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Abstract

This paper studies optimal mortgage design. A borrower (a household) with limited liability needs

�nancial support from a lender (a big �nancial institution) to purchase a home. We characterize the

optimal allocation in a continuous time setting in which (i) the borrower�s income is volatile and its

realization is unobservable to the lender, (ii) the lender has a right to costly foreclose the loan and

seize the house, (iii) the borrower�s intertemporal consumption preferences are represented by a constant

discount factor, (iv) the lender discounts cash �ows using a stochastic discount factor that depends

on the market interest rate. We show that the optimal allocation can be implemented using either a

combination of an interest only mortgage with a home equity line of credit or an option adjustable rate

mortgage. Under the optimal contracts, mortgage payments and default rates are higher when the market

interest rate is high. However, borrowers bene�t from low mortgage payments and low default rates when

the market interest rate is low. Thus, our analysis provides theoretical evidence that these alternative

mortgages, which have recently generated great controversy, can bene�t both lenders and borrowers.
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Yuliy Sannikov, Martin Schneider, Ennio Stacchetti, James Vickery, and seminar participants at the Federal Reserve Bank of
New York, Stern NYU, UCLA, and the Federal Reserve Bank of Minneapolis for helpful comments and suggestions. We are
particularly grateful to Thomas Sargent and Stijn Van Nieuwerburgh for numerous discussions and suggestions.
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1 Introduction

Recent years have seen a rapid growth in originations of more sophisticated alternative mortgage prod-

ucts (AMPs), such as option adjustable rate mortgages (option ARMs) and interest only mortgages. In the

United States, from 2003 through 2005, the originations of AMPs grew from less than 10% of residential

mortgage originations to about 30%.1 As of the �rst half of 2006, 37%2 of mortgage originations were AMPs.

Option adjustable rate mortgages experienced particularly fast growth. They accounted for as little as 0.5%

of all mortgages written in 2003, but their share soared to at least 12.3% through the �rst �ve months of

2006.3 As AMPs have complemented other forms of housing loans rather than replaced them, these nontra-

ditional mortgages account for a signi�cant part of the recent increase in household mortgage debt in the

United States, from about 60% of GDP in 2003 to above 75% of GDP in 2006.4

Unlike traditional �xed rate mortgages (FRMs) and adjustable rate mortgages (ARMs), AMPs let bor-

rowers pay only the interest portion of the debt or even less than that, while the loan balance can grow above

the amount borrowed initially. Often, these mortgages carry teaser rates and come with a second mortgage,

taking the form of a home equity line of credit (HELOC). Interest rates on such loans can increase as interest

rates in the economy move higher. As a result of their popularity and the associated increase in the U.S.

household debt, AMPs have generated great controversy and criticism. Critics contend that AMPs can hurt

borrowers with high interest payments in the future.5 On the other hand, proponents say that AMPs allow

both lenders and borrowers to manage their cash �ows intelligently.

Surprisingly, despite of the economic signi�cance of AMPs and the extent of the surrounding controversy,

there has so far been no attempt to formally address whether these new mortgages improve bene�ts to

borrowers and lenders relative to traditional mortgages. In this paper, we formally address this question

by formulating a general problem of �nding the best possible contract between a home buyer and a bank.

Instead of considering a particular class of mortgages, we derive an optimal mortgage contract as a solution

to a general dynamic contracting problem in a setting with as few assumptions as possible about payments

between the borrower and the lender and about circumstances under which the home is repossessed. Then

we examine whether features of existing mortgage contracts are consistent with the properties of the best

possible contract.

Speci�cally, we consider a continuous-time setting in which a risk-neutral borrower with limited liability

needs outside �nancial support from a risk-neutral lender in order to purchase a home. Home ownership

generates for the borrower a public and deterministic utility stream. While the distribution of the borrower�s

disposable income is publicly known, its realizations are privately observable by him. There is a liquidation

1United States Government Accountability O¢ ce (2006).
2 Inside Mortgage Finance (2006a).
3Data from LoanPerformance, an industry tracker unit of First American Real Estate Solutions (FARES).
4The mortgage debt data are from Flow of Funds Accounts of the United States, Federal Reserve Board, and the GDP data

are from Bureau of Economic Analysis.
5See for example Department of the Treasury, Board of Governors of the Federal Reserve System, Federal Deposit Insurance

Corporation, National Credit Union Administration (2006), or United States Government Accountability O¢ ce (2006).
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technology that allows termination of the relationship and transfer of the home to the lender. This transfer

of ownership leads to ine¢ ciencies due to associated dead-weight costs. The focus on a risk neutral setup

allows us to abstract from any possible insurance role of mortgages and to focus entirely on the fundamental

feature of the borrowing-lending relationship with collateral, which is how to e¢ ciently provide a borrower

with incentives to repay his debt using a costly liquidation.

An important assumption of our model is that the borrower and the lender have di¤erent discount

rates. The borrower�s discount rate 
 represents his intertemporal consumption preferences and is constant

over time. On the other hand, the lender, a big �nancial institution, discounts cash �ows using a stochastic

discount rate rt that depends on the market interest rate. To the best of our knowledge, this is the �rst paper

that allows for a stochastic interest rate in an optimal dynamic security design setting. We further assume

that rt follows a two-state Markov process and is smaller than the borrower�s discount rate. We assume

that the borrower is more impatient than the lender re�ecting that a borrowing-constrained household has

a higher intertemporal marginal rate of substitution then a �nancial institution.

An allocation in this environment obligates the borrower to report his disposable income. The allocation

speci�es transfers between the borrower and the lender, conditional on the history of the borrower�s reports

and the circumstances under which the lender would foreclose the loan and seize the home. Although the

borrower�s reports cannot be veri�ed, the threat of losing ownership of the home induces the borrower to

pay his debt.

We characterize the optimal allocation using the borrower�s continuation payo¤at and the market interest

rate rt as state variables. Under the optimal allocation, the borrower truthfully reports his income. The

home is repossessed when the borrower�s continuation payo¤ at hits the borrower�s reservation utility A

for the �rst time. The borrower consumes part of his income whenever at reaches the upper boundary

a1 (rt). When at 2 [A; a1 (rt)], all the income of the borrower is transferred to the lender. The borrower�s

continuation payo¤ increases (decreases) when his income realization is high (low).

Interestingly, when the interest rate rt switches from high to low, the borrower�s continuation payo¤

jumps up. On the other hand, when the interest rate rt switches from low to high, the borrower�s continu-

ation payo¤ jumps down, which can trigger immediate bankruptcy. This is optimal because the stream of

borrower�s payments is more valuable for the lender when the interest rate is low. As a result, the chances of

home repossession are reduced by moving the borrower�s continuation payo¤ further away from the default

boundary A when the interest rate switches to low. However, the threat of repossession must be real enough

in order for the borrower to share his income with the lender. As a result, the optimal allocation increases

the chances of repossession when the interest rate is high in order to compensate for the weakened threat of

repossession in the low state. This is done by moving the borrower�s continuation payo¤ closer to the default

boundary A when the interest rate switches to high.

After characterizing the optimal allocation in terms of the continuation payo¤s of the borrower and the

lender, we examine whether features of existing mortgage contracts are consistent with the properties of
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optimal allocation. We �nd that the optimal allocation can be implemented in three di¤erent ways using

combinations of existing residential mortgage instruments. First, it can be implemented using an interest

only mortgage with HELOC and two way balance adjustment. Second, it can be implemented using an

interest only mortgage with HELOC with a preferential rate and one way balance adjustment. Third, it can

be implemented using an option adjustable rate mortgage with a preferential interest rate. Therefore, our

analysis provides theoretical evidence that the alternative mortgage products can be e¢ ciently utilized to

mitigate agency cost in the stochastic interest rate environment.

Under the interest only mortgage with HELOC and two way balance adjustment, the borrower owns a

home, while being obligated to make interest coupon payments on the interest only mortgage and interest

payments on the home equity credit line balance. The parameters of HELOC are reset every time the

market interest rate changes. When the market interest rate switches from high to low, the balance on

HELOC is automatically reduced by an amount proportional to the outstanding balance and the interest

rate charged on HELOC balance is also reduced. On the contrary, the balance and the HELOC interest rate

are automatically increased when the market interest rate switches from low to high. The borrower uses his

disposable income to make the current interest rate payments on the interest only mortgage and to repay

the HELOC balance. When the disposable income realization is low, the borrower can draw on the credit

line to make the current debt payments, as long as he does not exceed the credit limit. The borrower is in

default if he is unable to make mortgage payments without exceeding the HELOC credit limit. In this case,

the lender forecloses the loan and seizes ownership of the home.

Although mortgages with HELOC and two way balance adjustment are interesting from a theoretical

point of view, we do not yet observe them in practice. While we actually observe reductions of mortgage debt

balance in the form of "cramdown"6 provisions, the unusual feature of these mortgages is their automatic

increase in debt balance in response to a market interest rate increase. The implementation using the interest

only mortgage with HELOC with a preferential rate and one way balance adjustment addresses this issue.

The interest only mortgage with HELOC with a preferential rate and one way balance adjustment is

similar to the interest only mortgage with HELOC and two way balance adjustment, except that a part

of the HELOC balance is subject to a low preferential (teaser) rate and balance adjustment occurs only

when the interest rate changes from high to low. This reduction in debt can be interpreted as an automatic

"cramdown" provision to be applicable whenever the market interest rate switches to low. When the interest

rate changes from low to high, the total amount of the HELOC debt does not change. Instead, the balance

subject to the preferential rate shrinks.

The option ARM mortgage charges a low preferential interest rate on a portion of the balance. On the

remaining part of the balance, a variable rate is charged which positively correlates with the market interest

rate. The balance subject to the preferential rate increases when the interest rate switches from high to low

6"Cramdown" is a court-ordered reduction of the secured balance due on a home mortgage loan, granted to a homeowner
who has �led for personal bankruptcy protection.
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and decreases when the interest rate switches from low to high. Unlike the previous two implementations,

here the interest rate changes do not a¤ect the total balance on the loan.

All three optimal mortgage implementations provide �nancial �exibility for the borrower to cover possible

low income realizations. Given the interest only mortgage with HELOC and two way (or one way) balance

adjustment, the borrower can draw on HELOC up to its limit, whenever his income is not su¢ cient to

make the coupon payment. Under the option ARM, there is no minimum payment requirement � a low

payment from the borrower translates into a higher balance, as long as the balance does not exceed the

negative amortization limit. Although home repossession is costly, the borrower does not need to maintain

precautionary savings, because the credit commitments by the lender provide a safety net.

The parametrized examples we consider indicate substantial e¢ ciency gains from using mortgage con-

tracts that are contingent on the realization of the lender�s interest rate, such as the optimal option ARM or

the interest only mortgage with HELOC, compared to contracts that do not depend on the lender�s interest

rate. These examples also show that the e¢ ciency gains are largest for households that make little or no

downpayment.

Critics of alternative mortgage products point out that AMPs seem to be more pro�table for lenders

than traditional mortgages. They conclude that AMPs allow lenders to pro�teer at the expense of home-

owners. However, this paper shows that the properties of AMPs are consistent with the properties of the

optimal allocation governing the relationship between the borrower and the lender, which represents a Pareto

improvement over traditional mortgages. As a consequence, it is possible that both lenders and borrowers

bene�t from AMPs. Critics of AMPs have also raised concerns that teaser rates and low minimum payments

can result in substantially higher mortgage payments and, as a consequence, higher default rates when in-

terest rates in the economy increase. Nevertheless, this paper demonstrates that this possibility does not

necessarily contradict optimality of AMPs. Under the optimal mortgage contract, mortgage payments and

default rates are indeed higher when the market interest rate is high. However, borrowers bene�t from low

mortgage payments and low default rates when the interest rate is low.

Related Literature

This paper belongs to the growing literature on dynamic optimal security design, which is a part of

the literature on dynamic optimal contracting models using recursive techniques that began with Green

(1987), Spear and Srivastava (1987), Abreu, Pearce and Stacchetti (1990), Phelan and Townsend (1991),

among many others. Sannikov (2006a) developed continuous-time techniques for a principal-agent problem.

The two studies that are most closely related to ours are DeMarzo and Fishman (2004) and its continuous-

time formulation by DeMarzo and Sannikov (2006). These papers study long-term �nancial contracting in a

setting with privately observed cash �ows, and show that the implementation of the optimal contract involves

a credit line with a constant interest rate and credit limit, long-term debt, and equity. Biais et al. (2006)
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study the optimal contract in a stationary version of DeMarzo and Fishman�s (2004) model and show that

its continuous time limit exactly matches DeMarzo and Sannikov�s (2006) continuous-time characterization

of the optimal contract. Tchistyi (2006) considers a setting with correlated cash �ows and shows that the

optimal contract can be implemented using a credit line with performance pricing. Sannikov (2006b) shows

that an adverse selection problem, due to the borrower�s private knowledge concerning quality of a project

to be �nanced, implies that, in the implementation of the optimal contract, a credit line has a growing

credit limit. Clementi and Hopenhayn (2006) and DeMarzo and Fishman (2006) o¤er theoretical analyses

of optimal investment and security design in moral hazard environments.

Unlike this paper, none of the above studies considers an environment with a stochastic discount rate. We

solve for the optimal allocation in the stochastic discount rate environment and �nd that its implementation

involves a variable interest rate charged on the borrower�s debt as well as balance adjustments, adjustable

preferential debt or a combination of both. On the technical side, building on the martingale techniques

developed for Lévy processes, we extend DeMarzo and Sannikov (2006) characterization of the optimal

allocation in a continuous-time setting to a stochastic discount rate environment.

There is a sizeable real estate �nance literature that addresses the design of mortgages in the presence

of asymmetric information between the borrower and lender. The bulk of this literature focuses on adverse

selection and how it a¤ects the menu of mortgages being o¤ered to borrowers with limited insurance possi-

bilities. Chari and Jagannathan (1989) consider a model with two private types of borrowers, who di¤er in

terms of the riskiness of their potential gains from selling the property, and show that the optimal contract

to be chosen by borrowers with larger potential gains involves contractual arrangements such as points7 and

prepayment penalties together with a "due-on-sale" clause. Brueckner (1994) develops a model in which

borrowers self-select into di¤erent loans, and shows that the optimal menu of mortgages will induce longer

term borrowers to select loans with higher points and a lower coupon. Unlike these two papers, LeRoy

(1996) considers a stochastic interest rate environment and �nds that, when borrowers re�nance optimally,

if interest rates fall, the points/coupon choice can at best serve only to separate the least mobile borrower

type from all others. Stanton and Wallace (1998) show that in the presence of transaction costs payable by

borrowers on re�nancing, it is possible to construct a separating equilibrium in which borrowers with di¤ering

mobility select �xed rate mortgages with di¤erent combinations of coupon rate and points. Posey and Yavas

(2001) study how borrowers with di¤erent private levels of default risk would self-select between �xed rate

mortgages and adjustable rate mortgages, and show the unique equilibrium may be a separating equilibrium

in which the high-risk borrowers choose the adjustable rate mortgages, while low-risk borrowers select the

�xed rate mortgages. Unlike these papers that focus on adverse selection, Dunn and Spatt (1985) consider

a two-period moral hazard model, where future income realization of borrowers are uncertain and private,

and show that the optimal mortgage would involve a due-on-sale clause. In terms of this literature, to our

7Points represents the amount paid either to maintain or lower the interest rate charged.
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knowledge, our paper is the �rst study of optimal mortgage design in a dynamic moral hazard environment,

and the �rst study that addresses the optimality of alternative mortgage products.

There is also a large literature that focuses on the choice of mortgage contracts and the risk associated

with them (for example, Campbell and Cocco (2003)). Unlike our paper, this literature takes a space of

contracts as exogenously given, and studies the household choice within this restricted set of contracts.

Another branch of research investigates limited participation models, where housing collateral insulates

households from labor income shocks. Lustig and Van Nieuwerburgh (2005) typi�es this approach.

The paper is organized as follows. Section 2 presents the continuous-time setting of the model. Section

3 introduces the dynamic contracting model with a stochastic discount rate. Section 4 derives the optimal

contract. Section 5 presents the implementations of the optimal contract. Section 6 discusses the approximate

implementations of the optimal contract. Section 7 concludes.

2 Set-up

Time is continuous and in�nite. There is one borrower and one lender (or a group of lenders). The lender (a

big �nancial institution) is risk neutral, has unlimited capital, and values a stochastic cumulative cash �ow

fftg as

E

241Z
0

e�Rtdft

35 ;
where Rt is the market interest rate at which the lender discounts cash �ows that arrive at time t. We

assume that

Rt =

tZ
0

rsds;

where r is an instantaneous interest rate process, which takes values in the set frL; rHg, where 0 < rL < rH :

We assume that r is a continuous-time process adapted to N , where N = fNt;F1;t; 0 � t <1g is a standard

compound Poisson process with the intensity �(Nt) on a probability space (
1;F1;m1), such that for t � 0 :

rt(Nt) =

8<: r0 if Nt is even

rc0 if Nt is odd
;

�(Nt) =

8<: �(r0) if Nt is even

�(rc0) if Nt is odd
;

where r0 2 frL; rHg is given, and rc0 = frL; rHg n fr0g : The above formulation implies that the interest rate

process is a �rst-order time-invariant continuous Markov chain with an exponential distribution with the
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rate parameter �(rt) of waiting times between successive changes. That is, for any t � 0;

P [rt+s = rL for all s 2 [t; t+�) jrt = rL ] = e��(rL)�;

P [rt+s = rH for all s 2 [t; t+�) jrt = rH ] = e��(rH)�:

The borrower (a household) is also risk neutral, has limited wealth, and values a stochastic cumulative

consumption �ow fCtg as

E

241Z
0

e�
tdCt

35 :
We assume that, for all t; 
 � rt. The borrower can buy a home at date t = 0 at price P: At any moment

in time, ownership of the home generates to the borrower a public and deterministic instantaneous utility

equal to �. The borrower�s initial wealth is Y0 � 0. We assume that P > Y0, so that the borrower must

obtain funds from the lender to �nance the purchase of a home.

A standard Brownian motion Z = fZt;F2;t; 0 � t <1g on (
2;F2;m2) drives the borrower�s disposable

income process, where fF2;t; 0 � t <1g is an augmented �ltration generated by the Brownian motion. The

borrower�s disposable income up to time t, denoted by Yt, evolves according to

dYt = �dt+ �dZt; (1)

where � is the drift of the borrower�s disposable income and � is the sensitivity of the borrower�s income

to its Brownian motion component. The borrower�s disposable income process, Y; is privately observed by

him. In addition, the borrower maintains a private savings account. The private savings account balance,

S, grows at the interest rate �t; which is adapted to the process r, and is such that for all t; �t � rt. The

borrower must maintain a non-negative balance at his account.

At any time, the relationship between the borrower and the lender can be terminated. In this case, the

lender receives L; while the borrower receives his reservation value equal to A. We assume that A � �

 and

that

rHL+ 
A < � + �;

which ensures that the termination of the ongoing relationship is ine¢ cient.

Let (
;F ;m) := (
1 � 
2;F1 �F2;m1 �m2) be the product space of (
1;F1;m1) and (
2;F2;m2) :

3 Dynamic Moral Hazard Problem

At time 0, the funds needed to purchase the home in the amount of P � Y0 are transferred from the lender

to the borrower. An allocation, (� ; I); speci�es a termination time of the relationship, � ; and the transfers

between the lender and the borrower that are based on the borrower�s report of his income and the realized

8



interest rate process. Let Ŷ =
n
Ŷt : t � 0

o
be the borrower�s report of his income, where Ŷ is (Y; r)-

measurable. At any time 0 � t � � , the allocation transfers the reported amount, Ŷt; from the borrower to

the lender, and It(Ŷ ; r) from the lender to the borrower. Below we formally de�ne an allocation.

De�nition 1 An allocation, � = (� ; I); speci�es a termination time; � ; and transfers from the lender to the

borrower, I = fIt : 0 � t � �g ; that are based on Ŷ and r. Formally, � is a (Ŷ ; r)-measurable stopping time,

and I is a (Ŷ ; r)-measurable continuous-time process, which is such that the process

E

24 �Z
0

e�
sdIs jFt

35
is square-integrable for 0 � t � � and Ŷ = Y:

The borrower can misreport his income. Consequently, under the allocation � = (� ; I); up to time t � � ,

the borrower receives a total �ow of income equal to

(dYt � dŶt)| {z }
misreporting

+ dIt;

and his private savings account balance, S, grows according to

dSt = �tStdt+ (dYt � dŶt) + dIt � dCt; (2)

where dCt is the borrower�s consumption at time t; which must be non-negative. We remember that, for all

t � 0; St � 0 and �t � rt:

In response to an allocation (� ; I); the borrower chooses a feasible strategy that consists of his consumption

choice and the report of his income in order to maximize his expected utility. Below we formally de�ne the

feasible strategy of the borrower.

De�nition 2 Given an allocation � = (� ; I); a feasible strategy for the borrower is a pair (C; Ŷ ) such that

(i) Ŷ is a continuous-time process adapted to (Y; r), and (Y � Ŷ ) process is of bounded variation,

(ii) C is a nondecreasing continuous-time process adapted to (Y; r);

(iii) the savings process de�ned by (2) stays non-negative.

The borrower�s strategy is incentive compatible if it maximizes his lifetime expected utility in the class

of all feasible strategies given an allocation � = (� ; I). As a result, we have the following de�nition.

De�nition 3 Given an allocation � = (� ; I), the borrower�s strategy (C; Ŷ ) is incentive compatible if
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(i) given an allocation � = (� ; I); the borrower�s strategy (C; Ŷ ) is feasible,

(ii) given an allocation � = (� ; I); the borrower�s strategy (C; Ŷ ) provides him with the highest expected

utility among all feasible strategies, that is

E

24 �Z
0

e�
t(dCt + �dt) + e
�
�A jF0

35 � E0

24 �Z
0

e�
t(dC 0t + �dt) + e
�
�A jF0

35

for all the borrower�s feasible strategies (C 0; Ŷ 0); given an allocation � = (� ; I):

The above de�nition does not explicitly include the participation constraint imposing the condition that

the borrower�s utility from the continuation of the allocation should be at least as large as the borrower�s

outside option, A; which he can receive at any time by quitting. As the borrower can always under-report

and steal at rate 
A until a termination time, any incentive compatible strategy would yield the borrower

utility of at least A.

The above de�nition of an incentive compatible strategy allows us to de�ne the incentive compatible

allocation as follows.

De�nition 4 An incentive compatible allocation is an allocation � = (� ; I), together with the recommenda-

tion to the borrower, (C; Ŷ ); where (C; Ŷ ) is a borrower�s incentive compatible strategy given an allocation

� = (� ; I).

The allocation is optimal if it provides the borrower with his initial promised utility a0 and maximizes the

expected pro�t of the lender in the class of all allocations that are incentive-compatible. Below we provide

a formal de�nition of the optimal allocation.

De�nition 5 Given the promised payo¤ to the borrower, a0, an allocation � = (��; I�), together with a

recommendation to the borrower (C�; Ŷ �) is optimal if it maximizes the lender�s expected utility (expected

pro�t):

E

24 �Z
0

e�Rt(dŶt � dIt) + e�R��L jF0

35
in the class of all incentive-compatible allocations that satisfy the following promise keeping constraint:

a0 = E

24 �Z
0

e�
t(dCt + �tdt) + e
�
�A jF0

35 :
In the following lemma, we show that searching for optimal allocations, we can restrict our attention to

allocations in which truth telling and zero savings are incentive compatible.

Lemma 1 There exists an optimal allocation in which the borrower chooses to tell the truth and maintains

zero savings.
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Proof In the Appendix.

The intuition for this result is straightforward. The �rst part of the result is due to the direct-revelation

principle. The second part follows from the fact that it is weakly ine¢ cient for the borrower to save on his

private account (�t � rt) as any such allocation can be improved by having the lender save and make direct

transfers to the borrower. Therefore, we can look for an optimal allocation in which truth telling and zero

savings are incentive compatible.

4 Derivation of the Optimal Allocation

In this subsection, we formulate recursively the dynamic moral hazard problem and determine the optimal

allocation. First, we consider a problem in which the borrower is not allowed to save and we determine the

optimal allocation8 in this environment. We know from Lemma 1 that it is su¢ cient to look for optimal

allocations in which the borrower reports truthfully and maintains zero savings, and so the optimal allocation

of the problem with no private savings, for a given promise to the borrower, yields to the lender at least as

much utility as the optimal allocation of the problem when the borrower is allowed to privately save. Finally,

we show that the optimal allocation of the problem with no private savings is fully incentive compatible,

even when the borrower can maintain undisclosed savings.

Methodologically, our approach is based on continuous-time techniques used by DeMarzo and Sannikov

(2006). We extend their techniques to a setting with Lévy processes. Appendix A.2 derives the optimal

allocation in a discrete-time version of our model.

4.1 The Optimal Allocation without Hidden Savings

Consider for a moment the dynamic moral hazard problem in which the borrower is not allowed to save.

First, we will �nd a convenient state space for the recursive representation of this problem. For this purpose,

we de�ne the borrower�s total expected utility received under the allocation � = (� ; I) conditional on his

information at time t, from transfers and termination utility, if he tells the truth:

Vt = E

24 �Z
0

e�
s [dIs + �ds] + e
�
�A jFt

35 :
Lemma 2 The process V = fVt;Ft; 0 � t < �g is a square-integrable Ft-martingale.

Proof follows directly from the de�nition of process V and the fact that this process is square-integrable,

which is implied by De�nition 1.

8That is the allocation satisfying the properties of De�nition 5 and the additional constraint that S = 0.
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Below is a convenient representation of the borrower�s total expected utility received under the allocation

� = (� ; I) conditional on his information at time t, from transfers and termination utility, if he tells the

truth. Let M = fMt = Nt � t�(Nt);F1;t; 0 � t <1g be a compensated compound Poisson process.

Proposition 1 There exists Ft-predictable processes (�;  ) = f(�t;  t); 0 � t � �g such that

Vt = V0 +

Z t

0

e�
s�sdZs +

Z t

0

e�
s sdMs =

V0 +

Z t

0

e�
s�s

�
dYs � �ds

�

�
| {z }

dZs

+

Z t

0

e�
s s(dNs � �(Ns)ds): (3)

Proof We note that the couple (Z;N) is a Brownian-Poisson process, and it is an independent increment

process, which is a Lévy processes, on the space (
;F ;m): Then, Theorem III.4.34 in Jacod and Shiryaev

(2003) gives us the above martingale representation for a square-integrable martingale adapted to Ft taking

values in a �nite dimensional space (the process V ).

According to the martingale representation (3), the total expected utility of the borrower under the

allocation � = (� ; I) and truth telling conditional on his information at time t equals its unconditional

expectation plus two terms that represent the accumulated e¤ect on the total utility of, respectively, the

income uncertainty revealed up to time t (Brownian motion part), and the interest rate uncertainty that has

been revealed up to time t (compensated compound Poisson part).

According to Proposition 1, when the borrower reports truthfully, his total expected utility under the

allocation � = (� ; I) conditional on the termination time � equals

V� = V0 +

Z �

0

e�
s�s

�
dYs � �ds

�

�
+

Z �

0

e�
s sdMs:

As I and � depend exclusively on the borrower�s report Ŷ and the public interest rate process r, when the

borrower reports Ŷ ; by (3) he gets the expected utility, a0(Ŷ ), which equals

a0(Ŷ ) = E

26664V0 +
Z �

0

e�
t�t

 
dŶt � �dt

�

!
+

Z �

0

e�
t tdMt +

Z �

0

e�
t(dYt � dŶt)| {z }
payo¤ from stealing

jF0

37775 =
E

�
V0 +

Z �

0

e�
t�t

�
dYt � �dt

�

�
+

Z �

0

e�
t
�
1� �t

�

��
dYt � dŶt

�
+

Z �

0

e�
t tdMt jF0
�
: (4)

Note that because the process (�;  ) = f(�t;  t); 0 � t � �g is Ft�predictable; as for any t � 0, s � 0;

E0 [Zt+s � Zt jF0 ] = E0 [Mt+s �Mt jF0 ] = 0; and given that E [V0 jF0 ] = V0; we have that

a0(Ŷ ) = V0 + E

�Z �

0

e�
t
�
1� �t

�

��
dYt � dŶt

�
jF0
�
: (5)
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Representation (5) leads us to the following formulation of incentive compatibility.

Proposition 2 If the borrower cannot save, truth telling is incentive compatible if and only if �t � �

(m� a:s:) for all t � � :

Proof Immediately follows from (5).

It is important to stress that in providing incentives for truth telling one can neglect an impact of

reporting strategies on the magnitude of the adjustments,  ; in the borrower�s promised value that occurs

when the lender�s interest rate changes. It follows from (4) that, though in principle the reporting strategy

of the borrower does a¤ect the magnitude of these adjustments, from the perspective of the borrower such

adjustments have zero e¤ect on the borrower�s expected utility whatever is his reporting strategy. This

property considerably simpli�es the formulation of incentive compatibility.

To characterize the optimal allocation recursively, we de�ne the borrower�s continuation value at time t

if he tells the truth as

at = E

�Z �

t

e�
(s�t) [dIs + �ds] + e
�
(��t)A jFt

�
:

Note that for t � � we have that

Vt =

Z t

0

e�
s(dIs + �dt) + e
�
tat:

But this, together with (3), implies the following law of motion of the borrower�s continuation value:

dat = 
atdt� �dt� dIt + �tdZt +  tdMt = (
at � � �  t�(rt)) dt� dIt + �tdZt +  tdNt: (6)

Here we discuss informally, using the dynamic programming approach, how to �nd out the most e¢ cient

way to deliver a borrower any promised utility a � A. The proof of Proposition 3 formalizes our discussion

below. Let b(a; r) be the highest expected utility of the lender that can be obtained from an incentive

compatible allocation that provides the borrower with utility equal to a given that the current interest rate

is equal to r. To simplify our discussion we assume that the function b is concave and C2 in its �rst argument.

Let b0 and b00 denote, respectively, the �rst and the second derivative of b with respect to the borrower�s

continuation utility a.

We start by observing that transferring lump-sum dI from the lender to the borrower with promised

utility a; moves an allocation to that of the borrower�s promised utility of a� dI: The e¢ ciency implies that

b(a; r) � b(a� dI; r)� dI; (7)
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which shows that for all (a; r) 2 [A;1)�frL; rHg the marginal cost of delivering the borrower his promised

utility can never exceed the cost of an immediate transfer in terms of the lender�s utility, that is

b0(a; r) � �1:

De�ne a1(r); r 2 frL; rHg, as the lowest value of a such that b0(a; r) = �1: Then, it is optimal to pay the

borrower as follows

dI(a; r) = max(a� a1(r); 0):

These transfers, and the option to terminate, keep the borrower�s promised value between A and a1(r): But

this implies that when a 2 [A; a1(r)]; and when the borrower is telling the truth, his promised value evolves

according to

dat(rt) = (
atdt� �dt� dIt) + �tdZt +  t (dNt � �(rt)dt) : (8)

We need to characterize the optimal choice of process (�t;  t); where
�t
� determines the sensitivity of the

borrower�s promised value with respect to his report, and  t determines the adjustment of the borrower�s

promised value due to a change in the interest rate. Using Ito�s lemma, we �nd that

db(at; rt) = (
at � � �  t�(rt))b0(at; rt)dt

+
1

2
�2t b

00(at; rt)dt+ �tb
0(at; rt)dZt + [b(at +  t; r

c
t )� b(at; rt)] dNt;

where rct = frL; rHg n frtg. Using the above equation, we �nd that the lender�s expected cash �ows and the

change in the value he assigns to the allocation are given as follows:

E [dYt + db(at; rt) jFt ] =�
�+ (
at � � �  t�(rt))b0(at; rt) +

1

2
�2t b

00(at; rt) + �(rt) (b(at +  t; r
c
t )� b(at; rt))

�
dt:

From Proposition 2, we know that if �t � � for all t � � then the borrower�s best response strategy is

to report the truth, that is, Ŷ = Y: Because at the optimum, at any time t; the lender should earn an

instantaneous total return equal to the interest rate, rt, we have the following Bellman equation for the

value function

rtb(at; rt) = max
�t��,  t�A�at

24 �+ (
at � � �  t�(rt))b0(at; rt)+
1
2�

2
t b
00(at; rt) + �(rt) (b(at +  t; r

c
t )� b(at; rt))

35 : (9)

Given the concavity of the function b(�; rt), b00(at; rt) = d2b(at;rt)
da2t

� 0, setting

�t = �

14



for all t � � is optimal. The concavity of the objective function in  t in the RHS of the Bellman equation

(9) also implies that the optimal choice of  t is given as a solution to

b0(at; rt) = b0(at +  t; r
c
t ); (10)

provided that  t > A� at; and otherwise  t = A� at. Note that this implies that  t =  (at; rt):

The lender�s value function therefore satis�es the following di¤erential equation

rtb(at; rt) = �+ (
at � � �  (at; rt)�(rt))b0(at; rt)

+
1

2
�2b00(at; rt) + �(rt) (b(at +  (at; rt); r

c
t )� b(at; rt)) (11)

with b(at; rt) = b(a1(rt); rt)� (a� a1(rt)) for at > a1(rt) and the function  speci�ed above.

We need some boundary conditions to pin down a solution to this equation and the boundaries a1(r);

r 2 frL; rHg. The �rst boundary condition arises because the relationship must be terminated to hold the

borrower�s value to A, so b(A; rt) = L. The second boundary condition comes from the fact that the �rst

derivatives must agree at the boundary, so b0(a1(rt); rt) = �1: The �nal boundary condition is the condition

for the optimality of a1(rt), which requires that the second derivatives match at the boundary. This condition

implies that b00(a1(rt); rt) = 0, or equivalently, using equation (11), that

rtb(a
1(rt); rt) = �+ � � 
a1(rt)

+�(rt)
�
 (a1(rt); rt) + b(a

1(rt) +  (a
1(rt); rt); r

c
t )� b(a1(rt); rt)

�
: (12)

By de�nition, a1(r) is the lowest value of a such that b0(a; r) = �1; thus

 (a1(rL); rL) = � (a1(rH); rH) = a1(rH)� a1(rL):

This, combined with (12) implies that

�+ � = rLb(a
1(rL); rL) + 
a

1(rL)� �(rL)
�
b(a1(rH); rH)� b(a1(rL); rL) + a1(rH)� a1(rL)

�
;

�+ � = rHb(a
1(rH); rH) + 
a

1(rH)� �(rH)
�
b(a1(rL); rL)� b(a1(rH); rH) + a1(rL)� a1(rH)

�
:

The proposition below formalizes our �ndings.

Proposition 3 An optimal allocation that delivers to the borrower the value a0 takes the following form.

There exists boundaries: a1(r), r 2 frL; rHg ; such that
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(i) If a0 2 [A; a1(r0)]; r0 2 frL; rHg ; at evolves as

dat(rt) = (
atdt� �dt� dIt) + (dŶt � �dt) +  (at; rt)(dNt � �(rt)dt); (13)

and

�when at 2 [A; a1(rt)), dIt = 0;

�when at = a1(rt) the transfers dIt cause at to re�ect at a1(rt):

(ii) If a0 > a1(r0) an immediate transfer a0 � a1(r0) is made.

The relationship is terminated at time � when at hits A. The lender�s expected utility (expected pro�t) at

any point is given by a concave function b(at; rt), which satis�es:

rtb(at; rt) =

�+ (
at � � �  (at; rt)�(rt))b0(at; rt) +
1

2
�2b00(at; rt) + �(rt) (b(at +  (at; rt); r

c
t )� b(at; rt)) (14)

when at is in the interval [A; a1(rt)] and b0(at; rt) = �1, when at > a1(rt), with boundary conditions

b(A; rt) = L and

�+ � = rLb(a
1(rL); rL) + 
a

1(rL)� �(rt)
�
b(a1(rH); rH)� b(a1(rL); rL) + a1(rH)� a1(rL)

�
;

�+ � = rHb(a
1(rH); rH) + 
a

1(rH)� �(rt)
�
b(a1(rL); rL)� b(a1(rH); rH) + a1(rL)� a1(rH)

�
:

The function  is de�ned as follows

 (at; rt) =

8>>>>>><>>>>>>:

is a solution to b0(at; rt) = b0(at +  t; r
c
t ) for all (at; rt)

for which the solution is such that  (at; rt) > A� at;

otherwise it is equal to A� at

; (15)

where rct = frL; rHg n frtg :

Proof In the Appendix.

The evolution of the promised value (13) implied by the optimal allocation serves three objectives -

promise keeping, incentives, and e¢ ciency. The �rst component of (13) accounts for promise keeping. In

order for at to correctly describe the lender�s promise to the borrower, it should grow at the borrower�s

discount rate, 
; less the payment, �dt, he receives from owning the home, and less the �ow of payments,

dIt; from the lender.
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The second term of (13) provides the borrower with incentives to report truthfully his income to the

lender. Because of ine¢ ciencies resulting from liquidation, reducing the risk in the borrower�s payo¤ lowers

the probability that the borrower�s payo¤ reaches A, and thus lowers the probability of costly liquidation.

Therefore, it is optimal to make the sensitivity of the borrower�s payo¤ with respect to its report as small

as possible provided that it does not erode his incentives to tell the truth. The minimum volatility of

the borrower�s promised value with respect to his report of income required for truth-telling equals 1. To

understand this, note that, under this choice of volatility, underreporting income by one unit would provide

the borrower with one additional unit of current utility through increased consumption, but would also

reduce the borrower�s promised utility by one unit, so that this volatility provides the borrower with just

enough incentives to report a true realization of income. Note that when the borrower reports truthfully,

the term
�
dŶt � �dt

�
is driftless and equals to �dZt.

The last term of (13) captures the e¤ects of changes in the lender�s interest rate process on the borrower�s

promised utility. The optimal adjustments,  , in the borrower�s promised utility, which are applicable when

there is a change in the lender�s interest rate, are such that the sensitivity of the lender�s expected utility, b,

with respect to the borrower�s promised utility, a, is equalized just before and after an adjustment is made.9

This sensitivity represents an instantaneous marginal cost of delivering the borrower his promised payo¤ in

terms of the lender�s utility, and so the e¢ ciency calls for equalizing this cost across the states. We note

that these adjustments imply the compensating trend in the borrower�s promised payo¤, ��(rt) (at; rt)dt,

which exactly o¤sets the expected e¤ect these adjustments have on the borrower�s expected utility.

Below we prove a useful lemma that characterizes the behavior of the optimal allocation when the

borrower�s promised payo¤ is close to liquidation and there is an interest rate change.

Lemma 3 At the optimal allocation, there exists �a 2 (A; a1(rL)] such that

-  (A; rH) = �a�A;

-  (a; rL) = A� a for a 2 [A; �a]:

Proof From the de�nition of function b and the fact that rL < rH it follows that, for any a > A,

b(a; rL) > b(a; rH): This, together with b(A; rL) = b(A; rH) = L, implies that b0(A+; rL) > b0(A+; rH). Let

�a be the smallest a > A such that b0(a; rL) = b0(A+; rH). The existence of such �a follows from the fact that,

for any a 2 [A; a1(rt)]; b0(a; rt) � �1 and b0(a1(rt); rt) = �1: This combined with (15) yields us the alleged

properties of function  .

Corollary 1 Lemma 3 implies that under the optimal allocation, whenever at 2 (A; �a], an instantaneous

increase of the interest rate, rt; triggers the termination of the relationship.

9Provided that the solution to (10) is interior.
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4.2 The Optimal Allocation with Hidden Savings

So far we have characterized the optimal allocation under the assumption that the borrower cannot save.

Now we show that, given the optimal allocation of the problem with no hidden savings, the borrower has no

incentive to save at the solution, and thus the allocation of Proposition 3 is also optimal in the environment

where the borrower can privately save.

Proposition 4 Suppose that the process at is bounded above and solves

dat = 
atdt� �dt� dIt + (dŶt � �dt) +  tdMt (16)

until stopping time � = min ft jat = Ag ; where  t is an Ft�predictable process. Then the borrower�s expected

utility from any feasible strategy in response to an allocation (� ; I) is at most a0: Moreover, payo¤ a0 is

attained if the borrower reports truthfully and maintains zero savings.

Proof In the Appendix.

The above proposition shows that allocations from a broad class, including the optimal allocation of

Proposition 3, remain incentive-compatible even if the borrower is allowed to privately save.

4.3 An Example

In this section we illustrate the features of the optimal allocation in a parametrized example. Table 1 shows

the parameters of the model.

Table 1. Parameters of the model

Interest rate process
Borrower�s

discount rate

Income

process

Utility �ow

from home

Liquidation

values

rL rH �(rL) �(rH) 
 � � � A L

1.5% 6.5% 0.2 0.2 8% 1 1 1 12.5 12

The left hand-side of Figure 1 shows the lender�s value function at both interest rates as a function of

the borrower�s continuation value. For a given promise to the borrower, the value function of the lender at

the low interest rate is always above the one at the high interest rate, except at termination when they are

equal, as the lender attaches more value to the proceeds from the continuation of the relationship when his

discount rate is lower. As we observe, it is optimal to allow the borrower to consume his disposable income

earlier when the interest rate is low, that is a1(rL) < a1(rH). Intuitively, when the lender�s interest rate is

low, it is more costly to postpone borrower�s consumption, as tension between the borrower�s valuation of
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Figure 1: The lender�s value function and the optimal adjustments in the borrower�s continuation utility.

future payo¤s and that of the lender is larger. To reduce this cost, it is optimal to allow the borrower to

consume his excess disposable income earlier.

The right hand-side of Figure 1 shows the optimal adjustments in the borrower�s promised utility,  ,

applicable when there is a change in the market interest rate. The borrower�s promised utility increases with

a decrease in the interest rate and decreases with an interest rate increase, except in the area close to the

re�ection barriers when this relationship is reversed. The size of these adjustments is proportional to the

distance of the borrower�s promise from the termination cuto¤ of A.

The optimal adjustment of the borrower�s continuation utility,  , is shaped by two competing forces

stemming from, respectively, the costly termination of the relationship and the di¤erence in the discount

rates. The closer the borrower�s continuation utility is to the termination boundary A; the bigger is the

role played by the costly termination in shaping the optimal adjustment function. It is e¢ cient to reduce

the chances of costly termination when the interest rate falls, as the stream of transfers from the borrower

is more valuable for the lender when the interest rate is low. A reduction in the likelihood of termination

is engineered by in�uencing the borrower�s promise in two ways. First, it is optimal to instantaneously

increase the borrower�s promise if the market interest rate falls, and this is even more so the more likely the

relationship is to be terminated. Second, it is optimal to introduce a positive trend in the law of motion of

the borrower�s continuation utility, which reinforces the �rst adjustment over time to the extent the interest

rate stays low. As a result of these adjustments, the chances of costly home repossession are reduced by

moving the borrower�s continuation payo¤ further away from the termination boundary A. However, the
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threat of repossession must be real enough in order for the borrower to share his income with the lender. As

a result, the optimal allocation increases the chances of repossession when the interest rate is high in order

to compensate for the weakened threat of repossession in the low-interest state, both by instantaneously

decreasing the borrower�s continuation utility and by introducing a negative trend in its law of motion.

If the borrower�s continuation utility is distant from the termination boundary A; then, intuitively,

the discrepancy in the discount rates begins to play the dominant role in shaping the optimal adjustment

function, as the likelihood of termination is small. When the lender�s interest rate switches to low, there is

more tension between the borrower�s valuation of future payo¤s and that of the lender, and thus it is more

costly to postpone the borrower�s consumption, the more so the bigger is his promise. To reduce this cost, it is

optimal to decrease the borrower�s promise when the interest rate falls, by both an instantaneous adjustment

and a negative time trend, provided that his prior promise was su¢ ciently large. In order to compensate for

this reduction in the borrower�s promise when the interest rate switches to low, his continuation utility is

increased to a range of high values of the borrower�s promise when the interest rate increases. It is important

to observe that the adjustment of the borrower�s promise in this region has second order welfare e¤ects. This

is because there is less di¤erence between the slopes of the lender�s value function at the low and at the high

interest rate state, the further away the borrower�s promise is from the termination boundary A:We will use

this fact in Section 6, where we simply ignore the adjustments of the borrower�s promise in a region close to

the re�ection barriers.

5 Implementations of the Optimal Allocation

So far, we have characterized the optimal allocation in terms of the transfers between the borrower and the

lender and the liquidation time of their relationship. In this section, we show that the optimal allocation

can be implemented using �nancial arrangements that resemble the ones used in the residential mortgage

market. We start with the following de�nition.

De�nition 6 The mortgage contract is optimal if it implements the optimal allocation of Proposition 3.

5.1 Interest Only Mortgage with Home Equity Line of Credit (HELOC) and

Two Way Balance Adjustment

In this section we consider a loan contract, which is a combination of two forms of debt - an interest only

mortgage and a second "piggyback"10 mortgage that closes simultaneously with the �rst. Recently, there

has been a noticeable increase in the use of "piggyback" mortgages, and many lenders structure a second

"piggyback" loan as a home equity line of credit. These lines are revolving lines of credit like credit cards, yet

10Named as such in the housing �nance industry because a second mortgage is "piggybacked" onto the original mortgage
loan.
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they are secured by the borrower�s home collateral. Homeowners who pay o¤ the line of credit can continue

to draw upon it and use the funds for other purposes. A de�nition below formally describes a contract that

consists of an interest only mortgage with a home equity line of credit.

De�nition 7 Interest only mortgage with home equity line of credit and two way balance adjustment consists

of:

- Home equity line of credit with a time-t limit equal to CLt : The initial balance equals B0: At any time

t, an instantaneous interest rate on the time-t balance, Bt; is equal to �rt. If the balance on the credit

line exceeds its limit, default occurs.

- Balance adjustment, that is, an adjustment of the borrower�s balance on the home equity line of credit

by BAt, applicable when there is an interest rate change.

- Interest only mortgage with a required coupon (interest payment) equal to xt: If the coupon is not paid

default occurs.

- When default happens, the lender receives the liquidation value of the home equal to L, and the borrower

obtains the value of his outside option equal to A.

The proposition below shows that the optimal allocation can be implemented with a mortgage contract

belonging to the class of contracts de�ned above.

Proposition 5 There exists an optimal interest only mortgage with HELOC and two way balance adjustment

that has the following features:

�rt(Bt; rt) = 
 + �(rt)

�
 (a1(rt)�Bt; rt)�  (a1(rt); rt)

�
Bt

; (17)

CLt (rt) = a1(rt)�A; (18)

xt(rt) = � + �� 
a1(rt) + �(rt) (a1(rt); rt); (19)

BA(Bt; rt) = � (a1(rt)�Bt; rt) + (a1(rct )� a1(rt)): (20)

Under this mortgage contract, it is incentive compatible for the borrower to refrain from stealing. Once the

borrower balance reaches zero, all excess disposable income is consumed by the borrower. With this mortgage

contract, the borrower�s expected payo¤, at, is determined by the current HELOC balance, Bt; as follows:

at = A+
�
CLt (rt)�Bt

�
= a1(rt)�Bt: (21)

Proof In the Appendix.

How does the above implementation insure that the borrower refrains from stealing and consumes all

excess disposable income only when his HELOC balance reaches zero? Given a time-t balance Bt on the
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HELOC, the borrower can immediately consume all his available credit in the amount of CLt (rt) � Bt and

default, which allows him to receive his outside option of A. But (21) implies that the payo¤ from this

strategy is equal to at, which is the expected utility he would obtain by postponing consumption until his

HELOC balance is zero.

In the implementation of Proposition 5, the balance on the home equity line of credit can be considered

as a memory device that summarizes all the relevant information regarding the past cash �ow realizations

revealed by the borrower through repayments. The interest rate along with the required mortgage coupon

payment, balance adjustment, and the credit line limit, determine the dynamics of the balance on the HELOC

and the timing of default.

The adjustable features of the above mortgage contract are needed to implement the e¤ects of the changes

in the interest rate on the borrower�s continuation utility. We remember that these adjustments take two

forms - the instantaneous adjustment when the interest rate changes, and the compensating trend in the law

of motion of the borrower�s utility. In the above implementation, the balance adjustment (20) implements

the instantaneous adjustments in the borrower�s promised utility that are applicable when there is a change

in the interest rate. The variable part of the interest rate (17) guarantees that a change in the borrower�s

promised utility implied by the mortgage contract includes the trend that compensates the borrower, in

expectation, for the instantaneous adjustments in his promise utility that happen when the interest rate

changes.

The �xed component of the variable interest rate (17) on the HELOC insures that under the optimal

strategy of the borrower, given the above mortgage contract, his promised utility increases at the rate of


, as in the optimal allocation of Proposition 3. The mortgage coupon (19) guarantees that the change in

the borrower�s promised utility implied by the mortgage contract re�ects the reduction by the payments

the borrower receives from owning the home. It also insures that an above-average income realization,

and so an above-average repayment, increases the borrower�s promised utility, which corresponds here to a

decrease in his HELOC balance, and vice versa. Finally, the dependence of the credit line limit (18) on the

current interest rate mirrors the dependence of the re�ection barriers, a1, on the interest rate in the optimal

allocation.

To further characterize the above mortgage contract we, will restrict our attention to the environment in

which the optimal contract satis�es the following condition.11

Condition 1 The function  implied by the optimal allocation is such that  (a; rL) is strictly increasing in

a for a 2 [�a; a1(aL)]; and so  (a; rH) is strictly decreasing in a for a 2 [A; a1(aH)], where �a is de�ned as in

Lemma 3.

Proposition 5, together with Lemma 3, implies the following properties of the above mortgage contract.

11This condition holds in all parametrized examples we considered.
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Figure 2: Optimal balance adjustment and the variable interest rate on the HELOC debt.

Corollary 2 The optimal interest only mortgage with HELOC and two way balance adjustment has the

following features:

i) Let �B = a1(rL)��a where �a is de�ned in Lemma 3. Then, whenever Bt 2 [ �B;CLt (rL)); an instantaneous

change of the interest rate from rL to rH triggers the default of the mortgage;

ii) BA(B; rt) = 0 for B = 0. Suppose further that the optimal function  satis�es the properties of

Condition 1. Then,

�BA(B; rL) is positive and strictly increasing in B for B 2 (0; �B];

�BA(B; rH) is negative and strictly decreasing in B for B 2 (0; CLt (rH)];

� �rt(B0; rL) < 
 < �rt(B
00; rH); for any B0 2 [0; CLt (rL)]; B00 2 [0; CLt (rH)]:

As the above corollary shows, under the optimal interest only mortgage with HELOC and two way

balance adjustment, whenever the HELOC balance is close to the credit limit, an increase in the interest

rate would cause the liquidation of the mortgage. Provided that the optimal adjustment function,  , satis�es

the properties of Condition 1, a decrease in the interest rate causes a decrease in the borrower�s HELOC

balance and vice versa. The magnitude of these adjustments is proportional to the HELOC balance. The

variable interest rate on the HELOC balance positively correlates with the lender�s interest rate. It is

optimal to reduce mortgage payments, and as a result default rates, when the market interest rate is low

because, in this case, the stream of borrower�s payments is more valuable for the lender. However, the threat
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of repossession must be real enough in order for the borrower to share his income with the lender. As a

result the optimal mortgage increases the chances of repossession when the interest rate is high in order to

compensate for the weakened threat of repossession in the low state by requiring higher mortgage payments

and default rates. Figure 2 presents the optimal balance adjustment and the variable interest rate on the

HELOC debt in the parametrized environment of Section 4.3.

Although mortgages with HELOC and two way balance adjustment are interesting from the theoretical

point of view, we do not yet observe anything like that in practice. While we actually observe reductions

of mortgage debt balance in the form of "cramdown" provisions, the unusual feature of these mortgages is

the automatic increase in debt balance in response to a market interest rate increase. Below we discuss an

implementation using the interest only mortgage with HELOC with a preferential rate and one way balance

adjustment that addresses this issue.

5.2 Interest Only Mortgage with HELOC with Preferential Rate and One Way

Balance Adjustment

In this section we consider a combination of an interest only mortgage with HELOC, where a part of the

HELOC balance is subject to a preferential interest rate. The adjustment of the HELOC debt is only allowed

when the lender�s interest rate declines. The de�nition below provides a formal description of this class of

mortgage contracts.

De�nition 8 The interest only mortgage with HELOC with preferential rate and one way balance adjustment

consists of:

- HELOC with a time-t limit equal to CLt (rt): The initial balance equals B0: At any time t, an instan-

taneous interest rate on a time-t balance, Bt; is equal to �r
p
t on the portion of the balance below a

preferential range, pt � 0, and �rt on the portion of the balance above pt. If the amount of debt subject

to the preferential rate falls to zero, the mortgage is reset to other contract;

- Negative balance adjustment, that is the adjustment of the HELOC debt by BA�t when the lender�s

interest rate decreases;

- Interest only mortgage with a required coupon payment equal to xt: If the coupon is not paid, default

occurs;

- When default happens, the lender receives the liquidation value of the home equal to L, and the borrower

obtains the value of his outside option, equal to A.

The proposition below shows that the optimal allocation can be implemented with a mortgage contract

belonging to the class of contracts de�ned above.
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Proposition 6 There exists an optimal interest only mortgage with HELOC with preferential rate and one

way balance adjustment that has the following features:

�rpt = 0; (22)

�rt(Bt � pt; rt) = 
 + �(rt)

�
 (a1(rt)� (Bt � pt); rt)�  (a1(rt); rt)

�
Bt � pt

; (23)

dpt =

8<:
�
 (a1(rL)� (Bt � pt); rL)�

�
a1(rH)� a1(rL)

��
I(rt�=rL) if Bt � pt

0; if Bt < pt
; (24)

BA�(Bt � pt) = � (a1(rH)� (Bt � pt); rH) +
�
a1(rL)� a1(rH)

�
; (25)

xt(rt) = � + �� 
a1(rt) + �(rt) (a1(rt); rt); (26)

CLt (pt; rt) = pt + a
1(rt)�A: (27)

Under this mortgage contract, it is incentive compatible for the borrower to refrain from stealing. Once the

borrower�s balance falls to the preferential debt limit, p, all excess disposable income is consumed by the

borrower. For the debt balance Bt � pt, the borrower�s expected payo¤, at, is determined by the current

HELOC balance above the preferential debt limit, as follows:

at = A+
�
CLt (pt; rt)�Bt

�
= a1(rt)� (Bt � pt): (28)

If the amount of debt subject to the preferential rate falls to zero, the mortgage is reset to a contract that

implements the continuation of the optimal allocation.

Proof In the Appendix.

The above implementation insures that the borrower refrains from stealing and consumes all excess

disposable income only when his time-t HELOC balance, Bt, falls to the debt limit, pt, which is subject

to the preferential interest rate. Intuitively, given a time-t balance Bt on the HELOC, the borrower can

immediately consume all his available credit in the amount of CLt (pt; rt)�Bt and default, which allows him

to receive his outside option of A. But (28) implies that the payo¤ from this strategy is equal to at, which is

the expected utility the borrower would obtain by postponing consumption until his HELOC balance falls

to the preferential debt limit.

In the implementation of Proposition 6, the balance on the HELOC above the debt limit subject to the

preferential interest rate can be considered as a memory device that summarizes all the relevant information

regarding past cash �ow realizations revealed by the borrower through repayments. The interest rates, along

with the required mortgage coupon payment, the negative balance adjustment, the preferential debt limit,

and the credit line limit determine the dynamics of the balance on the HELOC and the timing of default.
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As in the previous implementation, the adjustable features of the above mortgage contract are needed to

implement the e¤ects of the changes in the interest rate on the borrower�s continuation utility. In the above

implementation, the balance adjustment (25) implements the instantaneous adjustments in the borrower�s

promised utility that are applicable when the lender�s interest rate decreases. The adjustments of the

preferential debt limit (24) implement the instantaneous adjustments in the borrower�s promised utility that

are applicable when the lender�s interest rate increases. The variable component of the interest rate (23)

guarantees that a change in the borrower�s promised utility implied by the mortgage contract includes the

trend that compensates the borrower, in expectation, for the instantaneous adjustments in his promise utility

that happen when the interest rate changes.

The �xed component of the interest rate (23) on the HELOC balance above the preferential debt limit

insures that, under the optimal strategy of the borrower, given the above mortgage contract, his promised

utility would be increased at the rate of 
, as in the optimal allocation. The mortgage coupon (26) guarantees

that a change in the borrower�s promised utility implied by the mortgage contract re�ects the reduction by

the payments the borrower receives from owning the home. The coupon also insures that an above average

income realization, and so an above average repayment, increases the borrower�s promised utility, which

corresponds here to a decrease in his HELOC balance, and vice versa. Finally, the dependence of the credit

line limit (27) on the current interest rate mirrors the dependence of the re�ection barriers, a1, on the current

interest rate in the optimal allocation.

In the proposed implementation, parameter p0 � 0 at time zero can be chosen arbitrary. One way to

initialize the mortgage is to set the market value of the mortgage equal to the book value:

B0 = b
�
r0; p0 + a

1(r0)�B0
�
:

Proposition 6, together with Lemma 3, imply the following properties of the above mortgage contract.

Corollary 3 The optimal interest only mortgage with HELOC with preferential rate and one way balance

adjustment has the following features:

i) Let �Bt = pt + a
1(rL)� �a where �a is de�ned as in Lemma 3. Then, whenever Bt 2 [ �Bt; CLt (pt; rL)); an

instantaneous increase in the lender�s interest rate triggers the default of the mortgage;

ii) BA�(Bt � pt) = 0 for Bt = pt. Suppose further that the optimal function  optimal contract satis�es

the properties of Condition 1. Then,

�BA�(Bt � pt) is negative and strictly decreasing in (Bt � pt) for Bt 2 (pt; CLt (rH)];

� dpt � 0 for any Bt � pt; with strict inequality whenever the interest rate, rt, increases and

Bt > pt;

� �rt(B0 � p0t; rL) < 
 < �rt(B
00 � p00t ; rH); for any B0 2 [p0t; CLt (rL)]; B00 2 [p00t ; CLt (rH)]:
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Figure 3: A simulated path of the optimal interest only mortgage with HELOC.

As the above corollary shows, under the optimal interest only mortgage with HELOC with preferential

rate and one way balance adjustment, whenever the HELOC balance is close to the credit limit, an increase in

the interest rate would cause the liquidation of the mortgage. If the optimal adjustment function,  ; satis�es

the properties of Condition 1, a decrease in the interest rate causes a decrease in the borrower�s HELOC

balance. The magnitude of this adjustment is proportional to the HELOC balance. This adjustment can be

interpreted as o¤ering the borrower an automatic "cramdown" provision, whenever the interest rate switches

to low. An increase in the interest rate causes a drop in the amount of debt subject to the preferential interest

rate. Consequently, under this contract, it is optimal to reduce the preferential treatment of the HELOC

debt over time. We note that a declining preferential treatment of debt over time is a typical feature of

many mortgage contracts currently o¤ered in the housing �nance market. As in the mortgage contract with

variable interest rate and two way balance adjustment, the variable interest rate on the HELOC balance

(23) positively correlates with the lender�s interest rate.
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Figure 4: The optimal negative balance adjustment and the variable interest rate on the HELOC debt.

The top part of Figure 3 presents a simulated path of the market interest rate, the middle one presents

a simulated path of the borrower�s continuation value under the optimal allocation, and the bottom one

presents the behavior of credit line, the preferential debt range, and the HELOC balance implied by the

optimal mortgage contract of Proposition 6, where the parameters of the model are set as in Section 4.3.

Figure 4 presents the optimal negative balance adjustment and the variable interest rate on the HELOC

debt in this parametrized example.

The implementation with an interest only mortgage and HELOC with one way balance adjustment avoids

increasing the borrower�s debt when the interest rate changes from low to high by decreasing instead the

amount of balance subject to the preferential rate. Similarly, one could avoid the reduction of the borrower�s

debt (negative balance adjustment) when the interest rate decreases, by considering an implementation

where the total amount of debt is left unchanged and instead, the balance subject to the preferential rate is

increased. Below we discuss an implementation using the option ARM that exploits this idea.

5.3 Option Adjustable Rate Mortgage

In this section we consider an option ARM. This is an adjustable rate mortgage on which the borrower is

o¤ered an option on how large a payment to make. A part of the mortgage debt is subject to the preferential

interest rate. The de�nition below provides a formal description of this class of mortgage contracts.

De�nition 9 An option adjustable rate mortgage with preferential interest rate consists of:
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- Mortgage debt with a time-t negative amortization limit equal to CLt : If the debt exceeds the negative

amortization limit, default occurs. The initial balance is equal to B0 � p0;

- At any time t, an instantaneous interest rate on a time-t debt balance, Bt; is equal to a preferential rate

�rpt � 
 on a part of the balance below pt, and �rt on a part of debt balance above pt. If the preferential

rate reaches its upper boundary 
, the mortgage is reset to other contract;

- When default happens, the lender receives the liquidation value of the home equal to L, and the borrower

obtains the value of his outside option equal to A.

The proposition below shows that the optimal allocation can be implemented with a mortgage contract

belonging to the class of contracts de�ned above.

Proposition 7 There exists an optimal option adjustable rate mortgage with preferential interest rate that

has the following features

�rt(Bt � pt; rt) = 
 + �(rt)

�
 (a1(rt)� (Bt � pt); rt)�  (a1(rt); rt)

�
Bt � pt

; if Bt � pt (29)

�rpt (pt; rt) =
� + �� 
a1(rt) + �(rt) (a1(rt); rt)

pt
(30)

CLt (pt; rt) = pt + a
1(rt)�A (31)

dpt =

8<:
�
 (a1(rt)� (Bt � pt); rt)�

�
a1(rct )� a1(rt)

��
dNt; if Bt � pt

0; if Bt < pt
: (32)

Under the terms of this mortgage, it is incentive compatible for the borrower to refrain from stealing and

maintain balance Bt above pt. The borrower uses all available cash �ows to pay the balance when Bt > pt,

and consumes all excess cash �ows once the balance drops to pt. For the debt balance Bt � pt, the borrower�s

expected payo¤, at, is determined by the current balance above the preferential debt limit as follows:

at = A+
�
CLt (pt; rt)�Bt

�
= a1(rt)� (Bt � pt) (33)

If the preferential rate reaches its upper boundary 
, the mortgage is reset to a contract that implements the

continuation of the optimal allocation.

Proof In the Appendix.

How does the above implementation insure that the borrower refrains from stealing and consumes all

excess disposable income only when his time-t debt balance, Bt, falls to the debt limit, pt, subject to the

preferential interest rate given by (30)? Given a time-t balance Bt, the borrower can immediately consume

all his available credit in the amount of CLt (pt; rt)�Bt and default, which allows him to receive his outside

option of A. But (33) implies that the payo¤ from this strategy is equal to at, that is the expected utility
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the borrower would obtain by postponing consumption until his debt balance falls to the preferential debt

limit.

As in the implementation with interest only mortgage and HELOC with preferential interest rate, the

debt balance above the debt limit subject to the preferential interest rate can be considered as a memory

device that summarizes all the relevant information regarding the past cash �ow realizations revealed by the

borrower through repayments. The interest rates, along with the preferential debt limit, and the credit line

limit, determine the dynamics of the debt balance and the timing of default.

As in the previous implementations, the adjustable features of the above mortgage contract are needed to

implement the e¤ects of the changes in the interest rate on the borrower�s continuation utility. In the optimal

option ARM, the adjustments of the debt subject to the preferential rate (32) implement all instantaneous

adjustments in the borrower�s promised utility that are applicable when the lender�s interest rate changes.

The variable component of the interest rate (23) guarantees that a change in the borrower�s promised utility

implied by the mortgage contract includes the trend that compensates the borrower, in expectation, for the

instantaneous adjustments in his promise utility that happen when the interest rate changes.

The �xed component of the interest rate (29) on the debt above the preferential debt limit insures that

under the optimal strategy of the borrower, given the above mortgage contract, the borrower�s promised

utility would be increased at the rate of 
 as in the optimal allocation. The preferential interest rate

insures that an above-average income realization and so an above-average repayment increases the borrower�s

promised utility, which corresponds here to a decrease in his debt balance, and vice versa. Finally, the

dependence of the credit line limit (31) on the current interest rate mirrors the dependence of the re�ection

barriers, a1, on the current interest rate in the optimal allocation.

In the proposed implementation, parameter p0 at time zero can be chosen arbitrarily, provided interest

rate �rp0 given by (30) is no greater than 
. One way to initiate the mortgage is to have the market value of

the mortgage be equal to the book value:

B0 = b
�
r0; p0 + a

1(r0)�B0
�
:

Proposition 7, together with Lemma 3, implies the following properties of the above mortgage contract.

Corollary 4 The optimal option ARM with preferential interest rate has the following features:

i) Let �Bt = pt + a
1(rL)� �a where �a is de�ned as in Lemma 3. Then, whenever Bt 2 [ �Bt; CLt (pt; rL)); an

instantaneous increase in the lender�s interest rate triggers the default of the mortgage;

ii) Suppose further that the optimal function  optimal contract satis�es the properties of Condition 1,

then,

� dpt < 0; whenever interest rate, rt; increases and Bt > pt;
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� dpt > 0; whenever interest rate, rt; decreases and Bt > pt;

� �rt(B0 � p0t; rL) < 
 < �rt(B
00 � p00t ; rH); for any B0 2 [p0t; CLt (rL)]; B00 2 [p00t ; CLt (rH)]:

As the above corollary shows, under the optimal option ARM with preferential interest rate, whenever

the debt balance is close to the negative amortization limit, an increase in the interest rate would cause the

liquidation of the mortgage. If the optimal adjustment function,  , satis�es the properties of Condition 1,

a decrease in the lender�s interest rate causes an increase in the amount of debt subject to the preferential

rate and vice versa. As in the previous mortgage contracts with variable interest rate, the interest rate on

the debt balance, (29), positively correlates with the lender�s interest rate.

Figure 5: A simulated path of the optimal option ARM.

The top part of Figure 5 presents a simulated path of the market interest rate, the middle one presenting

a simulated path of the borrower�s continuation value under the optimal allocation, while the bottom one

presenting the behavior of credit line, the preferential debt limit, and the debt balance implied by the optimal

option ARM, where the parameters of the model are set as in Section 4.3. The variable interest rate on the

debt above the preferential debt limit is the same as shown in the right hand side of Figure 4.
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6 Approximate Implementations

In this section we consider simpler mortgage contracts that implement the optimal allocation approximately.

In order to de�ne an approximate implementation, we consider the following change in the optimal allocation

of Proposition 3. Replace the optimal function  in Proposition 3 by any function  ̂ : [A;1)� frL; rHg !

R, such that,  ̂(a; r) + a � A for any a � A; and replace the re�ection barriers a1(r); r 2 frL; rHg, by any

�nite â1(r) � A, r 2 frL; rHg. Under this allocation, the borrower�s continuation utility process, ât; solves:

dât = 
âtdt� �dt� dÎt + (dŶt � �dt) +  ̂(ât; rt)dMt; (34)

given initial â0 = a0, where Ît = max(0; ât � â1(rt)), for any 0 � t � �̂ = infft : ât = Ag: Proposition 4

implies that the borrower�s expected utility from any feasible strategy in response to the above allocation

is, at most, a0; and is attained if the borrower reports truthfully and maintains zero savings. The lender�s

expected value under this allocation and the borrower�s optimal strategy is equal to

E

24 �̂Z
0

e�Rt(dYt � dÎt) + e�R�̂ �̂L jF0

35 ; (35)

which is by de�nition less than or equal to the lender�s value under the optimal allocation, given a0.

In what follows, we will focus on the following approximation to the optimal functions  and a1:

De�nition 10 The approximately optimal function  ̂ and â1 satisfy

- â1 = â1(rL) = â1(rH) and  ̂(â1; rL) =  ̂(â1; rH) = 0.

Whenever a1(rL) � a1(rH), â1 = inf fa � A :  (a; rL) =  (a; rH) = 0g,

-  ̂(a; rL) =

8<: A� a for a 2 [A; �a];where ā is de�ned in Lemma 3,

�
�
�a�A
â1��a

� �
â1 � a

�
for a 2 [�a; â1];

-  ̂(a; rH) =
�
�a�A
â1�A

�
(â1 � a) for a 2 [A; â1] ;

where  and a1 are the functions from the optimal contract of Proposition 3.

Figure 6 presents the approximately optimal function  ̂ and â1, together with their optimal counterparts

in the parametrized environment of Section 4.3.

Consequently, we have the following de�nitions of, respectively, the approximately optimal allocation and

the approximately optimal mortgage contract.

De�nition 11 Given an initial promise to the borrower, â0 = a0, the approximately optimal allocation is

an allocation where the borrower�s continuation utility process solves (34) and the lender�s value is given by

(35), where  ̂ and â are approximately optimal functions in the sense of De�nition 10.
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Figure 6: The approximately optimal function  ̂ and â1:

De�nition 12 The approximately optimal mortgage contract is a contract that implements the approximately

optimal allocation of De�nition 11.

We note that none of Propositions 5 - 7 concerning the implementation of the optimal allocation rely on

any particular properties of functions  and a1 in establishing the incentive compatibility of the postulated

response of the borrower to these contracts. This implies that the mortgage contracts of Propositions 5 - 7,

where the function  is replaced by  ̂ and the re�ation barriers a1(r) are replaced by â1(r), r 2 frL; rHg,

implements an allocation where the borrower�s continuation utility process solves (34) and the lender�s value

is given by (35).

6.1 E¢ ciency Gains Due to Optimal and Approximately Optimal Contracts

How close is the expected lender�s value function under the approximately optimal mortgage contract to the

value he would obtain under the optimal contract? What are the gains in terms of the lender�s value from

using the contracts that adjust the borrower�s promise when the lender�s interest rate changes? To shed

some light on these questions, we compare the lender�s value under, respectively, the approximately optimal

contract and the optimal contract, with a best value achievable, for a given borrower�s promise, under a

simple contract, where no adjustments in the borrower�s continuation value are allowed due to changes in

33



Figure 7: Gains in basis points of the lender�s value under the optimal and the approximately optimal
contract.

the lender�s interest rate.12

Figure 7 presents the percentage improvement (in basis points) in the lender�s value across the borrower�s

promise, which comes from switching from the best contract, where no adjustments in the borrower�s continu-

ation value are allowed due to changes in the lender�s interest rate to, respectively, the approximately optimal

contract, and the optimal contract. The computations are performed in the parametrized environment of

Section 4.3.

As we observe from Figure 7, the value of the lender under the approximately optimal contract is close

to that under the optimal contract with loss ranging from zero to just above 10 basis points of the value to

the lender. Both contracts yield much better performance compared to the contract that sets  = 0. The

gain can be as high as 70 basis points and, in the renegotiation proof region, the gain can be well above 40

basis points for the optimal contract and well above 30 basis points for the approximately optimal contract.

Many reasonable models of determination of initial starting point in terms of the borrower�s promised

utility will have a property that the borrower�s promise increases with the amount of downpayment (Y0).

Figure 7 indicates that, if this is the case, the largest e¢ ciency gains in the renegotiation proof region are

12This contract is found by solving, for a given promise to the borrower, the problem of maximizing the lender�s expected
utility subject to incentive compatibility and promise keeping constraints, and subject to an additional constraint that forbids
any adjustments in the borrower�s continuation value due to changes in the lender�s interest rate.
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to be realized on the optimal mortgages given to households that make little or no downpayment.

This comparison suggests that there are substantial e¢ ciency gains from using mortgage contracts that

are contingent on the realization of the lender�s interest rate, such as the optimal option ARM or the interest

only mortgage with HELOC described in Section 5, compared to the contracts that do not depend on the

lender�s interest rate. At the same time, the implementation of the optimal contract can be considerably

simpli�ed by using the approximately optimal contract with little loss of e¢ ciency.13

6.2 Approximately Optimal Interest Only Fixed Rate Mortgage (FRM) with

HELOC and Two Way Balance Adjustment

In this section, we consider an implementation of the approximately optimal contract using an interest only

mortgage with HELOC and two way balance adjustment.

Proposition 8 There exists an approximately optimal interest only mortgage with HELOC and two way

balance adjustment that has the following features:

xt = x = � + �� 
â1; (36)

CLt = CL = â1 �A; (37)

�rt(Bt; rt) =

8>>><>>>:

 � �(rL)

�
�a�A
â1��a

�
for Bt 2 [0; B̂] and rt = rL


 � �(rL)
�
â1�A�Bt

Bt

�
for Bt 2 [B̂; CL] and rt = rL


 + �(rH)
�
�a�A
â1�A

�
for Bt 2 [0; CL] and rt = rH

; (38)

BA(Bt; rt) =

8<:
�
�a�A
â1��a

�
Bt for Bt 2 [0; B̂] and rt = rL

�
�
�a�A
â1�A

�
Bt for Bt 2 [0; CL] and rt = rH

; (39)

where B̂ = â1 � �a: Under this mortgage contract, it is incentive compatible for the borrower to refrain from

stealing. Once balance reaches zero, all excess disposable income is consumed by the borrower. Whenever

Bt 2 [B̂; CL); an instantaneous change of the interest rate from rL to rH triggers the default of the mortgage.

Under this mortgage, the borrower�s expected payo¤, ât, is determined by the current HELOC balance as

follows:

ât = A+
�
CLt (rt)�Bt

�
= â1 �Bt: (40)

Proof Immediately follows from Proposition 5, where the function  is replaced by  ̂ and where the

re�ection barriers a1(r); r 2 frL; rHg ; are replaced by â1:

The intuition behind incentive compatibility of the postulated strategy of the borrower under the above

mortgage contract is the same as in the case of the optimal mortgage contract of Proposition 5. The coupon

13This result holds across all parameterizations we considered.
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Figure 8: Approximately optimal balance adjustment and the variable interest rate on the HELOC debt.

(36), the HELOC limit (37), the variable interest rate (38), and the HELOC balance adjustment (39) play

the same role in implementing the approximately optimal allocation as their counterparts in Proposition 5

in implementing the optimal allocation.

As we observe from Proposition 8, the approximately optimal interest only mortgage with HELOC takes

the simple form of the interest only �xed rate mortgage with constant interest coupon payment of (36). The

HELOC has a constant credit limit given by (37), and a simple variable rate given by (38). It follows from

Proposition 8 that this mortgage contract has the following properties.

Corollary 5 The approximately optimal interest only FRM with HELOC and two way balance adjustment

has the following features:

i) BA(B; rt) = 0 for B = 0, and

�BA(B; rL) is positive and strictly increasing in B for B 2 (0; B̂];

�BA(B; rH) is negative and strictly decreasing in B for B 2 (0; CL];

(ii) �rt(B0; rL) < 
 < �rt(B
00; rH); for any B0 2 [0; CL]; B00 2 [0; CL]:

As the above corollary shows, under the approximately optimal interest only FRM with HELOC and

two way balance adjustment, a decrease in the interest rate causes a decrease in the borrower�s HELOC

balance and vice versa. The magnitude of these adjustments is linearly proportional to the HELOC balance.

The variable interest rate on the HELOC balance positively correlates with the lender�s interest rate, and
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is independent of the borrower�s debt balance, except the debt region [B̂; CL], where the HELOC interest

rate increases with the balance, provided that the lender�s interest rate is low (rt = rL). Figure 8 presents

the approximately optimal balance adjustment and the variable interest rate on the HELOC debt in the

parametrized environment of Section 4.3.

6.3 Approximately Optimal Interest Only FRM with HELOC with Preferential

Interest Rate and One Way Balance Adjustment

In this section, we consider an implementation of the approximately optimal allocation by an interest only

mortgage with HELOC with preferential interest rate and one way balance adjustment.

Proposition 9 There exists an approximately optimal interest only FRM with HELOC with preferential

rate, and one way balance adjustment that has the following features:

xt = x = � + �� 
â1; (41)

CLt (pt) = pt + â
1 �A; (42)

�rpt = 0; (43)

�rt(Bt � pt; rt) =

8>>><>>>:

 � �(rL)

�
�a�A
â1��a

�
for Bt 2 [pt; B̂t] and rt = rL


 � �(rL)
�
â1�A�Bt+pt

Bt�pt

�
for Bt 2 [B̂t; CLt ] and rt = rL


 + �(rH)
�
�a�A
â1�A

�
for Bt 2 [pt; CLt ] and rt = rH

; (44)

dpt =

8<: �
�
�a�A
â1��a

�
(Bt � pt) for Bt 2 [pt; B̂t] and rt = rL

0 for Bt < pt

; (45)

BA�(Bt � pt) = �
�
�a�A
â1 �A

�
(Bt � pt); (46)

where B̂t = pt + â1 � �a: Under this mortgage contract, it is incentive compatible for the borrower to refrain

from stealing. Once the borrower�s balance falls to the preferential debt limit, p, all excess disposable income

is consumed by the borrower. Whenever Bt 2 [B̂t; CLt (pt)); an instantaneous change of the interest rate from

rL to rH triggers the default of the mortgage. For the balance Bt � pt, the borrower�s expected payo¤, ât, is

determined by the current HELOC balance above the preferential debt limit as follows:

at = A+
�
CLt (pt; rt)�Bt

�
= â1 � (Bt � pt): (47)

If the amount of debt subject to the preferential rate falls to zero, the mortgage is reset to a contract that

implements the continuation of the approximately optimal allocation.
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Figure 9: The approximately optimal negative balance adjustment and the interest rate on the HELOC
debt.

Proof Immediately follows from Proposition 7 where the function  is replaced by  ̂ and the re�ection

barriers a1(r); r 2 frL; rHg, are replaced by â1:

The intuition behind incentive compatibility of the postulated strategy of the borrower under the above

mortgage contract is the same as in the case of the optimal mortgage contract of Proposition 6. The coupon

(41), the HELOC limit (42), the interest rates (43) and (44), the preferential debt limit (45), and the negative

balance adjustment (46) play the same role in implementing the approximately optimal allocation as do their

counterparts in Proposition 7 in implementing the optimal allocation.

As we observe from Proposition 9, the approximately optimal interest only mortgage with HELOC with

preferential interest rate and one way balance adjustment takes the simple form of the interest only �xed rate

mortgage, with the constant interest coupon payment of (41), combined with the HELOC with the credit

limit of (42) and the simple variable rate given by (43). It follows from Proposition 9 that this mortgage

contract has the following properties.

Corollary 6 The approximately optimal interest only FRM with HELOC with preferential rate and one way

balance adjustment has the following features:

i) BA�(Bt � pt) = 0 for Bt = pt, and

�BA�(Bt � pt) is negative and strictly decreasing in (Bt � pt) for Bt 2 (pt; CLt (rH)];
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� dpt � 0 for any Bt � pt; with strict inequality whenever the interest rate, rt, increases and

Bt > pt;

(ii) �rt(B0 � p0t; rL) < 
 < �rt(B
00 � p00t ; rH); for any B0 2 [p0t; CLt (rL)]; B00 2 [p00t ; CLt (rH)]:

As the above corollary shows, a decrease in the lender�s interest rate causes a decrease in the borrower�s

HELOC balance. The magnitude of this adjustment is linearly proportional to the HELOC balance, and,

as before, can be interpreted as o¤ering the borrower an automatic "cramdown" provision. An increase

in the lender�s interest rate causes a drop in the amount of debt subject to the preferential interest rate.

Consequently, under this contract, the preferential HELOC debt treatment is reduced over time. The variable

interest rate on the HELOC balance positively correlates with the lender�s interest rate, and is independent

of the borrower�s debt balance, except the debt region [B̂; CL], where the HELOC interest rate increases

with the balance provided that the lender�s interest rate is low (rt = rL).

Figure 9 presents the approximately optimal negative balance adjustment and the variable interest rate

on the HELOC debt as a function of the borrower�s mortgage debt above the preferential range in the

parametrized environment of Section 4.3.

6.4 Approximately Optimal Option ARM with Preferential Rate

In this section we consider an implementation of the approximately optimal contract by an option ARM.

Proposition 10 There exists an approximately optimal adjustable rate mortgage with preferential interest

rate and negative amortization that has the following features

CLt (pt) = pt + â
1 �A (48)

�rpt (pt) =
� + �� 
â1

pt
(49)

�rt(Bt � pt; rt) =

8>>><>>>:

 � �(rL)

�
�a�A
â1��a

�
for Bt 2 [pt; B̂t] and rt = rL


 � �(rL)
�
â1�A�Bt+pt

Bt�pt

�
for Bt 2 [B̂t; CLt ] and rt = rL


 + �(rH)
�
�a�A
â1�A

�
for Bt 2 [pt; CLt ] and rt = rH

; (50)

dpt =

8>>><>>>:
�
�
�a�A
â1��a

�
(Bt � pt) for Bt 2 [pt; B̂] and rt = rL�

�a�A
â1�A

�
(Bt � pt) for Bt 2 [pt; CLt ] and rt = rH

0 for Bt < pt

; (51)

where B̂t = pt + â1 � �a: Under the terms of this mortgage, it is incentive compatible for the borrower to

refrain from stealing and maintain balance Bt above pt. The borrower uses all available cash �ows to pay

the balance when Bt > pt, and consumes all excess cash �ows once the balance drops to pt(rt). Whenever

Bt 2 [B̂t; CLt (pt)); an instantaneous change of the interest rate from rL to rH triggers the default of the
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mortgage. For the balance Bt � pt, the borrower�s expected payo¤, ât, is determined by the current HELOC

balance above the preferential debt limit as follows:

ât = A+ CLt �Bt = â1 � (Bt � pt) (52)

If the preferential rate reaches its upper boundary 
, the mortgage is reset to a contract that implements the

continuation of the approximately optimal allocation.

Proof In the Appendix.

The intuition behind incentive compatibility of the postulated strategy of the borrower under the above

mortgage contract is the same as in the case of the optimal mortgage contract of Proposition 7. The negative

amortization limit (48), the interest rates (49) and (50), and the preferential debt limit (51) play the same

role in implementing the approximately optimal allocation as their counterparts from Proposition 7 do in

implementing the optimal allocation.

Proposition 10 implies the following properties of the above mortgage contract.

Corollary 7 The mortgage contract of Proposition 10 has the following features:

(i) �rt(B0 � p0t; rL) < 
 < �rt(B
00 � p00t ; rH); for any B0 2 [p0t; CLt (rL)]; B00 2 [p00t ; CLt (rH)]:

(ii) dpt < 0; d�r
p
t > 0 whenever the interest rate, rt; increases and Bt > pt;

dpt > 0; d�r
p
t < 0 whenever the interest rate, rt; decreases and Bt > pt;

As the above corollary shows, a decrease in the interest rate causes an increase in the amount of debt

subject to the preferential rate, and a fall in the preferential interest rate and the variable rate charged on

the debt balance above the preferential debt range. An increase in the interest rate causes a drop in the

amount of debt subject to the preferential interest rate, and an increase in the preferential interest rate and

the variable rate charged on the debt balance above the preferential debt range. The variable interest rate

on the debt balance above the preferential debt range does not depend the borrower�s debt balance, except

for the debt region [B̂; CL], where this interest rate increases with the balance, provided that the market

interest rate is low (rt = rL). The variable interest rate on the debt above the preferential debt limit, in the

parametrized example of Section 4.3, is the same as shown on the right hand side of Figure 9.

7 Concluding Remarks

Recent years have seen a rapid growth in originations of more sophisticated alternative mortgage prod-

ucts (AMPs), such as option adjustable rate mortgages (option ARMs) and interest only mortgages. Critics
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of AMPs point out that they seem to be more pro�table for lenders than traditional mortgages. They con-

clude that AMPs allow lenders to pro�teer at the expense of homeowners. However, this paper shows that

the properties of AMPs are consistent with the properties of the optimal allocation governing the relationship

between the borrower and the lender, which represents a Pareto improvement over traditional mortgages. As

a consequence, it is possible that both lenders and borrowers can bene�t from AMPs. Critics of AMPs have

raised the concern that teaser rates and low minimum payments can result in substantially higher mortgage

payments and, as a consequence, higher default rates when the market interest rate increases. Nevertheless,

this paper demonstrates that this does not necessarily contradict the optimality of AMPs. Under the optimal

mortgage contract, mortgage payments and default rates are indeed higher when the market interest rate

is high. However, borrowers bene�t from low mortgage payments and low default rates when the market

interest rate is low.

In this paper, we ignored in�ation, which is an important consideration for home buyers choosing between

ARMs and FRMs.14 However, as long as in�ation a¤ects the borrower�s income and the liquidation value of

the home equally, it would not change the properties of the optimal mortgage in real terms. We also did not

allow for contract renegotiations, because a possibility of renegotiation would lead to a suboptimal contract.

In practice, lenders should be able to commit to the terms of a mortgage contract, or make renegotiation

very costly for borrowers.

For the sake of tractability of our dynamic contracting problem, we had to assume risk-neutrality of the

borrower and the lender. The properties of the optimal mortgage are determined by the con�ict of interest

between the borrower and the lender and by the gains from trade based on the di¤erences between the

borrower�s and the lender�s discount factors. We conjecture that the properties of the optimal mortgage will

be preserved if we allow for risk-aversion in our model. However, solving the model with risk-aversion would

require development of completely new dynamic

ing techniques.

There are a number of research directions one might pursue from here. In this paper we have considered

time-homogeneous setting, in which agents are in�nitely lived and the borrower�s average income and the

liquidation values of the home do not change over time. Relaxing this assumptions would allow us to study

the e¤ects of home appreciation trends and households�life-cycle income pro�les on optimal mortgage design.

Another avenue of research would be to extend our analysis to a general equilibrium framework and to study

what e¤ects the presence of private information in the mortgage origination market have on equilibrium

home prices, and how this varies over the business cycle.

14See, for example, Campbell and Cocco (2003).
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Appendix

A.1 Proofs of Lemmas and Propositions

Proof of Lemma 1

Consider any incentive compatible allocation (� ; I; C; Ŷ ). We prove the lemma by showing the existence of

the new incentive-compatible allocation that that has the following properties:

(i) the borrower gets the same expected utility as under the old allocation (� ; I),

(ii) the borrower chooses to reveal the cash �ows truthfully,

(iii) the borrower maintains zero savings,

(iv) the lender gets the same or greater expected pro�t as under the old allocation (� ; I).

Consider the candidate incentive compatible allocation (� 0; I 0; C; Y ) where

� 0(Y; r) = �(Ŷ (Y; r); r);

I 0(Y; r) = C(Y; r):

We observe that the borrower�s consumption and the termination time under the new allocation and the

proposed borrower�s response strategy, (C; Y ); are the same as under the old allocation, so he earns the same

payo¤, which establishes property (i). Also, by construction, the proposed response of the borrower to the

allocation (� 0; I 0) involves truth-telling and zero savings, which establishes properties (ii) and (iii).

Now we will show that (C; Y ) is the borrower�s incentive compatible strategy under the allocation (� 0; I 0):

We note that the strategy (C; Y ) yields the same utility to the borrower under the allocation (� 0; I 0) as

the incentive compatible strategy associated with the allocation (� ; I). Therefore, to show that (C; Y ) is

the borrower�s incentive compatible strategy under the allocation (� 0; I 0); it is enough to show that if any

alternative strategy (C 0; Y 0) is feasible under the allocation (� 0; I 0), then C 0 is also feasible under the old

allocation (� ; I).

It follows that if C 0 is feasible under the new allocation, then the borrower has nonnegative savings if

he reports Ŷ (Y 0(Y; r); r) and consumes C 0 under the old allocation, and thus C 0 is also feasible under the

old allocation (� ; I): To see this we note that that the borrower�s savings at any time t � �(Ŷ (Y 0(Y; r); r) =
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� 0(Y 0(Y; r); r) under the old allocation (� ; I) and the borrower�s strategy (C 0; Ŷ (Y 0(Y; r); r)) are equal to

tZ
0

e�t(t�s)
h
dYs � dŶs(Y 0(Y; r); r) + dIs(Ŷ (Y 0(Y; r); r)� dC 0s(Y; r)

i
| {z }

=

Savings under the old allocation, the borrower�s strategy (C0;Ŷ (Y 0(Y;r);r)), and the realized (Y; r)

tZ
0

e�t(t�s)
h
dY 0s (Y; r)� dŶs(Y 0(Y; r); r) + dIs(Ŷ (Y 0(Y; r); r)� dCs(Y 0(Y; r); r)

i
| {z }

(�0) Savings under the old allocation given the borrower�s strategy (C;Ŷ (Y 0(Y;r);r)), and the realized (Y 0(Y;r);r)

+

tZ
0

e�t(t�s)

264dYs � dY 0s (Y; r) + dCs(Y 0(Y; r); r)| {z }
=I0(Y 0(Y;r);r)

� dC 0s(Y; r)

375
| {z }

(�0) Savings under the new allocation, the borrower�s strategy (C;Y 0(Y;r)), and the realized (Y; r)

� 0:

Finally, to complete the proof, we need to show that under the new allocation (� 0; I 0) the lender gets the

same or greater expected pro�t as under the allocation (� ; I). Note that under the new allocation the lender

does savings for the borrower. As by assumption the lender�s interest rate process is always greater or equal

from the saving�s interest rate available to the borrower (i.e., for all t; rt � �t); the lender�s expected pro�t

improves by

E0

24 �Z
0

e�Rt (rt � �t)Stdt

35 � 0;
which shows (iv). �

Proof of Proposition 3

First let b(a; r) be a concave function15 that solves the second-order di¤erential equation of the proposition,

i.e.:

rb(a; r) = (53)

�+ (
a� � �  (a; r)�(r))b0(at; rt) +
1

2
�2b00(a; r) + �(rt) (b(at +  (a; r); r

c)� b(a; r))

when a is in the interval [A; a1(r)]; and b0(a; r) = �1 when a > a1(r), with boundary conditions b(A; r) = L

and

�+ � = rLb(a
1(rL); rL) + 
a

1(rL)� �(rL)
�
b(a1(rH); rH)� b(a1(rL); rL) + a1(rH)� a1(rL)

�
;

�+ � = rHb(a
1(rH); rH) + 
a

1(rH)� �(rH)
�
b(a1(rL); rL)� b(a1(rH); rH) + a1(rL)� a1(rH)

�
;

15We establish concavity of the lender�s value function in a discrete time approximation to our model. See Appendix A.2.
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where function  is de�ned as follows

 (a; r) =

8>>>>>><>>>>>>:

is a solution to b0(a; r) = b0(a+  ; rc) for all (a; r)

for which the solution is such that  (a; r) > A� a;

otherwise it is equal to A� a:

;

where r 2 frL; rHg and rc = frL; rHg n frg :

For any incentive compatible allocation (� ; I; C; Y ) we de�ne:

Gt =

tZ
0

e�Rs(dYs � dIs) + e�Rtb(at; rt); (54)

where at evolves according to (6). We note that the process G is such that Gt is Ft�measurable.

We remember that under an arbitrary incentive compatible allocation, (� ; I; C; Y ), at evolves as

dat(rt) = (
at � � �  t�(rt)) dt� dIt + �tdZt +  tdNt:

where �t � � m-a.s. for any 0 � t � � . From Ito�s lemma we get that

db(at; rt) =

�
(
at � � �  t�(rt))b0(at; rt) +

1

2
�2t b

00(at; rt)

�
dt� b0(at; rt)dIt

+�tb
0(at; rt)dZt + [b(at +  t; r

c
t )� b(at; rt)] dNt:

Then combining the above with (54) yields

eRtdGt =

�
�+ (
at � � �  t�(rt))b1(at; rt) +

1

2
�2t b2(at; rt)� rtb1(at; rt)

�
dt

�(1 + b1(at; rt))dIt + (� + �tb1(at; rt)) dZt + [b(at +  t; rct )� b(at; rt)] dNt

Combining the above with (53) yields

eRtdGt �
�
1

2

�
�2t � �2

�
b00(at; rt) + �(rt)b

0(at; rt) [ (at; rt)�  t]
�
dt� (1 + b0(at; rt))dIt

+(� + �tb
0(at; rt)) dZt + [b(at +  t; r

c
t )� b(at +  (at; rt); rct )] dNt;
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with equality whenever a 2 [A; a1(rt)]: From the above we have that for any 0 � t < � :

eRtdGt �
�
1

2

�
�2t � �2

�
b00(at; rt)

�
| {z }

�0

dt�(1 + b0(at; rt))dIt| {z }
�0

+�(rt) ([b(at +  t; r
c
t )�  tb0(at; rt)]� [b(at +  (at; rt); rct )�  (at; rt)b0(at; rt)])| {z }

�0

dt

+(� + �tb
0(at; rt)) dZt + [b(at +  t; r

c
t )� b(at +  (at; rt); rct )] dMt; (55)

with equality whenever a 2 [A; a1(rt)]: The �rst component of the RHS of the above inequality is less or

equal to zero because the function b is concave and �t � � for any t � � : The second component is less

or equal to zero because b0 � �1 and dIt � 0: The third component is less or equal to zero because, by

de�nition, the function  is a solution to

max
 �A�a

[b(a+  ; rc)�  b0(a; r))] :

The condition (55) implies that the process G is an Ft�supermartingale up to time t = � , where we recall

that Z and M are martingales. It will be an Ft�martingale if and only if, for t > 0; at � a1(rt); �t = �

m-a.s.,  t =  (at; rt); and It is increasing only when at � a1(rt).

We now evaluate the lender�s payo¤ for an arbitrary incentive compatible allocation (� ; I; C; Y ), which

equals

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 :
We note that b(a� ; r� ) = L as, from the de�nition of a; a� = A: Using this, and the de�nition of process G;

we have that under any arbitrary incentive compatible allocation (� ; I; C; Y ) and any t 2 [0;1):

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 =
E [Gt^� ] + E

241t��
0@ �Z

t

e�Rs(dYs � dIs) + e�R�L� e�Rtb(at; rt)

1A35 �
b(a0; r0) + E

241t��
0@ �Z

t

e�Rs(dYs � dIs) + e�R�L� e�Rtb(at; rt)

1A35 =
b(a0; r0) + e

�RtE

241t��
0@E

24 �Z
t

eRt�Rs(dYs � dIs) + eRt�R�L jFt

35� b(at; rt)
1A35 ; (56)

where, the inequality follows from the fact that Gt^� is supermartingale and G0 = b(a0; r0): We note that
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in the above

E

24 �Z
t

eRt�Rs(dYs � dIs) + eRt�R�L jFt

35 < �

rL
+
�



� at;

as the RHS of the above inequality is the upper bound on the lender�s expected pro�t under the �rst-best

(public information) allocation. Using the above inequality in (56) we have that

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 � b(a0; r0) + e
�RtE

�
1t��

�
�

rL
+
�



� at � b(at; rt)

��
:

Using b0(a; r) � �1, we have that, for any a � A; �a � b(a; r) � �A � L. Applying this to the above

inequality yields

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 � b(a0; r0) + e
�RtE

�
1t��

�
�

rL
+
�



�A� L

��
:

Taking t!1 yields

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 � b(a0; r0):

Let (��; I�; C�; Y ) be an allocation satisfying the conditions of the proposition. We remember that this

allocation is incentive compatible as it is feasible and �t = � � � for any t � � . Also under this allocation

the process Gt is a martingale until time � (note that b0(a; r) is bounded). So we have that

E

24��Z
0

e�Rs(dYs � dI�s ) + e�R��L

35 =
b(a0; r0) + e

�RtE

241t���
0@E

24��Z
t

eRt�Rs(dYs � dI�s ) + eRt�R��L jFt

35� b(at; rt)
1A35 :

Taking t!1 and using

lim
t!1

e�RtE

241t���
0@E

24��Z
t

eRt�Rs(dYs � dI�s ) + eRt�R��L jFt

35� b(at; rt)
1A35 = 0;

yields

E

24��Z
0

e�Rs(dYs � dI�s ) + e�R��L

35 = b(a0; r0): �
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Proof of Proposition 4

Let (C; Ŷ ) be any borrower�s feasible strategy given the allocation (� ; I). The borrower�s private saving�s

account balance, S, under the strategy (C; Ŷ ) and the allocation (� ; I) grows, for t 2 [0; � ]; according to

dSt = �tStdt+ (dYt � dŶt) + dIt � dCt; (57)

where we remember that �t � rt: De�ne the process V̂ as

V̂t =

tZ
0

e�
sdCs +

tZ
0

e�
s�ds+ e�
t(St + at);

From the above it follows that

e
tdV̂t = dCt + �dt+ dSt � 
Stdt+ dat � 
atdt

Using (16) and (57) yields

e
tdV̂t = (�t � 
)Stdt+ (dYt � �dt)dt+  tdMt =

(�t � 
)Stdt+ �dZt +  tdMt: (58)

Noting that e
t � 1 for any t � 0, we have that

dV̂t � (�t � 
)Stdt+ �dZt +  tdMt:

Recall that Z and M are martingales, �t < 
, and that the process S is nonnegative. So it follows from the

above that the process V̂ is supermartingale up to time � (note that a is bounded from below). Using this

and the fact that by de�nition a� = A; we have that for any feasible strategy of the borrower,

a0 = V̂0 � E
h
V̂�

i
= E

24 �Z
0

e�
sdCs +

�Z
0

e�
s�ds+ e�
� (S� +A)

35 ; (59)

The right-hand-side of (59) represents the expected future payo¤ for the borrower under any feasible�
C; Ŷ ; S

�
. This payo¤ is bounded by a0. If the borrower maintains zero savings, St = 0, reports cash

�ows truthfully, dŶt = dYt, then V̂ is a martingale up to time � , which means that (59) holds with equality

and the borrower�s expected future payo¤ is a0. Thus, this is the optimal strategy for the borrower. �
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Proof of Proposition 5

Consider the candidate mortgage contract. Under this contract the borrower�s balance on the credit line

evolves according to

dBt = �rt(Bt; rt)Btdt+ xt(rt)dt� (dŶt � dIt) +BA(Bt; rt)dNt; (60)

when Bt � CLt (rt); while the borrower�s savings evolve according to

dSt = �tStdt+ dIt +
�
dYt � dŶt

�
� dCt; (61)

where It represents cumulative withdrawal of money from the credit line by the borrower.

Let (C; Ŷ ; S) be any borrower�s feasible strategy under the proposed mortgage contract. For any feasible

borrower�s strategy (C; Ŷ ; S) de�ne a process V̂ as

V̂t =

tZ
0

e�
s(dCs + �ds) + e
�
t (~at + St) ; (62)

where

~at = a1(rt)�Bt (63)

It follows from (60), (63), and (17)-(20) that ~a evolves as

d~at =
�
a1(rct )� a1(rt)

�
dNt � dBt

=
�
a1(rct )� a1(rt)

�
dNt � �rt(Bt; rt)Btdt� xt(Bt; rt)dt�BA(Bt; rt)dNt + dŶt � dIt

=
�
a1(rct )� a1(rt)

�
dNt �

�


�
a1(rt)� ~at

�
� �(rt)

�
 (a1(rt); rt)�  (~at; rt)

��
dt

�
�
� + �� 
a1(rt) + �(rt) (a1(rt); rt)

�
dt�

�
� (~at; rt) + (a1(rct )� a1(rt))

�
dNt

+dŶt � dIt

= (
~at � � � �(rt) (~at; rt)) dt+ (dŶt � �dt)� dIt +  (~at; rt)dNt (64)

Using (1), (61), (62), (64) yields

e
tdV̂t = dCt + �dt+ d~at + dSt � 
~atdt� 
Stdt

= �dZt +  (~at; rt)dMt + (�t � 
)Stdt

Recall that Z and M are martingales, �t < 
, and that the process S is nonnegative. So it follows from

the above that the process V̂ is a supermartingale up to time �
�
C; Ŷ ; S

�
= inf

�
t : Bt = CLt

	
(note that ~a

is bounded from below). Using this and the fact that by de�nition ~a� = A; we have that for any feasible
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strategy of the borrower, (C; Ŷ ; S);

A+ CL0(r0)�B0 = a0 = ~a0 = V̂0 � E
h
V̂�(C;Ŷ ;S)

i

= E

264
�(C;Ŷ ;S)Z

0

e�
s(dCs + �ds) + e
�
�(C;Ŷ ;S)(S�(C;Ŷ ;S) +A)

375 (65)

The right-hand-side of (65) represents the expected future payo¤ for the borrower under any feasible strategy�
C; Ŷ ; S

�
, given the terms of the mortgage. This payo¤ is bounded by A + CL0 (r0) � B0; where B0 is

the initial draw on the credit line. If the borrower maintains zero savings, St = 0, reports cash �ows

truthfully, dŶt = dYt, and consumes all excess cash �ows once the balance on the credit line reaches 0, so

that C = I = I� = max(0;�Bt) = max(0; ~at � a1(rt)); then V̂ is a martingale, which means that (65)

holds with equality and the borrower�s expected future payo¤ is A+CL0 (r0)�B0. Thus, this is the optimal

strategy for the borrower.

Reproducing the above argument for the borrower�s optimal strategy, (C; Ŷ ; S) = (I�; Y; 0); and the

process V̂t0 , t0 � �(I�; Y; 0); de�ned as

V̂t0;t =

tZ
t0

e�
(s�t
0)(dCs + �ds) + e

�
(t�t0)~at; t � t0; (66)

yields that, for any 0 � t � �(I�; Y; 0); ~at is equal to the borrower�s continuation payo¤ under the proposed

mortgage contract with the initial payo¤ for the borrower given by a0 = A+CL0 (r0)�B0, which establishes

(21).

Under the proposed mortgage contract and the borrower�s optimal strategy, the lender�s payo¤ equals

E

264�(I
�;Y;0)Z
0

e�Rt(dYt � dI�t ) + e�R�(I�;Y;0)�(I
�;Y;0)L jF0

375 ;
where

�(I�; Y; 0) = inf
�
t : Bt = CLt

	
= inf ft : ~at = Ag = ��(Y );

as the borrower�s continuation payo¤, ~a, evolve according to the equation (64), e.g. as in the optimal allo-

cation. Therefore, we conclude that the proposed mortgage contract implements the optimal allocation. �
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Proof of Proposition 6

De�ne ~at as follows:

~at = A+ CLt (rt)�Bt (67)

= pt + a
1(rt)�Bt: (68)

Under the candidate mortgage contract the balance on the HELOC evolves according to

dBt =
�
�rptBt + (�rt � �r

p
t ) (Bt � pt)

+
�
dt+ xt(rt)dt+BA

�(Bt � pt)dNt � dŶt + dIt (69)

when Bt � CLt , where It represents cumulative withdrawal of money from the credit line by the borrower.

In addition,

dCLt = dpt + da
1(rt)

=
�
 (a1(rt)� (Bt � pt; rt)Irt�=rL

+ da1(rt)Irt�=rH

�
dNt (70)

Using (68)-(70) and (22)-(27), for Bt � pt, we can write

d~at = dCLt (rt)� dBt

=
�
 (pt + a

1(rt)�Bt; rt)Irt�=rL
dNt + da

1(rt)Irt�=rH

�
dNt � (�rptBt + (�rt � �r

p
t ) (Bt � pt)) dt

�xt(rt)�BA�(Bt � pt)dNt + dŶt � dIt

=
�
 (pt + a

1(rt)�Bt; rt)Irt�=rL
dNt + da

1(rt)Irt�=rH

�
dNt � (�rptBt + (�rt � �r

p
t ) (Bt � pt)) dt

�xt(rt)� (� (pt + a1(rt)�Bt; rt)Irt�=rH
dNt + da

1(rt)Irt�=rH
)dNt + dŶt � dIt

= �
�
� + �� 
a1(rt) + 
 (Bt � pt)

�
dt+ dŶt � dIt +  (pt + a1(rt)�Bt; rt)dMt

= 
~atdt� �dt� �dt+ dŶt � dIt +  (~at; rt)dMt (71)

The borrower�s savings evolve according to

dSt = �tStdt+ dIt +
�
dYt � dŶt

�
� dCt: (72)

Consider

V̂t =

Z t

0

e�
s (�dt+ dCs) + e
�
t (
t + St)

where


t =

8<: a1 (rt) + (pt �Bt) ; if Bt < pt

~at; if Bt � pt
: (73)
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We will show that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower, V̂t is a supermartingale. Note that

d
t =

8>><>>:
[a1(rct )� a1(rt)]| {z }

 (a1(rt);rt)

dNt � dBt; if Bt < pt

d~at; if Bt � pt

: (74)

Using (72),

e
tdV̂t = �dt+ dCt + dSt � 
Stdt+ d
t � 

tdt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d
t � 

tdt:

First, we consider the case with Bt � pt. Using (1), (71), (73)-(74),

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d~at � 
~atdt

= (�t � 
)Stdt+ �dZt +  (~at; rt)dMt: (75)

Now, let Bt < pt. Using (1), (22)-(26), (69)-(74) yields

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ (a1(rt); rt)dNt � dBt � 


�
a1 (rt) + (pt �Bt)

�
dt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ (a1(rt); rt)dNt

�
h�
�rptBt + (�rt � �r

p
t ) (Bt � pt)

+
�
dt+ xt(rt)dt+BA

�(Bt � pt)dNt � dŶt + dIt
i

�

�
a1 (rt) + (pt �Bt)

�
dt

= �dt� (
 � �t)Stdt+ dYt

+ (a1(rt); rt)dNt � [� + �� 
a1(rt) + �(rt) (a1(rt); rt)]dt

�

�
a1 (rt) + (pt �Bt)

�
dt

= �
 (pt �Bt) dt� (
 � �t)Stdt+  (a1(rt); rt)dMt + �dZt (76)

Recall that Z and M are martingales and that �t < 
. Thus, it follows from (75), (76), and the fact that

~at is bounded from below, that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower V̂t is a supermartingale
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until default time �
�
C; Ŷ ; S

�
= inf

�
t : Bt = CLt

	
. Since 
� = A,

A+ CL0 (r0)�B0 = ~a0 + S0 = V̂0 � E
h
V̂�(C;Ŷ ;S)

i
= E

"Z �(C;Ŷ ;S)

0

e�
s (�dt+ dCs) + e
�
�(Ŷ ;C;S)

�
A+ S�(C;Ŷ ;S)

�#
; (77)

where B0 is the time-zero draw on the credit line.

The right-hand-side of (77) represents the expected future payo¤for the borrower under strategy
�
C; Ŷ ; S

�
,

given the terms of the mortgage. This payo¤ is bounded by A+CL0 (r0)�B00+S0. If the borrower maintains

zero savings, St = 0, reports cash �ows truthfully, dŶt = dYt, and consumes all excess cash �ows once the

balance on the credit line reaches pt(rt), so that Bt � pt and Ct = I�t = max(0; pt � Bt) = max(0; ~at � a1t );

then V̂t is a martingale, which means that (88) holds with equality and the borrower�s expected future payo¤

is A+ CL0 (r0)�B0. Thus, this is the optimal strategy for the borrower.

Reproducing the above argument for the borrower�s optimal strategy, (C; Ŷ ; S) = (I�; Y; 0), and the

process V̂t0 , t0 � �(I�; Y; 0); de�ned in (66) yields that, for any 0 � t � �(C; Ŷ ; 0); ~at is equal to the

borrower�s continuation payo¤ under the proposed mortgage contract with the initial payo¤ for the borrower

given by a0 = A+ CL0 (r0)�B0, which establishes (28).

Under the proposed mortgage contract and the borrower�s optimal strategy (C; Ŷ ; S) = (I�; Y; 0), the

lender�s payo¤ equals

E

264�(I
�;Y;0)Z
0

e�Rt(dYt � dI�t ) + e�R�(I�;Y;0)�(I
�;Y;0)L jF0

375 ;
where

�(I�; Y; 0) = inf
�
t : Bt = CLt

	
= inf ft : ~at = Ag = ��(Y );

as the borrower�s continuation payo¤, ~a, evolve according to the equation (71), e.g. as in the optimal allo-

cation. Therefore, we conclude that the proposed mortgage contract implements the optimal allocation. �

Proof of Proposition 7

De�ne ~at as follows:

~at = A+ CLt (rt)�Bt (78)

= pt + a
1(rt)�Bt: (79)
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Under the candidate mortgage contract the debt balance evolves according to

dBt =
�
�rptBt + (�rt � �r

p
t ) (Bt � pt)

+
�
dt� dŶt + dIt; (80)

when Bt � CLt , where It represents cumulative withdrawal of money by the borrower. In addition,

dCLt = dpt + da
1(rt)

=  (pt + a
1(rt)�Bt; rt)dNt (81)

Using (29)-(31), (79)-(81), for Bt � pt we can write

d~at = dCLt (rt)� dBt

=  (pt + a
1(rt)�Bt; rt)dNt � (�rptBt + (�rt � �r

p
t ) (Bt � pt)) dt+ dŶt � dIt

= �
�
�rpt pt + �rt (Bt � pt)� � (pt + a1(rt)�Bt; rt)

�
dt+ dŶt � dIt

+ (pt + a
1(rt)�Bt; rt)dMt

= �
�
� + �� 
a1(rt) + 
 (Bt � pt)

�
dt+ dŶt � dIt +  (pt + a1(rt)�Bt; rt)dMt

= 
~atdt� �dt� �dt+ dŶt � dIt +  (~at; rt)dMt (82)

The borrower�s savings evolve according to

dSt = �tStdt+ dIt +
�
dYt � dŶt

�
� dCt: (83)

Consider

V̂t =

Z t

0

e�
s (�dt+ dCs) + e
�
t (
t + St)

where


t =

8<: a1 (rt) + (pt �Bt) ; if Bt < pt

~at; if Bt � pt
: (84)

We will show that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower, V̂t is a supermartingale. Note that

d
t =

8>><>>:
�
a1(rct )� a1(rt)

�| {z }
 (a1(rt);rt)

dNt � dBt; if Bt < pt

d~at; if Bt � pt

: (85)
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Using (83),

e
tdV̂t = �dt+ dCt + dSt � 
Stdt+ d
t � 

tdt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d
t � 

tdt:

First, we consider the case with Bt � pt. Using (1), (82), and (84)-(85),

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d~at � 
~atdt

= (�t � 
)Stdt+ �dZt +  (~at; rt)dMt: (86)

Now, let Bt < pt. Using (1), (30), (80)-(85) yields

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d
t � 

tdt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ (a1(rt); rt)dNt � dBt � 


�
a1 (rt) + (pt �Bt)

�
dt

= �
�
�rptBt + 
 (pt �Bt) + 
a1 (rt)� � � �+ (
 � �t)St

�
dt

+ (a1(rt); rt)dNt + �dZt

= �
�
�rptBt + 
 (pt �Bt)� r

p
t pt + � (a

1(rt); rt) + (
 � �t)St
�
dt

+ (a1(rt); rt)dNt + �dZt

= � (
 � �rpt ) (pt �Bt) dt� (
 � �t)Stdt+  (a1(rt); rt)dMt + �dZt (87)

Recall that Z and M are martingales, �rpt � 
, �t < 
. Thus, it follows from (86), (87), and the fact that

~at is bounded from below, that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower V̂t is a supermartingale

until default time �
�
C; Ŷ ; S

�
= inf

�
t : Bt = CLt

	
. Since 
� = A,

A+ CL0 (r0)�B0 = ~a0 = V̂0 � E
h
V̂�(C;Ŷ ;S)

i
= E

"Z �(C;Ŷ ;S)

0

e�
s (�dt+ dCs) + e
�
�(C;Ŷ ;S)

�
A+ S�(C;Ŷ ;S)

�#
; (88)

where B0 is the time-zero draw on the credit line.

The right-hand-side of (88) represents the expected future payo¤for the borrower under strategy
�
C; Ŷ ; S

�
,

given the terms of the mortgage. This payo¤ is bounded by A + CL0 (r0) � B0. If the borrower maintains

zero savings, St = 0, reports cash �ows truthfully, dŶt = dYt, and consumes all excess cash �ows once the

balance on the credit line reaches pt(rt), so that Bt � pt and Ct = I�t = max(0; pt � Bt) = max(0; ~at � a1t );

then V̂t is a martingale, which means that (88) holds with equality and the borrower�s expected future payo¤

is A+ CL0 (r0)�B0. Thus, this is the optimal strategy for the borrower.
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Reproducing the above argument for the borrower�s optimal strategy, (C; Ŷ ; S) = (I�; Y; 0), and the

process V̂t0 , t0 � �(I�; Y; 0); de�ned in (66) yields that, for any 0 � t � �(C; Ŷ ; 0); ~at is equal to the

borrower�s continuation payo¤ under the proposed mortgage contract with the initial payo¤ for the borrower

given by a0 = A+ CL0 (r0)�B0, which establishes (33).

Under the proposed mortgage contract and the borrower�s optimal strategy (C; Ŷ ; S) = (I�; Y; 0), the

lender�s payo¤ equals

E

264�(I
�;Y;0)Z
0

e�Rt(dYt � dI�t ) + e�R�(I�;Y;0)�(I
�;Y;0)L jF0

375 ;
where

�(I�; Y; 0) = inf
�
t : Bt = CLt

	
= inf ft : ~at = Ag = ��(Y );

as the borrower�s continuation payo¤, ~a, evolve according to the equation (82), e.g. as in the optimal allo-

cation. Therefore, we conclude that the proposed mortgage contract implements the optimal allocation. �
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A.2 Discrete-Time Formulation

In this section we present a discrete-time version of our model.

Set-up

Time is discrete and the period has a length equal to � > 0: There is one borrower and one lender. lender

is risk neutral, have unlimited capital, and values a stochastic cash �ow sequence fCtg as
X
t

E
�
e�RtCt

�
.

We assume that Rt =
tX

s=1

�rs, where frtg is the lender�s stochastic discount rate sequence (interest rate

sequence). The lender�s stochastic discount rate sequence is a �rst-order time-invariant Markov chain. We

further assume that, for any t; rt 2 frL; rHg ; 0 � rL < rH ;

Pr [rt+1 = rL jrt = rL ] = e���(rL);

Pr [rt+1 = rH jrt = rH ] = e���(rH);

Note that this implies that P [rt+1 = rL jrt = rH ] = 1� e���(rH) and P [rt+1 = rH jrt = rL ] = 1� e���(rL):

The borrower is also risk neutral, has limited wealth, and values a stochastic cash �ow sequence fCtg

as
X
t

e��
tE [Ct]. We assume that, for all t; 
 � rt. The borrower can buy a home at date t = 0; which

requires an initial investment in assets of P: The borrower initial wealth is Y0 � 0. We assume that P > Y0,

so that the borrower must borrow from the lender (sign a contract with the lender) to �nance the purchase

of a home. In every period, the home ownership generates to the borrower a public deterministic utility

stream equal to f��tg.

The borrower�s income at date t is given by a random variable Yt 2 Yt. The borrower�s income realizations,

fYtg; are jointly independent and Es[Yt] = E[Yt] = ��t for all s < t . We note that the independence

assumption implies no learning about future income �ows. For all t, denote the minimum element of the

support of Yt by Y 0t � 0: The minimal cash �ow Y 0t is collectible by the lender. The excess income realizations

Yt � Y 0t ; are privately observable by the borrower.

The borrower also maintains a private savings account. The borrower�s balance grows at the interest rate

��t; such that �t � rL. The borrower must maintain a nonnegative balance at his account.

At any time the lender can liquidate the project. In case of liquidation at time t, the lender receives Lt,

while the borrower receives his time-t reservation value equal to At:

Optimal Contract (Optimal Allocation)

If the lender agrees to fund the project at date 0; the borrower and the lender sign a contract that will

govern their relationship until time T: Let Ŷt be a borrower�s report of cash �ow realization at time t and
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Figure 10: Sequence of events.

let Ŷ t =
n
Ŷ0; :::; Ŷt

o
be the history of borrower�s reports up to time t. Let rt = fr0; r1; :::; rtg be the history

of interest rates. Consequently we have the following de�nition.

De�nition 13 A contract � = (p; I) is a sequence of two functions fpt; ItgTt=0, such that, given the history

of borrower�s reports of income, Ŷ t =
n
Ŷ0; :::; Ŷt

o
; and the history of interest rates, rt = fr0; r1; :::; rtg ;

the contract obliges lender to make, at any time t; payment It(Ŷ t; rt) � 0 and liquidate the project with the

probability pt(Ŷ t; rt) 2 [0; 1].

Figure 10 presents the sequence of events.

The borrower can misreport his income. Consequently, under the contract � = (p; I); the borrower�s

income at time t equals

(Yt � Ŷt)| {z }
misreporting

+ It;

The borrower�s private saving�s account balance, S, grows according to

St+1 = e��tSt + (Yt � Ŷt) + It � Ct;

where Ct is the borrower�s consumption at time t; which must be nonnegative. We remember that, for all

t � 0; St � 0 and �t � rt:

De�nition 14 Given a contract � = (p; I); the borrower�s strategy is a consumption-report pair (C; Ŷ ) =n
Ct; Ŷt

oT
t=0
, such that, given the history of the borrower�s income realizations, Y t, and the history of interest

rates, rt; the borrower consumes Ct(Y t; rt) and reports Ŷt(Y t; rt) at time t:

De�nition 15 Given a contract � = (p; I); the borrower�s strategy, (C; Ŷ ); is feasible if the borrower�s

consumption and savings are nonnegative under this strategy.

Let

Pt(Ŷ
t; rt) =

8>><>>:
1 for t = 0

t�1Y
k=1

(1� pk(Ŷ k; rk)) for t � 1
;

57



be the probability that the project is active at the beginning of period t under the contract � = (p; I); given

the history of reports, Ŷ t; and the history of interest rates, rt:

De�nition 16 A contract � = (p; I) together with the borrower�s strategy (C; Ŷ ) is incentive compatible if:

(i) given a contract � = (p; I); the borrower�s strategy (C; Ŷ ) is feasible,

(ii) given a contract � = (p; I); the borrower�s strategy (C; Ŷ ) provides him with the highest expected utility

among all feasible strategies, i.e.:

E

"
TX
t=0

e�
�tPt(Ŷ
t; rt)

h
Ct(Y

t; rt) + ��t + pt(Ŷ
t; rt)At

i
jr0

#
�

E

"
TX
t=0

e�
�tPt(Ŷ
0t; rt)

h
C 0t(Y

t; rt) + ��t + pt(Ŷ
0t; rt)At

i
jr0

#

for any feasible strategy (C 0; Ŷ 0) given a contract � = (p; I);

(iii) the borrower�s continuation payo¤ under the contract � = (p; I) and the strategy (C; bY ) is greater or
equal from the payo¤ he could guarantee himself by leaving the contract, e.g., for any (Y s; rs); such

that the contract has not been terminated at time s � T :

E

"
TX

t=s+1

e��
(s�t)Pt(Ŷ
t; rt)

h
Ct(Y

t; rt) + ��t + pt(Ŷ
t; rt)At

i
j(Y s; rs)

#
� As:

De�nition 17 Given the borrower�s initial utility, a0, and the initial interest rate for the lender, r0, the

contract, �� = (p�; I�); together with the recommendation to the borrower, (C�; Ŷ �); is optimal if it maximizes

the lender�s payo¤:

E

"
TX
t=0

e�RtPt(Ŷ
�t; rt)

�
Ŷ �t � I�t (Ŷ �t; rt) + p�t (Ŷ �t; rt)Lt

�
jr0

#

in the class of all incentive-compatible contracts that satisfy the following promise keeping constraint:

a0 = E

"
TX
t=0

e�
�tP �t (bY �t; rt) hC�t (Y t; rt) + ��t + p�t (bY �t; rt)Ati jr0
#

As we will see, in the search for an optimal contract, we can focus our attention on the direct-revelation

contracts with no private savings by the borrower. The reasoning behind this result is simple. Consider any

contract such that the borrower�s optimal response entails concealing cash �ows (Ŷt � Yt). We can design

a new contract in which the borrower gives the diverted cash �ows to the lender (Ŷt = Yt), and the lender

then pays the borrower (through It) an amount equal to (Yt � Ŷt). Similarly, rather than privately save,

the borrower can give income to the lender, and receive it back in the future with interest �t. This leaves
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the borrower�s utility unchanged, but leads to a weakly higher payo¤ for the lender since private savings are

ine¢ cient (as �t � rL < rH). This leads us to the following result.

Lemma 4 Let (�; C; Ŷ ) be an incentive compatible contract with an borrower�s strategy. Then there exists

an incentive compatible contract with an borrower�s strategy (� 0; C 0; Ŷ 0) such that:

- the borrower�s payo¤ under the contract � 0 is the same as under the contract �,

- the lender�s payo¤ under the contract � 0 is weakly higher from those under the contract �,

- the borrower reports its income truthfully and maintains no savings under the contract � 0:

Recursive Formulation of the Contracting Problem

We formulate recursively the contracting problem using dynamic programming approach similarly to De-

Marzo and Fishman (2004). First, we characterize an optimal contract under the assumption that private

saving is impossible. We know from Lemma 4, that it is su¢ cient to look for the optimal contracts in which

the borrower reports truthfully and maintains zero savings. But this implies that the optimal contract in

the environment with no private savings yields to the lender, for a given promise to the borrower, at least as

much pro�t as the optimal contract of the problem when borrower is allowed to privately save. Finally, we

will show that, given the optimal contract of the relaxed problem, the borrower has no incentive to save at

the solution, and thus this contract is also optimal in the environment with private savings by the borrower.

Consider the subgame that begins at the end of period t in which interest for the lender equals rt. For

this subgame, let �t denote a contract governing the relationship between lenders and the borrower, and

let Ŷt be a report strategy for the borrower, At and Bt be the continuation payo¤s, respectively, to the

borrower, and to the lender. De�ne �t(rt) to be the set of incentive compatible contract strategy pairs.

Because cash �ows are independent over time, and for a moment we assume there is no private savings, the

set of incentive compatible contract strategy pairs �t(rt) are common knowledge at time t and independent

of the prior history. This allows us, along the lines of Spear and Srivastava (1987), Green (1987), and Abreu

et al. (1990), to characterize the optimal contract by using the borrower�s continuation utility as a state

variable.

De�ne the payo¤ possibility set as

�t(rt) =
n
(a; b)

���a = At(�t; Ŷt); b = At(�t; Ŷt) for some (�t; Ŷt) 2 �t(rt)
o
:

This set describes the payo¤ combinations that can be achieved by operating the project beyond date t. The

payo¤ combinations, corresponding to optimal contracts, are on the frontier of this set, and can be described

by the end-of-period continuation payo¤ function, that is the continuation payo¤ for the lender, as a function
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Figure 11: Continuation functions.

of the borrower�s continuation payo¤

bet (a; rt) = max fb j(a; b) 2 �t(rt)g

For each period, we consider the start-of-period, the intra-period (just prior to the termination deci-

sion), and the end-of-period continuation functions for the lender, denoted by, respectively, byt (a
y
t (rt); rt),

bdt (a
d
t (rt); rt); b

e
t (a

e
t (rt); rt), where a

y
t (rt); a

d
t (rt); and a

e
t (rt) denote the borrower�s continuation payo¤s at the

start, the middle, and the end of period t � T; respectively, as shown in Figure 11.

Derivation of the Optimal Contract

Here, we present an algorithm that will allow us to solve for the optimal contract, given that the project lasts

up to a �nite time T . This allows us to de�ne the continuation function for date T , and then solve for earlier

dates recursively. The properties of the optimal contract in �nite time will carry over to an in�nitely-lived

relationship.16 The algorithm consists of the following three steps.

Terminal Value

First, we note that, after time T , any payments to the borrower are transfers from the lender. Since 
 � rt

for all t, it is weakly e¢ cient to make such payments immediately. Hence the continuation function at the

end of the last period is given by

beT (a
e
T (rT ); rT ) =

8<: �aeT (rT ) for aeT � AT

�1 for aeT < AT
: (89)

16 In the stationary setting the optimal in�nite horizon contract can be derived by taking the limit as T !1.
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Given the continuation function (89), we will work backwards to determine recursively continuation function

bet (�; rt) for dates t < T: Note that, for aeT (rT ) � AT , the continuation function beT (�; rT ) is decreasing and

concave (it is a linear function). In what follows we will show inductively that bet (�; rt) is concave as well.

Step One: Liquidation Problem

Assume that bet (�; rt) is concave (note that the payo¤ function at the end of last period, beT (�; rT ); is indeed

concave). At any time t the borrower has reservation value At. Thus prior to the termination decision the

lowest feasible payo¤ for the borrower is equal to At. So bdt (�; rt) will be de�ned for adt (rt) � At. Also note

that because the contract may terminate probabilistically at any t, all payo¤ within convex hull of (Lt; At)

and the payo¤ possibilities de�ned by bet (�; rt) are possible. Consider a line passing by point (Lt; At), which

is tangent to payo¤ possibility frontier given by bet (�; rt). Let aLt (rt) be the payo¤ at the point of tangency

of this line. An borrower�s payo¤ level adt (rt) 2 [At; aLt (rt)] is achieved by terminating with probability

pt(a
d
t (rt); rt) =

aLt (rt)� adt (rt)
aLt (rt)�At

(90)

If the borrower�s payo¤ adt is larger than a
L
t (rt) it is optimal to continue with this payo¤, so the probability

of termination is zero in this case.

Note that paying one dollar to an borrower costs lender one dollar. Since bet (�; rt) is assumed to be

concave, there will be a threshold level of the borrower�s payo¤ a1t (rt), such that cash payments will be used

above this threshold. This threshold point a1t (rt) is the point in which the slope of the continuation function

bet (�; rt) is below �1. That implies the following characterization of the payment function

It(a
d
t (rt); rt) = max(a

d
t (rt)� a1t (rt); 0) (91)

Note that as a result of these transformations, as Figure 12 indicates, the continuation payo¤ function has

the following properties

bdt (�; rt) is concave with
dbdt (a; rt)

da
� �1 (92)

In the �nal period, by de�nition, termination is optimal. In this case we set aLT (rt) = �1: Also because


 � rt for all t, it is weakly e¢ cient to make any payments immediately. Thus, a1T (rT ) = AT ; and as a result

we have that pT (adT (rT ); rT ) = 1, IT (a
d
T (rT ); rT ) = adT (rT )�At, and bdT (adT ; rT ) = LT � (adT (rT )�AT ): We

summarize our �ndings in the proposition below.

Proposition 11 Given bet (�; rt) concave, let

lt(rt) = sup

�
bet (a; rt)� Lt

a�At
: a � At

�
:
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Figure 12: Continuation payo¤ function bdt (�; rt):

Then, if lt(rt) > �1; de�ne :

aLt (rt) = inf

�
a > 0 :

dbet (a; rt)

da
� lt(rt)

�
;

a1t (rt) = inf

�
a > 0 :

dbet (a; rt)

da
� �1

�
:

and then we have that

bdt (a
d
t (rt); rt) =

8>>>>>><>>>>>>:

bet (a
1
t (rt); rt)� (adt (rt)� a1t (rt)) for adt (rt) � a1t (rt)

bet (a
d
t ; rt) for aLt (rt) � adt (rt) < a1t (rt)

bet (a
L
t (rt); rt)� lt(rt)(aLt (rt)� adt (rt)) for At � adt (rt) < aLt (rt)

�1 for adt (rt) < At

;

If lt(rt) � �1; the termination of the contract is optimal. In this case, de�ne aLt (rt) =1, a1t (rt) = At and

bdt (a
d
t (rt); rt) =

8<: Lt � (adt (rt)�At) for adt (rt) � At

�1 for adt (rt) < At
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Finally, we note that the above implies that bdt (�; rt) satis�es (92).

Proof We construct bdt (�; rt) as in Figure 12. First, we consider the termination option (Lt; At). Since

the borrower can always terminate and receive At, payo¤s below this are infeasible: bdt (�; rt) = �1 for

a < At: For payo¤s above At, we need to �nd the line from (Lt; At) to the curve bet (�; rt) with the highest

slope. This highest slope is given by lt(rt).

If lt(rt) > �1 the line with the highest slope connects to bet (�; rt) at aLt (rt): Thus, payo¤s adt (rt) 2

[At; a
L
1 (rt)] can be achieved by mixing between the borrower�s termination value of At and the minimal

value of continuation with aL1 (rt): The probability of termination, pt(a
d
t (rt); rt), is given by (90) which solves

ptAt + (1� pt)aLt (rt) = adt (rt)

In this case the lenders�expected payo¤ is

pt(a
d
t (rt); rt)Lt + (1� pt(adt (rt); rt))bet (aLt (rt); rt) =

bet (a
L
t (rt); rt) +

aLt (rt)� adt (rt)
aLt (rt)�At

(Lt � bet (aLt ; rt)) = bet (a
L
t (rt); rt)� lt(rt)

�
aLt (rt)� adt (rt)

�
Since we assumed that lt(rt) > �1, there is a1t (rt) � aLt (rt); such that, above a

1
t (rt) it is cheaper to

compensate the borrower directly with the payment It(adt (rt); rt) given by (91). In this case an lender�s

payo¤ is

bdt (a
d
t (rt); rt) = bet (a

1
t (rt); rt)� It(adt (rt); rt) = bet (a

1
t (rt); rt)� (adt (rt)� a1t (rt))

In the region
�
aLt (rt); a

1
t (rt)

�
, it is e¢ cient not to pay the borrower. Note that for adt (rt) � aLt (rt),

pt(a
d
t (rt); rt) = 0:

Now suppose that lt(rt) � �1: In this case paying the borrower at once is cheaper for any payo¤ above

At: Therefore, it is optimal to terminate with probability 1, which corresponds to setting aLt (rt) = 1 in

(90), and lender�s payo¤ is

bdt (a
d
t (rt); rt) = Lt � (adt (rt)�At)

for adt (rt) � At: The above properties imply that bdt (rt) satis�es (92).

Step Two: The Intra-Period Agency Problem

In this subsection, we solve for the continuation function, byt (�; rt), before the income Yt is realized, given the

continuation function bdt (�; rt). To do so, we must make sure that the borrowers is provided with incentives

to reveal its income to the lender. Consider the borrower�s problem at the start of period t. After realizing

the cash �ow Yt, the borrower must choose a report Ŷt to make. Contingent upon report Ŷt, according

to the contract, the borrower will receive a continuation payo¤ adt (rt). An optimal contract speci�es the

continuation payo¤ adt as a function of the reported income so as to provide incentives for the borrower
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to report truthfully (that is to choose Ŷt = Yt). This must be done in a way that maximizes the lender�s

expected payo¤. Formally, this problem is equivalent to the following optimization problem:

byt (a
y
t (rt); rt) = max

adt (rt)�At

E[Yt + b
d
t (a

d
t (rt); rt)] s:t:

(IC) : adt (rt; Yt) � adt (rt; Ŷt) + (Yt � Ŷt) for any Ŷt � Yt; bYt 2 Yt
(PK) : E[adt (rt; Yt)] = ayt (rt) (93)

The objective function is the expected payo¤ of lender at the beginning of period t. The lender receives

the cash �ows and the highest possible continuation payo¤ bdt (�; rt) given that the borrower receives adt (rt):

The �rst constraint, (IC), is the incentive compatibility constraint for the borrower. It insures that it is

optimal for the borrower to report all its income to the lender, rather than under-report and consume some

of the cash �ow himself. The second constraint, (PK), is the �promise-keeping�constraint. This constraint

guarantees the borrower�s expected continuation payo¤ is consistent with his promised continuation payo¤

ayt (rt) at the beginning of the period t.

To solve (93), we �rst note that the (IC) constraint is equivalent to adt (rt; Y )�Y being weakly increasing

in Y . The promise-keeping constraint �xes the mean payo¤ to the borrower, so di¤erent choices of adt (rt)

a¤ect its variability. But as bdt (�; rt) is concave, it is optimal to minimize the variability of adt (rt; y). This

is done by setting dadt (rt;y)
dy = 1, so that the incentive constraints just bind. We summarize this discussion

formally in the proposition below.

Proposition 12 Given bdt (�; rt); which satis�es (92), the optimal continuation payo¤ for the borrower con-

tingent on the reported income Yt is given by

adt (rt; Yt) = ayt (rt) + (Yt ���t)

This implies that the beginning of period continuation function, bdt , equals

byt (a
y
t (rt); rt) = ��t + E[b

d
t (a

y
t (rt) + (Yt ���t) ; rt)];

and byt (�; rt) is concave.

Proof We start by verifying that it is without loss of generality to assume that the borrower reveals its

entire income Yt at the solution. Suppose there is a solution in which the borrower reveals Y 0t � Ŷt(rt; Yt) � Yt

and receives adt (rt; Ŷt). Consider the new continuation payo¤ a
d�
t (rt; Yt) = adt (rt; bYt(rt;Yt)) + Yt � Ŷt(rt;Yt).

Given this continuation payo¤, it is easy to see that truthful reporting is optimal, and the borrower�s payo¤s
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are unchanged. The change in the lender�s payo¤ is

[Yt + b
d
t (a

d�
t (rt; Yt); rt)]� [Ŷt + bdt (adt (rt; bYt); rt)] =

Yt � bYt + bdt (adt (rt; bYt) + Yt � Ŷt(rt; Yt); rt)� bdt (adt (rt; Ŷt); rt) � 0
where the last inequality follows since dbdt (a;rt)

da � �1:

Note that, given truthful reporting, the (IC) constraint is equivalent to g(Y; rt) = adt (Y; rt) � Y being

weakly increasing in Y . The promise keeping constraint, (PK), then becomes

E[g(Yt; rt)] = ayt (rt)���t

and the continuation payo¤ at the beginning of period t is

E[Yt + b
d
t (Yt + g(Yt); rt)] = ��t + E[b

d
t (Yt + g(Yt); rt)]

As the mean of function g(�; rt) is �xed by (PK), and since bdt is concave, the optimal choice of g(�; rt) is

to minimize the variability of Yt + g(Yt; rt) subject to the constraint that g(�; rt) is weakly increasing. The

solution of this problem is to make g(�; rt) constant and equal to its mean ayt (rt)���t. Therefore,we have

that

adt (Y; rt) = ayt (rt) + (Y ���t)

Finally, we observe that, as the expectation operator is a linear operator, the concavity of bdt (�; rt) implies

the concavity of byt (�; rt):

We note that the above result implies that, the borrower has no incentive to use private savings, justifying

our solution methodology. As the above proposition shows, the marginal bene�t to the borrower from

reporting a higher cash �ow is constant. As a result, since for any t the borrower�s discount rate, 
, exceeds

the return to private savings, �t, there is no bene�t to hiding cash �ows today in order to report higher cash

�ows in the future (or increase future consumption).

Lemma 5 Function byt (�; rt) satis�es
dbyt (�; rt)

da
� �1 (94)

Proof From Proposition 12 we have that byt (a
y
t (rt); rt) = ��t + E[bdt (a

y
t (rt) + (Yt ���t); rt)]: This

combined with (92) and the properties of the expectation operator yields (94).

Step Three: Discounting Between the Periods

So far, we have described how to compute the continuation function byt (�; rt) at the start of period t given

the continuation function bet (�; rt) at the end of period t. In this subsection, we derive the continuation
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function at the end of the prior period, bet�1(�; rt�1), and combine our results to complete our recursive

characterization of the optimal contract.

Moving from the start of period t to the end of the prior period, t � 1, involves discounting the payo¤s

of the borrower and the lender. To provide the borrower with a payo¤ of a at the end of period t � 1,

the borrower�s expectation of what he is to be given, at the beginning of period t; must be equal the value

of a plus increase at his subjective rate 
 less the amount of deterministic utility, ��t; he derives at the

beginning of period t from home ownership. The lender�s continuation payo¤ at the end of time t � 1

is the expected continuation payo¤ at time t discounted at rate rt�1. Therefore, given the end of period

continuation value aet�1(rt�1); the lender optimally chooses the beginning of next period continuation values

for the borrower ayt (rt) in order to maximize the expected discounted continuation payo¤ function, subject

to keeping his promises to the borrower. From Proposition 12 we know that adt (rt; Y ) = ayt (rt)+ (Y ���t):

As adt (rt) � At, it implies that, in choosing a
y
t (rt), the lender will have to satisfy the following condition

ayt (rt) � At � (Y 0t ���t)

Our discussion above implies the following characterization of continuation function bet�1(�; rt�1).

Proposition 13 Given byt (�; rt); aet�1(rt�1) 2
�
aLt�1(rt�1); a

1
t�1(rt�1)

�
; and rt�1; the continuation function

at the end of the prior period, bet�1(a
e
t�1(rt�1); rt�1); is given by

bet�1(a
e
t�1(rt�1); rt�1) = max

ayt (a
e
t�1(rt�1);rt�1;rt)�At�(Y 0

t ���t)
e��rt�1E [byt (a

y
t (rt); rt) jrt�1 ]

subject to

E(ayt (rt) jrt�1 ) = e�
aet�1(rt�1)���t

Proof Immediate from the above discussion.

Lemma 6 The end of period continuation function bet�1(�; rt�1) is concave.

Proof From Proposition 13 we know that aet�1(rt�1) 2
�
aLt�1(rt�1); a

1
t�1(rt�1)

�
. Let ayt (a

e
t�1(rt�1); rt�1; rt),

for rt 2 frL; rHg, be the solution to the problem de�ned in Proposition 8. We consider two cases:

Case 1: Suppose that the solution is interior, that is for rt 2 frL; rHg, we have that

�ayt (a
e
t�1(rt�1); rt�1; rt) > At � (Y 0t ���t):

Let rt�1 = ri; where i 2 fL;Hg. Let rt�1 = ri; where i 2 fL;Hg : From the promise keeping constraint

(1� e���(ri))ayt (r�i) + e���(ri)a
y
t (ri) = e�
aet�1(ri)���t (95)
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we have that

ayt (r�i) =
e�
aet�1(ri)���t � e���(ri)a

y
t (ri)

(1� e���(ri)) (96)

Using this we can express bet�1(a
e
t�1(rt�1); rt�1) as

bet�1(a
e
t�1(ri); ri) =

max
ayt (rt)�At�(Y0���t)

e��ri

264 e���(ri)byt (a
y
t (ri); ri)+

(1� e���(ri))byt
�
e�
aet�1(ri)���t�e

���(ri)ayt (ri)

(1�e���(ri)) ; r�i

� 375
subject to

e�
aet�1(ri)���t�e
���(ri)ayt (ri)

(1�e���(ri)) � At�(Y0���t). Suppose that at the optimal choice the appropriate

derivatives exist and so we have that

dbyt (a
y
t (ri); ri)

da
=

dbyt

�
e�
aet�1(ri)���t�e

���(ri)ayt (ri)

(1�e���(ri)) ; r�i

�
da

: (97)

Now we note that

dbet�1(a
e
t�1(ri); ri)

daet�1(ri)
= e��(ri+�(ri))

dbyt (�a
y
t (ri); ri)

da

d�ayt (ri)

daet�1(ri)

+

�
e�(
�ri) � e��(ri+�(ri)) d�a

y
t (ri)

daet�1(ri)

� dbyt � e�
aet�1(ri)���t�e���(ri)�ayt (ri)(1�e���(ri)) ; r�i

�
da

:

Using (97) in the above implies that

dbet�1(a
e
t�1(ri); ri)

daet�1(ri)
= e�(
�ri)

dbyt

�
e�
aet�1(ri)���t�e

���(ri)�ayt (ri)

(1�e���(ri)) ; r�i

�
da

:

From the above we have that

d2bet�1(a
e
t�1(ri); ri)

d
�
aet�1(ri)

�2 =

e�(
�ri)
d2byt

�
e�
aet�1(ri)���t�e

���(ri)�ayt (ri)

(1�e���(ri)) ; r�i

�
da2

�
e�
 + e���(ri)

d�ayt (ri)

daet�1(ri)

�
(98)

It follows from the properties of functions byt (�; rt); and from (95), that

d�ayt (ri)

daet�1(ri)
� e�


e���(ri)
:
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But this combined with the condition (98) and the fact that byt (�; rt) is concave implies that

d2bet�1(a
e
t�1(ri); ri)

d
�
aet�1(ri)

�2 � 0

so we conclude that bet�1(a
e
t�1(rt�1); rt�1) is concave for a

e
t�1(rt�1) and rt�1 such that �a

y
t (rt) > At � (Y 0t �

��t) for rt 2 frL; rHg if at the optimal choice the appropriate derivatives exist.

If the appropriate derivatives do not exist around the solution then as we increase aet�1(ri) either a
y
t (ri)

or ayt (r�i) must increase. Without loss in generality suppose that it is �a
y
t (ri) that locally increases. Then

around the solution we will have that

d�ayt (a
e
t�1(ri); ri; r�i)

daet�1(ri)
= 0;

d�ayt (a
e
t�1(ri); ri; ri)

daet�1(ri)
=

e�


e���(ri)
:

But then

dbet�1(a
e
t�1(ri); ri)

daet�1(ri)
= e��(ri+�(ri))

dbyt (�a
y
t (a

e
t�1(ri); ri; ri); ri)

da

d�ayt (a
e
t�1(ri); ri; ri)

daet�1(ri)

= e�(
�ri)
dbyt (�a

y
t (a

e
t�1(ri); ri; ri); ri)

da
:

Since �ayt (a
e
t�1(ri); ri; ri) increases in a

e
t�1(ri) and

dbyt (�;ri)
da decreases in a,

dbet�1(a
e
t�1(ri);ri)

daet�1(ri)
decreases in aet�1(ri).

The same argument can be repeated for the case when it is �ayt (r�i) that increases with a
e
t�1(ri) around the

solution when the appropriate derivatives do not exist.

But this altogether implies that the value function for the lender is concave in a whenever �ayt (a
e
t�1(rt�1); rt�1; rt) >

At � (Y 0t ���t), rt 2 frL; rHg :

Case 2: Suppose that the solution is not interior, that is we have that ayt (rt) = At� (Y 0t � �t) for some

rt 2 frL; rHg : First suppose that in the neighborhood of aet�1(ri); �a
y
t (r�i) = At � (Y 0t � �t): Then we have

that

d�ayt (ri)

daet�1(ri)
=

e�


e���(ri)
;

d�ayt (r�i)

daet�1(ri)
= 0:

But then

dbet�1(a
e
t�1(ri); ri)

daet�1(ri)
= e��(ri+�(ri))

dbyt (�a
y
t (ri); ri)

da

d�ayt (ri)

daet�1(ri)
= e�(
�ri)

dbyt (�a
y
t (ri); ri)

da
:
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From the above we have that

d2bet�1(a
e
t�1(ri); ri)

d
�
aet�1(ri)

�2 = e�(
�ri)
e�


e���(ri)
d2byt (�a

y
t (ri); ri)

da2
� 0; (99)

where the last inequality follows from the concavity of function byt (�; rt).

If in the neighborhood of aet�1(ri); �a
y
t (ri) = At � (Y 0t � �t), we have that

d�ayt (ri)

daet�1(ri)
= 0;

d�ayt (r�i)

daet�1(ri)
=

e�


1� e���(ri) :

But then

dbet�1(a
e
t�1(ri); ri)

daet�1(ri)
= (1� e���(ri))e��ri db

y
t (�a

y
t (r�i); r�i)

d�ayt (r�i)

d�ayt (r�i)

daet�1
= e�(
�ri)

dbyt (�a
y
t (r�i); r�i)

d�ayt (r�i)
:

From the above we have that

d2bet�1(a
e
t�1(ri); ri)

d
�
aet�1(ri)

�2 = e�(
�ri)
e�


1� e���(ri)
dbyt (a

y
t (r�i); r�i)

dayt (r�i)
� 0; (100)

where the last inequality follows from the concavity of function byt (�; rt).

The properties (99)-(100) imply that bet�1(a
e
t�1(rt�1); rt�1) is concave for a

e
t�1 and rt�1 such that �a

y
t (rt) =

At � (Y 0t ���t) for some rt 2 frL; rHg :

Combining our discussion of Case 1 and Case 2, we conclude that the end of period continuation function

bet�1(�; rt�1) is concave.

Starting from the terminal continuation beT de�ned by (89), the Propositions 11-13 allow us to recursively

solve for the continuation function at all earlier points in the contract. Note that as beT (�; rT ) is concave, the

Propositions 11-13, and Lemma 6 imply that functions byt (�; rt); bdt (�; rt); bet (�; rt) are concave for all t � T ,

rt 2 frL; rHg :

The Dynamics of the Optimal Contract

Having solved for the optimal contract recursively, we can now describe the dynamics of the optimal contract.

Let �ayt be the optimal function solving the problem of the Proposition 8. De�ne

 t(a
e
t�1(rt�1); rt�1; rt) = �a

y
t (a

e
t�1(rt�1); rt�1; rt)� e�
aet�1(rt�1) + ��t
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From the de�nition of ayt we have that

e���(rt�1) t(a
e
t�1(rt�1); rt�1; rt�1) + (1� e���(rt�1)) t(aet�1(rt�1); rt�1; rct�1) = 0;

where we remember that rct�1 = frL; rHg n frt�1g. The above implies that

 t(a
e
t�1(rt�1); rt�1; rt�1) = �(e��(rt�1) � 1) t(aet�1(rt�1); rt�1; rct�1):

The behavior of the contract is governed by the current promised continuation payo¤ for the borrower. From

our above results, the evolution of this state variable prior to termination can be described as follows:

aet�1(rt�1) !
ayt (rt = rt�1) = e�
aet�1(rt�1)���t � (e��(rt�1) � 1) t(aet�1(rt�1); rt�1; rct�1)

ayt (rt = rct�1) = e�
aet�1(rt�1)���t +  t(aet�1(rt�1); rt�1; rct�1)

ayt (rt) ! adt (rt) = ayt (rt) + (Yt ���t);

adt (rt) ! aet (rt) = min(a
1
t (rt);max(a

L
t (rt); a

d
t (rt))):

Given the borrower�s promised payo¤, the payments to the borrower and the termination probability at each

period t are given by

It(a
d
t (rt); rt) = max(adt (rt)� a1t (rt); 0),

pt(a
d
t (rt); rt) =

max(aLt (rt)� adt (rt); 0)
aLt (rt)�At

:
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