLS. Per household variables are obtained

by dividing by the number of households. The growth rate dc2 is the log difference of NDS multiplied by 100.

Rental Price Growth dρ It is computed in two ways. First, for 1913-2002 we use the ratio of CPI

rent component to the CPI food component: ρ = ph

pc . The growth rate dρ1 is the log difference multiplied by

100. Second, for 1930-2002, we construct nominal non-durable consumption (non-durables plus services excluding

housing services and excluding clothes and shoes) and real non-durable consumption (where each item is separately

deflated by its own NIPA price deflator, basis 1996=100). The deflator for nondurable consumption is then the

ratio of the nominal to the real non-durable consumption series. The relative rental price is then the ratio of the

price deflator for housing services to the price deflator for nondurable consumption. The growth rate dρ2 is the

log difference multiplied by 100.

Financial Wealth In order to construct the consumption wealth ratio at annual frequency (Lettau and

Ludvigson (2001)) we need a measure of financial wealth. For 1945-2002: Flow of Funds, Federal Reserve Board,

Balance sheet of households and non-profit organizations (B.100). Line 8: Financial Asses (FL154090005.Q). For

1926-1945: Total deposits, all commercial banks, NBER Macro-history database (series 14145). We assume that

the ratio of deposits to total wealth decreases slowly from .205 to .185, its level in 1945 (FoF deposits series).
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