
Computationally Efficient Gaussian Maximum Likelihood

Methods for Vector ARFIMA Models

Rebecca J. Sela and Clifford M. Hurvich∗

New York University

July 31, 2008

Abstract : In this paper, we discuss two distinct multivariate time series models that extend
the univariate ARFIMA model. We describe algorithms for computing the covariances of each
model, for computing the quadratic form and approximating the determinant for maximum
likelihood estimation, and for simulating from each model. We compare the speed and accuracy
of each algorithm to existing methods and measure the performance of the maximum likelihood
estimator compared to existing methods. We also fit models to data on unemployment and
inflation in the United States, to data on goods and services inflation in the United States, and
to data about precipitation in the Great Lakes.

Contents

1 Introduction 3

2 Long Memory Processes 5

2.1 Univariate ARFIMA Processes . 5

2.2 Vector ARFIMA Processes . 6

3 Block Circulant and Toeplitz Matrices 12

3.1 Efficient Storage . 13
∗Thanks to Alexei Karlovich, Torsten Ehrhardt, and Lei Li for helpful advice regarding determinant compu-

tation. Thanks to Rohit Deo, Amy Finkbiner and Karen Paul for many helpful comments. All mistakes are my
own.

1

3.2 Computing a power of a block circulant matrix 13

3.3 Efficient Multiplication Methods . 15

4 Previous Computational Methods for Multivariate Models 17

4.1 Existing approximations to the likelihood of vector ARFIMA models 17

4.2 Existing exact likelihood algorithms for vector ARFIMA models 18

5 Computing Autocovariances 21

5.1 Computing the autocovariances of a univariate ARFIMA model 21

5.2 FIVAR Covariances . 22

5.3 VARFI Covariances . 26

5.4 Cointegrated Systems . 31

6 Computing the Quadratic Form 31

6.1 The Preconditioned Conjugate Gradient Algorithm 32

6.2 The Choice of Preconditioner . 34

6.3 Computational Cost . 35

6.4 Relationship to Periodogram . 39

6.5 Prediction . 42

7 Computing the Determinant 43

7.1 Asymptotic approximations to determinants . 46

7.2 Determinant approximations using curve-fitting 49

7.3 An alternative way to compute the determinant of a VARFI process 54

7.4 Determinants of Cointegrated Systems . 54

2

8 Efficient Simulation 55

9 Maximum Likelihood Estimation and Monte Carlo 60

9.1 Useful parameterizations for maximum likelihood estimation 60

9.2 The effects of the determinant approximation . 61

9.3 Comparing maximum likelihood estimation to the Whittle estimator 65

10 Data Analysis 69

10.1 Goods and Services Inflation . 69

10.2 Phillips Curve Data . 81

10.3 Great Lakes Precipitation . 87

11 Conclusion 90

1 Introduction

While time series often come in groups that could be analyzed together, much time series work
focuses on the analysis of univariate time series. This has led to the creation of a wide variety
of models that can handle many types of correlation structure, including long memory processes
which have slowly-decaying autocorrelations (see Granger and Joyeux (1980) and Hosking (1981)
for some of the earliest work in this area). In the case of multiple stationary time series, the
most widely-used model is a vector autoregressive-moving average (ARMA) model, in which
the autocorrelations of each component series and therefore the cross-correlations between pairs
of series decay exponentially fast. Such a restriction on the autocorrelations has been found
to be too strong in a variety of univariate cases. Instead, many authors suggest applying a
long memory model such as an fractionally integrated ARMA (ARFIMA) model, to such time
series (see Baillie (1996) for a discussion of applications to geophysical sciences, macroeconomics,
prices, and more). In this paper, we discuss two vector versions of the ARFIMA model, both of
which are multivariate generalizations of the traditional univariate ARFIMA model.

To make a time series model suitable for practical use, it is desirable to be able to determine
its covariance structure, estimate its parameters through maximum likelihood, and simulate from
it. Ideally, all of these tasks must be done both quickly and precisely. In the case of univariate
and multivariate ARMA models, the conditional likelihood function, in which some initial values

3

of the time series are assumed to be fixed, provides a simple approximation to the full likelihood
function. The application of the EM algorithm of Dempster et al. (1977) to the state-space
representation of a multivariate ARMA process provides an alternative estimation method. (See
Hamilton (1994, chapter 11 and section 13.4) for more information.) However, neither of these
methods is applicable to long memory models, because one cannot condition on a finite number
of observations and because long memory models do not have state space representations (Baillie
(1996) and others). For univariate ARFIMA models, more recent work (Bertelli and Caporin,
2002; Deo et al., 2006; Davies and Harte, 1987) has found efficient methods for computing
the autocovariances of an ARFIMA process, computing the likelihood function of an ARFIMA
process, and simulating from an ARFIMA process. Previously, Sowell (1989a,b) described exact
methods for computing the covariances from one particular type of vector ARFIMA model and
for computing the exact likelihood and simulating from general multivariate processes. However,
his calculation methods are often slow, with the likelihood and simulation calculations taking
O(T 2) time, where T is the number of observations in the dataset; reliance on these algorithms
makes the use of vector ARFIMA models prohibitively expensive for large datasets. In this
paper, we present methods which will accomplish the tasks of computation and simulation fast
enough to make the use of vector ARFIMA models more practical.

Beyond the application of the newly proposed methods to estimating vector ARFIMA mod-
els, our algorithms for computing the quadratic form and for simulation are applicable to any
multivariate time series for which the covariance structure is known. This provides additional
value to people who wish to compute the quadratic form of or to simulate from a multivariate
time series that does not have state space representations or other methods for exact computa-
tion.

To make our notation precise, suppose that we observe k = 1, ...,K time series over t =
1, ..., T periods, with Xkt denoting the tth period of the kth time series and Xt = (X1t, ..., XKt)′.
In this paper, unless stated otherwise, we will assume that all time series are stationary with zero
mean. We will consider these observations grouped either by series or by time. In the former
case, we will write X = (X1·, ..., XK·)′, where Xk· = (Xk1, ..., XkT)′. In the latter case, we will
write X̃ = (X ′1, ..., X

′
T)′. Notice that X = PX̃, where P is a permutation matrix. Suppose we

have a model for X described by a vector of parameters, θ. Define Ω(θ) as the KT ×KT matrix,
Cov(X). Note that Ω(θ) consists of K2 blocks, with the (i, j) block equal to the T × T matrix
containing E(Xi·X

′
j·). Since the multivariate process is stationary, each block is Toeplitz, with

the same number along each diagonal. Alternatively, we may consider Ω̃(θ) = Cov(X̃). Then,
Ω̃(θ) consists of T 2 blocks containing Cov(Xt, Xt−r), arranged in a Toeplitz fashion, so that the
blocks along each diagonal are identical. We may then write the Gaussian log likelihood as:

l(θ|X) = −1
2

log |Ω(θ)| − 1
2
X ′Ω(θ)−1X (1)

= −1
2

log |Ω̃(θ)| − 1
2
X̃ ′Ω̃(θ)−1X̃ (2)

We will discuss how to compute the autocovariances which could be used to create Ω(θ) and

4

Ω̃(θ) in section 5, how to compute the term containing the quadratic form in section 6, and how
to approximate the determinant term in section 7.

In section 2 we provide some background on long memory processes and a discussion of
two distinct models that appear as we move from the univariate case to the multivariate case.
Section 3 describes block circulant and block Toeplitz matrices, which are the basis of many of
the methods we will use. In section 4, we discuss existing computational methods that have
been applied to maximum likelihood estimation in multivariate ARFIMA models. In sections 5,
6, and 7, we present computationally efficient methods for the distinct tasks in estimating vector
ARFIMA models with maximum likelihood: computing covariances, computing the quadratic
form in the likelihood function, and computing the determinant in the likelihood function. The
methods for computing the covariances and computing the quadratic form are extensions of
univariate algorithms which have been discussed in the time series literature, and we review
those methods in the corresponding sections. In section 8, we discuss simulating from a vector
ARFIMA process. This section also includes a description of the existing method for univariate
ARFIMA processes that our algorithm extends. After presenting these methods, we discuss
the performance of the maximum likelihood estimator in section 9. We apply our estimator to
econometric and meteorological data in section 10. Section 11 concludes.

2 Long Memory Processes

2.1 Univariate ARFIMA Processes

A univariate long memory process with differencing parameter, d, is one in which the auto-
covariances, ω(r), decay at a hyperbolic rate; that is, lim|r|→∞

ω(r)
|r|2d−1 is constant. Equiva-

lently, a univariate long memory process is a process in which the spectral density, defined as
f(λ) = 1

2π

∑∞
r=−∞ ω(r) exp(−irλ), obeys f(λ) ∼ C|1−e−iλ|−2d when λ is near 0. We must have

0 ≤ |d| < 1
2 , for this spectrum to be integrable and for the process to be stationary; the process

is said to have short memory when d = 0 and long memory for any 0 < |d| < 1
2 . Long memory

processes have long been studied in the literature. (See Granger and Joyeux (1980) and Hosking
(1981) for early work on long memory and Brockwell and Davis (1993, section 13.2) or Baillie
(1996) for more background.)

The simplest case of long memory is fractionally integrated white noise, {yt}. Fractionally
integrated white noise is defined by (1 − L)dyt = εt, where εt is white noise with variance σ2,
and L is the lag operator, Lxt = xt−1. Even though d is not an integer, we can define (1− L)d

5

by the binomial expansion:

(1− L)d =
∞∑
j=0

(−1)j
(
d

j

)
Lj(

d

j

)
=

d(d− 1) · · · (d− j + 1)
j!

The spectral density of {yt} is given by fy(λ) = σ2

2π |1− e
−iλ|−2d. The coefficients of the infinite

order autoregressive representation, the infinite order moving average representation, and the
autocovariances of {yt} are available in closed form (Brockwell and Davis, 1993, see, for example,
[Theorem 13.2.1).

ARFIMA models are a more general class of univariate long memory processes. A time
series, {xt}, follows an ARFIMA(p, d, q) process if it can be written as a(L)(1−L)dxt = b(L)εt,
where a(L) and b(L) are lag polynomials of degree p and q respectively. We generally assume
that a(L) and b(L) have no common roots and that all of their roots are outside the unit circle.
Together with the assumption that |d| < 1

2 , these conditions ensure that {xt} is a stationary and
invertible process. Notice that we may think of {xt} in two different ways that are equivalent
in the univariate case but will not be equivalent for multivariate models. First, {xt} is an
ARMA(p, q) process driven by fractionally integrated white noise, which can be written as:

a(L)xt = b(L)[(1− L)−dεt]

Second, we may describe {xt} as an ordinary ARMA(p, q) process which has been fractionally
integrated:

xt = (1− L)−d
(
b(L)
a(L)

εt

)
Since the composition of linear filters is commutative in the univariate case, the two descriptions
are identical.

2.2 Vector ARFIMA Processes

The composition of linear filters does not commute in the multivariate case, so there are multiple
possible extensions of a univariate ARFIMA process to a vector ARFIMA process. In this paper,
we will focus primarily on models with autoregressive but not moving average components,
because of the additional complications associated with moving average components, particularly
in a multivariate setting (see Dunsmuir and Hannan (1976, page340) for a description of the
structure needed to identify the parameters in vector ARMA models). Because a vector ARMA
model can be written as a vector AR model (Hamilton, 1994, page 259), many of our results
generalize to models with MA components; we will identify cases in which that occurs.

Let A(L) = A0 +A1L+ ...+ApL
p, where A0 is the K×K identity matrix, IK , and A1, ..., Ap

are any matrices such that |A(L)| has all of its roots outside the unit circle. If p = 1, this

6

condition is equivalent to the requirement that A1 has all of its singular values less than 1, or
equivalently that all of the eigenvalues of ATA are less than one. LetD(L) be the diagonal matrix
with diagonal entries (1− L)d1 , ..., (1− L)dK , where d1, ..., dK ∈ (−1

2 ,
1
2), to ensure stationarity

and invertibility. Let {εt} be a sequence of K-variate white noise, with E(εtε′s) = 0 when t 6= s
and E(εtε′t) = Σ, with Σ positive definite. Given the parameters D(L), A(L) and Σ, we may
define two distinct vector ARFIMA models; versions of the models including moving average
components were presented by Lobato (1997).

In the first model, called Model A by Lobato, we have:

A(L)D(L)Xt = εt

We may understand the properties of the process, Xt, by defining it in two steps. First, define
Xt = D(L)−1Zt, so that Xk· = (1− L)−dkZk·. Then, assume that {Zt} follows a vector autore-
gressive (VAR) model, A(L)Zt = εt. Combining these two parts, we see that Xt is a fractionally
integrated vector autoregression, which we will called a FIVAR model in this paper. When we
wish to specify p and ~d = (d1, ..., dK), we will call this a FIV AR(p, ~d) model.

Permuting the matrices A(L) and D(L) gives us what Lobato calls Model B:

D(L)A(L)Xt = εt

This model is a vector autoregressive model, A(L)Xt = Yt, driven by fractionally integrated
white noise, D(L)−1εt. In this paper, we will refer to this model as a V ARFI(p, ~d) model, where
p is the order of the lag polynomials in A(L) and ~d is the vector of differencing parameters, as
before.

In the univariate case, these two models are identical. Since the composition of A(L) and
D(L) is not necessarily commutative, however, these models differ in most cases when K > 1.
The distinction between the models is also apparent when we write down the the spectral
densities of the models:

fFIV AR(ν) =
1

2π
D(e−iν)−1A(e−iν)−1Σ(A(e−iν)−1)∗(D(e−iν)−1)∗

fV ARFI(ν) =
1

2π
A(e−iν)−1D(e−iν)−1Σ(D(e−iν)−1)∗(A(e−iν)−1)∗

These spectral densities are identical when the matrices describing the linear filters, D(·) and
A(·), commute. In particular, they are identical when D(L) is a scalar multiple of the identity
matrix; this occurs when all of the series have equal differencing parameters. Also, they are
identical when A(L) and Σ are both diagonal; in that case, the individual series, Xk·, are
uncorrelated univariate ARFIMA series.

In Figures 1, 2, and 3, we plot the autocovariance sequences and cross-covariance sequences
of FIV AR(1, ~d) and V ARFI(1, ~d) processes with identical A(L), Σ, and d. The covariance

7

Figure 1: The theoretical autocovariance sequences and cross-covariance sequence of a
FIV AR(1, ~d) process with parameters d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6), and Σ =
(1, .5, .5, 2) for lags -199 to 199.

sequences differ dramatically. The autocovariance sequences of the two variables decay more
rapidly in the VARFI process than in the FIVAR process. The cross-covariance sequences
show an even larger difference; the FIVAR process shows much more asymmetry in the cross-
covariances.

Besides producing different autocovariance sequences, the two models differ in their im-
plications; a FIVAR model cannot produce anything like fractional cointegration because the
stationary VAR series are integrated separately. However, in most cases, a VARFI model will
have linear combinations of Xt and up to p lags which are integrated of a lower order. Extending
the analysis of Lobato (1997, page 141) from the bivariate case to a general multivariate case, we
give a simple formula that describes the cointegrating relationships. Let A·,k(L) be the kth row
of A(L). Then, A·,k(L)Xt = (1− L)dkεkt. Suppose that dk < max(~d) and at least two elements
of A·,k(L) are non-zero, and that the corresponding Xkt are integrated of order max(~d). Then
A·,k(L)Xt is a linear combination of present and past variables which is fractionally integrated

8

Figure 2: The theoretical autocovariance sequences and cross-covariance sequence of a
V ARFI(1, ~d) process with parameters d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6), and Σ =
(1, .5, .5, 2) for lags -199 to 199.

9

Figure 3: The theoretical cross-covariance sequences of a FIV AR(1, ~d) process and a
V ARFI(1, ~d) process, both with parameters d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6), and
Σ = (1, .5, .5, 2) for lags -199 to 199.

10

of a lower order than the individual variables are. This relationship will include both present
and past values of the variables; since A0 is the identity matrix, exactly one variable will enter
with its present value.

True fractional cointegration occurs when there is some vector, a, such that a′Xt is frac-
tionally integrated of a lower order than any of the elements of Xt. Unlike the relationship
we found for VARFI models, this relationship depends only on contemporaneous values of Xt.
To produce true cointegration in a FIVAR model, we must include an additional linear filter
in our description of the series (Sowell (1989b) uses this method as well). We motivate this
addition through the simple bivariate fractional cointegration model of Robinson and Hualde
(2003); Hualde and Robinson (2007). Their model can be written as:

D(L)V Xt = εt (3)

where V =
(

1 −ν
0 1

)
; unlike them, we do not assume that εkt = 0 when t < 0, because we

consider only stationary cases. We may generalize the formulation in (3) by applying the V
matrix to a FIVAR model, yielding a cointegrated FIVAR model:

A(L)D(L)V Xt = εt

where V is a matrix with ones along the diagonal and which is block diagonal according to
which sets of series are cointegrated; see Sowell (1989b, section 5) for more details. In the case

of a bivariate model, Sowell defines V =
(

1 0
ν 1

)
. In our analysis of cointegration in sections

5.4 and 7.4, any parameterization of the cointegrating matrix could be used. In our parameter
estimation, we will use the parameterization of Sowell for identification. Then, the spectral
density of multivariate cointegrated time series is given by:

fcoint(ν) =
1

2π
V −1D(e−iν)−1A(e−iν)−1Σ(A(e−iν)−1)∗(D(e−iν)−1)∗(V −1)∗

One could also introduce the V matrix into a VARFI model, though it would not generally lead
to cointegration, because the series A(L)−1D(L)−1εt may all have the same order of integration
even before the addition of V .

Thus far, we have assumed that all series have mean zero. In practice, it is likely that each
time series will have an unknown mean. Consider the series Yt = Xt+~µ, where Xt follows one of
the models with mean zero discussed above. A variety of possibilities exist for the estimation of
the parameters of Xt and the estimation of µ. A common approach in the literature (for example
Brockwell and Davis, 1993, page 238) is to subtract the sample mean from each time series Yk·,
and to proceed with estimation based on the demeaned observations. However, the variance of
the sample mean of a long memory process is O(1

n1−2d), where d is the differencing parameter;
thus, when d > 0, the variance declines more slowly than the traditional short memory variance

11

of the mean, O(1
n). Despite these problems, demeaning is straightforward, and we will use this

method in our data analysis. An alternative method is to use restricted maximum likelihood
(REML) as described by Harville (1977). In REML, the data is transformed to remove nuisance
parameters, and then maximum likelihood is applied to the transformed data. In the case where
the means of the individual time series are the only nuisance parameters, it is enough to take the
first difference of each time series individually. Because differencing decreases each dk by one, this
method should be applied when we may assume that the original data has each dk ∈ (0.5, 1.5).
One could also include the mean directly as part of maximum likelihood estimation. We will
not pursue REML or inclusion of the mean further in this paper.

It is more common in the literature (for example Sowell, 1989b; Hosoya, 1996; Martin and
Wilkins, 1999; ?; Ravishanker and Ray, 1997, 2002) to analyze FIVAR models. Tsay (2007) is
a notable exception. We will present algorithms for computing the covariances of FIVAR and
VARFI models in sections 5.2 and 5.3, respectively. In section 7.1, we present an algorithm
for approximating |Ω| which can be used with either FIVAR or VARFI models; section 7.3
contains a second algorithm which can be used only for VARFI models. The algorithms which
we will present for computing the quadratic form, X ′Ω−1X, and simulating from a multivariate
time series apply to either of the models, because they depend only on knowing the covariance
structure.

3 Block Circulant and Toeplitz Matrices

We begin by discussing some properties of circulant and Toeplitz matrices. These properties
will be integral to many of the computational methods we will present. First, we recall the
definitions of these two types of matrices. A Toeplitz matrix is one in which all of the elements
along each diagonal are constant. That is, the value of element Aij depends only on i− j. The
covariance matrix of a sequence of observations of a univariate time series, x = (x1, ..., xT)′, is
a symmetric Toeplitz matrix. In general, Toeplitz matrices need not be symmetric. A circulant
matrix is a matrix in which each row shifts the elements of the previous row one space to the
right and moves the right-most element to the beginning of the row; a circulant matrix is a
special case of a Toeplitz matrix.

Once we begin to consider multiple time series, we must use block matrices, that is, a matrices
that can be partitioned into square blocks, each of which has a certain property. A block circulant
matrix is a matrix which can be partitioned into blocks, each of which is a circulant; a block
Toeplitz matrix is defined analogously. In this paper, we will generally consider KT × KT
matrices which can be partitioned into K2 Toeplitz or circulant blocks, each of which is of
dimension T × T .

In this section, we will present suggestions for the storage of block circulant and block Toeplitz
matrices and algorithms for computing powers of block circulant matrices and for multiplying

12

by block circulant and block Toeplitz matrices. Most of these algorithms are well-known; the
algorithm for computing powers of circulant matrices is a new generalization of an algorithm
presented by Chan and Olkin (1994) for computing inverses of block circulant matrices.

3.1 Efficient Storage

In this and the following sections, we discuss how we can use the properties of Toeplitz and
circulant matrices to make the operations of the algorithms more efficient. In this section, as
an introduction to the structure of these matrices, we discuss the simplest way: the repeated
elements in each kind of matrix mean that there are more efficient ways to store them than just
writing down all the elements.

The most obvious way to store a block circulant matrix would be to store all K2T 2 elements.
However, because a circulant is completely defined by its first row, it is sufficient to store the
first row of each block in a K × K × T array, which is a dramatic reduction in the required
storage space when T is large. In fact, one can store any T elements which uniquely define the
first row of a circulant; we actually store the Fourier transform of the first row, as we will discuss
in section 3.3.

In addition, it is not efficient to store the entire block Toeplitz matrix, Ω, since it would
require the same large amount of space. Any Toeplitz matrix can be completely described by
the first row and first column, and we store those elements instead of storing the entire matrix.
In particular, we specify the Toeplitz matrix by the vector of elements:

[a(T − 1, 0), ..., a(1, 0), a(0, 0), a(0, 1), ..., a(0, T − 1)],

where we number the rows and columns starting at 0. When this Toeplitz matrix is the (i, j)
block of Ω, we may describe the elements in relation to the covariances of {Xit} and {Xjt}..
Note that, in block Ai,j , the (0, r) element is ωij(−r) = Cov(Xi,t, Xj,r+t), and the (r, 0) element
is ωij(r) = Cov(Xi,t, Xj,t−r). Thus, the elements of the first row and column as ordered above
are simply

[a(T − 1, 0), ..., a(1, 0), a(0, 0), a(0, 1), ..., a(0, T − 1)] = [ωij(T − 1), ..., ωij(−(T − 1))]

To describe a block Toeplitz matrix, we combine all of these vectors of length 2T−1 into a three-
dimensional array of size K ×K × (2T − 1), in which each K ×K layer is ω(r) = Cov(Xt, Xt−r)
for r = −(T − 1), ..., (T − 1).

3.2 Computing a power of a block circulant matrix

As we will see, the methods for computing the quadratic form and for simulation both depend
on computing a power of a block circulant matrix; the quadratic form requires computing an

13

inverse, while simulation requires computing a square root. In this section, we describe a fast
way to compute an arbitrary power of a matrix, assuming that it is well-defined. The algorithm
given in this section is a generalization of the one given by Chan and Olkin (1994), which
describes only how to compute the inverse.

We first describe how the αth power of a block circulant matrix, C, could be computed
in theory. Let Cij be the (i, j) block of C. The eigenvalue decomposition of that block is

Cij = F ∗ΛijF , where F is the Fourier matrix with entries Fjk = 1√
T

exp
(

2πjk
√
−1

T

)
and Λij is

the diagonal matrix with diagonal equal to the Fourier transform of the first row of Cij (see, for
example, Brockwell and Davis, 1993, section 4.5). Throughout this section, when we refer to
the eigenvalues of a circulant, we order them as in the Fourier transform of the first row of Cj .

We now consider the matrix, C, as a whole. Let L be the KT ×KT matrix consisting of the
diagonal blocks, Λij . We may write C = (I ⊗ F ∗)L(I ⊗ F), where ⊗ is the Kronecker product.
Since (I ⊗F)∗ = (I ⊗F ∗)−1, we may write Cα = (I ⊗F ∗)Lα(I ⊗F). Thus, it remains only find
an expression for Lα.

Notice that L consists of K2 blocks of size T×T , each of which is zero except on the diagonal.
Therefore, we may find a permutation matrix, P , such that L = PBP ′, where B is a matrix
with T blocks of size K ×K along the diagonal and zeroes everywhere else. In particular, we
choose P such that the tth block along the diagonal of B consists of the tth elements along the
diagonal of each block in L; this moves all K2T non-zero elements of L to the blocks along the
diagonal of B. This is the same permutation matrix described in the introduction. The resulting
blocks are not necessarily diagonal or Toeplitz. (See Chan and Olkin (1994, section three) for
more details, particularly the graphic on page 94.)

Consider the spectral decomposition, VBΛBV −1
B , of B. Since B is block diagonal, we may

choose VB to be block diagonal as well. Combining this decomposition with (I⊗F) and P yields
the eigenvector decomposition of C:

C = (I ⊗ F ∗)PVBΛBV −1
B P−1(I ⊗ F ∗)−1

The spectral decomposition allows us to compute powers of C in a simple form. To do this,
we first find Bα using the spectral decomposition for each block separately. (Though there no
structure on the individual blocks in B, finding the eigenvalues is not computationally intensive
if K is small.) We then find that Lα = PBαP ′. Since Bα is a block diagonal matrix and P is
the same permutation matrix, Lα has the same diagonal block structure as L. Multiplying by
(I ⊗ F ∗) and (I ⊗ F), we find the formula for Cα:

Cα = (I ⊗ F ∗)PBαP ′(I ⊗ F)

Not only does this give a method for computing Cα in theory, but it also shows that Cα is block
circulant.

In a small number of cases, a block, Br, of the matrix B might be defective, so that it has

14

no spectral decomposition. While this means that general powers of Br cannot be computed,
algorithms exist for computing Bα

r for certain α. The inverse, α = −1, can be computed using
Gaussian elimination, as long as Br is invertible. When α = 1

2 , the algorithm of Denman and
Beavers (1976) can be used to compute a square root. These are the two cases which will be
required in this paper. When all of the Br have spectral decompositions, the algorithm we have
presented can be used for any α.

Though the formula above gives a straightforward method for describing Cα, it is not efficient
to write down all K2T 2 elements of Cα nor to multiply by permutation matrices. Instead, we
create a K × K × T array, Γ, to completely describe C in a way that makes computation
simpler. First, we consider what is in each block, Brr, of the block diagonal matrix, B. For a
permutation matrix which moves the rth diagonal element of Lij to the (i, j) location in the rth

block, the (i, j) element of Brr is the rth eigenvalue of Cij . Thus, as we compute the eigenvalues
for each block, Cij , we may store them as Γ(i, j, ·), so that each column of Γ corresponds to
the eigenvalues of one block of C. Once Γ has been stored in this way, Brr is simply Γ(·, ·, r).
Define Γ̃ as the array that stores the elements of Cα in the same fashion. Then, since B is block
diagonal, Γ̃ is obtained from Γ by computing the power of each layer, Γ(·, ·, r). This yields the
following algorithm for obtaining the eigenvalues of the blocks of Cα:

Algorithm 1 Computing a Representation of a Power of a Block Circulant Matrix

• Create two K ×K × T arrays, Γ and Γ̃, for storage.

• Loop over all pairs, (i, j), with i = 1, ...,K and j = 1, ...,K:

– Set Γ(i, j, ·) to the Fast Fourier Transform of the first row of Cij.

• For r = 1, .., T , set Γ̃(·, ·, r) = [Γ(·, ·, r)]α.

The resulting array holds the eigenvalues of the individual blocks of the power of the circulant
preconditioner, which can be used for multiplication by Cα as shown in the next section.

3.3 Efficient Multiplication Methods

Multiplying a T × T matrix by a T × 1 vector, v, requires O(T 2) steps in general. If, however,
the matrix, G, is a circulant, we can speed up this multiplication to O(T log T) steps, again
using the fact that G = F ∗ΛF . The following algorithm an be used for efficient multiplication
by a circulant:

Algorithm 2 Multiplication by a Circulant, G = F ∗ΛF .

15

• Compute Fv as the Fourier transform of v.

• Compute ΛFv by multiplication by a diagonal matrix.

• Compute F ∗ΛFv as the inverse Fourier transform of the previous result.

Computing the Fourier transforms in the first and third steps takes O(T log T) operations, while
the second step takes only O(T) operations. In total, this multiplication takes O(T log T) time.

Algorithm 2 can also be used to compute Av, where A is a Toeplitz matrix and v in any
vector. The extension to Toeplitz matrices requires circulant embedding. First, we create a
2T × 2T circulant matrix, Ã, with diagonal blocks equal to A and off-diagonal blocks filled in
with the elements of A necessary to make the matrix into a circulant. That is, if we number
the row and column indices from 0 as before, the first row of Ã is [A(0, 0), A(0, 1), ..., A(0, T −
1), A(0, 0), A(T − 1, 0), ..., A(1, 0)], and the circulant structure defines the remaining elements of
Ã. Second, we extend v to a vector of length 2T , ṽ, by appending T zeroes to the end. We
may then use Algorithm 2 to compute Ãṽ. Then, the first T elements of Ãṽ are identical to the
elements of Av.

Multiplication by circulant and Toeplitz matrices may be extended to multiplication by
block circulant and block Toeplitz matrices. This takes advantage of the block-Toeplitz and
block-circulant structures to reduce the number of operations required for multiplication to
O(K2T log T) steps. Consider the general block matrix, B, with T × T blocks, Bij , and vector,
v, of length TK, partitioned into K subvectors, vk, of length T . Then, we compute: B11 · · · B1K

...
. . .

...
BK1 · · · BKK

 v1

...
vK

 =

 B11v1 + · · ·+B1KvK
...

BK1v1 + · · ·+BKKvK

If the blocks of B are circulants, then each of the multiplications can be computed using the
method for multiplying by a circulant. If the blocks of B are Toeplitz, then each of the mul-
tiplications can be computed using circulant-embedding. Computing K2 such multiplications
and then adding them up to get the final vector will take O(K2T log T) steps. We will see the
usefulness of these multiplication methods in section 6.

16

4 Previous Computational Methods for Multivariate Models

4.1 Existing approximations to the likelihood of vector ARFIMA models

The most commonly used approximation to the likelihood in the frequency domain is the Whittle
approximation first given in Whittle (1963). The estimation is based on the periodogram matrix,

I(λ) =
1

2πT

T∑
t=1

T∑
s=1

XtX
′
s exp(iλ(t− s))

According to Dunsmuir and Hannan (1976), the log likelihood is approximately a constant plus:

−T
2

log |Σ| − 1
2

T∑
j=1

tr

(
f−1

(
2πj
T

)
I

(
2πj
T

))
where tr(·) is the trace operator and f is the spectral density described in 2.2. Hosoya (1996)
discusses this approximation in more detail. The first term uses the approximation |Ω| = T |Σ|
of Grenander and Szego (1958), which Dunsmuir and Hannan (1976, page 344) note might
not work well for small T even in the ARMA case, but which is very easy to compute. We
discuss this approximation and some possible modifications in more detail in section 7.1. In the
univariate case, Hannan (1970, chapter 6, section 6) notes that the second term is based on the
approximation Ω−1 ≈ FΛF ∗, where F is the Fourier matrix in section 3.2 and Λ is a diagonal
matrix with 2π

σ2 f
(

2πj
T

)
at the (j, j) location. Notice that this approximates the Toeplitz matrix

Ω by a circulant matrix. (See also Brockwell and Davis, 1993, Proposition 4.5.2.) Since f(0)
may be infinite in long memory models, this approximation may not be as accurate for vector
ARFIMA models.

In the time domain, Luceno (1996) finds an approximation to the quadratic form in the
likelihood expression; he neglects the determinant because he says (page 605) that importance
declines in relation to the importance of the quadratic form for large T . As we will show in
section 9, inclusion of an accurate approximation to the determinant can be quite important
in the sample sizes we consider. He then finds an asymptotic approximation to Ω−1 in terms
of “inverse-transpose” autocovariances, δi. These inverse-transpose autocovariances are defined
by δi = δ′−i =

∑∞
j=0 π

′
t+jΣ

−1πj , for i ≥ 0, where πj are the AR(∞) coefficients and Σ is the
innovation covariance for the process Xt. Using these inverse-transpose autocovariances, an
exact expression for the quadratic form is given by:

X ′Ω−1X = tr(δ0P0) + 2
∞∑
i=1

tr(δiPi)

where he defines

Pi =
∞∑

t=−∞
X̂t+iX̂

′
t

17

and X̂t is the observed series for t = 1, ..., T and the forecast or backcast, E(Xt|X1, ..., XT), of
the series otherwise. While this expression is exact, the forecasts and backcasts may be costly to
compute, and the exact sum must be truncated for computational purposes. Therefore, Luceno
recommends approximating:

Pi ≈
{ ∑T−i

t=1 Xt+iX
′
t 0 ≤ i ≤ T − 1

0 T ≤ i
Pi = P ′−i, i < 0

This approximation has an error which of the order 1
T . Using the expression given above,

the quadratic form can be computed by truncating the infinite sums. Luceno notes that the
inverse-transpose autocovariances “frequently” are of the same model type as the original au-
tocovariances (page 608); that is, the inverse-transpose autocovariances of a scalar ARFIMA
model will be the autocovariances of a different ARFIMA model. However, he does not give
a general method for computing the inverse-transpose autocovariance sequence, which makes
them infeasible for the general case.

Martin and Wilkins (1999) avoid the likelihood functions altogether by applying indirect
estimation to FIVAR models. In this approach, they estimate a V AR(2) using the data and then
find parameter values for a FIVAR model that lead to simulated data with identical estimates
in a V AR(2). We do not pursue this approach, though we note that indirect estimation would
benefit from the simulation algorithm we propose in section 8.

4.2 Existing exact likelihood algorithms for vector ARFIMA models

The most comprehensive set of exact methods for maximum likelihood estimation for vector
ARFIMA models can be found in two papers of Sowell (1989b,a). The second paper presents
algorithms of computing the autocovariances of a vector ARFIMA process of the FIVAR type,
while the first paper presents methods for computing the inverse and determinant of a block
Toeplitz matrix, which could be associated with any multivariate process.

First, we discuss Sowell’s (1989b) algorithm for computing the autocovariances of a FIVAR
process. Consider the autocovariances of a FIV AR(p, ~d) process, where B(L)

a(L) is the moving
average representation of the vector ARMA(p, q) part of the model, with B(L) a matrix of lag
polynomials of order at most (K − 1)p + q and a(L) a scalar lag polynomial of order at most
H = Kp. Let vij be the (i, j) entry of the cointegration matrix described in section 2.2. Sowell
(1989b) finds that ωij(s) = Cov(Xi,t, Xj,t−s) can be written as:

ωij(s) =
M∑

l=−M

H∑
m=1

K∑
n=1

K∑
r=1

vinvjrψij(l)ζmC(di, dj , H + l − s, ρm)

18

with

C(w, v, h, ρ) = Γ(1− w − v)
(
ρ2H

∞∑
m=0

ρm(−1)h+m

Γ(1− w + h+m)Γ(1− v − h−m)
+

∞∑
n=1

ρn(−1)h−n

Γ(1− w + h− n)Γ(1− v − h+ n)

)
and where the ρn, ζn, and ψij(l) satisfy:

a(ξ) =
H∏
j=1

(1− ρjξ)

ζj =
1

ρj
∏H
i=1(1− ρiρj)

∏H
m=1,m 6=j(ρj − ρm)

ψij(l) =
K∑
h=1

K∑
t=1

min(M,M−l)∑
s=max(0,l)

ΣhtBih(s)Bjt(s− l)

These sums must be evaluated using the hypergeometric function, which has no closed form in
general (Weisstein, 2008). While this gives an exact expression for the covariances, the sums are
slow to evaluate, as we will show in section 4. Furthermore, Sowell’s method does not apply to
VARFI models.

An alternative method to compute the covariances of either a FIVAR or a VARFI model is to
use the relationship between the spectral density and the autocovariances. For any multivariate
time series with cross-spectral density, f , we may compute the autocovariance function as:

ω(h) =
∫ π

−π
eihλf(λ)dλ

(See, for example, Brockwell and Davis, 1993, section 11.6.) This gives a straightforward method
for computing the autocovariance sequence for either type of model. However, as we will show
in Tables 2 and 4, it is also a computationally intensive method.

Sowell (1989a) describes methods to compute the determinants, inverses, and simulated
realizations of any stationary multivariate process, including a vector ARFIMA process. In
this paper, Sowell uses a version of the Durbin-Levinson algorithm (see also Brockwell and
Davis, 1993, Proposition 11.4.1) to decompose the autocovariance matrix Ω = Var(X̃), where
ω(j) = Cov(Xt, Xt−j), into a series of matrices that are useful for computation.

Algorithm 3 Sowell/Durbin-Levinson Covariance Matrix Decomposition (Sowell, 1989a). Set

19

the initial values:

v(0) = v̄(0) = ω(0)
D(1) = ω(1)
D̄(1) = ω(−1)

For n = 1, ..., T and k = 1, ..., n, compute the following quantities iteratively:

A(n, n) = D(n)v̄(n− 1)−1

Ā(n, n) = D̄(n)v(n− 1)−1

A(n, k) = A(n− 1, k)−A(n, n)Ā(n− 1, n− k)
Ā(n, k) = Ā(n− 1, k)− Ā(n, n)A(n− 1, n− k)

v(n) = ω(0)−
n∑
j=1

A(n, j)ω(−j)

v̄(n) = ω(0)−
n∑
j=1

Ā(n, j)ω(j)

D(n+ 1) = ω(n+ 1)−
n∑
j=1

A(n, n− j)ω(j)

D̄(n+ 1) = ω(−n− 1)−
n∑
j=1

Ā(n, n− j)ω(−j)

Because all of the A(n, k) must be computed, finding this decomposition requires O(T 2)
operations. General algorithms for determinants, inverses, and Cholesky decompositions for
general matrices are O(T 3), which means that using this algorithm is an improvement. However,
an algorithm which is O(T 2) is still quite slow for many applications. Given this decomposition,
various quantities of interest become quite straightforward to compute. The determinant of Ω
is simply

∏T−1
t=0 |v(t)|. The inverse is given by Ω−1 = β̄β̄′, where

β̄ =

IK −Ā(1, 1)′ −Ā(2, 2)′ · · · −Ā(T − 1, T − 1)′

0 IK −Ā(2, 1)′ · · · −Ā(T − 1, T − 2)′
...

.
...

0 · · · 0 IK

v̄(0) 0 0 · · · 0
0 v̄(1) 0 · · · 0
...

. . .
...

0 · · · 0 v̄(T − 1)

−1/2

Notice that computation of the quadratic form, X ′Ω−1X, using this representation would require
an additional O(T 2) steps, even if the decomposition were already known. Finally, Sowell points
out (Result 3) that one can simulate from the distribution of X can be done by drawing a
vector U = (U ′1, ..., U

′
T)′ of length KT and then defining X1 = v̄(0)1/2U1 and Xt =

∑t−1
j=1 Ā(t−

1, t− j)Xj + v̄(t− 1)1/2Ut. This simulation method also requires O(T 2) steps, which would be

20

particularly problematic if many samples were drawn. All of these methods are exact. However,
the computations required are daunting when T is large. In fact, Doornik and Ooms (2003) say
that this method is “still rather time consuming” for a dataset in which K is 2 and T is 121. In
order for exact maximum likelihood to be feasible for estimating multivariate ARFIMA models,
a faster algorithm is needed.

Tsay (2007) applied Sowell’s algorithms to VARFI processes and using Sowell’s (1989b)
expression for the autocovariances of a V ARFI(0, ~d) process. While this work avoids the slow
computations of autocovariances that plagues Sowell’s (1989b) algorithm for computing the
covariances of a FIVAR process, it does not address the slowness of the Cholesky decomposition.

Chung (2001) presents a method for calculating the impulse response function of a FIVAR
process. Also, Ravishanker and Ray (1997, 2002) discuss Bayesian methods for estimating from
and forecasting FIVAR processes. We do not pursue either of these computations further.

5 Computing Autocovariances

In this section, we present algorithms for computing the autocovariances of both types of vector
ARFIMA processes. First, as background, we describe the univariate splitting algorithm of
Bertelli and Caporin (2002) for computing the autocovariances of a univariate ARFIMA model.
In sections 5.2 and 5.3, we present fast algorithms for computing the autocovariance sequences
of both FIVAR and VARFI processes. After we detail each algorithm, we will show the speed
in practice and compare it to existing algorithms.

5.1 Computing the autocovariances of a univariate ARFIMA model

To compute the autocovariance sequence, ω(j), of an ARFIMA(p, d, q) process with d ∈ (−1
2 ,

1
2),

Bertelli and Caporin (2002) write the covariances as the infinite convolution of the autocovari-
ances, ξ(j), of an ARMA(p, q) process, and the autocovariances, φ(j), of an ARFIMA(0, d, 0).
Both of these autocovariance sequences have closed forms or can be computed quickly. Then,
the ARFIMA(p, d, q) autocovariances can be written as :

ω(j) =
∞∑

h=−∞
ξ(h)φ(j − h)

Because the autocovariances of an ARMA model decay exponentially fast, they recommend
setting the ξ(h) to 0 for |h| > M for large M . A larger value of M may be chosen to increase
the accuracy. Then, the computation of these convolutions for j = 0, ..., T can be done quickly
using the Fast Fourier Transform. This gives a fast and accurate method to compute the
autocovariance sequence in the univariate case.

21

5.2 FIVAR Covariances

To generalize the univariate splitting algorithm to a FIVAR process, we use the two-step defi-
nition of a FIVAR discussed in section 2.2. In this section, for complete generality, we allow for
a moving average component as well as an autoregressive component. First, we define Zt as a
vector ARMA process, so that A(L)Zt = B(L)εt, with Cov(εt) = Σ. We assume that A(L) and
B(L) both have all of their roots outside the unit circle. If this model were used for estimation,
we would also require that A(L) and B(L) fit the identifiability conditions of Dunsmuir and
Hannan (1976). Let ξ(h) = E(Zt+hZ ′t) be the autocovariance sequence of Zt. The full model,
A(L)D(L)Xt = B(L)εt, can be written as D(L)Xt = Zt. We may write Xt =

∑∞
j=0CjZt−j ,

where Cj is a diagonal matrix with (k, k) element equal to ψ(j, dk) = Γ(j+dk)
Γ(j+1)Γ(dk) and Γ is the

gamma function. If Zt were white noise, this would be the moving average expansion of an
ARFIMA(0, dk, 0) process. Using this “moving average” expansion, we find an expression for
the autocovariances of X·t:

ω(h) = Cov(Xt, Xt−h) (4)

= Cov

 ∞∑
i=0

CiZt−i,
∞∑
j=0

CjZt−j−h

 (5)

=
∞∑
i=0

∞∑
j=0

CiCov(Zt−i, Zt−h−j)C ′j (6)

=
∞∑
i=0

∞∑
j=0

Ciξ(h+ j − i)C ′j (7)

We now focus on the (k, l) entry of Ciξ(h + j − i)C ′j . Let ξkl(h) be the (k, l) entry of ξ(h),
that is, ξkl(h) = E(Zk,t+hZl,t). Since Ci and Cj are both diagonal matrices, the (k, l) entry of
Ciξ(h+ j − i)C ′j is ψ(i, dk)ψ(j, dl)ξkl(h+ j − i). Using this, we find an expression for the (k, l)
entry of ω(h):

ωkl(h) =
∞∑
i=0

∞∑
j=0

ψ(i, dk)ψ(j, dl)ξkl(h+ j − i) (8)

=
∞∑
m=0

∞∑
j=m

ψ(j −m, dk)ψ(j, dl)ξkl(h+m) (9)

=
∞∑
m=0

ξkl(h+m)

 ∞∑
j=m

ψ(j, dl)ψ(j −m, dk)

 (10)

where the second equality follows from the substitution m = j−i and an interchange of the order
of summation. The inner sum is the cross-covariance of an ARFIMA(0, dk, 0) process and an
ARFIMA(0, dl, 0) process that are driven by common white noise. Writing this cross-covariance

22

in terms of the integral of the cross-spectrum, we find that:

∞∑
j=m

ψ(j, dl)ψ(j −m, dk) =
1

2π

∫ 2π

0
(1− e−iλ)−dk(1− eiλ)−dleiλmdλ (11)

=
Γ(1− dk − dl)(−1)m

Γ(1− dk −m)Γ(1− dl +m)
(12)

=
Γ(1− dk − dl)Γ(dk +m)

Γ(dk)Γ(1− dk)Γ(1− dl +m)
(13)

where the last two equations follow from Sowell (1989b, Appendix II and Appendix III, equa-
tion IV.2). Notice that this agrees with the usual expression for the autocovariance of an
ARFIMA(0, dk, 0) process when dk = dl (see, for example, Brockwell and Davis, 1993, The-
orem 13.2.1). For notational convenience, we write φlk(h) = Γ(1−dk−dl)Γ(dk+h)

Γ(dk)Γ(1−dk)Γ(1−dl+h) . Note that
φkl(h) = φlk(−h), as must be true for any cross-covariances.

Following Bertelli and Caporin (2002), we consider the finite approximation to the outer
sum in (10), by setting ξkl(m) = 0 for all |m| > M . Because the autocovariance sequence of a
vector ARMA decays exponentially fast, we may choose a relatively small M to approximate the
process to a given degree of accuracy. Our choice of M depends on the parameters of the ARMA
process; if ξ(h) is the autocovariance sequence of an MA(q) process, then we may choose M = q
to compute the autocovariances exactly. Otherwise, we must choose an M which accounts for
how quickly the autocovariances of the vector ARMA process decay.

Because any stationary and invertible vector ARMA(p, q) process can be written as a vector
AR(1) (see Hamilton, 1994, page 259 for details), we focus on the AR(1) process,

Zt = A1Zt−1 + ηt

where A1 is a K×K matrix such that all of its eigenvalues lie inside the unit circle. Notice that
rewriting an ARMA process as an AR(1) may lead to an innovation variance which is positive
semi-definite but not positive definite. The computations presented in this section do not depend
on Σ being positive definite, so this does not pose a problem. Then, the autocovariance sequence,
ξ(h), satisfies (Hamilton, 1994, page 265):

vec(ξ(0)) = (IK2 −A1 ⊗A1)−1vec(Σ)
ξ(h) = Ah1ξ(0), h > 0

ξ(−h) = ξ(h)′

where h is a positive integer, vec is the vectorization operator, ⊗ is the Kronecker product, and
IK2 is a K2 × K2 identity matrix. Let G = maxk,l φkl(0). Let ‖ · ‖ be the Euclidean matrix
norm, ‖Q‖2, where ‖Q‖2 is the maximum singular value of Q (see Heath, 2002, sections 3.6 and
4.7 for background). This is equal to the square root of the largest eigenvalue of QTQ, which
ensures that ‖A1‖ < 1 as long as the V AR(1) process defined by A1 is stationary. Then, we

23

may bound the norm of the error in truncating the infinite sum by:

2G
∞∑

m=M

‖ξkl(m)‖ = 2G
∞∑

m=M

‖Am1 ξ(0)‖

≤ 2G
∞∑

m=M

‖A1‖m‖ξ(0)‖

= 2G‖ξ(0)‖ ‖A1‖M

1− ‖A1‖

Thus, once we know ξ(0) and A1, we can choose M such that the norm of the error does not
exceed a chosen value, δ. In particular, we must have:

M ≥ log(1− ‖A1‖) + log(δ)− log(G)
log(‖A1‖)

+ 1

Once M has been chosen, it remains to compute the sequences φkl(h), h = −M−T, ...,M+T
and ξkl(h), h = −M, ...,M and their convolutions for each (k, l). Using the naive method
of summing all the products directly would require O(M2 + MT) operations. Instead, for
larger values of M , we recommend using the Fast Fourier Transform to speed up the process to
O((M + T) log(M + T)) operations for each of the K2 convolutions. In most cases, M > log T ;
exceptions may occur when the eigenvalues of F are far from the unit circle or T is very large;
we suggest checking this condition so that the faster convolution method is used. Since there
are K2 convolutions, using an efficient method is particularly important.

Combining all of these considerations yields the splitting algorithm for a FIVAR process:

Algorithm 4 Computing FIV AR(1, ~d) covariances to tolerance δ.

• Set G to be the maximum singular value of φkl(0) and compute the maximum singular
value of A1, ‖A1‖.

• Set M to be the smallest power of two greater than log(1−‖A1‖)+log(δ)−log(G)
log(‖A1‖) + 1.

• Compute the covariances, ξ, for a V AR(1) for lags −M to M .

• Compute the cross-covariances, φ, for ARFIMA processes with differencing parameters ~d
for lags −(M + T) to M + T .

• If M ≥ log T , compute the convolution of ξij with φij for i = 1, ...,K and j = 1, ...,K
using the Fast Fourier Transform:

– Append enough zeroes to ξij and φij so that the total length is the smallest power of
two which is greater than length(ξij) + length(φij). Call these series ξ̃ and φ̃.

24

Lag Splitting Sowell
0 (3.658217, 6.04877,

6.048769, 35.02676)
(3.658217, 6.04877,
6.048769, 35.02676)

1 (3.103113, 5.530935,
6.094733, 33.952608)

(3.103113, 5.530935,
6.094733, 33.952608)

10 (0.7597274, 1.855598,
3.9196162, 25.501238)

(0.7597274, 1.855598,
3.9196162, 25.501238)

100 (0.06346564, 0.3674387,
1.12644985, 15.4985175)

(0.06346564, 0.3674387,
1.12644985, 15.4985175)

Table 1: Computed values for the autocovariances of a FIVAR process with d = (0.1, 0.4),
A1 = (0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2), using the Sowell (1989b) method and the splitting
method.

– Compute the inverse Fast Fourier Transforms of ξ̃ and φ̃ and multiply them together
element-by-element.

– Compute the Fast Fourier Transform of the result.

– Return the first (length(ξij) + length(φij)− 1) elements of the result.

– Extract the middle covariances from the result.

• If M < log T , then compute the convolutions by summing all the terms directly.

If the V AR(1) process has been created from a vector ARMA(p, q) process, the autocovari-
ances of the original process are the autocovariances computed using the method above for the
observed series.

Though we must truncate the sum, this method can be used to compute the autocovariances
to any level of precision; more precision simply requires a larger choice of M . In Table 1, we
give the computed values of some autocovariances based on the splitting method and based on
Sowell’s (1989b) method. The two computed results are almost identical to at least five figures.

The running time of the FIVAR splitting algorithm depends on two factors. First, as the
largest singular value of A1 moves arbitrarily close to the unit circle, M will grow infinitely
large. Second, given a fixed A1 and therefore a fixed value of M , the running time will initially
grow as O(T log T) as long as M > log T , and will then grow linearly with T once it is faster
to use direct summation instead of the Fast Fourier Transform. Notice that both the Sowell
(1989b) method and the method using integrals described in section 4.2 grow linearly with T .
Furthermore, Sowell’s method depends on computing an infinite sum in which the summands
decay as ρ1, ..., ρK , which turn out to be the eigenvalues of A1 in this case. Thus, both Sowell’s
method and our method slow down as the roots of I−A1L approach the unit circle. In Tables 2
and 3, we report the total elapsed processor time in seconds as reported by the R system.time
function to compute the autocovariances in various cases. This table shows that our method

25

T Splitting Sowell Integral-Based Method
4 0.028 0.354 4.988
8 0.029 0.672 11.025
16 0.029 1.330 *
32 0.028 2.629 *
64 0.029 4.470 *
128 0.030 8.423 *

Table 2: Processing time needed to compute the autocovariances of a FIVAR process with
d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2), using the Sowell (1989b) method,
the integral-based method and the splitting method presented in section 5.2. * indicates that
the integral covariances for higher lags did not converge.

Maximum Singular Value Our Time Sowell Time Maximum Difference M Required
0.8 0.028 4.552 9.808× 10−10 119
0.9 0.038 5.970 7.827× 10−10 263
0.95 0.058 8.154 7.504× 10−10 564
0.99 0.246 14.733 5.955× 10−8 3138
0.995 0.577 14.848 1.413× 10−5 6479
0.999 4.701 14.775 0.001285 34324

Table 3: Processing time needed to compute the autocovariances of a FIVAR process with
T = 64, d = (0.1, 0.4), Σ = (1, .5, .5, 2), and A1 = α(0.7, 0.1, 0.2, 0.6), where α is a scalar chosen
to vary the maximum singular value. The fourth column shows the maximum absolute difference
between Sowell’s (1989b) method and our method over all 64 autocovariances. The last column
shows the value of M required by the splitting algorithm. Times are the mean processing time
needed for 100 repetitions of the calculation.

is much faster than either of the competing methods, for a range of T and for autoregressive
matrices with singular values both near and far from the unit circle.

Now that we have seen that the splitting algorithm yields the same results as Sowell’s algo-
rithm in a fraction of the time, we will use only the splitting algorithm to compute covariances
in the remainder of this paper.

5.3 VARFI Covariances

To use the splitting algorithm with a VARFI process, we first consider the spectral density of
Xt. We begin with a V ARFI(1, ~d) in which A(L) = I − A1L, where A(L) has all of its roots
outside of the unit circle. In this case, we also assume that A1 is not a defective matrix, so that it
has K unique eigenvectors (see, for example Heath, 2002, chapter 4). Though this requirement
will cause the method not to apply for certain matrices, defective matrices are quite rare and

26

therefore of little concern.

We first write the autocovariances of Xt in terms of the spectral density:

fX(λ) = (I −A1e
−iλ)−1D(e−iλ)−1ΣD(eiλ)−1(I −A∗1eiλ)−1

=

(∞∑
r=0

Ar1e
−iλr

)
×

Σ11 Σ12 · · · Σ1K

Σ21 Σ22
. . . Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK

 •

(1− e−iλ)−d1(1− eiλ)−d1 (1− e−iλ)−d1(1− eiλ)−d2 · · · (1− e−iλ)−d1(1− eiλ)−dK

(1− e−iλ)−d1(1− eiλ)−d2 (1− e−iλ)−d2(1− eiλ)−d2
. . . (1− e−iλ)−d2(1− eiλ)−dK

...
...

. . .
...

(1− e−iλ)−dK (1− eiλ)−d1 (1− e−iλ)−dK (1− eiλ)−d2 · · · (1− e−iλ)−dK (1− eiλ)−dK

×
(∞∑
s=0

(A∗1)seiλs
)

=
∞∑
r=0

∞∑
s=0

Ar1 ×
Σ11 Σ12 · · · Σ1K

Σ21 Σ22
. . . Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK

 •

(1− e−iλ)−d1(1− eiλ)−d1 (1− e−iλ)−d1(1− eiλ)−d2 · · · (1− e−iλ)−d1(1− eiλ)−dK

(1− e−iλ)−d2(1− eiλ)−d2 (1− e−iλ)−d2(1− eiλ)−d2
. . . (1− e−iλ)−d2(1− eiλ)−dK

...
...

. . .
...

(1− e−iλ)−dK (1− eiλ)−d1 (1− e−iλ)−dK (1− eiλ)−d2 · · · (1− e−iλ)−dK (1− eiλ)−dK

×
(A∗1)seiλ(s−r)

where • denotes the Hadamard (element-wise) matrix product. Let A1 = VAΛV −1
A be an eigen-

27

value decomposition of A1. For notational convenience, define:

Q(λ) = V −1
A

Σ11 Σ12 · · · Σ1K

Σ21 Σ22
. . . Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK

 •

(1− e−iλ)−d1(1− eiλ)−d1 (1− e−iλ)−d1(1− eiλ)−d2 · · · (1− e−iλ)−d1(1− eiλ)−dK

(1− e−iλ)−d2(1− eiλ)−d2 (1− e−iλ)−d2(1− eiλ)−d2
. . . (1− e−iλ)−d2(1− eiλ)−dK

...
...

. . .
...

(1− e−iλ)−dK (1− eiλ)−d1 (1− e−iλ)−dK (1− eiλ)−d2 · · · (1− e−iλ)−dK (1− eiλ)−dK

×
(V ∗A)−1

Using this notation, we describe the autocovariances of Xt:

ω(h) =
∫ π

−π
fX(λ)eihλdλ

=
∫ π

−π

∞∑
r=0

∞∑
s=0

VAΛrQ(λ)(Λ∗)sV ∗Ae
−iλ(r−s)eihλdλ

= VA

(∞∑
r=0

∞∑
s=0

Λr
(∫ π

−π
Q(λ)e−iλ(r−s−h)dλ

)
(Λ∗)s

)
V ∗A

Notice that
∫ π
−π Q(λ)e−iλ(r−s−h)dλ is V −1

A (Σ•φ(r−s−h))(V ∗A)−1, where (Σ•φ(r−s−h)) is the
rth autocovariance of a V ARFI(0, ~d); this can be computed using the expression in equation
(13) above. Let Hij(r) be the (i, j) element of V −1

A φ(r − s − h)(V ∗A)−1. Let Λii be the (i, i)
element of Λ. Then, the (i, j) element of the inner sum is:

∞∑
r=0

∞∑
s=0

ΛriiΛ̄
s
jjHij(h+ s− r) =

∞∑
u=−∞

Lij(u)Hij(h− u) (14)

where Λ̄jj is the complex conjugate of Λjj and

Lij(u) =

Λu

ii

1−ΛiiΛ̄jj
u ≥ 0

Λ̄
|u|
jj

1−ΛiiΛjj
u < 0

After the sums in (14) have been calculated for each lag and each i = 1, ...,K and j = 1, ...,K,
the matrix of sums for each u must be multiplied by VA and V ∗A to find the covariances of the
original process.

As before, we want to approximate the sums above by sums with a finite number of terms.
Since each Lij(u) decays exponentially quickly, we again choose M so that

∑∞
u=M+1 Lij(u) < δ

28

for a given tolerance δ and all i, j. Let G = maxV −1
A φ(0)(V −1

A)∗, where the maximum is taken
over all of the entries in the product. Let |Λj∗j∗ | be the absolute value of the largest eigenvalue.

Then, Lij(u) ≤
Λu

j∗j∗

1−|Λj∗j∗ |2
, and we may bound the sum of the omitted terms:

∞∑
u=M+1

H(h− u)Lij(u) ≤ G
∞∑

u=M+1

Λuj∗j∗
1− |Λj∗j∗ |2

= G
ΛM+1
j∗j∗

(1− |Λj∗j∗ |2)(1− |Λj∗j∗ |)

Thus, we may choose M >
log δ+2 log(1−|Λj∗j∗ |)+log(1+|Λj∗j∗ |)

| log Λj∗j∗ |−logG to ensure that the sum of the omitted
terms is less than δ. As in the computation of the autocovariances of FIVAR processes, we
suggest using the fast Fourier transform to compute the convolutions in the case where M >
log T . This yields the following algorithm:

Algorithm 5 Computing the Covariances of a VARFI process to tolerance, δ.

• Compute the eigenvalue decomposition, A1 = VAΛV −1
A and find j∗ such that Λj∗j∗ is the

largest eigenvalue.

• Set G to be the maximum entry of V −1
A φ(0)(V −1

A)∗.

• Set M to be the smallest power of two greater than log δ+2 log(1−Λj∗j∗)+log(1+Λj∗j∗)

log Λj∗j∗−logG .

• For i = 1, ...,K, j = 1, ...,K, and u = −M, ...,M , compute Lij(u) using equation (15).

• Compute the cross-covariances, φ(r), for ARFIMA processes with differencing parameters
~d from lags r = −(M + T), ...,M + T .

• For r = −(M + T), ...,M + T , compute H(r) = V −1
A φ(r)(V −1

A)∗.

• If M ≥ log T , compute the convolution of Lij with Hij for i = 1, ...,K and j = 1, ...,K
using the Fast Fourier Transform:

– Append enough zeroes to Lij and Hij so that the total length is the smallest power of
two which is greater than (length(Lij) + length(Hij)). Call these series L̃ and H̃.

– Compute the inverse Fast Fourier Transforms of L̃ and H̃ and multiply them together
element-by-element.

– Compute the Fast Fourier Transform of the result.

– Return the first (length(Lij) + length(Hij)− 1) elements of the result.

– Extract the middle covariances, from −T to T , from the result.

• If M < log T , then compute the convolutions by summing all the terms directly.

29

• Pre-multiply the matrix for each lag by VA and post-multiply the matrix for each lag by
V ∗A.

Like the algorithm for FIVAR covariances, this algorithm runs in O(min(M2 + MT, (M +
T) log(M + T)). In Table 4, we compare the processing time needed for this method to the
time needed to use the integral definition of the autocovariance sequence. As in the FIVAR
case, using the integral definition of the covariances requires dramatically more computing time,
despite the fact that it is O(T).

One disadvantage to this computational method for VARFI covariances is that VA must be
inverted. While this is generally fast for small K, it makes the computed covariances sensitive
to the condition number of VA. In particular, we have found that when VA is close to singular,
many of the computed covariances are zero, even though their exact values are nowhere near
0. This can occur when A1 differs by a minute amount from a multiple of the identity matrix.
This consideration should inform the choice of initial values in VARFI maximum likelihood
estimation.

To extend this method for computing covariances to a V ARFI(p, ~d) model, we rewrite
that model as a V ARFI(1, ~d#) model. Suppose A(L) = I − A1L − ... − ApL

p. Let X#
t =

vec(Xt, ..., Xt−p+1), and

A#
1 =

A1 A2 ... Ap
IK 0 ... 0
...

...
. . .

...
0 0 · · · 0

d# =

d
0
...
0

Σ# =

Σ 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

Then, D#(L)(I −A#

1 L)X#
t = εt is a V ARFI(1, ~d#, 0) process, and the first K series follow the

original V ARFI(p, ~d, 0) model. As before Σ# is not generally positive definite, but this does not
pose a problem for computing autocovariances. Thus, the method presented above generalizes
to any V ARFI(p, ~d, 0) model with finite p, where we extract the relevant autocovariances as we
did in section 5.2. We do not extend this method to models with moving average components.

30

T Splitting Integral-Based Method
4 0.031 8.362
8 0.031 18.025
16 0.032 37.511
32 0.035 85.087
64 0.040 216.706
128 0.050 623.426

Table 4: Time needed to compute the autocovariances of a VARFI process with d = (0.1, 0.4),
A1 = (0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2) using the integral definition and using the split-
ting algorithm presented in section 5.3. Times are the mean processing time needed over 100
repetitions of the calculation.

5.4 Cointegrated Systems

Consider the cointegrated FIVAR model, A(L)D(L)V Xt = εt. Define the process, Yt, by
A(L)D(L)Yt = εt. Then,

Cov(Xt, Xt−j) = Cov(V −1Yt, V
−1Yt−j)

= V −1Cov(Yt, Yt−j)(V −1)′

Since Yt is a FIVAR process, its autocovariance sequence can be computed using Algorithm 4
above. Then, we may compute the autocovariances of Xt by multiplying each autocovariance
by V −1 and (V −1)′, which takes O(T) additional steps.

6 Computing the Quadratic Form

To compute the quadratic form, XΩ−1X, in the expression for the likelihood in equation (1),
we apply the preconditioned conjugate gradient algorithm. The application of preconditioned
conjugate gradient algorithms to univariate long memory time series began with Deo et al.
(2006); related theoretical results are available in Chen et al. (2006). The algorithm which we
present in this section was developed by Chan and Olkin (1994), but this is its first application
to multivariate long memory time series.

We begin this section with some background on the PCG algorithm. We then describe how
we can apply it most efficiently to multivariate time series, and finally discuss the computational
cost of these methods.

31

6.1 The Preconditioned Conjugate Gradient Algorithm

Preconditioned conjugate gradient methods have been used extensively in solving systems of
linear equations of the form Ωy = b where Ω is symmetric and positive definite (in this section,
we rely heavily on Shewchuk (1994); see his write-up for more details). The conjugate gradient
method and the preconditioned conjugate gradient method are based on using the residual error
at at each iteration to choose a search direction and the optimal distance in that direction.
These methods can be applied to any system in which Ω is symmetric and positive definite.

Algorithm 6 Conjugate Gradient Algorithm (Shewchuk, 1994, see, for example,). Let a tol-
erance, δ, be given. Let the initial value, y(0), be a vector of zeroes. Initialize:

d(0) = b− Ωy(0)

r(0) = b− Ωy(0)

Iterate through the following steps until ‖r(i)‖ < δ.

α(i) =
r′(i)r(i)

d′(i)Ωd(i)

y(i+1) = y(i) + α(i)d(i)

r(i+1) = r(i) − α(i)Ωd(i)

β(i+1) =
r′(i+1)r(i+1)

r′(i)r(i)

d(i+1) = r(i+1) + β(i+1)d(i)

This algorithm chooses a direction, d(i), which is conjugate, or Ω-orthogonal, to all the previous
search directions; that is, d′(i)Ωd(j) = 0 when i 6= j. The choice of direction is based on Gram-
Schmidt conjugation. Each search direction, d(i), is linearly independent, and the distance
chosen for each search direction, α(i), is optimal. That is, the resulting residual is conjugate
to the search direction used to compute it. Because of this, if there were no roundoff error,
each search direction would be linearly independent and used at most once. Thus, with infinite
precision, the algorithm would always converge to exactly the true solution in a number of steps
at most the dimension of Ω.

Because computers have finite precision, we say that the algorithm has converged when the
distance from the computed answer to the true value is less than some tolerance level. In this
algorithm, the search directions with the largest steps are used first, so convergence in this sense
takes fewer steps than would be required with infinite precision. This is an important property

32

when the dimension of Ω is large. To be precise, the error in the ith iteration, e(i) = y(i) − y,
satisfies (Shewchuk, 1994, page 36):

√
e′(i)Ωe(i) ≤ 2

(√
κ(Ω)− 1√
κ(Ω) + 1

)i
e′(0)Ωe(0) = 2

(
1− 2√

κ(Ω) + 1

)i
e′(0)Ωe(0)

where κ(Ω) is the condition number of the matrix Ω, defined as the ratio of the largest to the
smallest eigenvalue of Ω. Given any tolerance level and initial error, we can solve for i to find an
approximate number of iterations required for convergence within that tolerance level. Such an
analysis shows that the required number of iterations is O(

√
κ(Ω)). This shows the importance

of the condition number of Ω to the computational complexity of this algorithm.

When the condition number is large, we can “precondition” the matrix in order to reduce
the condition number. This is based on solving the system of linear equations, C−1Ωy = C−1b,
where C approximates Ω but has an inverse which is easy to compute. This method is effective
when κ(C−1Ω) << κ(Ω). However, one does not simply apply the conjugate gradient method
to the system C−1Ωy = C−1b, since the product C−1Ω is not generally symmetric or positive
definite. Instead, consider the matrix E such that EE′ = C. Then, κ(C−1Ω) = κ(E−1Ω(E−1)′),
and the latter matrix is symmetric and positive definite. Thus, we could solve the system
E−1Ω(E−1)′ŷ = E−1b for ŷ, and then compute y = (E−1)′ŷ; this is called the transformed
preconditioned conjugate gradient algorithm.

Using this version of the algorithm would require computing E. Instead, we define r̂(i) =
E−1r(i) and d̂(i) = E′d(i). We can substitute these into the conjugate gradient algorithm above
to arrive at the untransformed preconditioned conjugate gradient (PCG) algorithm.

Algorithm 7 Preconditioned Conjugate Gradient Algorithm (Shewchuk, 1994, see, for exam-
ple,). Let a tolerance, δ, be given. Let x(0) be a vector of zeroes. Initialize:

r(0) = b− Ωx(0)

d(0) = C−1r(0)

Iterate through the following steps until ‖r(i)‖ < δ.

α(i) =
r′(i)C

−1r(i)

d′(i)Ωd(i)

x(i+1) = x(i) + α(i)d(i)

r(i+1) = r(i) − α(i)Ωd(i)

β(i+1) =
r′(i+1)C

−1r(i+1)

r′(i)C
−1r(i)

d(i+1) = C−1r(i+1) + β(i+1)d(i)

33

Note that this algorithm requires multiplying vectors by C, which can be one of the more
computationally intensive steps of the process. Therefore, we choose C to make the multipli-
cation more tractable. In the case of multivariate time series with K << T , we choose C to
be block circulant. This choice allows us to take advantage of all the computational methods
designed for circulants described in section 3. For an extensive review of the PCG algorithm for
Toeplitz and block-Toeplitz matrices, see Chan and Ng (1996).

6.2 The Choice of Preconditioner

A good preconditioner, C, must approximate Ω. In addition, its inverse must lend itself to
efficient multiplication. We choose to use the “level 1” preconditioners of Chan and Olkin
(1994). In this section, we describe the preconditioner and how to compute it.

We begin by writing our block Toeplitz matrix, Ω, in terms of its blocks:

Ω =

A11 A12 · · · A1K

A21 A22 · · · A2K
...

...
. . .

...
AK1 AK2 · · · AKK

Define Aij(r), for r = −(T − 1), ..., (T − 1), to be the element along the rth sub-diagonal away
from the main diagonal, where a negative r corresponds to diagonals in the lower triangle of the
matrix and a positive r corresponds to diagonals in the upper triangle of the matrix. That is,
we write:

Aij =

Aij(0) Aij(1) · · · Aij(T − 1)
Aij(−1) Aij(0) · · · Aij(T − 2)

...
...

. . .
...

Aij(−(T − 1)) Aij(−(T − 2)) · · · Aij(0)

 ,

As mentioned in the section 3.1, Aij(r) = ω(−r); this allows us to relate the elements of this
matrix to the properties of the underlying time series. We approximate Ω by approximating its
individual blocks. The approximation we use here is T. Chan’s (1988) optimal circulant precon-
ditioner, circ(Aij). This preconditioner is the circulant matrix with first row consisting of entries
c0 = Aij(0) and cr = rAij(−(T−r))+(T−r)Aij(r)

T , r = 1, ..., T − 1. Combining the preconditioners
for all of the blocks yields the following block circulant matrix:

C =

circ(A11) circ(A12) · · · circ(A1K)
circ(A21) circ(A22) · · · circ(A2K)

...
...

. . .
...

circ(AK1) circ(AK2) · · · circ(AKK)

 .

With this theoretical preconditioner, we can now apply the methods we discussed in section
3. First, we store only the first row of each block of the preconditioner. Second, we find a

34

representation for C−1 using the inversion method for block circulant matrices described in
Algorithm 1. Finally, we multiply by Ω and by C−1 using the fast multiplication methods
discussed in 3.3.

6.3 Computational Cost

Chan and Olkin (1994) show that the algorithm described in the previous two sections has a set-
up cost of O(K2T log T +K3T) to compute the preconditioner and a cost of O(K2T +KT log T)
per iteration. In most multivariate time series applications, K is generally fixed and much smaller
than log T , so the relevant costs are O(K2T log T) and O(KT log T).

As we mentioned in 6.1, the number of iterations required for convergence depends on the
condition number of the matrix. By preconditioning, we hope to reduce that ratio so that
convergence is faster. In the case of a covariance matrix based on a univariate long memory
model, Chen et al. (2006) show that the condition number of the preconditioned matrix grows as
O(log3 T), which implies that the overall algorithm with K = 1 runs in O(T log5/2 T) time. Chan
and Olkin (1994) run numerical experiments in which the rth diagonal (for r = −(T−1), ..., T−1)
of the jth block has element 1

(j+1)1.1+(|r|+1)1.1 or 1
(j+1)2.1+(|r|+1)2.1 . In their experiment, they find

that their preconditioner dramatically reduces the number of iterations, but sometimes increases
the number of operations because of the additional multiplications.

In Tables 5 and 6, we report the condition number, before and after pre-conditioning, for the
covariance matrices associated with FIVAR and VARFI processes. Preconditioning dramatically
reduces the condition number in both cases. A simple regression of log(κ(C−1Ω)) on log(log(T))
using the data in those tables produces slope estimates of 1.238 (standard error 0.0492) and
1.259 (standard error 0.0404) for FIVAR and VARFI processes, respectively. We also plot
log(κ(C−1Ω)) versus log(log(T)) in Figures 4 and 5; these plots show that the relationship is
approximately linear. Based on the slope estimate and the linear relationship in the plots, the
conditioned number of the preconditioned matrix appears to grow approximately as O(log5/4 T).

In the case of cointegrated FIVAR series, we may bound the condition number of Ω in
terms of the cointegrating matrix and the properties of the underlying FIVAR series. Let Ω0

be the covariance matrix of the series before they are cointegrated; this is the covariance matrix
associated with the FIVAR process, Yt, described in section 5.4. Let V be the cointegrating
matrix as before. Then, Ω = (V −1 ⊗ I)Ω0((V ′)−1 ⊗ I). Applying the definition of a condition

35

T κ(Ω) κ(C−1Ω) log(κ(Ω)) log(κ(C−1Ω))
4 782.7286 11.5169 6.6628 2.4438
8 1749.7115 22.7916 7.4672 3.1264
16 3322.2824 32.5125 8.1084 3.4816
32 5952.1906 38.2324 8.6915 3.6437
64 10454.6722 42.2234 9.2548 3.7430
128 18250.7736 56.7711 9.8120 4.0390
256 31801.4260 71.3439 10.3673 4.2675
512 55382.3246 83.8753 10.9220 4.4293

Table 5: Condition number of autocovariance matrices for a FIV AR(1, ~d) process with param-
eters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8), for a range of T .

T κ(Ω) κ(C−1Ω) log(κ(Ω)) log(κ(C−1Ω))
4 688.5823 8.2331 6.5346 2.1082
8 1537.3445 16.4618 7.3378 2.8010
16 2892.7798 23.2247 7.9700 3.1452
32 5123.9246 26.9049 8.5417 3.2923
64 8907.3649 32.7076 9.0946 3.4876
128 15417.6091 42.8939 9.6433 3.7587
256 26681.6308 52.1514 10.1917 3.9542
512 46214.2378 59.8457 10.7410 4.0918

Table 6: Condition number of autocovariance matrices for a V ARFI(1, ~d) process with param-
eters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8), for a range of T .

36

Figure 4: Plot of the logged condition number versus log(log(T)) for a FIV AR(1, ~d) process
with parameters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8).

37

Figure 5: Plot of the logged condition number versus log(log(T)) for a V ARFI(1, ~d) process
with parameters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8).

38

number,

κ(Ω) = max
x∈RKT

‖Ωx‖
‖x‖

= max
x∈RKT

(
‖Ωx‖

‖Ω0((V ′)−1 ⊗ I)x‖
× ‖Ω0((V ′)−1 ⊗ I)x‖
‖((V ′)−1 ⊗ I)x‖

× ‖((V
′)−1 ⊗ I)x‖
‖x‖

)
≤ max

x∈RKT

(
‖Ωx‖

‖Ω0((V ′)−1 ⊗ I)x‖

)
× max
x∈RKT

(
‖Ω0((V ′)−1 ⊗ I)x‖
‖((V ′)−1 ⊗ I)x‖

)
× max
x∈RKT

(
‖((V ′)−1 ⊗ I)x‖

‖x‖

)
= κ(V −1 ⊗ I)κ(Ω0)κ((V ′)−1 ⊗ I)
= κ(V)2κ(Ω0)

Using Sowell’s (1989b) representation of bivariate cointegration with V =
(

1 0
ρ 1

)
, κ(V) is

larger for larger values of |ρ|. This shows that both the cointegrating matrix and the autoco-
variance sequence of the associated FIVAR process affect the condition number of the resulting
covariance matrix.

In addition to looking at the condition numbers, we can compare the processing time of
this algorithm to the processing time needed to compute the quadratic form using the method
of Sowell (1989a). We time the Sowell method in two parts. First, the sequence of matrices,
v(n), d(n), A(n, k), must be computed. Then, those matrices must be used to compute the
quadratic form itself. In Table 7, we present the processing time needed to compute the quadratic
form using the PCG algorithm and Sowell’s method. While the two methods are comparable
for very small samples, we see that the PCG algorithm is almost ten times faster than Sowell’s
method at a sample size as small as 64. In Figure 6, we can also see that the time needed to use
Sowell’s method dwarfs the time needed for PCG; this figure also confirms that the processing
time needed for Sowell’s method grows quadratically with the sample size. In Figure 7, we plot
only the processing time needed for the PCG method. As we expect from the discussion of
condition numbers above, the PCG processing time seems to grow at less than a quadratic rate.

6.4 Relationship to Periodogram

In this section, we extend the analysis of Chen et al. (2006) to show that the block-circulant
preconditioner is related to the expected value of the cross-periodogram of the multivariate time
series, Xt. Let I(νs) be the K ×K cross-periodogram of the vector Xt, where νs = 2πs

T is the
sth Fourier frequency. Then, we may write I(νs) and its expectation in terms of the sample

39

T Sowell Setup Sowell Quadratic Form PCG
8 0.007 0.009 0.007
16 0.021 0.021 0.010
32 0.079 0.051 0.015
64 0.276 0.141 0.026
128 1.041 0.417 0.049
256 4.076 1.350 0.090
512 16.149 4.686 0.176
1024 64.07194 17.758 0.351
2048 255.430 67.672 0.730

Table 7: Processing time used to compute XΩ−1X where X is a vector of ones and Ω is the
autocovariance matrix for the FIV AR(0, ~d) with d = (0.1, 0.4) and Σ = (1, 0.5, 0.5, 2). All times
are the mean processing time as measured by R, over 100 repetitions.

Figure 6: Processing time needed for quadratic form computation methods for various sample
sizes.

40

Figure 7: Processing time needed for quadratic form computation using the PCG algorithm.

41

cross-covariance and its expectation (for example Brockwell and Davis, 1993, p. 443):

I(νs) =
T−1∑

r=−(T−1)

ω̂(r) exp(−irνs)

E(I(νs)) =
T−1∑

r=−(T−1)

E(ω̂(r)) exp(−irνs)

where ω̂(r) is the sample cross-covariance of xt at lag r, defined as:

ω̂(r) =

{
1
T

∑T−r
t=1 Xt+rX

′
t 0 ≤ r ≤ T − 1

1
T

∑T
t=−r+1Xt+rX

′
t −T + 1 ≤ r < 0

(This definition differs slightly from Brockwell and Davis (1993, page 407) because we do not
subtract off the sample mean.) Note that E(ω̂(r)) = T−|r|

T ω(r). Meanwhile, we may compute
the elements of Chan and Olkin’s preconditioner for the (i, j) block and its eigenvalues, λij(s),
in terms of the covariances, ωi,j(r):

cr =
1
T

(rωij(−(T − r)) + (T − r)ωij(r))

λij(s) =
T−1∑
r=0

r

T
ωij(−(T − r)) exp(−irνs) +

T−1∑
r=0

T − r
T

ωij(r) exp(−irνs)

=
−1∑

q=−(T−1)

T − |q|
T

ωij(q) exp(−iqνs) +
T−1∑
r=0

T − r
T

ωij(r) exp(−irνs)

where the last line follows from the substitution q = −(T − r). Notice that the last line equals
the (i, j) element of E(I(νs)). Thus, the sth eigenvalue of the (i, j) block of the preconditioner
equals the expected value of the cross-periodogram of Xit and Xjt at νs. This corresponds to
the results found in the univariate case, given in Chen et al. (2006, section 4).

6.5 Prediction

The preconditioned conjugate gradient algorithm which we have discussed can also be applied
to efficiently compute the best linear predictor of multivariate processes. Notice that, for any
Gaussian time series and lead time h > 0,

E(XT+h|X) = E(XT+h) + Cov(X,XT+h)Cov(X)−1(X − E(X))

The preconditioned conjugate gradient algorithm can be used to compute Cov(X)−1(X−E(X)),
and the remaining multiplication can be computed in O(TK) time. This gives an efficient
prediction computation based on the full sample and known covariance structure, which allows
us to avoid computing an autoregressive approximation.

42

7 Computing the Determinant

Let Ω(T) be the covariance matrix of T observations of any multivariate process, Xt, that has
an infinite moving average representation driven by innovations, εt, that have covariance matrix
Σ = E(εtε′t). As before, let the autocovariance matrix of Xt at lag r be ω(r). According to
Sowell (1989a), we may write:

|Ω(T)| =
T−1∏
r=0

|v(r)|

v(r) = v(0)−Υ(r)′Ω(r)−1Υ(r)

Υ(r) =

 ω(−1)
...

ω(−r)

v(r) is the prediction variance of Xt given Xt−1, ..., Xt−r. Notice that we may use the PCG
algorithm presented in section 6 K times to compute Ω(r)−1Υ(r), by using PCG on each column
of Υ(r) separately. This means that v(r) can be computed efficiently for any particular value
of r. However, computing all of the v(r) using the PCG algorithm would be slower than the
O(T 2) time required by Sowell’s (1989a) method presented in section 4.2. Instead, we use our
knowledge of |v(r)| as a function of r and consider a variety of methods which may allow us to
approximate the determinant in less processing time.

We begin by noting a few facts about |v(r)| as a function of r. These facts hold for any
multivariate time series with a moving average representation. First, |v(r)| is a non-increasing
function, since

|v(r)| = |Var(Xt|Xt−1, ..., Xt−r)|
≥ |Var(Xt|Xt−1, ..., Xt−r, Xt−r−1)|
= |v(r + 1)|

Second, |v(r)| is bounded below by |Σ|, since εt is uncorrelated with all past observations. Third,

43

we can use the equations given in Sowell’s algorithm to find that:

v(r)− v(r − 1) = −
r∑
j=1

A(r, j)ω(−j) +
r−1∑
j=1

A(r − 1, j)ω(−j)

=

r−1∑
j=1

(A(r − 1, j)−A(r, j))ω(−j)

−A(r, r)ω(−j)

=

r−1∑
j=1

A(r, r)Ā(r − 1, r − j)ω(−j)

−A(r, r)ω(−j)

= A(r, r)D̄(r)
= A(r, r)Ā(r, r)v(r − 1)

|v(r)|
|v(r − 1)|

= |I −A(r, r)Ā(r, r)|

This result is the analog of the result in the univariate case that v(r)
v(r−1) = 1 − φ2

r , where φr is
the rth partial autocorrelation (for example, Brockwell and Davis, 1993).

In addition, we have found empirically for both FIVAR and VARFI models that |v(r)| is
quite smooth as a function of r, when r > 0. This smoothness does not hold as well at |v(0)|,
since the inclusion of the first lagged value in predictions reduces the prediction variance quite
dramatically because of the long memory. (See Figure 8 for an example.) This observation,
together with the theoretical facts about |v(r)|, inform our choice of methods to compute the
determinant.

In the univariate case, Chen et al. (2006) suggest using an asymptotic approximation given by
Bottcher and Silbermann (1999). Also in the univariate case, Rohit Deo (private communication)
has proposed an exact computational method, which generalizes to VARFI processes but not to
FIVAR processes; we discuss the generalization in section 7.3. Sowell’s (1989a) decomposition
can be used to compute the exact determinant for univariate and multivariate processes, but
it requires O(T 2) time. In this section, we will discuss two alternatives to Sowell’s method.
First, we describe asymptotic approximations. Second, we discuss approximations that use
curve-fitting and show the effectiveness of this method. In the final two sections, we describe
ways to compute VARFI determinants and the determinants of cointegrated systems; these two
methods would be exact if we had exact expressions for the determinants of the covariance
matrices associated with V ARFI(0, ~d) or FIVAR processes respectively. None of the possible
alternatives is exact. However, as we will see in section 9, using the approximation we describe
instead of Sowell’s exact determinant does not change parameter estimates by very much while
it does speed up computation.

44

Figure 8: |v(r)| for VARFI and FIVAR processes for r ranging from 1 to 199.

45

7.1 Asymptotic approximations to determinants

In this section, we will discuss two asymptotic approximations to the determinant. In our
presentation, we will use two different notations for different types of asymptotic formulas. First,
we write f(T) ∼ g(T) if limT→∞

f(T)
g(T) = 1. In some cases, we will also consider limt→∞

f(T)
f(T−1) .

Notice that, if f(T) ∼ g(T) and limT→∞ g(T) 6= 0:

lim
T→∞

f(T)/f(T − 1)
g(T)/g(T − 1)

= lim
T→∞

(
f(T)
g(T)

)(
g(T − 1)
f(T − 1)

)
= lim

T→∞

(
f(T)
g(T)

)
lim
T→∞

(
g(T − 1)
f(T − 1)

)
= 1

and f(T)
f(T−1) ∼

g(T)
g(T−1) . If we take the logarithm of f(T)

g(T) , we have log f(T) = log g(T) + o(1).

We now consider asymptotic approximations to either the overall determinant, |Ω(T)|, or to
the individual |v(r)|. In the univariate case, Bottcher and Silbermann (1999) give an asymptotic
formula for the overall determinant of a univariate ARFIMA process . Taking the ratio of the
approximations for r and r − 1 yields an approximation for |v(r)| in the univariate case. This
approximation is:

|v(r)| ∼ |Σ| exp
(

d2

r − 1

)
log |v(r)| = log |Σ|+ d2

r − 1
+ o(1)

Torsten Ehrhardt (private communication) found that this asymptotically correct formula can
be extended to the multivariate case by replacing d2 by a different constant. In the case of a
V ARFI(0, ~d, 0) or FIV AR(0, ~d, 0) model where Σ is invertible, he has worked out the expression
for this constant. Let δ be the K×K diagonal matrix with e−2πid1 , ..., e−2πidK along the diagonal.
Define

U = Σδ∗Σ−1δ

Let e2πiu1 , ..., e2πiuK be the eigenvalues of U . Since |U | = |Σ||δ−1||Σ−1||δ| = 1, we must have
1 =

∏K
k=1 e

2πiuk = e2πi
∑K

k=1 uk . While it is always possible to choose the uk so that
∑K

k=1 uk = 0,
Ehrhardt’s expression might not hold if the uk chosen are not the principal branch logarithms.
However, Ehrhardt conjectures that for any choice where |Re(uk)−Re(uj)| < 1, the method will
continue to hold. Given choices for uk which obey this condition and which sum to 0, we have

|v(r)| ∼ |Σ| exp
(∑K

k=1 d
2
k−

1
2

∑K
k=1 u

2
k

r−1

)
. We find that, when there is no short memory component,

Ehrhardt’s approximation improves monotonically as n increases, as seen in Figures 9 and 10.
In addition, the error in the approximation is always of the same sign. The assumption that the
error is monotonically decreasing allows us to bound the error in the approximation beyond a
certain point. However, Ehrhardt’s approximation does not give us a way to reduce the error

46

Figure 9: The Ehrhardt approximation to |v(r)| and the true values for |v(r)| for a variety of
FIVAR processes.

beyond the initial approximation because there are no higher order terms. In fact, even if the
term in the exponent is not correct, the approximation will eventually be close, since both the
approximation and the true values tend toward |Σ|; in this case, the errors might not decrease
monotonically and the approximation might not be as accurate for small n; we can see in this
in Figure 10, looking at the two lines with A1 6= 0. However, as we see in Figure 10, Ehrhardt’s
approximation does not work well for small values of r.

We also consider the simpler approximation of the determinant of the covariance matrix
by |Σ|T , as suggested by Dunsmuir and Hannan (1976) and others. This is equivalent to ap-

proximating |v(r)| by Σ for all r. This approximation ignores the exp
(∑K

k=1 d
2
k−

1
2

∑K
k=1 u

2
k

r−1

)
term of Ehrhardt’s approximation. This term does not exist in short memory cases, since each
dk = uk = 0. Furthermore, in the case of a V AR(p) process, v(r) = Σ for all r ≥ p, because the
prediction error based on the previous p observations is simply the next innovation, εt. In that

47

Figure 10: The Ehrhardt approximation to |v(r)| and the true values for |v(r)| for a variety of
FIVAR processes, divided by |Σ| and then logged.

48

case,

|Ω(T)| =
T−1∏
r=0

|v(r)|

= |Σ|T−p
p−1∏
r=0

|v(r)|

Thus, for vector autoregressions, computation of the exact determinant requires the computation
of only a fixed number of initial |v(r)|. Furthermore,

lim
T→∞

1
T

log |Ω(T)| = lim
T→∞

1
T

(
(T − p) log |Σ|+

p−1∑
r=0

log |v(r)|

)
= log |Σ|

For this reason, it seems reasonable to approximate |Ω(T)| by |Σ|T for vector autoregressive
models, even though the term containing log |Ω(T)| is not divided by T in the expression for the
likelihood. In a more general univariate case, under the conditions of a theorem of Grenander
and Szego (1958, page 76), we must have:

lim
T→∞

Ω(T)
|Σ|T

= C

where C is a constant that depends on the moving average representation of Xt. Even in this
simple case, the assumption that C = 1 will not be accurate. This approximation has additional
problems in the long memory case. One of the conditions of Grenander and Szego’s theorem is
that the spectral density, f , is differentiable and that the derivative, f ′, obeys:

|f ′(x1)− f ′(x2)| < K|x1 − x2|α

with K > 0 and 0 < α < 1; this excludes the case of long memory. The approximations
offered by Dunsmuir and Hannan (1976) and Luceno (1996) for more general models assume
that this limit continues to hold. However, the Ehrhardt approximation shows that log |v(r)| =
log |Σ| +

∑K
k=1 d

2
k−

1
2

∑K
k=1 u

2
k

r−1 + o(1). Since
∑T

r=0
1
r−1 diverges as T → ∞, the approximation of

|Ω(T)| by |Σ|T may not be good enough for estimation. Our results in section 9.2 confirm this.

7.2 Determinant approximations using curve-fitting

Instead of using an asymptotic approximation, we consider using regression and curve-fitting as
a way to interpolate between a few computed values of |v(r)|. We expect that the best fits will
come from functions which are decreasing and have a finite asymptotic value, so that they can
mimic the known behavior of |v(r)|. For such a method to be feasible, we must be able to find

49

Figure 11: A plot of r versus r
√
|v(r)| for the FIVAR process with d = (0.1, 0.4), Σ =

(1, 0.5, 0.5, 2) and A1 = (0.7, 0.1, 0.2, 0.9).

a fit that is reasonably accurate based on computing only a subset of the |v(r)| exactly, using
either Sowell’s method or PCG. We focus on fitting:

r
√
|v(r)| = α+ βr

This relationship is equivalent to:

|v(r)| = β2 +
2αβ
r

+
α2

r2

which is decreasing and smooth in r. In this formulation, β2 is able to adjust to match the
asymptotic value of |v(r)|.

We will combine curve-fitting with the application of Sowell’s method to an initial set of
points. Though Sowell’s method is too slow to use to compute |v(r)| for all r = 0, ..., T −1 when
T is large, it can be used for some of the initial points, r = 0, ..., S, where the curve may be
hardest to fit and the approximation is least accurate. As long as the initial segment of points

50

used with Sowell’s method grows more slowly than T , we can use this method to compute some
of the determinants of the prediction variances exactly without much additional computational
cost.

Our current method combines a regression with the application of Sowell’s method. First, we
apply Sowell’s method to compute |v(r)| for r = 0, ..., S, for some S (we use 32 in our program).
Then, we use PCG to compute |v(T − 1)|. We then regress r

√
|v(r)| on r for r = 1, .., S, T − 1.

Using the fitted line, we estimate |v(r)| for all the points where |v(r)| is unknown.

Algorithm 8 Approximating |Ω(T)| through curve-fitting.

1. Use Sowell’s algorithm (Algorithm 3) to compute |v(r)| for r = 0, ..., S.

2. Compute |v(T − 1)| using the PCG algorithm:

(a) Set Υ to be the KT×K matrix which stacks the autocovariance matrices, ω(−1), ..., ω(−r).
(b) Set G to be a KT ×K matrix.
(c) For i = 1, ...,K, compute the ith column of G as Ω−1Υ(·, i) using the PCG algorithm,

where Υ(·, i) is the ith column of Υ.
(d) Compute v(T − 1) = Υ′G.
(e) Compute |v(T − 1)|.

3. Regress r
√
|v(r)| on r for the points r = 1, .., S, T − 1.

4. Compute the fitted values, |̂v(r)| for r = S+ 1, ..., T − 2 based on the fitted values from the
regression.

5. Sum the logarithms of |v(0)|, ...|v(S)|, ̂|v(S + 1)|, ..., ̂|v(T − 2)|, |v(T − 1)| to find the ap-
proximate log determinant.

While this method is ad hoc, Tables 8 and 9 show that it performs well for both FIVAR
and VARFI models. The approximation is closest when A1 is far from the unit circle, but our
approximate log determinant is within 0.5 of Sowell’s exact log determinant even in the case

where A1 =
(
.7 .2
.1 .9

)
, which has one eigenvalue greater than 0.97. The approximation is

better for VARFI than for FIVAR models. The difference in computing time between Sowell’s
exact method and our regression-based approximation is quite large; when T = 1000, Sowell’s
algorithm takes almost 70 times longer than our approximation. Furthermore, we will see
in Section 9.2 that the maximum likelihood estimates for the parameters based on using this
determinant are close to those from Sowell.

Ideally, we also wish to move from this approximation to an approximation which can be
made as close as desired with some additional computations; to accomplish this, we must find

51

T A1 d Sowell
Time

Sowell
Value

Regression
Time

Regression
Value

Naive
Approxi-
mation

250 (0,0,0,0) (.4,.1) 3.966 141.7575 0.292 141.7568 139.9039
250 (.4,.2,.1,.6) (.4,.1) 3.950 143.6495 0.311 143.6363 139.9039
250 (.7,.2,.1,.9) (.4,.1) 3.978 151.4243 0.395 151.2217 139.9039
500 (0,0,0,0) (.4,.1) 18.359 281.7858 0.683 281.7827 279.8079
500 (.4,.2,.1,.6) (.4,.1) 18.302 283.7176 0.751 283.6769 279.8079
500 (.7,.2,.1,.9) (.4,.1) 18.184 291.8804 1.215 291.4227 279.8079
1000 (0,0,0,0) (.4,.1) 74.211 561.7179 0.798 561.7127 559.6158
1000 (.4,.2,.1,.6) (.4,.1) 73.016 563.6902 0.864 563.623 559.6158
1000 (.7,.2,.1,.9) (.4,.1) 74.146 572.2505 1.146 571.5228 559.6158
250 (0,0,0,0) (.4,.49) 3.883 145.9179 0.313 145.9187 139.9039
250 (.4,.2,.1,.6) (.4,.49) 3.895 148.6055 0.320 148.5785 139.9039
250 (.7,.2,.1,.9) (.4,.49) 3.880 157.7377 0.552 157.6283 139.9039
500 (0,0,0,0) (.4,.49) 18.134 286.1003 0.734 286.1026 279.8079
500 (.4,.2,.1,.6) (.4,.49) 18.167 288.7922 0.797 288.7112 279.8079
500 (.7,.2,.1,.9) (.4,.49) 18.198 298.052 1.633 297.8051 279.8079
1000 (0,0,0,0) (.4,.49) 73.729 566.18648 0.858 566.19019 559.6158
1000 (.4,.2,.1,.6) (.4,.49) 72.877 568.88358 0.901 568.75156 559.6158
1000 (.7,.2,.1,.9) (.4,.49) 74.253 578.28725 1.267 577.86903 559.6158

Table 8: The computed value of the log determinant and the processing time required to do the
computation using Sowell’s algorithm and using the regression-based approximation. The naive
approximation is log |Σ|T . All models are FIVAR processes with Σ = (1, .5, .5, 2). Times are the
mean time taken over 100 repetitions of the calculation.

52

T A1 d Sowell
Time

Sowell
Value

Regression
Time

Regression
Value

Naive
Approxi-
mation

250 (0,0,0,0) (.4,.1) 3.930 141.75751 0.294 141.75678 139.9039
250 (.4,.2,.1,.6) (.4,.1) 4.004 143.06590 0.320 143.05746 139.9039
250 (.7,.2,.1,.9) (.4,.1) 3.919 147.48359 0.346 147.44006 139.9039
500 (0,0,0,0) (.4,.1) 17.905 281.78576 0.679 281.78269 279.8079
500 (.4,.2,.1,.6) (.4,.1) 17.998 283.09378 0.738 283.06462 279.8079
500 (.7,.2,.1,.9) (.4,.1) 17.919 287.50407 0.868 287.40505 279.8079
1000 (0,0,0,0) (.4,.1) 73.589 561.71790 0.797 561.71271 559.6158
1000 (.4,.2,.1,.6) (.4,.1) 72.954 563.02573 0.841 562.97756 559.6158
1000 (.7,.2,.1,.9) (.4,.1) 73.227 567.43262 0.905 567.27000 559.6158
250 (0,0,0,0) (.4,.49) 3.949 145.91789 0.304 145.91866 139.9039
250 (.4,.2,.1,.6) (.4,.49) 3.922 148.03271 0.320 148.00202 139.9039
250 (.7,.2,.1,.9) (.4,.49) 3.894 153.65466 0.538 153.57598 139.9039
500 (0,0,0,0) (.4,.49) 17.932 286.10030 0.737 286.10259 279.8079
500 (.4,.2,.1,.6) (.4,.49) 17.871 288.21319 0.795 288.12364 279.8079
500 (.7,.2,.1,.9) (.4,.49) 18.020 293.81212 1.531 293.64902 279.8079
1000 (0,0,0,0) (.4,.49) 72.464 566.18648 0.853 566.19019 559.6158
1000 (.4,.2,.1,.6) (.4,.49) 72.054 568.29840 0.889 568.15291 559.6158
1000 (.7,.2,.1,.9) (.4,.49) 72.932 573.88486 1.213 573.61398 559.6158

Table 9: The computed value of the log determinant and the processing time required to do the
computation using Sowell’s method and using the regression-based approximation. All models
used Σ = (1, .5, .5, 2) and a VARFI process.

53

a way to bound the approximation error and reduce the error if desired. The approximation
method we will present does not do this.

7.3 An alternative way to compute the determinant of a VARFI process

We now consider an alternative way to compute the covariances of the V ARFI(1, ~d) process,
X·. This algorithm for computing the determinant is a generalization of a univariate algorithm
given by Rohit Deo (private communication). This method would be exact if we could compute
the determinant of a V ARFI(0, ~d) process exactly. Since our approximation is close for such
processes, we expect this approximation will also be close.

As before, let Ω be the covariance matrix of X, and ω(h) = Cov(Xt, Xt−h) be the K ×K
autocovariance matrix at lag h. Define a new process, Wt, by:

W1 = X1

Wt = Xt −A1Xt−1

Then, W = (W ′1, ...,W
′
T)′ can be written as W = BX, where |B| = 1. Thus, |Var(W)| =

|B′ΩB| = |Ω|, and it is sufficient to compute |Var(W)|. Notice that:

Var(W) =
(
ω(0) C ′

C Φ(T − 1)

)
where ω(h) is the autocovariance of the original process, Φ(T − 1) is the covariance matrix of a
V ARFI(0, ~d, 0) process of length T − 1 and C is the K(T − 1)×K matrix given by:

C =

 ω(1)−A1ω(0)
...

ω(T − 1)−A1ω(T − 2)

Using a formula for the determinant of a partitioned matrix (Sowell, 1989a), we compute:

|Var(W)| = |Φ(T − 1)| · |ω(0)− C ′Φ(T − 1)−1C|

The first term must be computed using the method given in the previous section. The product
Φ(T − 1)−1C can be computed using the PCG algorithm K times, once for each column of C.
Then, since ω(0) − C ′Φ(T − 1)C is a K × K matrix, computation of the determinant can be
done quickly using standard methods.

7.4 Determinants of Cointegrated Systems

Let γ(j) be the autocovariance sequence of a cointegrated system. Using the results from
section 5.4, we know that γ(j) = V −1ω(j)(V −1)′, where ω(j) is the autocovariance sequence of

54

the corresponding FIVAR process. Let

Γ(T) = (V −1 ⊗ I)Ω̃(T)((V −1)′ ⊗ I) (15)
|Γ(T)| = |V |−2T |Ω(T)| (16)

If we use a lower triangular representation with ones along the diagonal for the cointegrating
relationship, then |V | = 1, and the determinant of the covariance matrix of a cointegrated
system equals the determinant of the covariance matrix of the system before it is cointegrated.
Even if we do not impose a restriction that implies that |V | = 1, this computation in equation
(16) takes O(1) time once |Ω(T)| is known.

8 Efficient Simulation

In this section, we present an efficient algorithm for simulating from a vector ARFIMA process
with normally distributed innovations. Our approach extends the method proposed by Davies
and Harte (1987). Wood and Chan (1994) described the algorithm for a univariate time series
in more detail and extended the algorithm to spatial time series in multiple dimensions but not
to multivariate time series. The algorithm described in this section may be applied to other
stationary multivariate time series, assuming that the conditions described are met.

As before, let Ω be the covariance matrix of the vector containing T periods of a stationary
K-variate time series, where the data is grouped by series. The underlying idea of this algorithm
is to embed Ω in a covariance matrix for a random vector which it is easy to simulate.

Recall that Ω is a block Toeplitz matrix, with K2 blocks of size T × T . Let C(Ω) be a block
circulant embedding of Ω, where each block, Cij(Ω), is of dimension M , with M ≥ 2T − 1 and
odd. We set the first row of C(Ω) equal to ωij(0), ..., ωij(M−1

2), ωij(−M−1
2), ..., ωij(−1). Unlike

the circulant embedding used in section 3.3, this embedding does not include a second diagonal
with ωij(0).

Because C(Ω) is a block circulant matrix, we can apply the results of section 3.2 to write it
as:

C(Ω) = (I ⊗ F ∗)PB(Ω)P ′(I ⊗ F)

where B(Ω) is a matrix with M blocks, B1, ..., BM , of size K×K along the diagonal. Using this
representation, C(Ω)1/2 is straightforward to compute, using either the eigenvalue decomposition
of each Br or the algorithm of Denman and Beavers (1976). Notice, however, that C(Ω) need
not be a positive definite matrix. If it is not, the algorithm below will not apply, since C(ω) must
be a covariance matrix for simulation. However, Wood and Chan (1994, proposition 2) notes
that, in the cases they consider, there is always a sufficiently large M such that the circulant
embedding of size M ×M will be positive definite. We have also found that omitting the second
diagonal of ωij(0) generally results in a matrix that is positive definite. Because we do not repeat

55

ωij(0) but we do repeat ωij(r) for every other r, M must be odd. For the efficiency of the fast
Fourier transform, we recommend choosing M such that it has many small factors; choosing M
to be a power of three allows it to be odd and have many factors. All of these considerations
yield the following algorithm for computing B, which is a specialization of Algorithm 1 to this
case:

Algorithm 9 Preparation for simulation using block circulant embedding.

1. Choose M = 3R, where 3R−1 < 2T − 1 ≤ 3R.

2. Compute the K ×K autocovariances, γ, at lags −M−1
2 , ..., 0, ..., M−1

2 .

3. Set the first row of each block of the circulant embedding equal to ωij(0), ..., ωij(M−1
2), ωij(−M−1

2), ..., ωij(−1).

4. Compute the inverse fast Fourier transform of each first block’s first row. This yields
Br(i, j).

5. For each r = 1, ..,M , compute the eigenvalue decomposition of Br. If any of the eigenvalues
are negative, set M to 3M and return to step 2. Otherwise, compute B1/2

r and store the
result.

Given C(Ω), we require an algorithm to simulate a random vector with that covariance ma-
trix. We extend the univariate algorithm of Wood and Chan (1994, section 5.1.2) to simulation
from a block-circulant covariance matrix. Consider the random variable, U ∼ Normal(0, IM×M).
As long as C(Ω) is positive definite, C(Ω)1/2U exists and has covariance matrix C(Ω). The sub-
vector of C(Ω)1/2U defined by the first T elements of each of the K series has covariance matrix
Ω. Thus, a fast method for simulating C(Ω)1/2U yields a simulation method for the original
multivariate time series. This suggests the following algorithm, in which we describe each step
in terms of the spectral decomposition of C1/2 given in section 3.2:

Algorithm 10 Simulation.

• (I ⊗ F)X: Compute vectors Y1·, ..., YK· of length M with V ar(Yk,·) = FF ∗, using the
method given in Wood and Chan (1994, section 5.1.2).

• P ′(I ⊗ F)X: Combine these vectors in the order (Y11, ..., YK1, ..., Y1M , ..., YKM)′.

• B1/2
Ω P ′(I ⊗ F)X: Compute B1/2

r Yr for each r = 1, ...,M .

• PB1/2
Ω P ′(I ⊗ F)X: Re-sort the vector to group the observations by series instead of by

time.

• (I ⊗ F ∗)PB1/2
Ω P ′(I ⊗ F)X: Take the fast Fourier transform of each Yk,· for k = 1, ...,K.

56

T Sowell Setup Sowell Simulation Circulant Setup Circulant Simulation M
4 0.003 0.005 0.017 0.001 9
8 0.007 0.009 0.047 0.003 27
16 0.021 0.021 0.132 0.008 81
32 0.078 0.052 0.130 0.008 81
64 0.273 0.142 0.375 0.023 243
128 1.039 0.414 1.091 0.070 729
256 4.074 1.365 1.090 0.070 729
512 16.248 4.764 3.257 0.205 2187
1024 63.666 17.698 3.260 0.210 2187

Table 10: Processing time needed to set up for simulation and simulate from a FIV AR(0, ~d)
with d = (0.1, 0.4) and Σ = (1, 0.5, 0.5, 2). Estimates for the setup time are based on 100
repetitions; estimates for the simulation times are based on 1000 repetitions.

• Return the first T observations from each vector, Yk,·.

Consider the time requirements of this method. The initialization algorithm is run once.
Given a choice of M , the computation of the autocovariances and fast Fourier transforms takes
O(M log3M) time, while the eigenvalue calculations take O(M) time; as in the other algorithms
we have presented, larger values of K will slow these steps down. The required M is unknown,
but we found in our experiments that it needed to be increased from the initial value given
in Step 1 of Algorithm 9 when T = 4 (see Tables 10, 11, and 12). In that case, M = O(T).
The simulation step also uses Fast Fourier Transforms, so that it also runs in O(M log3M)
time. In contrast, the method of Sowell (1989a) requires an initial computation of his matrix
decomposition, which takes O(T 2) steps; each simulation takes another O(T 2) steps, since the
computation of:

Xt =
t−1∑
j=1

Ā(t− 1, t− j)Xj + v̄(t− 1)1/2ut

for t = 1, ..., T will require T (T−1)
2 summations.

In Table 10, we show the processing time required for initialization of the algorithm and
for each simulation for both Sowell and the block circulant embedding algorithm. In this test,
the processing time required to compute the covariances for Sowell’s simulation method is not
included in the setup, but it is included in the setup for circulant embedding, since there was
the change that M would need to be increased. Despite this disadvantage, our method always
faster for simulation and is faster for the initialization except for small values of T .

57

Figure 12: Processing time needed to set up for simulation and simulate from a FIV AR(0, ~d)
with d = (0.1, 0.4) and Σ = (1, 0.5, 0.5, 2). Estimates for the setup time are based on 100
repetitions; estimates for the simulation times are based on 1000 repetitions.

T Sowell Setup Sowell Simulation Circulant Setup Circulant Simulation M
4 0.005 0.012 0.222 0.005 27
8 0.013 0.025 0.128 0.005 27
16 0.041 0.058 0.293 0.013 81
32 0.131 0.130 0.275 0.012 81
64 0.450 0.302 0.793 0.039 243
128 1.753 0.824 2.198 0.117 729
256 6.670 2.544 2.118 0.113 729
512 27.383 9.062 6.559 0.352 2187
1024 111.766 36.267 6.741 0.397 2187

Table 11: Processing time needed to set up for simulation and simulate from a FIV AR(1, ~d) with
d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8). Estimates for the setup time
are based on 100 repetitions; estimates for the simulation times are based on 1000 repetitions.

58

Figure 13: Processing time needed for the circulant embedding method to set up for simulation
and simulate from a FIV AR(0, ~d) with d = (0.1, 0.4) and Σ = (1, 0.5, 0.5, 2). Estimates for the
setup time are based on 100 repetitions; estimates for the simulation times are based on 1000
repetitions.

T Sowell Setup Sowell Simulation Circulant Setup Circulant Simulation M
4 0.005 0.010 0.230 0.006 27
8 0.013 0.023 0.153 0.006 27
16 0.052 0.053 0.414 0.016 81
32 0.168 0.107 0.367 0.013 81
64 0.470 0.285 0.762 0.040 243
128 1.599 0.713 2.125 0.109 729
256 7.424 2.425 2.529 0.107 729
512 24.251 7.763 6.096 0.310 2187

Table 12: Processing time needed to set up for simulation and simulate from a V ARFI(1, ~d) with
d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8). Estimates for the setup time
are based on 100 repetitions; estimates for the simulation times are based on 1000 repetitions.

59

9 Maximum Likelihood Estimation and Monte Carlo

We now combine all of the computational methods we have discussed so far to run Monte Carlo
experiments using the various estimation methods. We first discuss how we parameterize our
models to ensure stationarity and invertibility. Second, we use Monte Carlo experiments to
describe the effect of approximating the determinant using the methods discusses in section 7.
Finally, we compare maximum likelihood estimation methods to the Whittle estimator for a
variety of sample sizes.

9.1 Useful parameterizations for maximum likelihood estimation

To ensure that our parameter estimates are associated with a stationary and invertible model,
we must ensure that |d| < 0.5, that Σ is positive definite, and that A(L) has all of its roots
outside the unit circle. The constraints on d can be implemented directly with box constraints.
To ensure that Σ is positive definite, we follow the standard practice of constraining the diagonal
element of its Cholesky decomposition to be positive. In the case where A(L) = I −A1L, A(L)
has all of its roots outside the unit circle if and only if all of the singular values of A1 are less than
one. In order for the covariance computation methods described in section 5 to work, we must
bound the singular values away from one; if they approach one too closely, M in Algorithm 4 or
5 will tend towards infinity. In order to constrain the singular values of A1, we use a modified
version of the parameterization of Ansley and Kohn (1986), in which we ensure that the singular
values of A1 never exceed a given σ < 1 (0.99 in our algorithm). This parameterization results
in a matrix, P , which is unconstrained and which can be mapped one-to-one onto the space of
matrices with singular values less than σ. The algorithms to reparameterize A1 and to return
it to its original form are given below:

Algorithm 11 Conversion of a matrix, A1, to the Ansley-Kohn parameterization, with maxi-
mum singular value, σ.

1. Compute Ã = 1
σA1.

2. Set B equal to the Cholesky decomposition of IK − ÃÃT , where IK is the identity matrix
of size K.

3. Return (B−1)TP1.

Algorithm 12 Conversion of a matrix, P , from the Ansley-Kohn parameterization with max-
imum singular value σ to its original form.

1. Set B equal to the Cholesky decomposition of IK + PP T , where IK is the identity matrix
of size K.

60

2. Set Ã = (B−1)TP .

3. Return σP .

In Ansley and Kohn’s original paper, they set σ = 1; Algorithms 11 and 12 reduce to their
algorithm in that case. Given these parameterizations, we may implement maximum likelihood
using simple box constraints.

9.2 The effects of the determinant approximation

We begin by studying the effects of the determinant approximation on the computed parameter
estimates. In this section, we will compare three estimation methods: exact maximum likelihood
using Sowell’s algorithm, maximum likelihood in which the determinant is approximated in the
most naive way by |Σ|T , and maximum likelihood using the regression approximation to the
determinant presented in Algorithm 8. To compare the three estimation methods, we simulate
datasets of length T = 100 and 200 from FIVAR and VARFI processes with parameters d =

(0.1, 0.4), Σ =
(

1 0.5
0.5 2

)
, and A1 =

(
0.6 −0.1
0.2 0.8

)
. Because of the processing time required

to compute the maximum likelihood estimates using Sowell’s algorithm, all of our results are
based on 100 simulated datasets.

In Tables 13, 14, 15, 16, and 17, we report the mean and standard deviation of the difference
between the estimated parameter values using each approximation method and the estimated
values using exact maximum likelihood. If our approximations were exact, then all of the means
and standard deviations would be 0. For the regression approximation for FIVAR models, the
mean difference never exceeds 0.003 in absolute value, and the standard deviation of the differ-
ence exceeds 0.01 only once. In contrast, the means and standard deviations of the differences
between the parameter estimates using the naive approximation and the parameter estimates
from exact maximum likelihood are quite large, especially for the estimates of the elements of
Σ. For a more graphical illustration, in Figure 14, we show boxplots of the differences in the
estimates of d for a FIVAR process with T = 100. The boxplots confirm that the regression ap-
proximation estimates deviate slightly from the estimates from exact maximum likelihood, while
the naive approximation estimates often differ dramatically from the exact maximum likelihood
estimates. For VARFI models, our regression approximation again does well, though some of
the standard deviations of the differences are higher for the estimates of the elements of Σ. As
before, the naive approximation is a much less successful approximation, though its problems
in estimating Σ are less marked than for FIVAR models. These results provide further evi-
dence that our regression approximation to the determinant works well and that the traditional
approximation of |Ω| by |Σ|T is not a close enough approximation.

We also propose running future Monte Carlo experiments with alternative parameters con-
figurations and models with K > 2.

61

Parameter Regression Approximation Naive Approximation
A11 -0.0018 (0.0042) -0.1221 (0.3771)
A21 -0.0001 (0.0021) -0.0869 (0.4036)
A12 0.0022 (0.0068) 0.0674 (0.3987)
A22 0.0010 (0.0057) -0.2130 (0.4312)
Σ11 0.0002 (0.0015) 656.6 (2189.6)
Σ12 -0.0002 (0.0078) -334.9 (37447.6)
Σ22 0.0007 (0.0078) 531204.2 (1885517)
d1 0.0016 (0.0107) -0.1328 (0.2876)
d2 -0.0008 (0.0069) 0.0797 (0.0560)

Log likelihood -0.0213 (0.1114) 38.65 (60.47)

Table 13: Mean and standard deviation of the difference between the parameter estimate using
the determinant approximation and the parameter estimate from exact maximum likelihood for
a FIVAR model with T = 100. Standard deviations are given in parentheses. Estimates based
on 100 repetitions.

Figure 14: Boxplots of the differences between Sowell’s exact maximum likelihood estimates and
the two approximations in the estimates for d.

62

Parameter Regression Approximation Naive Approximation
A11 -0.0016 (0.0029) -0.1268 (0.3713)
A21 0.0000 (0.0002) -0.1202 (0.3367)
A12 0.0017 (0.0020) 0.0290 (0.3319)
A22 0.0012 (0.0026) -0.1676 (0.3951)
Σ11 0.0001 (0.0002) 294.635 (1306.914)
Σ12 -0.0001 (0.0003) 8157.117 (129832.9)
Σ22 0.0000 (0.0004) 3884703 (24760393)
d1 0.0001 (0.0024) -0.1213 (0.2880)
d2 -0.0010 (0.0022) 0.0596 (0.0436)

Table 14: Mean and standard deviation of the difference between the parameter estimate using
the determinant approximation and the parameter estimate from exact maximum likelihood for
a FIVAR model with T = 200. Standard deviations are given in parentheses. Estimates based
on 100 repetitions.

Parameter Regression Approximation Naive Approximation
A11 -0.0017 (0.0122) -0.1924 (0.1458)
A21 -0.0000 (0.0055) 0.0858 (0.1220)
A12 0.0001 (0.0033) 0.0934 (0.1280)
A22 0.0003 (0.0038) -0.3252 (0.1331)
Σ11 0.0018 (0.0238) -1.4827 (0.5943)
Σ12 -0.00058 (0.0266) 0.8976 (0.4249)
Σ22 0.0012 (0.0158) 99.05134 (1000.237)
d1 -0.0014 (0.0257) -0.0571 (0.1656)
d2 -0.0004 (0.0081) -0.0297 (0.1449)

Table 15: Mean and standard deviation of the difference between the parameter estimate using
the determinant approximation and the parameter estimate from exact maximum likelihood for
a VARFI model with T = 100. Standard deviations are given in parentheses. Estimates based
on 100 repetitions.

63

Parameter Regression Approximation Naive Approximation
A11 0.0004 (0.0078) -0.1904 (0.1349)
A21 -0.0003 (0.0023) 0.0912 (0.0804)
A12 0.0002 (0.0025) 0.0910 (0.1099)
A22 -0.0003 (0.0069) -0.3219 (0.1300)
Σ11 -0.0008 (0.0091) 1.5684 (30.0022)
Σ12 0.0054 (0.1151) -13.1160 (137.6588)
Σ22 -0.0036 (0.0861) 63.4455 (629.2669)
d1 -0.0005 (0.0090) -0.0870 (0.1863)
d2 0.0009 (0.0054) -0.0768 (0.1283)

Table 16: Mean and standard deviation of the difference between the parameter estimate using
the determinant approximation and the parameter estimate from exact maximum likelihood for
a VARFI model with T = 200. Standard deviations are given in parentheses. Estimates based
on 100 repetitions.

Parameter Regression Approximation Naive Approximation
A11 -0.0016 (0.0221) -0.1999 (0.0897)
A21 0.0018 (0.0119) 0.0918 (0.0434)
A12 -0.0006 (0.0120) 0.0817 (0.1209)
A22 0.0003 (0.0125) -0.3481 (0.0971)
Σ11 0.0044 (0.0450) -1.5867 (0.2511)
Σ12 -0.0010 (0.0332) 0.9767 (0.2225)
Σ22 0.0005 (0.0191) 4.2831 (52.8383)
d1 0.0013 (0.0197) -0.1048 (0.1238)
d2 -0.0000 (0.0077) -0.0905 (0.1100)

Table 17: Mean and standard deviation of the difference between the parameter estimate using
the determinant approximation and the parameter estimate from exact maximum likelihood for
a VARFI model with T = 400. Standard deviations are given in parentheses. Estimates based
on 100 repetitions.

Model Sowell Time Regression Approximation Time Naive Approximation Time
VARFI, T = 100 599.386 204.838 43.614
VARFI, T = 200 1977.928 390.172 77.807
VARFI, T = 400 8694.996 694.9787 131.9069

Table 18: Average processing time needed to compute the maximum likelihood estimators for
each algorithm, for a variety of models.

64

T MLE With Regression Approximation Whittle
50 (0.156, 0.106) (0.318, 0.152)
100 (0.150, 0.076) (0.235, 0.135)
200 (0.149, 0.086) (0.234, 0.135)

Table 19: Root mean squared errors of d estimates from a FIVAR model, based on 500 replica-
tions.

T MLE With
Regression
Approxima-
tion

Whittle

50 (0.213, 0.522,
0.522, 0.537)

(0.840, 0.423,
0.423, 1.494)

100 (0.158, 0.507,
0.507, 0.459)

(0.843, 0.423,
0.423, 1.584)

200 (0.158, 0.508,
0.508, 0.459)

(0.840, 0.422,
0.422, 1.580)

Table 20: Root mean squared errors of Σ estimates from a FIVAR model, based on 500 replica-
tions.

9.3 Comparing maximum likelihood estimation to the Whittle estimator

We now run a larger Monte Carlo in which we compare the performance of our maximum
likelihood estimates with the determinant approximation to the performance of the Whittle
estimator. We will test these methods on both FIVAR and VARFI processes with a variety of
sample sizes and parameter configurations. Here, we report preliminary results from simulations

with T = 50, 100, and 200, K = 2, and parameters d = (0.1, 0.4), Σ =
(

1 0.5
0.5 2

)
, and

A1 =
(

0.6 −0.1
0.2 0.8

)
. All of these estimates are based on 500 simulated datasets.

In Tables 19, 20, and 21, we report the root mean squared error of each parameter estimate
for each estimation method. These results show that maximum likelihood using the regression
approximation performs the best in estimating both d and Σ, but the Whittle estimator does
better in estimating the element of A1, particularly the off-diagonal elements. Furthermore, we
see from these results that the root mean squared error seems to be decreasing slowly as the
sample size increases.

We now repeat the experiment with VARFI models. The results are given in Tables 23, 24,
and 25. As in the FIVAR models, the Whittle estimator has the lower root mean squared error
for some parameter estimates while our maximum likelihood estimator has lower root mean

65

Figure 15: Boxplot of the estimated values of d, using maximum likelihood with the regression
approximation and the Whittle estimator. The true values are 0.1 for d1 and 0.4 for d2.

T MLE With
Regression
Approxima-
tion

Whittle

50 (0.214, 0.159,
0.717, 0.127)

(0.160, 0.069,
0.199, 0.098)

100 (0.186, 0.146,
0.713, 0.093)

(0.158, 0.055,
0.137, 0.096)

200 (0.185, 0.145,
0.713, 0.092)

(0.158, 0.053,
0.138, 0.097)

Table 21: Root mean squared errors of A1 estimates from a FIVAR model, based on 500 repli-
cations.

66

T MLE with Re-
gression Approxi-
mation

Whittle

50 137.1381 33.971
100 209.4684 73.24466
200 416.3902 163.9263

Table 22: Average processing time needed for estimation of a VARFI model over 500 repetitions.

T MLE With Regression Approximation Whittle
50 (0.217, 0.228) (0.197, 0.167)
100 (0.210, 0.096) (0.190, 0.132)
200 (0.194, 0.059) (0.211, 0.106)

Table 23: Root mean squared errors of d estimates from a VARFI model, based on 500 replica-
tions.

squared errors for others. For a number of parameters, such as the elements of d and A1, the
Whittle estimator performs better in the smallest sample, but the maximum likelihood estimator
has a smaller RMSE for larger samples. Oddly, the Whittle estimator is dramatically better
for one of the diagonal entries of Σ while the maximum likelihood estimator is dramatically
better for the other. Examination of the mean estimates (not reported) shows that the Whittle
estimates of the elements of Σ are biased toward zero, while the maximum likelihood estimates
of the diagonal elements have an upward bias. Thus, the Whittle estimator fares better when
for the smaller diagonal element, while the maximum likelihood estimator is more successful for
the larger diagonal element.

Using a more extensive set of simulations, with a variety of parameter values for d and A1,
we find that the estimates of d using maximum likelihood with the regression approximation

T MLE With
Regression
Approxima-
tion

Whittle

50 (1.467, 1.481,
1.481, 0.430)

(0.539, 0.779,
0.779, 1.505)

100 (1.521, 1.505,
1.505, 0.303)

(0.567, 0.715,
0.715, 1.588)

200 (1.520, 1.501,
1.501, 0.224)

(0.581, 0.690,
0.690, 1.626)

Table 24: Root mean squared errors of Σ estimates from a VARFI model, based on 500 replica-
tions.

67

Figure 16: Boxplot of the estimated values of d, using maximum likelihood with the regression
approximation and the Whittle estimator. The true values are 0.1 for d1 and 0.4 for d2.

T MLE With
Regression
Approxima-
tion

Whittle

50 (0.162, 0.188,
0.250, 0.113)

(0.149, 0.134,
0.256, 0.105)

100 (0.134, 0.092,
0.221, 0.086)

(0.143, 0.093,
0.225, 0.097)

200 (0.099, 0.070,
0.211, 0.063)

(0.127, 0.069,
0.205, 0.080)

Table 25: Root mean squared errors of A1 estimates from a VARFI model, based on 500 repli-
cations.

68

generally have smaller root mean squared errors than those from the Whittle estimator. As
before, we found that the estimates of Σ from the Whittle estimator were biased toward 0, with
estimates of the diagonal elements of Σ equal to 18% of their true values on average. In contrast,
the estimates using maximum likelihood with the regression approximation had bias under 0.1
in most cases and root mean squared errors under 0.2. Results for estimates of A1 were mixed
in terms of bias and RMSE. The Whittle estimator generally had lower bias and RMSE for
the off-diagonal elements of A1, while the two estimators were evenly matched on the diagonal
elements. Overall, we find that maximum likelihood with the regression approximation performs
better, though computing estimates from both estimators could be helpful in some applications.

10 Data Analysis

In this section, we apply FIVAR and VARFI models to three different datasets. First, we apply
our models to the components of inflation. Second, we discuss an application to a macroeconomic
model of unemployment and inflation. Finally, we discuss an application in meteorology.

10.1 Goods and Services Inflation

We now consider a model for inflation in the goods and services sectors. While inflation is often
considered as a single number, it is actually composed of the price changes across all goods and
services produced in the economy. The relationship of the inflation rates across different sectors
can be helpful for predicting inflation and for understanding how price changes in one sector
affect price changes in other parts of the economy. Peach et al. (2004) modeled inflation in
the goods and services sectors, excluding food and energy, as cointegrated time series, without
allowing for fractional differencing. In this section, we estimate FIVAR and VARFI models
based on overall goods and services inflation, as measured by the Consumer Price Index, for the
period February 1956 through January 2008. The data are available online from the Bureau of
Labor Statistics. The data are show in Figure 17.

We first fit univariate ARFIMA(1, d, 0) models to the two series using maximum likelihood.
The estimates are given in Table 26. According to these estimates, both series are fractionally
integrated. Goods inflation is estimated to have a differencing parameter of 0.2265, while the
differencing parameter of services inflation is estimated to be 0.4837, making it almost non-
stationary. We use these estimates as starting values for our estimation of FIVAR models,
setting all initial off-diagonal elements of A1 and Σ to 0.

We estimate a FIVAR model based on the demeaned data, using both maximum likelihood
and the Whittle estimator. Results are reported in Tables 27. As we found in the Monte
Carlo simulations, the estimates of the covariance matrix based on Whittle estimator are much
closer to 0 than the estimates from maximum likelihood are. Both estimators find that services

69

Figure 17: Annualized goods and services inflation rates, February 1956-January 2008.

Figure 18: Empirical cross-correlation function of goods and services inflation rates.

70

Figure 19: Log modulus of the cross-periodogram of goods and services inflation rates.

Goods Services
A1 0.1053 (0.0032) -0.3165 (0.0013)
Σ 21.2703 (1.4529) 7.0842 (0.1523)
d 0.2265 (0.0016) 0.4837 (0.0000)

Log Likelihood -1266.140 -924.7657

Table 26: Maximum likelihood estimates for goods and services inflation, as univariate series.
Approximate asymptotic standard errors in parentheses.

71

Maximum Likelihood with Regression Approximation Exact Maximum Likelihood Whittle Approximation
A11 0.1024 (0.0034) 0.1023 0.1865 (0.0041)
A21 -0.0204 (0.0006) -0.0204 0.0993 (0.0005)
A12 0.1510 (0.0104) 0.1509 -0.0053 (0.0045)
A22 -0.3101 (0.0022) -0.3103 -0.3354 (0.0025)
Σ11 21.0912 (0.0003) 21.0909 3.3864 (0.0371)
Σ12 0.6260 (0.3120) 0.6257 0.1358 (0.0062)
Σ22 7.0812 (0.0763) 7.0804 1.0947 (0.0039)
d1 0.2281 (0.0017) 0.2282 0.1410 (0.0020)
d2 0.4770 (0.0006) 0.4771 0.4875 (0.0018)

Log likelihood -2187.109 -21887.095 -4501.032

Table 27: FIVAR estimates for goods and services inflation data. The Whittle log likelihood is
the regression approximation to the likelihood at those parameter values. Approximate asymp-
totic standard errors are given in parentheses for all estimators except for Sowell’s exact esti-
mator.

inflation has a larger differencing parameter than goods inflation, with the services differencing
parameter quite close to 0.5. In Figures 20 and 21, we plot the logged modulus of the cross-
periodogram and the logged modulus of the implied cross-spectral densities based on the two
estimators. The spectral density based on the maximum likelihood estimates seems to fit the
cross-periodogram more closely.

We now fit a VARFI model to this data, again using both estimators. The estimated co-
variance matrices are similar, but the maximum likelihood estimate of the smaller differencing
parameter has dropped from 0.22 to 0. This does not mean that goods inflation is now estimated
to have short memory; on the contrary, under the VARFI model the two series are estimated to
have the same memory parameter. In contrast, the Whittle estimates of d are almost unchanged.
As before, we compare the cross-periodogram to the implied cross-spectral densities from the
two estimates in Figures 22 and 23.

Since the FIV AR(1, ~d) and V ARFI(1, ~d) have the same number of parameters, we may
compare their log likelihoods to choose between them. In this case, the VARFI model has a
higher log likelihood. We may write the VARFI model in a form analogous to a VAR, where
the errors driving the VAR are no longer white noise:

goodst = 0.3027goodst−1 + 0.4245servicest−1 + u1t

servicest = −0.0237goodst−1 − 0.3085servicest−1 + u2t(
u1t

(1− L)0.4835u2t

)
∼ Normal

(
0,
(

20.2342 0.4605
0.4605 7.0783

))
Though the goods equation is driven by shocks that have short memory, long memory in goods
inflation is induced by the lagged services inflation. In the services equation, lagged services

72

Figure 20: Log modulus of the cross-periodogram of goods and services inflation rates and of
the impled cross-spectral density of the estimated FIVAR model.

Maximum Likelihood with Regression Approximation Exact Maximum Likelihood Whittle Approximation
A11 0.3027 (0.0014) 0.3027 0.1613 (0.0048)
A21 -0.0237 (0.0005) -0.0237 0.0544 (0.0005)
A12 0.4245 (0.0027) 0.4245 0.0881 (0.0065)
A22 -0.3085 (0.0018) -0.3085 -0.3211 (0.0026)
Σ11 20.2342 (0.8669) 20.2342 3.3736 (0.0366)
Σ12 0.4605 (0.2275) 0.4605 0.1313 (0.0065)
Σ22 7.0783 (0.1619) 7.0783 1.1178 (0.0040)
d1 0.0000 (0.0000) 0.0000 0.1512 (0.0034)
d2 0.4835 (0.0004) 0.4835 0.4890 (0.0018)

Log likelihood -2174.263 -2174.249 -4372.655

Table 28: VARFI estimates for goods and services inflation data. The Whittle log likelihood is
the regression approximation to the likelihood at those parameter values. Approximate asymp-
totic standard errors are given in parentheses for all estimators except for Sowell’s exact esti-
mator.

73

Figure 21: Log modulus of the cross-periodogram of goods and services inflation rates and of
the impled cross-spectral density of the estimated FIVAR model, using the Whittle estimator.

74

Figure 22: Log modulus of the cross-periodogram of goods and services inflation rates and of
the impled cross-spectral density of the estimated VARFI model.

75

Figure 23: Log modulus of the cross-periodogram of goods and services inflation rates and of
the impled cross-spectral density of the estimated VARFI model.

76

Figure 24: Time series of the linear combination of lagged goods and services inflation that the
VARFI model implies is white noise.

inflation has a negative coefficient; however, services inflation is persistent because of the persis-
tence in the shock process. While lagged services inflation has a significant influence on goods
inflation, lagged goods inflation has little effect on services inflation.

Rewriting the first equation in the VARFI model, we find that wt = goodst−0.3027goodst−1−
0.4245servicest−1 is estimated to be white noise. To confirm this, we compute wt over the sample
period and plot it in Figure 24. This series appears to be approximately white noise, though
there are some periods of increased volatility, particularly near the end of the sample period.
The log periodogram, shown in Figure 25, confirms that all long memory has been removed by
this linear combination.

For comparison, we also fit a short memory vector autoregressive model to the data. We
consider two lag lengths. First, we use a V AR(2), since that model has only two more parameters
than a FIV AR(1, ~d) or V ARFI(1, ~d) model does. Second, we use the AIC to choose a lag length,
and a vector autoregressive model with 10 lags is chosen. We plot the log modulus of the cross-
periodogram and the log modulus of the spectral density implied by the estimates of these two
models in Figures 26 and 27. When only two lags are included, the fact that the spectral density
is finite at 0 is quite evident; the model cannot match the peak in the periodogram at 0. When

77

Figure 25: Log periodogram of the linear combination of lagged goods and services inflation
that the VARFI model implies is white noise.

78

Figure 26: Log modulus of the cross-periodogram of goods and services inflation rates and of
the impled cross-spectral density of the estimated VAR(2) model.

10 lags are included, the model fits the peak, but the spectral density is less smooth, suggesting
overfitting.

As a final comparison among the models, we compute out-of-sample predictions for February
through May 2008. For goods inflation, the V AR(2) performed best; for services inflation,
the VARFI model with the maximum likelihood estimates performs best. In both cases, the
V AR(10) was by far the worst performer. In Figure 28, we plot the forecasts and realization
of services inflation. At the end of the sample, services inflation had been below its mean for
26 consecutive months. The long memory structure of the VARFI and FIVAR models could
model this persistence, and predicted that inflation would move very slowly toward its mean.
In contrast, the predictions based on the V AR(2) returned to the mean at an exponential rate.
This difference accounts for the improved performance of the long memory models for services
inflation.

79

Figure 27: Log modulus of the cross-periodogram of goods and services inflation rates and of
the impled cross-spectral density of the estimated VAR(10) model.

Goods Services
FIVAR-MLE 5.264 1.236

FIVAR-Whittle 5.189 1.256
VARFI-MLE 5.211 1.215

VARFI-Whittle 5.194 1.280
VAR(2) 5.008 1.327
VAR(10) 6.263 2.232

Table 29: Root mean squared errors for out-of-sample from February to May 2008.

80

Figure 28: Realized out-of-sample services inflation and forecasts from the V AR(2), VARFI and
FIVAR models.

10.2 Phillips Curve Data

One of the most basic models in macroeconomics is the Phillips curve, which relates the unem-
ployment rate to inflation. (See a macroeconomics textbook, such as Hall and Taylor (1997)
for more background.) The simplest form of the Phillips curve states that an increase in the
slack in the economy, as measured by the unemployment rate, leads to a decrease in inflation.
Empirically, we see that inflation is generally persistent (see Figure 29); this is often explained
in models by assuming that people have expectations about inflation, and that the effect of
the unemployment rate on inflation is relative to the expectations. The simplest form of in-
flation expectations sets the expectation for tomorrow equal to today’s inflation (for example,
Wooldridge, 2000, example 11.5). Such a model implies a relationship between the level of the
unemployment rate and the first difference of the inflation rate; if the unemployment rate were
constant, this would imply a unit root in inflation. However, as we see Figure 29, the unemploy-
ment rate is also persistent, while inflation is persistent but is also likely to be mean-reverting;
this suggests that a multivariate long memory model might be a better description of the data.
We will not justify the use of a FIVAR or VARFI model using economic theory, but only as
a useful description of the data. In this estimation, we use annual data on the unemployment
rate and the inflation rate from 1948 to 1996.1 The estimated cross-correlation function for this
data is given in Figure 30. This figure shows that past inflation is strongly correlated with the
future unemployment rate, which runs counter to the usual understanding of the Phillips curve,
in which the slack in the economy, as measured by the unemployment rate, would affect future
inflation.

We first fit FIVAR models to these data using maximum likelihood with the regression
1This dataset is available from the website of Jeffrey Wooldridge at

http://www.msu.edu/ ec/faculty/wooldridge/book2.htm, as Phillips.RAW.

81

Figure 29: Annual unemployment rate and inflation rate used for estimating the Phillips curve.

82

Figure 30: The empirical cross-correlation function of the unemployment rate and the inflation
rate.

83

Maximum Like-
lihood with Re-
gression Approx-
imation

Exact Maximum
Likelihood

Whittle Approx-
imation

A1 (-0.1085, 0.0668,
0.9360, 0.3120)

(-0.1075, 0.0670,
0.9361, 0.3119)

(-0.1788, 0.2524,
0.3441, 0.4774)

Σ (2.3052, -1.3910,
-1.3910, 4.9402)

(2.3056, -1.3912,
-1.3912, 4.9398)

(0.3000, -0.2941,
-0.2941, 1.1282)

d (0.3601, 0.3364) (0.3595, 0.3365) (0.4900, 0.0137)
Log likelihood -105.3 -105.2991 -357.2535

Table 30: FIVAR estimates for Phillips curve data. The Whittle log likelihood is the regression
approximation to the likelihood at those parameter values.

approximation, exact maximum likelihood using Sowell’s method, and Whittle’s approximation
to the likelihood. The estimated parameter values are given in Table 30. Using our default
initial values, the estimates from Sowell’s method failed to converge; when we used the FIVAR
estimates as the initial values, the estimates converged to the values that we report. While the
exact maximum likelihood estimate and the estimate from the regression approximation match
quite closely, as we would expect from section 9.2, the Whittle estimate is very different, and the
Whittle estimate for d1 is on the boundary of the parameter space. In the maximum likelihood
estimates, the estimated differencing parameters are quite close. Since the FIVAR and VARFI
models are identical when the differencing parameters are equal, this suggests that the VARFI
model will have similar parameter estimates.

To check this hypothesis, we estimate a VARFI model with the same data. The estimates
are reported in Table 31; the estimates for both maximum likelihood methods use the FIVAR
estimates as initial values. In this case, the Whittle estimates of the parameters are somewhat
closer to the maximum likelihood estimates, though the estimates of the elements of Σ are still
much closer to 0 than the maximum likelihood estimates of Σ.

We have estimated two distinct models based on the same data. Comparing the maximum
likelihood estimates from the two models, we see that the VARFI estimates of the differencing
parameters differ by more than the FIVAR estimates do, but that the averages of the estimated
differencing parameters are almost identical (0.344 for the VARFI model and 0.348 for the
FIVAR model). The estimates of the innovation variances match closely, while the estimates of
the autoregressive parameters are of the same signs and similar magnitudes. Because these two
models have the same number of parameters, we may choose between them based on the log
likelihoods. Using this criterion, we prefer the VARFI model to describe the relationship between
the unemployment rate and inflation. In Figure 31, we plot the implied cross-covariances based
on the VARFI model. The asymmetric pattern of slowly decaying cross-covariances is captured
nicely by the VARFI model.

84

Figure 31: The cross-correlation function of the unemployment rate and the inflation rate implied
by the VARFI model.

85

Maximum Like-
lihood with Re-
gression Approx-
imation

Exact Maximum
Likelihood

Whittle Approx-
imation

A1 (-0.2228, 0.0449,
0.9020, 0.3601)

(-0.2226, 0.0449,
0.9020, 0.3601)

(-0.0110, 0.2807,
0.2600, 0.1255)

Σ (2.2248, -1.4736,
-1.4736, 4.9647)

(2.2252, -1.4741,
-1.4741, 4.9643)

(0.3195, -0.3231,
-0.3231, 1.1791)

d (0.4480, 0.2402) (0.4480, 0.2411) (0.4677, 0.3831)
Log likelihood -104.0927 -104.0907 -315.5599

Table 31: VARFI estimates for Phillips curve data. The Whittle log likelihood is the regression
approximation to the likelihood at those parameter values.

As we discussed in Section 2.2, a VARFI model is a vector autoregression driven by fraction-
ally integrated white noise. That means that we may write this VARFI model as:

unemp(t) = 0.223unemp(t− 1)− 0.045infl(t− 1) + u1t (17)
infl(t) = −0.902unemp(t− 1)− 0.360infl(t− 1) + u2t (18)

where (u1t, u2t) are distributed as fractionally integrated white noise with covariance matrix(
2.225 −1.473
−1.473 4.965

)
and differencing parameters (0.448, 0.240). Equation 18 matches the tra-

ditional intuition about the Phillips curve: an increase in the unemployment rate is associated
with a decrease in the inflation rate in the next period. We also find that an increase in inflation
is associated with a decrease in the unemployment rate in the next period. In this model, though,
the “shocks” are correlated across time, which leads to more persistence in both inflation and
the unemployment rate, despite the negative coefficients on the AR(1) parameter in Equation
18. Thus, the VARFI model matches the basic economic theory of the Phillips curve but can
also match the empirical persistence in the cross-covariances.

For comparison, we also fit a vector autoregressive model to this data. The Akaike Infor-
mation Criterion suggests a lag length of 2 for this data. The parameter estimates for a vector
autoregressive model of order 2 are given in Table 32. The estimated covariance matrix for

the innovations in this model is
(

0.7929 −0.3482
−0.3482 4.0797

)
. Notice that the estimated covariance

matrix entries lie between the maximum likelihood estimates and the Whittle estimates of Σ.
While we cannot compare the VAR coefficients to the VARFI coefficients in the same way, we
can compare the implied autocovariance functions. The cross-covariance function implied by
the VAR(2) is given in Figure 32. In contrast to the covariances from the VARFI model, the
covariances from the VAR model start lower and decay to 0 quite quickly. We also note that
the conditional log likelihood of the VAR(2) is -154.783. Since this VAR has been estimated
conditional on the first two periods, we must add on the likelihood of the initial observations
in order to make the likelihood comparable to the unconditional likelihood given in Table 31.

86

Unemployment Rate Inflation
Unemployment Rate - Lag 1 0.67779 (0.15544) -0.5224 (0.3526)

Inflation - Lag 1 0.14147 (0.05766) 0.7737 (0.1308)
Unemployment Rate - Lag 2 -0.07806) (0.13205 0.5458 (0.2995)

Inflation - Lag 2 0.05758 (0.06735) -0.0297 (0.1528)

Table 32: Parameter estimates from a VAR(2) model for the Phillips curve data. Standard
errors are given in parentheses.

Maximum Likelihood
with Regression Approxi-
mation

Exact Maximum Likeli-
hood

Whittle Approximation

A1 (-0.0299, -0.0600, -0.0096,
0.1672, -0.3953, 0.1866, -
0.2486, 0.1054, 0.1785)

(-0.0298, -0.0596, -0.0092,
0.1667, -0.3956, 0.1864, -
0.2488, 0.1051, 0.1784)

(0.0257, 0.2750, -0.1787, -
0.3346, 0.6549, 0.2596, -
0.3561, 0.3588, 0.3096)

Σ (9.8310, 5.6902, 6.7674,
5.6902, 10.0516, 5.5276,
6.7674, 5.5276, 9.6809)

(9.8317, 5.6902, 6.7678,
5.6902, 10.0506, 5.5285,
6.7678, 5.5285, 9.6820)

(1.3921, 0.7775, 0.8253,
0.7775, 1.6941, 0.7477,
0.8253, 0.7477, 1.2596)

d (0.0004, 0.2464, 0.0982) (0.0000, 0.2460, 0.0980) (-0.1832, -0.4900, -0.2468)
Log likelihood -380.3562 -380.3556 -1159.296

Table 33: FIVAR estimates for the precipitation data. All log likelihoods are the exact log
likelihoods computed using Sowell’s algorithm at the estimated parameter values.

Using the unconditional covariances of a VAR(2), we find that the likelihood of the first two
observations is -22.5925. Summing the two parts of the log likelihood, we find that the VAR
model has a log likelihood of -177.3755, which is lower than the likelihood of the VARFI model,
despite including two more estimated parameters. Thus, the VARFI model is a better fit to
these data than a vector autoregression is.

10.3 Great Lakes Precipitation

We now model data on precipitation in the Great Lakes. This data, from Hipel and McLeod2,
measures the annual precipitation, in inches, on Lakes Huron, Michigan, and Superior from
1900 to 1986. The autocorrelation functions of the three series, in Figure 33, suggest that the
series for Lakes Huron and Superior have some long memory, while Lake Michigan’s series has
short memory or a differencing parameter very close to zero. Furthermore, the cross-correlation
function of Lakes Huron and Superior, shown in Figure 33 seems to decay slowly. The two
cross-correlation functions with Lake Michigan decay more quickly.

2These data are available online from http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/ in the
meteorology section.

87

Figure 32: The cross-correlation function of the unemployment rate and the inflation rate implied
by the VAR(2) model.

88

Figure 33: The empirical auto-correlation and cross-correlations function of the annual precipi-
tation at Lakes Superior, Huron, and Michigan.

89

Maximum Likelihood
with Regression Approxi-
mation

Whittle Approximation

A1 (-0.2081, -0.3401, -0.8997,
-0.7509, -0.4554, 0.3307, -
0.4317, 0.4014, -0.0602)

(-0.2798, 0.3268, -0.0757,
-0.4089, 0.2689, 0.3370, -
0.4194 0.3236, 0.1464)

Σ (2.8295, 3.3341, 3.4696,
3.3341, 3.9288, 4.1146,
3.4696, 4.1146, 11.0970)

(1.4674, 0.8552, 0.9218,
0.8552, 1.6725, 0.8563,
0.9218, 0.8563, 1.4106)

d (-0.4900, -0.3196, 0.1498) (0.0533, -0.2027, 0.0698)
Log likelihood -583.5166 -926.7704

Table 34: VARFI estimates for the precipitation data. All log likelihoods are the exact log
likelihoods computed using Sowell’s algorithm at the estimated parameter values.

In Tables 33 and 34, we report the estimated parameter values for the FIVAR and VARFI
models. Because the likelihood of the FIVAR model is dramatically higher than that of the
VARFI model, we focus on the FIVAR model as the better description of the data. According
to the maximum likelihood estimates of the FIVAR model, the precipitation at Lake Superior
has the largest differencing parameter, while the differencing parameter of the precipitation at
Lake Michigan is almost 0. The cross-covariances between Lake Huron and Lake Superior are
plotted in Figure 34.

11 Conclusion

This paper has discussed two multivariate generalizations of fractionally integrated autoregres-
sive models. While the two models appear similar at first glance, their implications differ
dramatically. One model leads to series with different orders of integration, while the other
can lead to series which have the same order of integration but a relationship like cointegration
among them. We have also described computationally efficient methods for using these two
models. The algorithms for simulation and computing the quadratic form can be applied to any
multivariate model, not just FIVAR and VARFI models. Finally, we have fit these models to
data.

Much research remains to be done, because these models are relatively new. There are likely
to be theoretical results on the growth of the condition number of Ω, just as there are in the
univariate case. It make also be possible to prove whether it is always possible to simulate
if sufficiently many covariances are used. It is also unknown whether there is a more elegant
algorithm for computing the determinant. Work also remains to be done on cointegration in these
models. We hope that finding algorithms which make computation with these models faster will
allow them to enter wider use, so that long memory can be addressed in a multivariate context.

90

Figure 34: The cross-covariance function between Lake Huron and Lake Superior implied by the
maximum likelihood estimate of the FIVAR model.

91

References

Ansley, C. F. and Kohn, R. “A note on reparameterizing a vector autoregressive moving average
model to enforce stationarity.” Journal of Statistical Computation and Simulation, 24:99–106
(1986).

Baillie, R. T. “Long memory processes and fractional integration in econometrics.” Journal of
Econometrics, 73:5–59 (1996).

Bertelli, S. and Caporin, M. “A note on calculating autocovariances of long-memory processes.”
Journal of Time Series Analysis, 23(5) (2002).

Bottcher, A. and Silbermann, B. Introduction to large truncated Toeplitz matrices. Springer
(1999).

Brockwell, P. J. and Davis, R. A. Time Series: Theory and Methods. Springer-Verlag (1993).

Chan, R. H. and Ng, M. K. “Conjugate gradient methods for Toeplitz systems.” SIAM Review ,
38(3):427–482 (1996).

Chan, T. F. “An optimal circulant preconditioner for Toeplitz systems.” SIAM Journal of
Statistical Computation, 9:766–771 (1988).

Chan, T. F. and Olkin, J. A. “Circulant preconditioners for Toeplitz-block matrices.” Numerical
Algorithms, 6:89–101 (1994).

Chen, W., Hurvich, C. M., and Lu, Y. “On the correlation matrix of the discrete Fourier
transform and the fast solution of large Toeplitz systems for long-memory time series.” Journal
of the American Statistical Association, 101(474):812–822 (2006).

Chung, C.-F. “Calculating and analyzing impulse responses for the vector ARFIMA model.”
Economics Letters, 71:17–25 (2001).

Davies, R. and Harte, D. “Tests for the Hurst effect.” Biometrika, 74:95–101 (1987).

Dempster, A. P., Laird, N., and Rubin, D. “Maximum likelihood from incomplete data via the
EM algorithm.” Journal of the Royal Statistical Society: Series B , 39:1–38 (1977).

Denman, E. D. and Beavers, A. N. “The matrix sign function and computations in systems.”
Applied Mathematics and Computation, 2:63–94 (1976).

Deo, R., Hurvich, C., and Lu, Y. “Forecasting realized volatility using a long-memory stochastic
volatility model: estimation, prediction and seasonal adjustment.” Journal of Econometrics,
131(1-2):29–58 (2006).

Doornik, J. A. and Ooms, M. “Computational aspects of maximum likelihood estimation of
autoregressive fractionally integrated moving average models.” Computational Statistics and
Data Analysis, 42(3):333–348 (2003).

92

Dunsmuir, W. and Hannan, E. “Vector linear time series models.” Advances in Applied Proba-
bility , 8(2):339–364 (1976).

Granger, C. W. J. and Joyeux, R. “An introduction to long memory time series models and
fractional differencing.” Journal of Time Series Analysis, 1 (1980).

Grenander, U. and Szego, G. Toeplitz Forms and Their Applications. University of California
Press (1958).

Hall, R. E. and Taylor, J. B. Macroeconomics. W. W. Norton and Company (1997).

Hamilton, J. D. Time Series Analysis. Princeton University Press (1994).

Hannan, E. Multiple Time Series. John Wiley and Sons, Inc. (1970).

Harville, D. A. “Maximum likelihood approaches to variance component estimation and to
related problems.” Journal of the American Statistical Association, 72:320–338 (1977).

Heath, M. T. Scientific Computing: an Introductory Survey . McGraw-Hill (2002).

Hosking, J. “Fractional differencing.” Biometrika, 68(1):165–176 (1981).

Hosoya, Y. “The quasi-likelihood approach to statistical inference on multiple time-series with
long-range dependence.” Journal of Econometrics, 73 (1996).

Hualde, J. and Robinson, P. “Root-n-consistent estimation of weak fractional cointegrations.”
Journal of Econometrics, 140:450–484 (2007).

Lobato, I. N. “Consistency of the averaged cross-periodogram in long memory time series.”
Journal of Time Series Analysis, 18(2):137–155 (1997).

Luceno, A. “A fast likelihood approximation for vector general linear processes with long series:
Application to fractional differencing.” Biometrika, 83(3):603–614 (1996).

Martin, V. L. and Wilkins, N. P. “Indirect estimation of ARFIMA and VARFIMA models.”
Journal of Econometrics, 93:149–175 (1999).

Peach, R. W., Rich, R. W., and Anoniades, A. “The Historical and Recent Behavior of Goods
and Services Inflation.” Economic Policy Review , 10:19–31 (2004).

Ravishanker, N. and Ray, B. K. “Bayesian analysis of vector ARFIMA processes.” Australian
Journal of Statistics, 39:295–312 (1997).

—. “Bayesian prediction for vector ARFIMA processes.” International Journal of Forecasting ,
18(2):207–214 (2002).

Robinson, P. and Hualde, J. “Cointegration in fractional systems with unknown integration
orders.” Econometrica, 71(6):1727–1766 (2003).

93

Shewchuk, J. R. “An introduction to the conjugate gradient method without the agonizing
pain.” (1994). Unpublished manuscript.

Sowell, F. “A decomposition of block Toeplitz matrices with applications to vector time series.”
(1989a). Unpublished manuscript.

—. “Maximum likelihood estimation of fractionally integrated time series models.” (1989b).
Unpublished manuscript.

Tsay, W.-J. “Maximum likelihood estimation of stationary multivariate ARFIMA processes.”
(2007). Unpublished manuscript.

Weisstein, E. “Hypergeometric function.” (2008). http://mathworld.wolfram.com/HypergeometricFunction.html.

Whittle, P. “On the fitting of multivariate autoregressions, and the approximate canonical
factorization of a spectral density matrix.” Biometrika, 50(1-2):129–134 (1963).

Wood, A. T. and Chan, G. “Simulation of stationary Gaussian processes in [0, 1]d.” Journal of
Computational and Graphical Statistics, 3(4):409–432 (1994).

94

