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Abstract. Tree induction is one of the most effective and widely used methods for
building classification models. However, many applications require cases to be ranked
by the probability of class membership. Probability estimation trees (PETSs) have
the same attractive features as classification trees (e.g., comprehensibility, accuracy
and efficiency in high dimensions and on large data sets). Unfortunately, decision
trees have been found to provide poor probability estimates. Several techniques
have been proposed to build more accurate PETSs, but, to our knowledge, there has
not been a systematic experimental analysis of which techniques actually improve
the probability-based rankings, and by how much. In this paper we first discuss
why the decision-tree representation is not intrinsically inadequate for probability
estimation. Inaccurate probabilities are partially the result of decision-tree induction
algorithms that focus on maximizing classification accuracy and minimizing tree size
(for example via reduced-error pruning). Larger trees can be better for probability
estimation, even if the extra size is superfluous for accuracy maximization. We then
present the results of a comprehensive set of experiments, testing some straight-
forward methods for improving probability-based rankings. We show that using a
simple, common smoothing method—the Laplace correction—uniformly improves
probability-based rankings. In addition, bagging substantially improves the rankings,
and is even more effective for this purpose than for improving accuracy. We conclude
that PETs, with these simple modifications, should be considered when rankings
based on class-membership probability are required.

Keywords: ranking, probability estimation, classification, cost-sensitive learning,
decision trees, Laplace correction, bagging

1. Introduction

Tree-induction programs have received a great deal of attention over
the past fifteen years in the fields of machine learning and data mining.
Several factors contribute to their popularity. Tree-induction programs
are fast and effective (Lim, Loh, & Shih, 2000). They work remarkably
well with no tweaking of parameters, which has facilitated their wide
use in the comparison of different learning algorithms. Tree induction
also works comparatively well with very large data sets (Provost &
Kolluri, 1999), with large numbers of variables, and with mixed-type
data (continuous, nominal, Boolean, etc.). These qualities result in part
from the simple yet powerful divide-and-conquer algorithm underly-
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ing tree learners, and in part from the high-quality software packages
that have been available for learning decision trees (most notably,
CART (Breiman, Friedman, Olshen, & Stone, 1984) and C4.5 (Quinlan,
1993)).

As they have been used in most research and applications, tree
induction programs produce classifiers (we do not consider regression
here). These are models that map instances described by a vector of
independent variables to one of a set of classes. However, as described
below, in many applications this is not sufficient; a ranking based on
the probability of class membership is needed, for example, so that a
person can consider first the cases most likely to belong to the class.
As we will show, the model that produces the best classifications does
not necessarily produce the best probability-based rankings.

Because of the attractive properties of tree induction, probability
estimation trees (PETs)—trees that estimate the probability of class
membership—are seeing increasing use in such applications. Unfortu-
nately, trees have been observed to produce poor estimates of class
probabilities (Breiman, 1998, 2000; Pazzani, Merz, Murphy, Ali, Hume,
& Brunk, 1994; Smyth, Gray, & Fayyad, 1995; Bradley, 1997; Provost,
Fawcett, & Kohavi, 1998). Several researchers have proposed techniques
to improve the estimates, yet to our knowledge there has not been a
systematic study of their efficacy for ranking.

In this paper, we present a study of how well these techniques
improve the quality of rankings based on estimated class-membership
probability. We first discuss prior work using and improving probability
estimation trees. We then show that the decision tree representation is
not inherently doomed to produce poor estimates, and that part of the
problem is that modern decision-tree induction algorithms are biased
against building accurate PETs. We use the results of this analysis and
the suggestions of prior work to make a number of simple modifications
to the popular decision-tree learning program C4.5. We apply the first
pair of modifications to some simple synthetic problems, demonstrating
the improvement in the probability estimates. We then report the re-
sults of a comprehensive experiment in which several modifications are
applied to a wide variety of benchmark data sets. The results provide
strong evidence that it is indeed possible to improve substantially the
quality of probability-based ranking models produced by tree induction.

2. Prior work

PETs recently have seen increasing use by practitioners and researchers,
for example in speech recognition (Jelinek, 1997), as node models in
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Bayesian networks (Friedman & Goldszmidt, 1996), in the recently
introduced dependency-network representation and its application to
collaborative filtering and other areas (Heckerman, Chickering, Meek,
Rounthwaite, & Kadie, 2000), in network diagnosis (Danyluk & Provost,
2002), and in cost-sensitive learning research (Domingos, 1999; Provost
et al., 1998). As described above, tree induction has many attractive
properties. Under what conditions would it be desirable or necessary
for a learned tree to produce effective probability-based rankings?

In many situations, rankings are more appropriate than categorical
predictions. For example, a news-story filter or a web-page recom-
mender may use the probability that an instance is a member of the
class “interesting to user” to rank previously unseen instances for pre-
sentation. A fraud detection system may need to rank accounts by the
probability that they have been compromised.

How are probability estimates typically generated from decision trees?
Recall that tree induction partitions a data set recursively at each node.
Each leaf (terminal node) defines the subset of the data corresponding
to the conjunction of the conditions along the path back to the root.
The goal of the decision-tree learning program is to make these subsets
be less “impure,” in terms of the mixture of class labels, than the unpar-
titioned data set. For example, consider an unpartitioned population
with two equally represented classes (maximally impure). A leaf node
defining a subset of the population of which 90% are one class would
be much less impure, and may facilitate accurate classification (only
10% error if this subset were classified as the majority class).

The previous example illustrates how class-membership probabilities
typically are generated from decision trees. If a leaf node defines a
subset of 100 training instances, 90 of which are one class (call it the
“positive” class), then in use, any instance that corresponds to this leaf
is assigned a probability of 0.9 (90/100) that it belongs to the positive
class.

Notice a potential problem with this method of probability estima-
tion. What if a leaf comprises only 5 training instances, all of which are
of the positive class? Are you willing to have your probability estimator
give an estimate of 1.0 (5/5) that subsequent instances matching the
leaf’s conditions also will be positive? Perhaps 5 instances is not enough
evidence for such a strong statement? There are two potential direct
solutions to this problem. One is that a statement of confidence in
the probability estimation accompany the estimate itself; then decision
making could take the confidence into account (Apte, Grossman, Ped-
nault, Rosen, Tipu, & White, 1999). The second potential solution is
to “smooth” the probability estimate, replacing it with a less extreme
value. We consider only the latter in this paper.

pet-mlj-final.tex; 5/06/2002; 18:04; p.3



Smoothing of probability estimates from small samples is a well-
studied statistical problem (Simonoff, 1995), and we believe that a
thorough study of what are the best methods (and why) for PETs
would be a useful contribution to machine-learning research. In this
paper we focus on the method that has become a de facto standard
for practitioners: the so-called Laplace estimate or Laplace correction.
Assume there are k examples of the class in question at a leaf, N
total examples, and C total classes. The maximum-likelihood estimate
presented above calculates the estimated probability as % The Laplace
estimate calculates the estimated probability as % Thus, while the
frequency estimate yields a probability of 1.0 from the kK = 5, N =5
leaf, for a two-class problem the Laplace estimate yields a probabil-
ity of gi—% = 0.86. The Laplace correction can be viewed as a form
of Bayesian estimation of the expected parameters of a multinomial
distribution using a Dirichlet prior (Good, 1965; Buntine, 1991). It
effectively incorporates a prior probability of % for each class—note
that with zero examples the probability of each class is % This may
or may not be desirable for a specific problem; however, practitioners
have found the Laplace correction worthwhile. To our knowledge, the
Laplace correction was first introduced in machine learning by Niblett
(1987). Clark and Boswell (1991) incorporated it into the CN2 rule
learner, and its use is now widespread. For decision-tree learning the
Laplace correction® has been used by certain researchers and practition-
ers (Pazzani et al., 1994; Bradford, Kunz, Kohavi, Brunk, & Brodley,
1998; Provost et al., 1998; Bauer & Kohavi, 1999; Danyluk & Provost,
2002), but others still use maximum-likelihood estimates.

A more complex method for producing class probability estimates
from decision trees is described by Smyth, Gray and Fayyad (1995).
They do not concentrate on the smaller leaves, as we have in the
discussion so far. Instead they suggest a problem with estimating proba-
bilities from the larger leaves. Specifically, they note that every example
from a particular leaf will receive the same probability estimate. They
question whether the coarse granularity of these probability estimates
may lead to reduced accuracy. To address this problem, they make a
fundamental change to the representation. Specifically, at each leaf of
the decision tree they place a kernel-based probability density estimator
(just for the subset of the population defined by the leaf). They show
that this method produces substantially better probability estimates
than standard decision-tree programs (CART and C4.5).

! Including a generalization known as the m-estimate (Cestnik, 1990; Dzeroski,
Cestnik, & Petrovski, 1993; Kohavi, Becker, & Sommerfield, 1997).
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This approach seems well founded and quite promising, but it does
not address the question of whether there is a fundamental problem
with using decision trees for probability estimation. If in fact there
is, then showing that the new method outperforms the probability
estimates of CART and C4.5 is not particularly informative. Therefore
it is important to investigate whether simple modifications can improve
the probability estimates of standard tree induction.

Finally, we should note that simply producing a probability estimate
may not be enough for a real-world application. In a recent application
of data mining techniques (including decision trees) to estimate prob-
abilities for discovering insurance risk, Apte et al. (1999) describe in
detail a variety of complications that also must be considered. For this
paper, all we address is the production of probability estimates in order
to produce rankings.

3. Representation versus induction

Viewed as probability estimators, trees consist of piecewise uniform
approximations within regions defined by axis-parallel boundaries. In-
tuitively this may not seem as appropriate as a numeric method that
estimates class probabilities as smoothly varying continuous outputs.
However, trees in principle can be fine probability estimators. To see
this we first must separate trees as a representation from the tree in-
duction algorithm. Here we will consider the former. In the next section
we will see that problems arise with the latter.

First consider nominal attributes. The tree represents the relevant
combinations of features—relevant conditional probabilities. Any dis-
crete conditional probability distribution can be represented by a PET.

For continuous attributes, a sufficiently large PET can estimate any
class probability function to arbitrary precision. Consider the simple
univariate, two-class problem depicted in Figure 1: each class is dis-
tributed normally about a different mean. These overlapping probabil-
ity densities define a continuous class-membership probability function
over the domain of the variable (call it z). This may be just about
one of the worst possible problems to which to apply a PET, because
piecewise-uniform representations are obviously a poor inductive bias,
and moreover because the problem is rather easy for other sorts of
density estimators. However, for this and for any such problem a PET
can estimate the probability of class membership to arbitrary precision.
For this problem, each split in the tree partitions the z-axis, and each
leaf is a segment of the z-axis. A PET would estimate the probability
by looking at the class distribution for its segment (which in the figure
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Figure 1. A test problem: Overlapping Gaussians.

can be seen by cutting a vertical slice and looking at the relative heights
of the curves of the two classes in the slice). The key is to note that
as the number of leaves increases, the slices become narrower, and the
probability estimates can become more and more precise. In the limit,
the tree predicts class probability perfectly.?

Of course, learning such PETSs is our ultimate interest. In the case
of Figure 1, other methods would learn better using fewer examples.
But when the dimensionality of the problem is even moderately high,
and little is known about the form of the underlying distribution,
a piecewise-uniform approximation may well have lower bias and/or
variance than smoother estimators.

4. Why PETs behave badly

So the question remains: why is it observed repeatedly that the decision
trees produced by standard algorithms do not yield good probability
estimates?

The answer is in the tree-building algorithm, not in the represen-
tation. For a historical perspective, it is useful to take a higher-level
view of the research focus that (in part) drove much work on building

2 A similar result for regression trees has been formally demonstrated by Gordon
and Olshen (1984).
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decision trees. Decision trees have been evaluated, for the most part,
by two criteria: classification accuracy and tree size (smaller is better).
These have led to a wide variety of heuristics that have been remarkably
successful at building small, accurate decision trees. However, these
very heuristics reduce the quality of the probability estimates.

Why? Consider again our problem of univariate, overlapping Gaus-
sians. What is the smallest, accuracy-maximizing decision tree? It is
the tree with a single split at £ = 1. This separates the classes as
well as any decision tree, and among the accuracy-maximizing trees it
has minimal size. Thus, a good decision-tree building algorithm should
return this simple tree (or a close approximation thereto). However, this
tree’s class probability estimates are not very accurate. All data points
on one side of the split are assigned the same probability, corresponding
to the proportion of the class that falls on the corresponding side of
the split.

Above we say that this behavior (pathological from the PET point of
view) is due to the tree-building algorithm, but we can be more specific.
Modern decision-tree building algorithms first grow a (sometimes very)
large tree, and then prune it back. The pruning stage tries to find
a small, high-accuracy tree. Various pruning strategies are used. One
such strategy is reduced-error pruning: remove sub-trees if they seem
not to improve resultant accuracy on a validation set. In our example
above, if the first split is correct, no subtree will improve accuracy. We
believe that the details of the growing phase are less critical to obtaining
good PETs than the choice of pruning mechanism. In particular, the
commonly used splitting criteria (e.g., information gain and Gini index)
also appear reasonable when the goal is to obtain good probability-
based rankings. This is reinforced by the observations of Breiman et
al. (1984) and Drummond and Holte (2000) that misclassification-cost
effectiveness generally is insensitive to the choice of splitting criteria.

5. Training well-behaved PETs

Our question is whether we can build trees that yield better class prob-
ability estimates. The foregoing analysis suggests that pruning is the
culprit. Looking more closely, we see that pruning removes two types
of distinctions made by the tree: (i) false distinctions—those that were
found simply because of “overfitting” idiosyncrasies of the training data
set, and (ii) distinctions that indeed generalize (e.g., entropy in fact is
reduced), and in fact will improve class probability estimation, but do
not improve accuracy.
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5.1. C4.4

To build better PETs we would like not to prune away distinctions of
the latter type. The simplest strategy for keeping type-ii distinctions
is simply not to prune at all. We can see on our overlapping-Gaussians
problem that this strategy indeed gives us the desired result. In particu-
lar, we modified C4.5 by turning off pruning, turning off “collapsing” (a
little-known pruning strategy that C4.5 performs even when growing its
“unpruned” tree), and calculating class probabilities with the Laplace
correction. We call this version C4.4.3

On the overlapping Gaussians problem with 100,000 training exam-
ples, C4.5 with pruning was used to build a PET (using the Laplace cor-
rection at the leaves), as was C4.4 (no pruning, no collapsing, Laplace
correction). Figure 2 shows the performance of the PETs learned by
C4.5 and C4.4. The solid line represents the true class probability
boundary of the overlapping Gaussians problem (from Figure 1). The
class probability estimates given by C4.5 and C4.4 produce a piecewise-
constant function, as expected. Note that C4.5 indeed finds a high-
accuracy split, but the probability estimates (the horizontal segments)
do not track the true class probability boundary well at all. C4.4’s PET
tracks the class probability boundary remarkably well.

Of course, one may argue that the boundary still is rather rough,*
and that an estimate with a better bias (e.g., a sigmoid function of the
input) would perform better. As we mentioned earlier, the univariate,
overlapping-Gaussians problem is one of the worst possible applications
for a PET, in part because it is easy to propose a better alternative.
However, consider the class probability function shown in Figure 3. This
will be more difficult for most methods than the problem in Figure 2.

Now, consider the performance of C4.5 versus C4.4 on this problem.
Note once again that for this probability function, the optimal decision
tree also is a single cut, this time at a point in the interval (-1,0).
Therefore, the following should be viewed simply as a demonstration
of the potential power of PETSs over decision trees.

Once again, C4.5 with pruning was used to build a PET (using
the Laplace correction at the leaves), as was C4.4 (no pruning, no
collapsing, Laplace correction) from 100,000 training examples. The
class probability borders learned by C4.5 and by C4.4 are shown in
Figure 4. As before, and as expected, C4.5 places a single split very

3 Note that Bradford et al. (1998) show that cost-sensitive tree pruning is no
better than simply not pruning at all, as long as the Laplace correction is used.

4 Note that C4.5 uses a minimum description length heuristic to reduce spurious
splitting on numeric attributes, and because of this the leaves remain larger than
they would without the heuristic.
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Figure 2. Class probability estimates for C4.5 and C4.4 on the overlapping
Gaussians problem.

near to the point where error should be minimized. Of course, this
gives poor probability estimates for almost all instances. C4.4, on the
other hand, produces class probability estimates that track the actual
class probability border quite well.

5.2. PROBABILITY-BAGGING

In the foregoing, we assumed that the goal was to improve the prob-
ability estimates resulting from a single tree. A different strategy for
using tree induction for probability estimation has received attention
recently. Ensembles of classifiers, which learn multiple classification
models and then combine their predictions (e.g., having them vote on a
classification), have recently been shown often to improve classification
accuracy when compared to using a single model. For example, bagging
(Breiman, 1996) has been shown to outperform single model techniques
with surprising consistency.

Recent results suggest that the improvements from bagging also
apply to the use of trees for probability estimation and ranking, when
probability estimates are averaged across the members of the ensemble
(Provost et al., 1998; Bauer & Kohavi, 1999). We should note that
averaging multiple trees to produce probability estimates is not a novel
product of the recent interest in multiple models; Buntine studied the
technique ten years ago (Buntine, 1991). However, experiments have led
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Figure 8. A more complex class probability function.

us to the conclusion that bagging and the Bayesian averaging studied
by Buntine are in fact quite different (Domingos, 1997). We include
probability-bagging of PETSs in our experimental comparison.

6. Comparing PETSs

For this paper, we are interested in how well the learned models can
rank new cases by the probability of class membership. The standard
comparison method in machine learning research, comparing undiffer-
entiated error rates, is not appropriate (Provost et al., 1998), because
it only assesses to what extent the estimated probabilities are on the
correct side of the classification threshold (normally 0.5). One alterna-
tive is to use full-fledged ROC analysis (Swets, 1988), which compares
visually a ranking’s quality across the entire range of possible clas-
sification thresholds. As described in detail by Provost and Fawcett
(2001), an ROC curve is generated from a ranking model as follows.
The examples in the test set are ranked by the scores given by the
model. If there are S different scores, there are S + 1 thresholding
ranges, each of which will produce different classification performance
(as can be characterized by the true-positive and false-positive rates)
on these test data. Provost and Fawcett (1997, 2001) describe how
for any two-class problem, precise, objective comparisons can be made
with ROC analysis for various (and even unknown) conditions, such as
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different misclassification costs, different marginal class distributions in
the target environment, different target classification thresholds, etc.

However, for the purpose of this study, we want to evaluate the
probabilities generally rather than under specific conditions or under
ranges of conditions. A subtle issue arises when evaluating the quality
of the probabilities in our setting: although the trees are estimating
probabilities of class membership, neither for the training data nor for
the test data do we know the true probabilities. All we know is the true
class of each example. For this paper, our task is simplified because all
we address is how well the estimated probabilities rank cases (by the
likelihood of class membership).

Knowing nothing about the task for which they will be used, which
probabilities are generally better for ranking cases? The Wilcoxon-
Mann-Whitney non-parametric test statistic (“the Wilcoxon”) (Hand,
1997) is appropriate for this comparison. The Wilcoxon measures, for
a particular model, the probability that a randomly chosen class-0
case will be assigned a higher class-0 probability than a randomly
chosen class-1 case. Therefore a higher Wilcoxon score indicates that
the probability-based ranking is better generally (there may be specific
conditions under which the classifier with a lower Wilcoxon score is
preferable). Importantly, for the purposes of this paper the calibration
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of the probabilities is not important, if the estimates rank well.> An-
other metric for comparing classifiers across a wide range of conditions
is the area under the ROC curve (AUC) (Bradley, 1997); AUC also
measures the quality of an estimator’s ranking performance. Interest-
ingly, it has been shown that the AUC is equivalent to the Wilcoxon
statistic (Hanley & McNeil, 1982). (It also is essentially equivalent to
the Gini coefficient (Hand, 1997).) Therefore, for this work we will
report the AUC when comparing probability-based rankings. (Hand
(1997) provides a thorough treatment of the comparison of class prob-
ability estimates both when the true probability distribution is known
and when it is unknown.)

We examine whether, by making the modifications we make, the
probability-based rankings generally improve. We make no claims as
to whether one algorithm is “better” than another for the particular
problems from which these data were drawn. The AUC measures judge
the relative quality of the entire rankings.

To our knowledge, there previously has not been a systematic study
comparing the performance of these PET variants for producing probability-
based rankings. There do exist two closely related studies, that partially
motivate the current study.

Bauer and Kohavi (1999) compare across 14 UCI data sets the
quality of the probability estimates produced by PETs based on MC4
(their implementation of C4.5), a Laplace-corrected version of MC4
(using the m-estimate Laplace correction), and probability-bagging of
MC4. They compare a mean-squared error measure of the quality of
the probability estimates, computed as the square of one® minus the
predicted probability of the correct class, averaged over the entire test
set (we will call this measure 0/1-MSE). For these experiments they
only report averages across the data sets, but their results are posi-
tive. They show a decrease in the average 0/1-MSE from 10.7% for
unpruned C4.5 to 10.0% for Laplace-corrected unpruned C4.5 to 7.5%
for probability-bagged C4.5.

5 An inherently good probability estimator can be skewed systematically, so that
although the probabilities are not accurate, they still rank cases equivalently. This
would be the case, for example, if the probabilities were squared. Such an estimator
will receive a high Wilcoxon score. A higher Wilcoxon score indicates that, with
proper recalibration, the probabilities of the estimator will be better. Probabili-
ties can be recalibrated empirically (Sobehart, Stein, Mikityanskaya, & Li, 2000;
Zadrozny & Elkan, 2001; Bennett, 2002). In addition to describing new calibration
methods, Bennett provides an in-depth discussion of calibration, including additional
related work.

5 Recall that for these data we only know the true class of each example, not the
true probability of class membership for the example’s description.

pet-mlj-final.tex; 5/06/2002; 18:04; p.12



13

Provost, Fawcett and Kohavi (1998) compared the rankings of some
of these PET variants. Specifically, they present the ROC curves of
six algorithms evaluated on ten data sets, including Laplace-corrected
PETSs and probability-bagged PETs. They do not discuss which algo-
rithms are better (this was not the purpose of the paper), but one can
observe in their graphs that the ROC curves for probability-bagged
PETs have larger areas that the curves for the PETs. In fact, in all but
one case, the probability-bagged PETs completely dominate the curves
of individual PETSs. Our results, below, clarify and extend these results
by examining the differences carefully, and by extending the study to
a large number of data sets and to multiple-class problems.

It is necessary to bolster these prior results for several reasons.
First, an improvement in 0/1-MSE does not necessarily indicate better
probability-based rankings. In fact, a perfect ranking can have a worse
0/1-MSE than a ranking with an error in the first position. This is not
the case for AUC. Second, 0/1-MSE favors less-extreme probability
estimates, all else being equal. Therefore, since the Laplace correction
and probability-bagging both produce less-extreme estimates,” it is not
surprising that they also would improve 0/1-MSE. Again, if the ranking
is the same, less extreme estimates will not affect AUC. Third, we would
like to see how often these techniques lead to improvements. Therefore,
we will look individually at a larger number of domains.

7. Experiments and Results

7.1. METHODOLOGY AND RESULTS

We used the following 25 databases from the UCI repository (Blake &
Merz, 2000): audiology, breast cancer (Ljubljana), chess (king-rook vs.
king-pawn), credit (Australian), diabetes, echocardiogram, glass, heart
disease (Cleveland), hepatitis, hypothyroid, iris, LED, liver disorders,
lung cancer, lymphography, mushroom, primary tumor, promoters, so-
lar flare, sonar, soybean (small), splice junctions, voting records, wine,
and zoology. Each database was randomly divided 20 times into 2/3
of the examples for training and 1/3 for testing. The results presented
are averages of these 20 runs. For data sets with more than two classes
we computed the expected AUC, which is the weighted average of the
AUCs obtained taking each class as the reference class in turn (i.e.,
making it class 0 and all other classes class 1).® The weight of a class’s

7 And probability-bagging produces substantially less extreme estimates than just
the Laplace correction.

8 This is a minor variant of the method proposed recently by Hand and Till
(2001).
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Table I. Experimental results: Expected AUC (area under the ROC curve, as percentage of maximum possible) and its standa

Database C4.5 C4.5-L C4.4 C4.5-B C4.4-B

Audiology 89.44+0.8 91.14+0.9 91.0+0.8 94.7+0.5 95.24+0.6
Breast 60.9+1.7 63.1+1.4 60.6+1.2 68.9+1.3 67.4+1.3
Chess 99.71+0.1 99.7+0.0 99.9140.0 99.940.0 99.940.0
Credit 87.9+0.7 89.9+0.5 87.3+0.4 92.6+0.5 92.1+0.4
Diabetes 74.8+0.9 76.940.8 77.310.7 83.4%+0.5 83.21+0.5
Echocardio 54.1+1.3 55.91+1.6 57.7x1.1 67.4+1.5 67.8+1.6
Glass 79.2+0.9 81.3+1.0 81.3+0.8 88.91+0.8 88.71+0.8
Heart 76.0+1.2 81.1+1.1 83.6+0.8 88.44+0.6 89.14+0.6
Hepatitis 64.3+2.5 68.4+2.2 76.7+1.5 83.2+1.4 84.0+1.4
Iris 96.0+0.6 96.9+0.3 97.34+0.4 99.0+0.2 99.21+0.2
LED 81.44+0.9 81.9+1.0 84.3+1.0 90.6+0.8 90.6+0.9
Liver 62.6+1.2 63.7£1.1 64.8+1.5 74.0+0.7 73.9+0.7
Lung 54.6+3.6 51.1+3.5 50.5%+3.3 65.3+3.0 62.0+3.4
Lympho 79.7£1.4 83.0£1.5 84.7+0.8 91.24+0.8 91.3+0.8
Mushroom 100.0+0.0 100.0+0.0 100.04+0.0 100.0+0.0 100.0+0.0
Promoters 78.4+1.6 82.9+1.5 81.2+1.5 93.0+1.2 93.8+1.0
Solar 87.5+0.6 88.9+0.5 88.6+0.5 89.8+0.5 89.7+0.5
Sonar 70.5+1.3 76.2+1.4 76.5+1.4 85.2+1.4 84.5+1.3
Soybean 98.24+0.5 97.8+0.7 97.840.7 100.0+0.0 100.0+0.0
Splice 96.4+0.2 97.7£0.1 97.8+0.1 98.71+0.1 98.94+0.1
Thyroid 94.440.9 96.2+0.5 97.0+0.4 97.540.4 98.6+0.3
Tumor 68.8+0.7 71.7+0.7 68.5+0.8 77.0+0.7 76.0+0.6
Voting 97.1+0.4 98.2+0.2 94.6+0.7 98.6+0.2 98.94+0.1
‘Wine 94.3+0.6 94.5+0.7 94.440.8 99.440.1 99.440.1
Zoology 96.4+0.5 98.0+0.4 98.44+0.4 99.440.3 99.6+0.1

Table II. Summary of experimental results: AUC comparisons.

Systems Wins-Ties-Losses  Avg. diff. (%) Sign test Wilcoxon test
C4.4 vs. C4.5 18-1-6 2.0 1.0 0.3
C4.4 vs. C4.5-L 13-3-9 0.2 30.0 30.0
C4.5-L vs. C4.5 21-2-2 1.7 0.1 0.1
C4.5-B vs. C4.5 24-1-0 7.3 0.1 0.1
C4.4-B vs. C4.4 23-2-0 5.3 0.1 0.1
C4.4-B vs. C4.5-B 11-5-9 —0.1 45.0 50.0

AUC is the class’s frequency in the data. The results obtained are shown
in Table 7,° and summarized in Table 7. “Sign test” is the significance

® Caption says: Experimental results: Expected AUC (area under the ROC curve,
as percentage of maximum possible) and its standard deviation for C4.5, C4.5 with
the Laplace correction (C4.5-L), C4.4, bagged C4.5 (C4.5-B) and bagged C4.4 (C4.4-
B).

pet-mlj-final.tex; 5/06/2002; 18:04; p.14



15

level of a binomial sign test on the number of wins (with a tie counting
as half a win; the normal approximation to the binomial was used).
“Wilcoxon test” is the significance level of a Wilcoxon signed-ranks
test. Our observations are summarized below.

7.2. LAPLACE CORRECTION AND PRUNING

C4.4 is a marked improvement over C4.5. Most of this improvement is
due to the use of the Laplace correction, which, despite its simplicity,
is quite effective in improving the quality of a tree’s probability esti-
mates. Our results in this respect agree with, but are stronger than, the
results of Bauer and Kohavi (1999). The uniformity of success of the
simple Laplace correction (e.g., 21 wins, 2 ties and 2 losses vs. C4.5) is
remarkable.

Not pruning (C4.4) outperforms pruning (C4.5L) in more databases
than the reverse, but the difference is not significant. We hypothesize
that these inconclusive results are due to two competing effects: when
pruning is disabled, more leaves are produced, which leads to a finer
approximation to the true class probability function, but there are
fewer data points within each leaf, which increases the variance in the
approximation. Which of these two effects will prevail may depend on
the size of the database. The limited range of data-set sizes used in the
experiments and the presence of many confounding factors preclude
finding a clear pattern in our results. We hypothesize that as we move
to larger and larger data sets, as seems to be the trend in data mining,
the advantage of C4.4 will become stronger.

7.3. PROBABILITY-BAGGING

Bagging also substantially improves the quality of probability estimates
in almost all domains, and the improvements are often very large. This
also agrees with the results of Bauer and Kohavi using 0/1-MSE (Bauer
& Kohavi, 1999). The present results also show, over the twenty-five
data sets, not a single case where bagging degrades the probability
estimates, as measured by AUC. This accords with results that can be
inferred from the ROC curves shown by Provost, Fawcett and Kohavi
(1998) (as described above).

It is noteworthy that bagging’s improvements in AUC are on average
much larger than its improvements in accuracy (7.3% vs. 2.8% for
C4.5), indicating that bagging may be even more effective for improving
probability estimators than for improving classifiers. The improvements
in AUC are larger on average for C4.5 than for C4.4, presumably
because there is more room for improvement in C4.5. Once bagging
is used, whether or not pruning and the Laplace correction are used
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makes little difference. Despite its effectiveness, bagging has the disad-
vantage that any comprehensibility of the single tree is lost. However,
individual PETs can be very large, especially when pruning is not used,
so they themselves may or may not be comprehensible. Bagging also
carries greater computational cost. When high-quality estimation is the
sole concern, bagging should clearly be used. When comprehensibility
and/or computational cost are also important, a single C4.4 tree may be
preferable, or a method like CMM (Domingos, 1997) (which produces
a single-tree approximation of the ensemble) may be useful.

8. Conclusions and discussion

The poor performance of PETs built by conventional decision-tree
learning programs can be explained by a combination of factors. First,
as shown by the demonstrations on synthetic data, the heuristics used
to build small accurate decision trees are biased strongly against build-
ing accurate PETSs. Larger trees can work better for probability esti-
mation.

The second factor explaining the poor performance of conventional
PETs is that, when a purely frequency-based (unsmoothed) estimate is
used, small leaves give poor probability estimates. This is the probability-
estimation counterpart of the well-known “small disjuncts problem”: in
induced disjunctive class descriptions, small disjuncts are more error-
prone (Holte, Acker, & Porter, 1989). While this is not surprising
statistically, the uniformity and magnitude of the improvement given by
the simple, easy-to-use, Laplace correction nevertheless is remarkable.

A third factor, which we have not investigated, is the calibration of
the probability estimates. Recently, Margineantu and Dietterich (2001)
have investigated the issue of the accuracy of the estimates versus the
accuracy of the rankings, and show that PETSs indeed produce surpris-
ingly good rankings, even when the probability estimates themselves
are questionable.

Another significant observation is that probability-bagged PETSs pro-
duce excellent probability-based rankings. As with accuracy, bagging
substantially improves PETs. Moreover, over the twenty-five data sets
we tested, bagging never degrades the probability estimates. Further-
more, bagging improves probability estimates (as measured by AUC)
even more than it improves classification accuracy. The extent of this
is quite remarkable: in 9 of 25 domains bagging gives an absolute AUC
improvement of more than 0.10. We strongly echo the conclusion of
Bauer and Kohavi (1999) that for problems where probability estima-
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tion is required, one should seriously consider using probability-bagged
PETs—especially in ill-defined or high-dimensional domains.

Bagged PETs also have implications for other areas of data mining
and machine learning research. For example, the MetaCost algorithm
(Domingos, 1999) uses a bagged PET as a subprocedure for cost-
sensitive learning. The quality of the probability estimates obtained
in this way was an open question; our results partially validate the
procedure used.

The purpose of this work was to study how the probability-based
rankings obtained by tree induction could be improved. We believe
that the results we have presented have given us a substantially better
understanding. However, what we did not study here is how these PETs
compare with other methods for estimating probabilities. In a working
version of this paper (Provost & Domingos, 2000) we hypothesized that
as long as there are many examples, PETs can compete with traditional
methods for building class probability estimators. Recent work shows
that indeed this is the case. Perlich, Provost, and Simonoff (2001) show
that for large data sets, tree induction often produces probability-based
rankings that are superior to those produced by logistic regression (the
standard statistical method for estimating class-membership probabil-
ity). They also characterize the type of domain for which each method
is preferable. Further studies of this type are a topic for future work.
Another direction for future work is to study the incorporation of more
sophisticated methods for improving probability estimates (e.g., shrink-
age (Bahl, Brown, de Souza, & Mercer, 1989; Hastie & Pregibon, 1990;
Jelinek, 1997; McCallum, Rosenfeld, Mitchell, & Ng, 1998)).
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