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Risk and Return: Some New Evidence

Abstract

We develop a structural asset pricing model to investigate the relationship between stock

market risk and return. The structural model is estimated using the conditional market variance

implied by S&P 100 index option prices. Relative risk aversion is precisely identi�ed and is

found to be positive, with point estimates ranging from 3.06 to 4.01. However, the implied

volatility data only spans the period November 1983 to May 1995. As a robustness check, the

structural model is also examined with postwar monthly data, in which the conditional market

variance is estimated. We again �nd a positive and signi�cant risk-return relation and get

similar point estimates for relative risk aversion. Additionally, we document some facts about

stock market return. First, stock price movements are primarily driven by changes in investment

opportunities, not by changes in market volatility. Second, there is some evidence of a leverage

e�ect. Third, relative risk aversion is quite stable over time.



1 Introduction

The return on the market portfolio plays a central role in the capital asset pricing model (CAPM),

the �nancial theory widely used by both academics and practitioners. However, the inter-temporal

properties of the stock market return are not yet fully understood.1 For example, there is an

ongoing debate in the literature about the relationship between stock market risk and return and

the extent to which stock market volatility moves stock prices. This paper provides new evidence

on the risk-return relation by estimating a variant of Merton's (1973) inter-temporal capital asset

pricing model (ICAPM)

In his seminal paper, Merton (1973) shows that the conditional excess market return Et�1eM;t

is a linear function of its conditional variance Et�1�
2
M;t (the risk component) and its covariance

with investment opportunities Et�1�MF;t (the hedging component),

Et�1eM;t = [
�JWWW

JW
]Et�1�

2
M;t + [

�JWF

JW
]Et�1�MF;t (1)

where J(W (t); F (t); t) is the indirect utility function with subscripts denoting partial derivatives,

W (t) is wealth and F (t) is a vector of state variables that describe investment opportunities.

�JWWW
JW

is a measure of relative risk aversion, which is usually assumed to be constant, i.e.,

�JWWW
JW

= 
. If people are risk averse, then 
 should be positive.

Under certain conditions, Merton (1980) argues that the hedging component is negligible and the

conditional excess market return is proportional to its conditional variance. Since Merton (1980),

this speci�cation has been subject to dozens of empirical investigations; however, these papers have

drawn con
icting conclusions on the sign of 
. It is signi�cantly positive in French, Schwert and

Stambaugh (1987), signi�cantly negative in Campbell (1987) and time-varying in Whitelaw (1994).

The failure to reach an agreement on the risk-return relation can be attributed to two factors.

First, neither the conditional return nor the conditional variance are directly observable; certain

restrictions must be imposed to identify these two variables. Instrumental variable (IV) models
1The expected stock market return was long considered to be constant until relatively recent work documenting

the predictability of market returns (e.g., Fama and French (1989)). It is now well understood that time-varying

expected returns are consistent with rational expectations. See Campbell and Cochrane (1999) and Guo (1999a) for

recent examples of this literature.

1



and the autoregressive conditional heteroskedasticity (ARCH) model are the two most commonly

used identi�cation methods. In general, empirical results are sensitive to these restrictions. For

example, Campbell (1987) �nds that the results depend on the choice of instrumental variables.

In particular, the nominal risk-free rate is negatively related to the return and positively related

to the variance, and \these two results together give a perverse negative relationship between the

conditional mean and variance for common stock" (Campbell (1987, p.391)). As for the ARCH

model, if the conditional distribution of the return shock is changed from normal to student-t, the

signi�cant positive relation found by French, Schwert and Stambaugh (1987) disappears (see Baillie

and DeGennaro (1990)). Second, there are no theoretical restrictions on the sign of correlation

between risk and return. Backus and Gregory (1993) show that in a Lucas (1978) exchange economy,

the correlation can be positive or negative depending on the time series properties of the pricing

kernel.

This latter result suggests that the hedging component can be a signi�cant pricing factor that

has an important e�ect on the risk-return relation. If the hedging component is negatively correlated

with and much more volatile than the conditional variance, then the correlation between stock

market volatility and expected returns will be negative. In general, the risk-return relation can be

time-varying as observed by Whitelaw (1994). However, the theory still requires a positive partial

relationship between the stock market risk and return, i.e., that 
 is positive. The more relevant

empirical issue is to disentangle the risk component from the hedging component.

Scruggs (1998) obtains some promising results on the decomposition of the expected excess

market return into risk and hedging components. Assuming that the long-term government bond

return represents investment opportunities, he estimates equation (1) using a bivariate exponential

GARCH model and �nds that 
 is positive and statistically signi�cant. However, his approach

has a couple of weaknesses. In order to identify equation (1), he assumes that the conditional

correlation coeÆcient between stock returns and bond returns is constant, but Ibbotson Associates

(1997) provide evidence that it actually changes sign over time in historical data. Moreover, his

point estimate of 
 is approximately 10, which is somewhat larger than many economists consider

reasonable.
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In contrast, this paper develops a structural asset pricing model based on Merton's (1973)

ICAPM and implements estimation with instrumental variables.2 In our structural model, the

persistence of the conditional market variance and the volatility feedback e�ect are explicitly con-

sidered. Speci�cally, by modeling the market variance as an autoregressive process, we can capture

the e�ect of innovations in variance on realized returns. This allows us to explain part of the

unexpected return on a contemporaneous basis and hence improve the eÆciency of the estimation

and the identi�cation of the features of interest.

French, Schwert and Stambaugh (1987), Pindyck (1988) and Campbell and Hentschel (1992)

have all emphasized the volatility feedback e�ect.3 French, Schwert and Stambaugh (1987) �nd a

negative and statistically signi�cant relationship between the shock to volatility and the ex post

stock market return. However, the evidence for the relationship between ex ante risk and return

is inconclusive in their OLS regression. Campbell and Hentschel (1992) consider the volatility

feedback e�ect in a structural GARCH model and �nd a positive and statistically signi�cant risk-

return relation; though their point estimate of 
 is very small. Pindyck (1988) uses a model similar

to ours and his point estimate of 
 is 3.35 with a standard error 0.744 in monthly data. However,

the model restrictions are rejected by the data and his results are diÆcult to interpret.

The structural model also allows us to explicitly consider the possibility of an additional con-

temporaneous negative correlation between the stock price and its variance, i.e., the leverage e�ect

documented by Black (1976) and Christie (1982). The contemporaneous variance of the stock mar-

ket return is added to the estimation as a regressor to control for this e�ect, thereby avoiding a

potential bias in the point estimate of 
. We also attempt to control for the fact that the error

in the structural model may not be orthogonal to the contemporaneous regressors. To reduce the

potential bias, we use Campbell's (1991) method to directly control for the revised expectation of

the hedging component, the most important component of the error.

2French, Schwert and Stambaugh (1987) argue that full information maximum likelihood (FIML) estimators such

as GARCH are generally more sensitive to model misspeci�cation than instrumental variable estimators.
3The volatility feedback e�ect is �rst formalized in Poterba and Summers (1986) to question Pindyck's (1984)

�nding that changes in stock market volatility explain a large fraction of stock price movements. Poterba and Summers

(1986) derive a structural model similar to ours and argue that the volatility e�ect is exaggerated in Pindyck (1984).
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Another improvement over previous work is that we use non-overlapping monthly volatility

implied by S&P 100 index option prices as the instrumental variable for the conditional variance

Et�1�
2
M;t.

4 This implied volatility data has been found by Christensen and Prabhala (1998) to

outperform past volatility in forecasting the future volatility of the S&P 100 index, and it subsumes

the information content of past volatility in some speci�cations. Fleming (1998) documents a

similar phenomenon. Interestingly, in our dataset, implied volatility performs even better. It not

only subsumes the information content of past volatility in all speci�cations, but also subsumes the

information content of �nancial variables that forecast stock market volatility. The implied volatility

is therefore an eÆcient instrumental variable and improves the precision of our estimation.

We get several interesting results from the estimation of the structural model with implied

volatility data. First, the restrictions imposed by the structural model are not rejected by the

data. Second, the coeÆcient of relative risk aversion, 
, is positive and precisely estimated. For

example, if the conditional variance follows an AR(1) process, the point estimate of 
 is 4.01 with

a standard error of 0.51. It varies slightly between 3.06 to 4.01 for di�erent conditional variance

processes. We get similar point estimates in subsamples both prior and subsequent to the 1987

stock market crash. Third, we �nd that stock price movements are driven mostly by changes in

investment opportunities,5 not by changes in stock market volatility. The two together explain 63%

of the total variation in stock market returns, the latter explains only 14% of the variation.

One concern is that the implied volatility data only span the period from November 1983 to

May 1995 (139 observations), which includes only one recession and a potential outlier, the 1987

stock market crash. In order to check the robustness of our results and to understand the business

cycle patterns of stock market returns, we also estimate the structural model with postwar monthly

data, in which the conditional market variance is estimated with instrumental variables.

4The implied volatility data is constructed by Christensen and Prabhala (1998) and is kindly provided to us by

N. Prabhala.
5We use the risk-free rate and the dividend yield as instrumental variables for investment opportunities, as sug-

gested by Guo (1999a). The yield spread between 6-month commercial paper and 3-month Treasury bills is also

found to be a signi�cant predictor, although it is not signi�cant in the full postwar monthly sample that is discussed

below.
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Similar results are found in this longer dataset. 
 is positive and statistically signi�cant. The

point estimate is comparable to that from the implied volatility data, although with a somewhat

larger standard error due to the loss of eÆciency associated with the use of instrumental variables

for the conditional market variance. We again �nd that stock price movements are driven mostly

by changes in investment opportunities. With the longer time series, we also �nd some additional

interesting results. First, we detect a signi�cant leverage e�ect. Second, 
 is stable over time,

although it is somewhat smaller during recessions. Smaller risk aversion during recessions is consis-

tent with recent evidence of mean reversion in stock market returns. Third, the hedging component

of expected returns is strongly counter-cyclical.

The remainder of the paper is organized as follows. Section 2 presents a log-linear structural

model of stock returns. The data are discussed in Section 3, and the empirical investigation is

conducted in Section 4. Section 5 concludes the paper.

2 A Log-Linear Asset Pricing Model

In this section, we derive a structural asset pricing model based on Merton's ICAPM and Camp-

bell and Shiller's (1988) log-linearization method. The log-linear approximation provides both

tractability and accuracy.

Following Campbell and Shiller (1988), the continuously compounded market return rM;t+1 is

de�ned as

rM;t+1 = log(PM;t+1 +DM;t+1)� log(PM;t) (2)

where PM;t+1 is the stock price at the end of period t+1 and DM;t+1 is the dividend paid out during

period t+1. Throughout this paper, we use upper case to denote the level and lower case to denote

the log.

Using a �rst order Taylor expansion around the steady state of the log dividend price ratio

d� p , equation (2) can be rewritten as a �rst order di�erence equation for the stock price

rM;t+1 � k + �pM;t+1 � pM;t + (1� �)dM;t+1 (3)
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where

� =
1

1 + exp(d� p)

k = � log(�)� (1� �) log(
1

�
� 1)

� is set to be 0.997 as in Chapter 7 of Campbell, Lo and MacKinlay (1997).

Solving equation (3) forward and imposing the transversality condition limj!1 �jpM;t+j = 0,

we get the stock price as a function of future dividend 
ows and discount rates

pM;t =
k

1� �
+

1X
j=0

�j [(1� �)dM;t+1+j � rM;t+1+j ] (4)

Equation (4) is simply an accounting identity, which should also hold ex ante

pM;t =
k

1� �
+Et

1X
j=0

�j [(1� �)dM;t+1+j � rM;t+1+j ] (5)

Substituting equation (5) into equation (3), we can decompose the ex post stock return into two

parts { the expected return and the shocks to this return:

rM;t+1 �EtrM;t+1 = Et+1

1X
j=0

�j�dM;t+1+j �Et

1X
j=0

�j�dM;t+1+j (6)

�[Et+1

1X
j=1

�jrM;t+1+j �Et

1X
j=1

�jrM;t+1+j ]

where �dM;t+1+j is dividend growth.

For the excess market return eM;t+1 � rM;t+1�rf;t+1, where rf;t+1 is the nominal risk-free rate,

equation (6) can be rewritten as

eM;t+1 �EteM;t+1 = Et+1

1X
j=0

�j�dM;t+1+j �Et

1X
j=0

�j�dM;t+1+j

�[Et+1

1X
j=1

�jeM;t+1+j �Et

1X
j=1

�jeM;t+1+j ] (7)

�[Et+1

1X
j=1

�jrf;t+1+j �Et

1X
j=1

�jrf;t+1+j ]
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Combining equation (7) and a variant of Merton's ICAPM,6

EteM;t+1 = ! + 
Et�
2
M;t+1 + �Et�MF;t+1 (8)

we get

eM;t+1 = ! + 
Et�
2
M;t+1 + �Et�MF;t+1

�[Et+1

1X
j=1


�j�2M;t+1+j �Et

1X
j=1


�j�2M;t+1+j] (9)

+�d;t+1 + �f;t+1 + �F;t+1

where

�d;t+1 = Et+1

1X
j=0

�j�dM;t+1+j �Et

1X
j=0

�j�dM;t+1+j

�f;t+1 = �[Et+1

1X
j=1

�jrf;t+1+j �Et

1X
j=1

�jrf;t+1+j ]

�F;t+1 = �[Et+1

1X
j=1

��j�MF;t+1+j �Et

1X
j=1

��j�MF;t+1+j]

Poterba and Summers (1986) argue that conditional market volatility follows an AR(1) process.

However, in our dataset it is better described by an AR(2) process for samples that include the

1987 stock market crash. Consequently, we consider the AR(2) process

�2M;t+1 = �+ �1�
2
M;t + �2�

2
M;t�1 + "M;t+1 (10)

with the AR(1) process as a special case when �2 = 0.

Equation (9) and equation (10) imply

eM;t+1 = ! +

��

1� ��1 � �2�2
+




1� ��1 � �2�2
[Et�

2
M;t+1 � �Et+1�

2
M;t+2]

+

��2

1� ��1 � �2�2
[�2M;t � ��2M;t+1] (11)

+�Et�MF;t+1 + �d;t+1 + �f;t+1 + �F;t+1
6Note that a constant term ! is added in equation (8). We also use the notation �JWWW

JW
= 
 and �JWF

JW
= �. 


is the constant relative risk aversion coeÆcient. � is a function of the state variables and is not necessarily constant.
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or

eM;t+1 = ! +

�

1� ��1 � �2�2

+

[�1�

2
M;t + �2�

2
M;t�1 � (��1 + �2�2)�

2
M;t+1]

1� ��1 � �2�2
(12)

+�Et�MF;t+1 + �d;t+1 + �f;t+1 + �F;t+1

We focus on equation (11) since it allows us to fully exploit the information content in the implied

volatility data.

The are several ways to estimate the hedging component �Et�MF;t+1. Scruggs (1998) assumes

that � is constant and estimates Et�MF;t+1 with a bivariate exponential GARCH model. Campbell

(1996) uses the product of the conditional forecasting errors of market returns and the state variables

to approximate it. In this paper, we assume that the hedging component �Et�MF;t+1 is a linear

function of the state variables Xk;t, k = 1; :::K,7 or

�Et�MF;t+1 =
KX
k=1

�kXk;t (13)

Equation (13) is an unconstrained version of Campbell's (1996) method. As we mentioned earlier,

the IV model is not as sensitive to misspeci�cation as the GARCH model.

Another advantage of equation (13) is that it allows us to calculate the revision term �F;t+1

directly as in Campbell and Shiller (1988), Campbell (1991) and Campbell and Ammer (1993).

Since �d;t+1+�f;t+1+�F;t+1 might be correlated with the contemporaneous regressors, least squares

estimators of equation (11) could be biased if we treat the sum �d;t+1+�f;t+1+�F;t+1 as the regression

error. Further identi�cation of �F;t+1 will greatly reduce this potential bias since �F;t+1 is the most

important component of the sum �d;t+1 + �f;t+1 + �F;t+1.
8

7Here, we assume that the state variables do not contain the same information as the conditional market variance

in forecasting future market returns. As we will see later, the instrumental variables we choose satisfy this assumption.
8Shiller (1981) challenges the traditional view that stock return innovations come mostly from dividend shocks by

showing that stock prices move too much to be justi�ed by subsequent changes in dividends. His paper initiated a

debate on why stock market volatility is so high. Recent research suggests that \excess" stock market volatility is

due to the high persistence of expected stock market returns. For example, Campbell and Ammer (1993) �nd that

the revision of expected returns accounts for more than 86% of the innovations in stock market returns in postwar

monthly data. We �nd similar results in this paper.
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Following Campbell and Shiller (1988), among others, we assume that the excess market return

eM;t+1 and state variables Xk;t+1, k = 1; :::K follow a �rst-order VAR process:

2
64 eM;t+1

Xt+1

3
75 = A

2
64 eM;t

Xt

3
75+ �t+1 (14)

where Xt+1 is a K-by-1 vector of the state variables and A is the companion matrix of the VAR. It

is straightforward to show that

�F;t+1 = �[Et+1

1X
j=1

(��)j�MF;t+1+j �Et

1X
j=1

(��)j�MF;t+1+j] (15)

= e10�A(I � �A)�1�t+1

where e1 = [1; 0:::0] and I is an identity matrix.

Black (1976) and Christie (1982) argue for a leverage e�ect, i.e., a negative contemporaneous

correlation between volatility and stock price that is independent of the volatility feedback e�ect.

Nelson (1991) and Glosten, Jagannathan and Runkle (1993) emphasize the importance of the

leverage e�ect in the investigation of the risk-return relation and they all �nd a signi�cant leverage

e�ect in ARCH models as well. Since the contemporaneous market variance �2M;t+1 enters equation

(12) with a negative coeÆcient,9 volatility feedback has the same e�ect on stock price as leverage.

Therefore, the estimation of equation (11) is biased if we ignore the leverage e�ect. The structural

model allows us to test and control for the leverage e�ect in a straightforward way. Since the

leverage e�ect implies only a contemporaneous relation between stock price and volatility, we add

an additional contemporaneous market variance term as a regressor in equation (11), without any

constraint on its coeÆcient. The coeÆcient should be negative if there is a leverage e�ect.10

After substituting equations (13) and (15) into equation (11) and taking the leverage e�ect into

9In our data, �1 is positive and larger than the absolute value of �2. Given that � is positive and slightly less than

one, �(��1+�
2�2)

1���1��2�2
in equation (12) should be negative.

10Another way to test the volatility feedback e�ect is via the regression log(
�M;t

�M;t�1
) = �0 +�1rM;t+ "t. If there is

no volatility feedback e�ect, �1 should be greater than minus one. French, Schwert and Stambaugh (1987) �nd that

�1 is statistically signi�cantly less than minus one and argue that the feedback e�ect is important. We �nd similar

results.
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account, we obtain the equation that is estimated in this paper:

eM;t+1 = ! +

��

1� ��1 � �2�2
+




1� ��1 � �2�2
[Et�

2
M;t+1 � �Et+1�

2
M;t+2]

+

��2

1� ��1 � �2�2
[�2M;t � ��2M;t+1] (16)

+
KX
k=1

�kXk;t + �e10�A(I � �A)�1�t+1 + Æ�2M;t+1

+�d;t+1 + �f;t+1

Note, we use the de-meaned market variance �2M;t+1 instead of �2M;t+1 itself so that the �tted

values b
Et�
2
M;t+1 and

PK
k=1

c�kXk;t can be interpreted as the risk component and the hedging

component, respectively. In other words, the mean of the conditional expected market return

b! + b
Et�
2
M;t+1 +

PK
k=1

c�kXk;t is set to the unconditional mean of the market return.

3 Data Description

The structural model is estimated with two sets of data. The �rst dataset utilizes the volatility

implied by S&P 100 index (OEX) option prices as an instrumental variable for expected market

variance. The second dataset adopts the commonly used �nancial variables to estimate the expected

market volatility.

3.1 Implied Volatility Data

3.1.1 Data Construction

The implied volatility data IV OLt used in this paper is constructed by Christensen and Prabhala

(1998). It is non-overlapping monthly data spanning the period from November 1983 to May 1995,

with a total of 139 observations.

The monthly excess market return and variance are constructed from daily excess market re-

turns. The daily market return data are daily value-weighted market returns (VWRET) from

CRSP. The daily risk-free rate data is not easily available. Following Nelson (1991) among others,

we assume that the risk-free rate is constant within each month and calculate the daily risk-free

10



rate by dividing the monthly risk-free rate by the number of trading days in the month. The daily

excess market return is then calculated by subtracting the daily risk-free rate from the daily mar-

ket return. The monthly risk-free rate data are the short-term government bill rates taken from

Ibbotson Associates (1997).

As in Christensen and Prabhala (1998), the monthly market variance is de�ned as

�2M;t =
�tX
k=1

(et;k � et)
2 (17)

where �t is the number of days to expiration of the OEX option at month t, et;k is the daily excess

market return and et =
1
�t

P�t
k=1 et;k. The monthly excess market return is the sum of the daily

excess market returns,

et =
�tX
k=1

et;k (18)

Both realized and implied variances of S&P 100 index returns are larger than the realized market

variance �2M;t.
11 This is not surprising since the S&P 100 is not a well-diversi�ed portfolio. We

scale IV OLt by regressing �2M;t on a constant and IV OLt and use the �tted value IV OLM;t as

the expected market variance. The point estimate of slope is 0.46 with a standard error of 0.05.

Figure 1 shows a scatter plot of market variance �2M;t against implied variance IV OLt, and the

straight line is the �tted value from the regression. The stock market crash for October 1987 is

an outlier. To see if this unusual event has any signi�cant e�ect, we exclude the observation of

October 1987 from the regression. The point estimate of the slope is 0.62 with a standard error

0.09. The corresponding scatter plot is shown in Figure 2. There is no signi�cant di�erence between

the implications of the two regressions.

The hedging component is estimated using three instrumental variables { the dividend yield

(FSDXP), the stochastically detrended risk-free rate (RREL) and the spread between yields on

6-month commercial paper and 3-month Treasury bills (CP). RREL is de�ned as follows

RRELt = rft �
1

12

12X
k=1

rft�k (19)

11In our sample, the means of monthly realized and implied variance of the S&P 100 index return are 22 and 20

basis points, respectively. The realized market variance has a mean of 13 basis points.
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FSDXP and RREL are the variables most often used to forecast stock market return in literatures,

e.g., Campbell, Lo and MacKinlay (1997).12 We also �nd that CP has some predictive power in our

sample. The risk-free rate is taken from Ibbotson Associates (1997). The dividend yield, 6-month

commercial paper yield and 3-month Treasury bill yield are all taken from the Basic Economics

database.

3.1.2 The EÆciency of Implied Volatility

Christensen and Prabhala (1998) �nd that implied volatility IV OLt outperforms past volatility in

forecasting the future volatility of the S&P 100 index return. We �nd that it performs even better

as a forecast for the volatility of the value-weighted index.

It is well known that we can predict stock market volatility with �nancial variables, such as

the nominal risk-free rate in Campbell (1987) and the yield spread between 6-month commercial

paper and 3-month Treasury bills (CP) in Whitelaw (1994). Here we only consider the following

variables used by Whitelaw (1994), which are all taken from the Basic Economics database.

1. DEF { the yield spread between Baa-rated and Aaa-rated bonds

2. CP { the yield spread between six-month commercial paper and three-month Treasury bills

3. FYGT1 { the one-year Treasury bill yield

4. FSDXP { the dividend yield

We assume that market variance �2M;t is a linear function of its own lags, the instrumental

variables Xk listed above and the scaled implied volatility IV OLM;t

�2M;t = c+
4X

k=1

akXk;t�1 + b � �2M;t�1 + d � IV OLM;t + �t (20)

If the implied volatility is eÆcient, all other variables should enter equation (20) insigni�cantly.

Assuming that �t is independently distributed, we estimate equation (20) with OLS and White's

12In a general equilibrium asset pricing model, Guo (1999a) shows that the dividend yield and risk-free rate predict

stock market returns.
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(1980) heteroskedasticity consistent standard errors are calculated. The estimation results are

reported in Table 1.

In model 1, we include only the four instrumental variables as regressors. DEF and FSDXP are

statistically signi�cant, while FYGT1 and CP are not. The adjusted R2 is 18%, indicating that the

instrumental variables have signi�cant predictive power for stock market variance. The addition of

lagged stock market variance does not qualitatively change these results. While the past variance

enters equation (20) signi�cantly in model 2, DEF and FSDXP remain signi�cant.

In model 3, we add the scaled implied volatility IV OLM;t to the forecasting equation and �nd

that it is highly signi�cant. However, now neither past variance nor the instrumental variables are

signi�cant. To check the robustness of these results, we include only past variance and implied

volatility in model 4 and the past variance is again insigni�cant. This is slightly surprising since

implied volatility does not always subsume the information content of past volatility in Christensen

and Prabhala (1998). For example, they �nd that past volatility has signi�cant predictive power

in the following speci�cation:

log(�t) = c+ a � log(�t�1) + b � log(IV OLt) + �t (21)

We estimate this alternative speci�cation (model 5) and the past variance still remains insignif-

icant at the 5% level. Therefore, neither past volatility nor the instrumental variables provide

additional information over the implied volatility in forecasting the stock market variance. The

implied volatility IV OLM;t used in this paper is an eÆcient instrumental variable for future stock

market variance and hence it should improve the estimation eÆciency of the structural model.

3.2 Monthly Data

The structural model is also estimated with postwar monthly data, spanning the period from May

1953 to December 1998. The monthly stock market variance �2M;t is again constructed from daily

return data

�2M;t =
�tX
k=1

(rt;k � rt)
2 (22)
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where rt;k is the market return on the kth day of month t, �t is the number of trading days in

month t and rt =
1
�t

P�t
k=1 rt;k. We use daily market return data constructed by Schwert (1990)

before July 2, 1962 and the daily value-weighted market return (VWRET) from CRSP thereafter.

We assume that the conditional market variance is a linear function of the state variables Xk;t�1

and its own lags

�2M;t = c+
4X

k=1

akXk;t�1 +
IX
i=1

bi�
2
M;t�i + �t (23)

Using DEF, CP, FSDXP and RREL as instrumental variables for Xk;t�1 and including only sta-

tistically signi�cant lags, we estimate equation (23) with OLS and use the �tted value d�2M;t as the

expected market variance.

The estimation results over three subsamples { prior to the 1987 crash, subsequent to the 1987

crash, and the full sample { are reported in Table 2. The stock market crash of October 1987 has

a confounding e�ect on stock market variance. While only one-period lagged market variance is

statistically signi�cant in both the pre- and post-1987 stock market crash subsamples, two-period

lagged market variance is also statistically signi�cant in the full sample. Moreover, the instrumental

variables also have signi�cant predictive power.

The monthly value-weighted market return (VWRET) and the risk-free rate from CRSP are

used to construct the monthly excess market return. We also use RREL and FSDXP as instrumental

variables for the hedging component, while CP is dropped since it does not predict stock market

returns.

4 Empirical Results

In this section, we estimate the structural model with both implied volatility data and postwar

monthly data. A positive and signi�cant risk-return relation is detected in both datasets.

4.1 Econometric Strategy

Equation (16) is the structural model we estimate in this paper; however, 
 and �1 cannot be

separately identi�ed by equation (16) alone. As an alternative, we estimate the parameters �, �1
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and �2 separately using the variance equation and substitute their point estimates b�, c�1 and c�2 into
equation (16) as constants.13 After substitutions, the structural model becomes a linear function

of the underlying parameters to be estimated:

eM;t+1 = ! +

�b�

1� �c�1 � �2c�2 +



1� �c�1 � �2c�2 [Et�
2
M;t+1 � �Et+1�

2
M;t+2]

+

�c�2

1� �c�1 � �2c�2 [�
2
M;t � ��2M;t+1] (24)

+
KX
k=1

�kXk;t + �e10�A(I � �A)�1�t+1 + Æ�2M;t+1

+�d;t+1 + �f;t+1

Assuming that �d;t+1+ �f;t+1 is orthogonal to the other right hand side variables14 and is indepen-

dently distributed, equation (24) can be estimated with OLS. Given the strong ARCH pattern in

the monthly market return data, the conventional OLS standard errors are inappropriate. Conse-

quently, we calculate White's (1980) heteroskedasticity consistent standard errors instead.

The variance equation (10) implies that the expected variance follows an ARMA(2,1) process

Et�
2
M;t+1 = �+ �1Et�1�

2
M;t + �2Et�2�

2
M;t�1 + �1"M;t + �2"M;t�1 (25)

Given that implied volatility is an eÆcient predictor of future market variance as shown in Section

3, we use equation (25) instead of equation (10) to estimate the conditional variance process.

If �2 is zero, equation (25) can be estimated with OLS. Otherwise we �rst estimate equation

(10) and then substitute the �tted value of the lagged error d"M;t�1 back into equation (25) and

13Note that since �2M;t+1 enters the right hand side of equation (16), the error term �d;t+1 + �f;t+1 should be

orthogonal to the error term "M;t+1 in the variance equation (10). Thus there is no eÆciency gain in estimating the

two equations together. In fact, we get almost identical results from the joint estimation.
14By de�nition, revisions to the dividend and the real interest rate �d;t+1+�f;t+1 are orthogonal to the instrumental

variables Xk;t; k = 1; :::K , �M;t and Et�M;t+1. They may be correlated with �M;t+1 and Et+1�M;t+2; however, these

correlations are likely to be small since most market return innovations are due to revisions in expected returns,

which are controlled for in equation (24). The revision to the hedging component e10�A(I � �A)�1�t+1 is not highly

correlated with �d;t+1 + �f;t+1 either. Therefore, the bias in the estimation of equation (24), if there is any, should

be small.
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estimate either an unconstrained version

Et�
2
M;t+1 = �+ �1Et�1�

2
M;t + �2Et�2�

2
M;t�1 + �3

^

"M;t�1 +"
0

M;t (26)

or a constrained version

Et�
2
M;t+1 = �+ �1Et�1�

2
M;t + �2(Et�2�

2
M;t�1+

^

"M;t�1) + "00M;t (27)

For the speci�cation test, we also estimate an unrestricted version of the structural model

eM;t+1 = a0 + a1Et�
2
M;t+1 + a2Et+1�

2
M;t+2 + a3�

2
M;t + a4�

2
M;t+1

+
KX
k=1

�kXk;t + �e10�A(I � �A)�1�t+1 (28)

+�d;t+1 + �f;t+1

We again assume that �d;t+1 + �f;t+1 is orthogonal to the other right hand side variables and is

independently distributed. Equation (28) is then estimated with OLS.

The structural model imposes the following restrictions:

a1 =



1� �c�1 � �2c�2
a2 = �


�

1� �c�1 � �2c�2
a3 =


�c�2
1� �c�1 � �2c�2

a4 = �


�2c�2
1� �c�1 � �2c�2

If the structural model is correctly speci�ed, then a1 should be positive and a2 should be negative.15

Moreover, the two coeÆcients should have almost identical absolute values. Similarly, a3 and a4

should have opposite signs and almost the same absolute values. We use the F-statistic F (K;N) =

(R2
U�R

2
R)=K

R2
U
=N

to test the joint signi�cance of the restrictions imposed by the structural model, where

R2
U and R2

R are the R2s of equations (28) and (24), respectively, K is number of restrictions imposed

by the structural model, and N is the degrees of freedom of equation (28).
15Since � is about 0.997 in the monthly data, a1 (a2) is positive (negative) as long as the conditional market

variance is stationary, which cannot be rejected with either the implied volatility data or the postwar monthly data.
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4.2 Implied Volatility Data

The scaled implied volatility IV OLM;t is used as an instrumental variable for the expected market

variance Et�
2
M;t+1 in the estimation of equations (24), (26) or (27) and (28). To summarize the

results, the restrictions imposed by the structural model are not rejected by the data and the

volatility feedback e�ect greatly increases the power to detect a positive risk-return relation. The

relative risk aversion coeÆcient is precisely estimated because of the eÆciency of implied volatility.

The negative risk-return relation found in the early literature is therefore attributed to the ineÆcient

models and instrumental variables that they use.

4.2.1 Unrestricted model

To illustrate how well the restrictions imposed by the structural model square with data, we �rst

present the empirical results for the unrestricted model, which are reported in Table 3.

In case 1, we adopt the conventional speci�cation used in the risk-return literature by regressing

the stock market return on the expected market variance. The point estimate of the slope a1 is 4.03

with a standard error of 1.81. If the hedging component is not correlated with the risk component

and there is no leverage e�ect, a1 is an unbiased estimator of relative risk aversion, 
.16 The

conventional speci�cation thus provides evidence that risk is positively priced. Our results are in

sharp contrast to previous instrumental variable estimations, e.g., Campbell (1987) and Whitelaw

(1994), which uniformly �nd a negative risk-return relation. The di�erence may be due to the fact

that implied volatility IV OLM;t is a much more eÆcient instrumental variable or to the di�erence

in the sample periods.

We focus only on stock market variance in cases 2 and 3. If the conditional market variance

follows an AR(1) process, only current and one-period ahead expected market variances enter the

structural model. This is case 2 of Table 3. The slope parameters a1 and a2 are both statistically

signi�cant and have the expected signs. The R2 is 10%. In case 3, we include both expected and

realized market variances as required under the assumption of an AR(2) process for conditional

market variance. All the slope parameters have the expected signs and all are statistically signi�cant

16This is the exact regression that Merton (1980) proposes.
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except a3. The R2 is about 14%. Volatility changes explain only a small fraction of stock price

movements. In a similar study, Pindyck (1984) regresses the excess market return on the change in

the market variance and gets an R2 of 48.8%. However, Poterba and Summers (1986) argue that

the volatility e�ect is overstated in Pindyck (1984) because of the method that he uses to construct

the conditional market variance. Our results support the conclusions of Poterba and Summers

(1986).

Case 4 is the standard stock market return predictability regression. We use three forecasting

variables, namely CP, RREL and FSDXP. RREL is statistically signi�cant and has the same sign

found in previous studies. However, FSDXP is not statistically signi�cant, possibly because it

captures only the long-horizon variations in expected market returns,17 and our data is monthly,

spanning less than 12 years. CP is positive and statistically signi�cant. The predictive power of

CP might be attributed to our particular sample.18 The R2 is about 6%, indicating moderate

predictability of stock market returns. Note that the R2 in case 4 is six times as large as that in

case 1. Therefore, the hedging component explains much more of the variation in expected market

returns than the risk component.

In equation (16) or (24), the decomposition of expected market returns into risk and hedging

components is biased if the instrumental variables for the hedging component contain the same

information as the conditional market variance. To explore this issue, we regress stock market

returns on both the expected market variance and the instrumental variables for the hedging

component in case 5. All point estimates are close to their counterparts in case 2 and case 4,

in which the two components are estimated separately. Moreover, the R2 in case 5 is about 17%,

which is slightly larger that the sum of the R2s of case 2 and case 4. We also get similar results

if we add the realized market variances, as in case 6. Therefore, the instrumental variables for the

hedging component do not contain the same information as the conditional market variance and

17For example, Campbell, Lo and MacKinlay (1997) �nd that the dividend yield has more predictive power over

longer horizons, while the risk-free rate only forecasts short-run stock market returns. See Guo (1999a) for a theoretical

explanation of this result.
18CP has not been found to forecast stock market return in earlier studies, a result we duplicate in the postwar

monthly data.
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our decomposition is not biased.

The structural model requires that the absolute values of a1 and a2 be approximately equal to

each other. However, the two are somewhat di�erent in cases 2, 3, 5 and 6. One possible reason is

that the error term �d;t+1 + �f;t+1 + �F;t+1 is not orthogonal to the right hand side variables. As a

remedy, we control for �F;t+1 by adding e1
0�A(I ��A)�1�t+1 as a regressor in case 7. The absolute

values of a1 and a2 are now 6.65 and 6.93 respectively. CP and RREL also remain statistically

signi�cant. The R2 of case 7 is about 64%, which is about �ve times as large as that of case 3.

Therefore, the hedging component explains a much larger fraction of stock price movements than

does the risk component. This should not be a surprise since expected returns are driven mostly

by the hedging component, as mentioned earlier. The coeÆcients on both one-period lagged and

contemporaneous market variance, namely a3 and a4, are small and statistically insigni�cant. This

suggests that �2 is close to zero, or that conditional market variance follows an AR(1) process.19

4.2.2 Structural Model

The estimation results for the unrestricted model suggest an AR(1) process for the conditional

market variance. For the sake of robustness, we consider both AR(1) and AR(2) processes in the

estimation of the structural model.

Table 4a reports estimation results for the structural model without controlling for �F;t+1, i.e.,

e10�A(I � �A)�1�t+1 is excluded in equation (24). We consider four cases. Conditional market

variance is assumed to follow an AR(1) process in case 1 and to follow an AR(2) process in the

other three cases. In case 2, we ignore the moving average term "M;t�1 in equation (25). In case 3

and case 4, equations (26) and (27) are estimated, respectively. The variance process is reported

in the upper panel of Table 4a. The conditional variance is not persistent in any of the cases,

possibly because of the short-lived 1987 stock market crash. In cases 2, 3 and 4, three alternative

identi�cation schemes generate similar point estimates for the AR(2) process of the conditional

19Christensen and Prabhala (1998) �nd that implied volatility is best described by an ARMA(1,1) process according

to the Box-Jenkins test, although an AR(1) also �ts the data well. Given that the nonsynchronous sampling used by

Christensen and Prabhala (1998) may induce an arti�cial moving average component in the implied volatility, it is

possible that the conditional market variance indeed follows an AR(1) process.
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market variance. Moreover, the restriction imposed by equation (25) is not rejected by the F-test.

The results for the structural model are reported in lower panel of Table 4a. Four speci�cations

produce similar results: 
 is precisely estimated with point estimates ranging from 4.8 to 6.3; CP

and RREL are statistically signi�cant; the leverage e�ect is negative and signi�cant; and the F-test

cannot reject the restrictions imposed by the structural model, indicating that our model is well

speci�ed. However, the AR(1) case �ts the data best: the F-statistic is smaller and the R2 is

higher in the AR(1) case than in the AR(2) cases. This is consistent with earlier results from the

unrestricted model.

The results for the structural model controlling for �F;t+1 are reported in the lower panel of Table

4b.20 Four speci�cations again produce similar results: 
 is precisely estimated with point estimates

ranging from 3.06 to 4.01; the revision of the hedging component �F;t+1 is highly signi�cant; and

the F-test cannot reject the restriction imposed by the structural model. There are some di�erences

between Table 4a and Table 4b. The leverage e�ect is now positive in all cases. It is also statistically

signi�cant except in the AR(1) case. The instrumental variables CP and RREL are only signi�cant

in the AR(1) case, although they are marginally signi�cant in all other cases. Given that the AR(1)

process �ts the data best, the leverage e�ect should be interpreted as inconclusive.

Market variance jumps during the 1987 stock market crash and decreases to the pre-crash level

very quickly. To check if this unusual event has any signi�cant e�ect on our results, we estimate

equation (24) with both pre-crash and post-crash subsamples, in which the months of crash are

excluded. The results are reported in Table 4c. The upper panel reports results for the market

variance process. For both subsamples, the market variance follows an AR(1) process and is more

persistent in the post-crash sample than in the pre-crash sample. The lower panel reports the

results for the structural model, which is estimated both with and without controlling for �F;t+1.

For the post-crash sample, the point estimates of 
 are close to those reported in Tables 4a and

4b, although with much larger standard errors due to the small sample size. The F-test does not

reject the restrictions imposed by the structural model in either speci�cation. For the pre-crash

sample, the point estimate of 
 is -3.81 if we do not control for �F;t+1, however, the F-test rejects

20The upper panel reports the same variance process as in Table 4a.
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this speci�cation strongly. It is 5.14 if we control for �F;t+1 and the F-test does not reject the

speci�cation. Given that there is no signi�cant di�erence between the subsamples and the full

sample, we can conclude that the major results of Tables 4a and 4b are not caused by the 1987

stock market crash. Interestingly, the leverage e�ect is negative and large, although not statistically

signi�cant, in all cases in Table 4c. Therefore, the positive leverage e�ect found in Table 4b is likely

caused by the 1987 stock market crash.

Using the point estimates of case 4 in Table 4b, we decompose the expected excess return EeM;t

into the risk component b
Et�
2
M;t and the hedging component

PK
k=1

c�kXk;t�1. The three series are

plotted in Figures 3-5, respectively, with shaded areas indicating economic contractions. All three

variables jump dramatically during the 1987 stock market crash and decrease to their pre-crash

levels very quickly. They also rise during the period July 1990-March 1991, the only recession in

our sample. It is clear that the hedging component is more volatile than the risk component.

Campbell and Cochrane (1999) argue that relative risk aversion is time-varying and is higher

during business downturns. To investigate this, we add a recession dummy variable for 
 { it takes

the value 1 during the July 1990-March 1991 contraction and zero otherwise. The coeÆcient on

the recession dummy is not statistically signi�cant. This is not a surprise since there is only one

recession in our sample. We will investigate this issue with a longer time series later in the paper.

In conclusion, we �nd a positive and signi�cant risk-return relation. The relative risk aversion is

precisely estimated and its point estimate falls in a reasonable range.21 Due to the small sample and

the possible in
uence of the 1987 stock market crash, evidence on the leverage e�ect is inconclusive.

We cannot draw any conclusions about the time-varying nature of relative risk aversion either

because there is only one recession in our sample. To address these problems, we also estimate the

structural model with postwar monthly data. The gain is the increase in sample size; the potential

loss is that we have to estimate the conditional market variance with instrumental variables, which

are not as eÆcient as the implied volatility data.

21Mehra and Prescott (1985) argue that relative risk aversion should be less than 10. Many others believe that it

is less than 5. See Kocherlakota (1996) for a discussion of reasonable ranges for the relative risk aversion coeÆcient.
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4.3 Post-War Monthly Data

For the postwar monthly data, we regress the realized market variance on its own lags and in-

strumental variables and then use the �tted value as the expected market variance Et�
2
M;t+1. The

results of the variance regression are reported in Table 2. Conditional market variance follows an

AR(1) process in both the pre- and post-1987 stock market crash subsamples and follows an AR(2)

process in the whole sample.

We only consider the AR(2) process in the estimation of the structural model if the whole sample

is used. As before, we estimate the conditional market variance process (equation (25)) in three

ways. In case 1, we assume away the moving average term �2"M;t�1. Case 2 and case 3 correspond

to equation (26) and equation (27), respectively. The estimation results are reported in the upper

panels of Table 5a and Table 5b. The point estimates are similar in case 1 and case 3 and are quite

di�erent in case 2. The restriction that �2 = �3 that is imposed in case 2 is rejected by the F-test.

The Durbin-Watson statistic is also small in case 2. Consequently, the conditional variance process

may be better described by the point estimates of case 1 or case 3 than of case 2. Intuitively, since

the point estimate of �2 is small in cases 1 and 3, ignoring the moving average term �2"M;t�1 should

have little e�ect on the estimation results. In fact the Durbin-Watson statistic of case 1 is 1.96,

indicating that there is no signi�cant serial correlation in the error. On the other hand, d"M;t�1

may be a bad instrumental variable since there might be potentially large measurement errors in

the realized market variance. Inclusion of d"M;t�1 in case 2 and case 3 actually introduces serial

correlation in the error, since the Durbin-Watson statistic are smaller in both cases.

The lower panel of Table 5a reports the estimation results for the structural model with no

control for �F;t+1. The estimation is relatively sensitive to how we identify the market variance

process, i.e., equation (25). 
 is signi�cantly positive in both case 1 and case 3, however it is

insigni�cant in case 2. This is not a surprise since the market variance process is not properly

estimated in case 2, as shown earlier. Therefore, we focus only on case 1 and case 3. The point

estimates of 
 are somewhat smaller than those in Table 4a. The leverage e�ect is negative and

signi�cant in both cases. The restrictions imposed by the structural model are not rejected by the

F-test only in case 1.
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The lower panel of Table 5b reports the estimation results for the structural model controlling

for �F;t+1. The relative risk aversion 
 is again positive and signi�cant in both cases 1 and 3. Its

point estimates are somewhat smaller than those of Table 4b. The leverage e�ect is negative and

signi�cant too. The restrictions imposed by the structural model are not rejected by F-test in either

case 1 or case 3.

We also estimate the structural model with a recession dummy for 
. The results are reported

in Table 5c. We use the pre-1987 stock market crash sample as well as the whole postwar sample.

The upper panel is the market variance process. An AR(1) process is estimated for the pre-1987

stock market crash sample. For the whole sample, we estimate an AR(2) process with equation

(27). The structural model is reported in the lower panel. We consider two cases for each sample:

with and without controlling for �F;t+1. The relative risk aversion coeÆcient 
 is positive and

signi�cant in all cases. Its point estimates are comparable to those we get with implied volatility

data. Interestingly, the recession dummy for 
 is negative in all cases in Table 5c, although it

is signi�cant only in the pre-1987 stock market crash sample when controlling for �F;t+1. Given

the small magnitude of the recession dummy, the relative risk aversion 
 seems relatively stable

over time. The negative recession dummy should not necessarily be interpreted as indicating that

shareholders are less risk averse during recessions. Alternatively, the recession dummy may capture

some hedging component that is not captured by the instrumental variables.22 Intuitively, investors

require lower returns if the capital loss during recessions is temporary than if it is permanent.

Using the point estimates of case 4 in Table 5c, we decompose the expected excess return EeM;t

into the risk component 
Et�
2
M;t and the hedging component23

PK
k=1 �kXk;t�1. We plot these

three series in Figures 6-8, respectively, with shaded areas indicating business contractions. All

three variables, especially the expected excess return and the hedging component, are counter-

cyclical. The hedging component is much more volatile than the risk component, and changes in

expected excess returns are driven mostly by the hedging component.

22In the calibration of a dynamic asset pricing model, Guo (1999a) shows that although the price-dividend ratio

and the term premium are correlated with expected stock returns, they are not as eÆcient as expected stock returns

in predicting future stock returns.

23Note that we include the recession dummy for 
 in the hedging component.
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In conclusion, we also �nd a positive relation between risk and return in the postwar monthly

data. The point estimate of relative risk aversion is close to that found using implied volatility

data. Expected returns, conditional volatility and the hedging component are all counter-cyclical.

The risk aversion coeÆcient is stable over time, although it is somewhat smaller during recessions.

5 Conclusion

This paper estimates a variant of Merton's (1973) intertemporal capital asset pricing model, and

we �nd a positive relationship between stock market risk and return. Relative risk aversion is

moderate and stable over time; therefore, the power utility function describes the data fairly well.

The con
icting results found in previous studies are probably due to the fact that they do not

distinguish the risk component from the hedging component. Such a decomposition also helps us

to better understand stock market returns as well as their relationship to the macro economy.

Although stock market volatility is positively priced, it only explains a small fraction of stock

price movements. Most stock price movements are driven by changes in investment opportunities.

Surprisingly, the importance of investment opportunities has long been ignored in academic research

and existing economic theories cannot explain why they move so dramatically and the macroeco-

nomic forces behind them. Some recent research tries to �ll this gap. For example, Campbell and

Cochrane (1999) address changing investment opportunities in a habit formation model. In their

model, when consumption approaches the habit level, the agent becomes extremely risk averse and

demands a large expected return. Guo (1999a) uses an in�nite horizon heterogeneous agent model

in which only one type of agent holds stocks. If there are borrowing constraints and idiosyncratic

labor income shocks, shareholders require a large equity premium when their borrowing constraints

are close to binding. The investment opportunities are therefore determined by shareholders' liquid-

ity conditions.24 In contrast, Whitelaw (1999) generates large changes in investment opportunities

by modeling the underlying economy as a two regime process. Because regimes are persistent,

regime shifts represent large movements in investment opportunities with corresponding changes

24Aiyagari and Gertler (1998) and Allen and Gale (1994) emphasize the liquidity e�ect on stock market volatility.
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in required returns.

In this paper, we also �nd that the hedging component is strongly counter-cyclical. Although it

is well known that stock market returns forecasts future aggregate output, the connection between

the two has not been much studied. Further research in this direction should help us better

understand business cycles.

Finally, the focus of this paper is on understanding risk and expected returns at the market level

in a time series context; however, a signi�cant piece of the empirical asset pricing literature focuses

on the cross-section of expected returns across individual securities or portfolios. Interestingly, the

importance of hedging changes in the investment opportunity set at the aggregate level is also likely

to have strong implications in the cross-section. In particular, if volatility is not the primary source

of priced risk at the market level, then the dynamic CAPM will not hold, and market betas will

not be the correct proxies for expected returns in the cross-section. Clearly, this issue warrants

further investigation from both an empirical and theoretical standpoint.
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Table 1: The EÆciency of Implied Volatility

Variable Model 1 Model 2 Model 3 Model 4 Model 5

DEF .24E-02 .15E-02 .73E-03

(.68E-03) (.68E-03) (.61E-03)

CP .12E-02 .10E-03 .12E-03

(.89E-03) (.49E-03) (.47E-03)

FSDXP -.16E-02 -.13E-02 -.65E-03

( .71E-03) (.65E-03) (.57E-03)

FYGT1 .17E-03 .22E-03 .80E-04

(.15E-03) (.13E-03) (.12E-03)

�2M;t�1 .50 .33 .34 .16

(.18) (.21) (.23) (.91E-01)

ivolM;t .62 .70 .84

(.13) (.13) (.16)

R2 .18 .37 .45 .45 .35

DW 1.15 2.17 2.38 2.40 2.15

In models 1-4, we estimate equation (20). In model 5, we estimate equation (21).

The sample covers the period from November 1983 to May 1995 with a total of

139 observations. To save space, the intercept is not reported. Heteroskedasticity

consistent standard errors (White (1980)) are reported in parentheses. Variables

that are di�erent from zero at the 5% signi�cance level are in bold.
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Table 2: Volatility Predictability Regressions

Subperiod

Variable 1953:5-1987:8 1988:6-1998:12 1953:6-1998:12

DEF .25E-03 .18E-02 .71E-03

(.10E-03) (.79E-03) (.39E-03)

CP .66E-03 .21E-03 .11E-02

(.16E-03) (.69E-03) (.36E-03)

FSDXP -.42E-05 -.80E-03 -.31E-03

( .50E-04) (.28E-03) (.20E-03)

RREL .90E-01 -.44E-01 .20

(.50E-01) (.21) (.16)

�2M;t�1 .38 .34 .12

(.67E-01) (.14) (.57E-01)

�2M;t�2 .07

(.26E-01)

R2 .32 .28 .09

DW 2.08 2.04 2.00

Equation (23) is estimated for various subsamples. To save space, the intercept

term is not reported. Heteroskedasticity consistent standard errors (White (1980))

are reported in the parentheses. Variables that are di�erent from zero at the 5%

signi�cance level are in bold.
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Table 3: Unrestricted Model: The Implied Volatility Data

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

a0 .25E-02 .12E-01 .93E-02 -.84E-02 -.11E-02 -.30E-02 .12E-01

(.36E-02) (.39E-02) (.42E-02) (.18E-01) (.16E-01) (.16E-01) (.10E-01)

a1 4.03 8.88 11.08 6.53 12.60 6.65

(1.81) (1.84) (2.67) (1.64) (2.60) (1.98)

a2 -12.02 -9.09 -13.41 -9.32 -6.93

(2.29) (2.72) (1.71) (2.42) (1.59)

a3 3.39 -1.38 -.43

(2.16) (2.44) (2.04)

a4 -6.38 -7.27 2.64

(-3.07) (2.94) (2.43)

CP .26E-01 .30E-01 .39E-01 .18E-01

(.93E-02) (.98E-02) (.12E-01) (.80E-02)

RREL -7.53 -8.26 -11.74 -6.16

(3.76) (3.74) (4.29) (3.01)

FSDXP -.97E-04 -.25E-03 -.20E-01 -.51E-02

(.93E-02) (.45E-02) (.47E-02) (.32E-02)

� -.53

(.50E-01)

R2 .01 .10 .14 .06 .17 .22 .64

DW 2.04 2.10 2.16 2.15 2.20 2.24 1.74

log-likelihood 267.70 274.10 277.09 270.93 279.38 283.96 336.99

We estimate the unrestricted structural model in equation (28) with the implied

volatility data. Heteroskedasticity consistent standard errors (White (1980)) are

reported in the parentheses. Variables that are di�erent from zero at the 5% signif-

icance level are in bold.
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Table 4: Structural Model: Implied Volatility Data

Panel A: No Control for �F;t+1

Parameter Case 1 Case 2 Case 3 Case 4

Equation (25)

� .80E-03 .67E-03 .77E-03 .84E-03

(.13E-03) (.14E-03) (.12E-03) (.15E-03)

�1 .41 .33 .23 .24

(.78E-01) (.85E-01) (.85E-01) (.86E-01)

�2 .18 .19 .13

(.85E-01) (.46E-01) (.82E-01)

�3 .23

(.62E-01)

R2 .16 .19 .26 .27

DW 2.14 2.03 2.03 2.08

Equation (24)

! .18E-01 -.15E-01 -.16E-01 -.17E-01

(.16E-01) (-.16E-01) (.16E-01) (.16E-01)


 6.29 4.79 5.52 6.25

(.80) (.79) (.94) (.95)

CP .37E-01 .33E-01 .33E-01 .34E-01

(.99E-02) (.10E-01) (.10E-01) (.10E-01)

RREL -10.66 -9.61 -9.52 -9.84

(3.67) (3.72) (3.73) (3.71)

FSDXP -.17E-02 -.15E-02 -.15E-02 -.16E-02

(.45E-02) (.46E-02) (.46E-02) (.46E-02)

Æ -6.70 -5.67 -5.58 -5.90

(1.62) (1.62) (1.62) (1.61)

R2 .22 .21 .21 .21

DW 2.26 2.26 2.26 2.26

F-test 1.01 2.73 2.96 2.75

(Critical Value) (3.84) (3.00) (3.00) (3.00)
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Panel B: Controlling for �F;t+1

Parameter Case 1 Case 2 Case 3 Case 4

Equation (25)

� .80E-03 .67E-03 .77E-03 .84E-03

(.13E-03) (.14E-03) (.12E-03) (.15E-03)

�1 .41 .33 .23 .24

(.78E-01) (.85E-01) (.85E-01) (.86E-01)

�2 .18 .19 .13

(.85E-01) (.46E-01) (.82E-01)

�3 .23

(.62E-01)

R2 .16 .19 .26 .27

DW 2.14 2.03 2.03 2.08

Equation (24)

! .87E-02 .11E-01 .11E-01 .95E-02

(.99E-02) (-.10E-01) (.10E-01) (.10E-01)


 4.01 3.06 3.53 3.99

(.51) (.47) (.56) (.58)

CP .17E-01 .15E-01 .15E-01 .16E-01

(.81E-02) (.83E-02) (.83E-02) (.83E-02)

RREL -5.92 -5.23 -5.17 -5.38

(2.81) (2.87) (2.87) (2.85)

FSDXP -.50E-02 -.50E-02 -.50E-02 -.50E-02

(.31E-02) (.31E-02) (.31E-02) (.31E-02)

Æ 2.36 3.04 3.10 2.89

(1.45) (1.41) (1.41) (1.42)

� -.53 -.54 -.54 -.54

(.49E-01) (.50E-01) (.50E-01) (.49E-01)

R2 .64 .64 .64 .64

DW 1.74 1.74 1.74 1.74

F-test .01 .24 .27 .17

(Critical Value) 3.84 3.00 3.00 3.00
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Panel C: Subsamples

Parameter Post-Crash Pre-Crash

Equation (25)

� .32E-03 .69E-03

(.94E-04) (.19E-03)

�1 .72 .50

(.77E-01) (.13)

R2 .52 .26

D-W 2.16 1.93

Equation (24)

No �F;t With �F;t No �F;t With �F;t

! -.35E-01 .42E-02 -.28E-02 .36E-02

(.28E-01) (.18E-01) (.62E-01) (.32E-01)


 4.97 3.20 -3.81 5.14

(2.55) (1.94) (5.56) (2.78)

CP .40E-01 .52E-01 .29E-01 .29E-01

(.23E-01) (.17E-01) (.29E-01) (.15E-01)

RREL -11.70 -12.97 -10.64 -9.91

(7.73) (5.71) (8.04) (4.71)

FSDXP .51E-02 -.86E-02 -.21E-02 -.63E-02

(.99E-02) (.64E-02) (.12E-01) (.69E-02)

Æ -7.49 -1.96 -11.95 -4.64

(4.38) (2.52) (11.23) (4.57)

� -.50 -1.19

(.61E-01) (.13)

R2 .20 .62 .14 .74

DW 2.32 2.42 2.09 1.51

F-test .22 2.01 9.30 .05

(Critical Value) 3.96 3.96 3.96 3.96

The structural model of equation (24) is estimated with the implied volatility data.

The upper panel is the conditional variance estimation in equation (25) and the

lower panel is the structural model. Heteroskedasticity consistent standard errors

(White (1980)) are reported in the parentheses. Variables that are di�erent from

zero at the 5% signi�cance level are in bold.
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Table 5: Structural Model: Postwar Monthly Data

Panel A: No Control for �F;t+1

Variable Case 1 Case 2 Case 3

Equation (25)

� .23E-03 .26E-03 .32E-03

(.35E-04) (.24E-04) (.45E-04)

�1 .93 .67 .88

(.43E-01) (.18E-01) (.28E-01)

�2 -.12 .12 -.14

(.43E-01) (.50E-02) (.28E-01)

�3 .13

(.47E-02)

R2 .69 .85 .87

DW 1.96 1.42 1.72

Equation (24)

! -.49E-02 -.28E-02 -.56E-02

(.74E-02) (.71E-02) (.75E-02)


 2.87 1.10 3.35

(1.12) (1.47) (1.31)

RREL -8.69 -8.60 -8.78

(1.97) (2.01) (1.99)

FSDXP .19E-02 .19E-02 .20E-02

(.20E-02) (.19E-02) (.20E-02)

Æ -6.06 -5.07 -6.30

(.91) (1.82) (.88)

R2 .18 .17 .18

DW 2.06 2.07 2.05

F-test 3.00 15.73 8.67

(Critical Value) 3.00 3.00 3.00
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Panel B: Controlling for �F;t+1

Parameter Case 1 Case 2 Case 3

Equation (25)

� .23E-03 .26E-03 .32E-03

(.35E-04) (.24E-04) (.45E-04)

�1 .93 .67 .88

(.43E-01) (.18E-01) (.28E-01)

�2 -.12 .12 -.14

(.43E-01) (.50E-02) (.28E-01)

�3 .13

(.47E-02)

R2 .69 .85 .87

DW 1.96 1.42 1.72

Equation (24)

! -.42E-02 .64E-02 .35E-02

(.44E-02) (.43E-02) (.44E-02)


 1.87 -.33 2.46

(.93) (.86) (1.12)

RREL -3.48 -3.69 -3.51

(1.39) (1.50) (1.38)

FSDXP .25E-03 -.13E-03 -.24E-03

(.20E-02) (.12E-02) (.12E-02)

Æ -2.08 -2.35 -2.25

(.33) (.91) (.35)

� -.92 -.93 -.93

(.35E-01) (.36E-01) (.35E-01)

R2 .74 .73 .74

DW 2.22 2.20 2.22

F-test .87 2.7 1.54

(Critical Value) 3.00 3.00 3.00
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Panel C: Time-Varying 


Variable 1953-1987 1953-1998

Equation (25)

� .24E-03 .32E-03

(.50E-04) (.23E-04)

�1 .78 .88

(.54E-01) (.28E-01)

�2 -.14

(.28E-01)

�3 .13

(.47E-02)

R2 .61 .87

DW 2.04 1.72

Equation (24)

No �F;t With �F;t No �F;t With �F;t

! -.20E-01 -.71E-03 -.75E-02 .12E-02

(.89E-02) (.45E-02) (.74E-02) (.47E-02)


 5.65 2.12 4.06 3.33

(1.77) (.86) (1.08) (.86)


1 -3.57 -5.42 -2.33 -2.88

(2.24) (1.10) (3.12) (2.13)

RREL -9.26 -5.24 -9.13 -4.03

(2.26) (1.49) (2.03) (1.62)

FSDXP .50E-02 .13E-02 .24E-02 .29E-03

(.22E-02) (.12E-02) (.20E-02) (.13E-02)

Æ -5.77 -1.09 -9.13 -2.20

(3.75) (1.13) (2.03) (.36)

� -.97 -.93

(.31E-01) (.35E-01)

R2 .17 .78 .18 .74

DW 2.19 2.14 2.06 2.26

Cases 1, 2 and 3 have the same speci�cations as cases 2, 3 and 4 in Table 4a,

respectively. See footnotes there for more information. We add a recession dummy


1 for relative risk aversion in Panel C. Risk aversion is 
+
1 during recessions and

is 
 otherwise.
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Figure 1: Scatter Plot, Market Variance Against Implied Volatility, Whole
Sample
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Figure 2: Scatter Plot, Market Variance Against Implied Volatility, October
1987 Excluded.
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Figure 3: Expected Market Return, Case 4 of Table 4b
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Figure 4: Risk Component, Case 4 of Table 4b
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Figure 5: Hedging Component, Case 4 of Table 4b
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Figure 6: Expected Market Return, Case 4 of Table 5c
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Figure 7: Risk Component, Case 4 of Table 5c
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Figure 8: Hedging Component, Case 4 of Table 5c
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