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Abstract. In this paper we study techniques for generat-
ing and evaluating confidence bands on ROC curves. ROC
curve evaluation is rapidly becoming a commonly used eval-
uation metric in machine learning, although evaluating ROC
curves has thus far been limited to studying the area under
the curve (AUC) or generation of one-dimensional confidence
intervals by freezing one variable—the false-positive rate, or
threshold on the classification scoring function. Researchers in
the medical field have long been using ROC curves and have
many well-studied methods for analyzing such curves, includ-
ing generating confidence intervals as well as simultaneous
confidence bands. In this paper we introduce these techniques
to the machine learning community and show their empirical
fitness on the Covertype data set—a standard machine learn-
ing benchmark from the UCI repository. We show how some
of these methods work remarkably well, others are too loose,
and that existing machine learning methods for generation
of 1-dimensional confidence intervals do not translate well to
generation of simultanous bands—their bands are too tight.

1 Motivation

Receiver-Operator Characteristic (ROC) analysis is an eval-
uation technique used in signal detection theory, which in re-
cent years has seen an increasing use for diagnostic, machine-
learning, and information-retrieval systems [26, 22, 19, 23, 14].
ROC graphs plot false-positive (FP) rates on the x-axis and
true-positive (TP) rates on the y-axis. ROC curves are gener-
ated in a similar fashion to precision/recall curves, by varying
a threshold across the output range of a scoring model, and
observing the corresponding classification performances. Al-
though ROC curves are isomorphic to precision/recall curves,
they have the added benefits that they are insensitive to
changes in marginal class distribution. Often the comparison
of two or more ROC curves consists of either looking at the
Area Under the Curve (AUC) or focusing on a particular part
of the curves and identifying which curve dominates the other
in order to select the best-performing algorithm.
Much less attention has been given to robust statistical

comparisons of ROC curves. This paper addresses the creation
and evaluation of confidence bands on ROC curves. We ask
whether, assuming test examples are drawn from the same,
fixed distribution, one should expect that the model’s ROC
curves will fall completely within the bands with probability
1−δ. Prior work in machine learning has considered sweeping
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across thresholds on the classification scoring function, creat-
ing confidence intervals around the TP/FP points for various
thresholds [9], or sweeping across the FP rates and creating
vertical confidence intervals around averaged TP levels [24].
Much more work has been done in the medical field, but so
far has not penetrated into the machine learning community.
Prior work in this field includes generating confidence inter-
vals around TP/FP points based on the exact binomial distri-
bution [10], and generation of confidence intervals based on
the binormal distribution2 [17]. Confidence bands could be
created by connecting any of these confidence intervals (as we
will show). More relevant work to that of creating confidence
bands is the creation of simultaneous joint confidence regions
based on the Kolmogorov-Smirnov test statistic [5], simulta-
nenous confidence bands based upon the Working-Hotelling
hyperbolic confidence bands around simple regression lines
[13], and use of the bootstrap to generate empirical fixed-
width confidence bands [5]. None of these prior studies on si-
multaneous confidence bounds, however, have asked whether
the created bands actually hold empirically.
In this paper we examine these methods for creating such

confidence bands for a given learned model. As we will show,
the bands created by many of these techniques are too tight.
To these ends, we describe a framework for evaluating the
fit of ROC confidence bands. Specifically, we examine 1− δ
confidence bands on a model’s ROC curve.
The main contributions of this paper are the introduction

of relevant techniques from the medical field to the machine
learning community and an empirical study of these tech-
niques as well as the techniques already used by machine
learning researchers.
The rest of the paper is organized as follows. The next sec-

tion discusses related work on creating confidence intervals for
ROC curves, followed by a section describing the methods we
use in this paper for generating ROC confidence bands. We
then describe our evaluation methodology and a case study
showing that two of these methods—fixed-width bands and
simultaneous joint confidence regions—perform close to ex-
pectation in most cases, whereas the rest do not.

2 Binormal distributions, or bivariate normal distributions, are
joint distributions over x and y, two independent variables which
are normally distributed.



2 Overview of Existing Relevant
Techniques

Within the machine learning field, prior work on creating con-
fidence intervals for ROC curves has for the most part been in
the context of creating one-dimensional confidence intervals.

Pooling is a technique in which the i-th points from all the
ROC curves in the sample are averaged [4]. This makes a
strong assumption that the i-th points from all these curves
are actually estimating the same point in ROC space, which
is at best a doubtful assumption.

Vertical averaging looks at successive FP rates and averages
the TPs of multiple ROC curves at that FP rate [24]. By
freezing the FP rate, it is possible to generate a (parametric)
confidence interval for the TP rate based on the mean and
variance; multiple curves are generated using cross-validation
or other sampling techniques. A potential weakness of this
method is the practical lack of independent control over a
model’s false-positive rates [9].

Threshold averaging seeks to overcome the potential weak-
ness of the vertical averaging by freezing the thresholds of the
scoring model rather than the FP rate [9]. It chooses a uni-
formly distributed subset of thresholds among the sorted set
of all thresholds seen across the set of ROC curves in the sam-
ple. For each of these thresholds, it identifies the set of ROC
points that would be generated using that threshold on each
of the ROC curves. From these ROC points, the mean and
standard deviations are generated for the FP and TP rates,
giving the mean ROC point as well as vertical and horizontal
confidence intervals.
Use of the bootstrap [8] as a more robust way to evaluate

expected performance has previously been used for evaluating
cost-sensitive classifiers [15]. In this work, bootstrapping was
used to repeatedly draw predictions p(i, j), where p(i, j) is
the probability that an instance of class j was predicted to
be in class i. Using these sample predictions, it was possible
to generate a final cost based on a cost-matrix. They did this
repeatedly to generate a set of estimated costs, which they
then used to generate confidence bounds on expected cost.
Medical researchers also have examined the use of ROC

curves extensively and have introduced many techniques
for creating confidence boundaries. The problem domains
and tasks in medical research are generally different from
those of machine learning in that they often consider only
small data sets, where one instance is the test result from
a patient. Further, it is often assumed that these data
are ordinal in nature—e.g., that it is ’ratings’ data with
a small scale such as ’definitely diseased’,’probably dis-
eased’,’possibly diseased’,’ ’possibly non-diseased’,’probably
non-diseased’,’definitely non-diseased’ [1, 26, 30].
One technique, similar to that of threshold averages, creates

a confidence boundary around each of the N ROC points as-
sociated with N discrete events based on an underlying model
[27]. It does this by considering each axis as independent and
considering an N-dimensional vector along each axis, where
the i-th element in the vectors represent the i-th point on the
ROC curve. Discretizing the values and assuming a binomial
distribution, it then generates a probability distribution of the
likelihood that the j-th value lies in each discretized cell. It
maps this probability density back into ROC space thereby
generating confidence boundaries for each point in the ROC

curve. These models are very complex and are not tractable
for even small N larger than about 10, and would currently be
intractable for large sets of ROC points as is typically found
in machine learning studies.
Other work has created a joint confidence region (or “lo-

cal confidence rectangle”) for a given fixed threshold t under
the assumption of a binomial distribution [10]. This region is
constructed by generating separate (1−δ) confidence intervals
for TP and FP rates independently at the given threshold.
The resulting region should then contain the (FP,TP) point
at threshold t with confidence (1−δ)2. This is equivalent to
the threshold averaging method described above, using the
binomial distribution rather than the normal distribution.

Simultaneous joint confidence regions uses the distribution
theory of Kolmogorov [6] to generate separate confidence in-
tervals for TP and FP rates [5]. This is done by finding the
Kolmogorov (1−δ) confidence band for TP (tp±d) and FP
(fp±e). By an independence assumption, the rectangle with
width 2e and height 2d, centered at a given point, should con-
tain points at the given threshold with confidence (1−δ)2. Un-
like Hilgers’s approach above, all rectangles using this method
will be of the same size. We describe our use of this method
in Section 3.6.
Creating a confidence region in ROC space restricts both

FP and TP rates to the region (0, 1). This restriction can
cause difficulties when using intervals based on normal dis-
tributions. One solution is to transform the points to logit
space3, generate the confidence intervals in that space, and
then convert them back into ROC space [29]. An alternative
transformation also used is that of converting to and from
probit space4 as done in the ROCKIT/LABROC4 algorithms
[17, 16]. Both of these bodies of work assume an underly-
ing binormal distribution and focus on creating either one-
dimensional confidence intervals, or joint confidence regions.
We use our own implementation of ROCKIT to generate con-
fidence bounds under the binormal distribution, as described
in Section 3.8.
One method for generating simultaneous confidence bands

on ROC curves [13] makes use of Working-Hotelling hyper-
bolic confidence bands for simple regression lines [28]. Under
the binormal model, an ROC curve can be parameterized as
TP = Φ(a − bΦ−1(FP)), where Φ(z) is the standard-normal
cumulative distribution function [7]. Using this parametriza-
tion, the Working-Hotelling bands can then be applied to
ROC curves to generate simultaneous confidence bands. We
describe our use of this method in Section 3.8.
The fixed-width simultaneous confidence bands method is a

non-parametric method, which generates simultaneous confi-
dence bands by displacing the entire ROC curve “northwest”
and “southeast” along lines with slope b = −

√
(m/n), where

m is the number of true positives and n is the number of true
negatives [5]. This slope is an approximation of the ratio of the
standard deviations for TP and FP—a property which tries to
take into account the curvature of the ROC plot rather than
using a displacement along one of the two axes as is done by
the majority of methods described above. They use the boot-
strap to identify the distance the curve should be displaced,

3 logit(p) = log( p
(1−p)

); logit−1(p′) = 1
1+exp(−p′) .

4 probit(p) = Φ(p); probit−1(p′) = Φ−1(p′), where Φ(z) is the cu-
mulative normal distribution function.



thereby generating a fixed-width band across the complete
curve. We describe how we use this method in Section 3.7.

3 Generating Confidence Bands

In this section we describe our methodology for generating
confidence bands for a classification model or modeling algo-
rithm. We adapt two existing methods from machine learn-
ing: vertical averaging (VA) and threshold averaging (TA)
for generating confidence intervals, and three methods from
the medical field: simultaneous joint confidence regions (SJR),
Working-Hotelling based bands (WHB), and fixed-width con-
fidence bands (FWB).
Three of the methods (VA, TA and FWB) work based on

the assumption that we can generate (or are given) a set of
ROC curves. These can be generated by running a learning
algorithm on multiple training sets, testing on multiple testing
sets, or resampling the same data. These ROC curves will be
used to generate confidence bands about an average curve.
While all these methods generate different types of confi-

dence bounds—VA and WHB generate 1-dimensional inter-
vals, while TA and SJR generate intervals on TP and FP axes
both, and lastly FWB generates a complete curve—we use the
following general methodolgy that can be applied to each of
them to generate confidence bands. This general methodology,
which we use throughout this paper, consists of the following
steps:

1. Create a distribution of ROC Curves, if the method needs
it (VA, TA and FWB).

2. Generate points for the confidence bands.

(a) Choose an underlying distribution, if applicable (VA and
TA, see below).

(b) Sweep across the ROC curves to calculate, on a point by
point basis, where the respective confidence boundaries
are. We use one of the five methods mentioned above in
this step.

3. Create confidence bands by considering all upper (lower)
interval points found in step 2(b) to make up the upper
(lower) confidence band.

3.1 Creating the Distribution of ROC
Curves

There exist various ways of generating a distribution of in-
stances from which to generate a confidence interval. The
most common methods, including cross-validation [11], re-
peatedly split a data set into training and test sets. Each such
split gives rise to a learned model, which can be evaluated
against the test set—thereby generating one ROC curve per
split. The bootstrap [8] is a standard statistical technique that
creates multiple samples by randomly drawing instances, with
replacement, from a host sample (the host sample is a surro-
gate for the true population). Each such set of samples can
then be used to generate an ROC curve. We can repeatedly
draw N samples to generate a distribution of ROC curves. To
our knowledge there is only one previous body of work which
has applied the bootstrap to generate multiple ROC curves to
use for fitting confidence bands [5]. See Section 5.3 for details
on how we use bootstrapping in our study.

3.2 Distribution Assumption

ROC methodologies have historically assumed a binormal dis-
tribution [30, 29]. However, it may be that other distributions
are more appropriate or work equally well. For example, for
a given x-value (FP rate) the y-value (TP rate) is a propor-
tion. So a binomial distribution may be appropriate [1, 10].
We consider four distributions for creating confidence inter-
vals: binormal, normal, binomial and empirical. Let us assume
that we are given a sample distribution D of points along some
dimension and a confidence threshold of δ.
We generate confidence intervals and bands under the as-

sumption of a binormal distribution when using Working-
Hotelling confidence bands. See Section 3.8.
We generate confidence intervals under the assumption of a

normal distribution by calculating the mean µ and standard
deviation σ of D. We then look up the statistical constant, z,
for a two-sided bound of δ confidence on a distribution size of
|D| giving us a confidence interval of µ± z · σ.
For the binomial distribution, we calculate the variance as

V = µ · (1−µ), thus giving confidence interval µ± z ·
√
V/|D|.

For an empirical distribution, we create empirical bounds
as follows: we sort the values of D and choose vl and vu, such
that vl is smaller than 1− δ

2
of all values and vu is larger than

1− δ
2
of all values. Thus 1−δ of all values lie between vl and

vu.

3.3 Sweep Methodology

So what are the dimensions along which the confidence inter-
vals will be created? These are defined by how one “sweeps”
across the ROC space to generate these intervals. A sweep
samples the observed ROC point (or average ROC point for
a set of curves) and the confidence boundary about it. These
boundary points are then used to generate the upper/lower
confidence bands. We describe how the sweep methodology is
used in the following sections.
For the TA and VA sweeps, we use one of three distribu-

tion assumptions (normal, binomial, empirical). Some meth-
ods (VA, TA, and FWB) require a sampling of points. In this
case, the sweep uses a distribution of ROC curves which is
used by the respective methods. For the other methods (WHB
and SJR), the sweep uses just one ROC curve.
All of our sweep methods require two parameters:

1. The confidence δ, which we set to 0.05 for a 95% confi-
dence bound throughout this paper. We did preliminary
tests with other δ’s (0.10 and 0.01) with similar results as
those presented below.

2. The number and distribution of points to sample along
the sweep, which we set to a uniformly distributed 100
points along the sweep orientation axis. This number can be
changed depending on how fine-grained a curve is needed.5

3.4 Vertical Averaging (VA)

Sweeping the ROC curve using the vertical averaging (VA)
method works as follows: sweep a vertical line from FP = 0 to
FP = 1, sampling the distribution of TPs from the collection

5 While this is a free variable that will have some effect on the
overall fit of the bands, we do not investigate its effect in this
paper.



of ROC curves at regular points along the sweep. For each
such sampling at a fixed FP, TP confidence intervals can be
created using any of the distribution assumptions mentioned
above.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
Po

si
tiv

e

False Positive

Vertical Averaging (VA) Confidence Intervals

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
Po

si
tiv

e

False Positive

Vertical Averaging (VA) Confidence Intervals and Bands

Figure 1. Transforming vertical averaging into confidence
bands.

We generate confidence bands by considering all the up-
per (lower) interval points as the points making up the up-
per (lower) band. Figure 1 illustrates this methodology. For
each FP (0.0 through 0.99 since FP=1.0 always has a TP of
1.00), we generate a distribution of possible TPs across all the
sampled ROC curves and generate the bands based on this
distribution.

3.5 Threshold Averaging (TA)

The sweep for the threshold averaging (TA) method works a
little differently than that for the VA method. It sweeps along
the thresholds on the model scores from the smallest to the
largest observed threshold, sampling the distribution of ROC
points generated with each threshold. It then generates the
mean (FP,TP) point for each sampled threshold and finds
the confidence intervals of the FPs and TPs, using any of the
distribution assumptions mentioned above.
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Figure 2. Transforming threshold averaging into confidence
bands.

This method is less straightforward to adapt to our frame-
work as there are various ways to deal with two confidence in-
tervals. In this paper we chose the simplest approach: discount
the confidence interval for FP and only use the confidence in-
terval for TP. Because of this, the bands we generate turn out
to be somewhat conservative and containment probably is un-
derestimated. Figure 2 illustrates the transformation as well
as the drawback. In the figure, we clearly see that some FP
intervals reach outside the confidence bands (opposite to the
vertical intervals, the horizontal intervals will tend to be larger
for higher FP rates). While there are alternative methods for

generating the bands, such as considering the bounding box,
or the diamond made up by the interval boundaries, we do
not consider them for this study.

3.6 Simultaneous Joint Confidence Regions
(SJR)

The simultaneous joint confidence region (SJR) works differ-
ently than either of VA and TA. It uses the Kolmogorov-
Smirnov (KS) [6] one-sample test statistic to identify a global
confidence interval for TP and FP independently [5]. The KS
statistic is used to test whether two sampled sets come from
the same underlying normal distribution by considering the
maximal vertical distance in their respective estimated cu-
mulative density functions. For our purpose, that means the
maximal vertical (horizontal) distance allowed from the given
ROC curve to another ROC curve without rejecting H0—i.e.,
the confidence interval along FP (TP). Using the KS one-
sample test allows us to identify these two distances, using
the number of instances in each sample—i.e., the number of
true positives, m, and the number of true negatives, n. For
sufficiently large set sizes (> 35), these distances are defined
as follows.

δ
Set Size 0.20 0.15 0.10 0.05 0.01

> 35 1.07√
n

1.14√
n

1.22√
n

1.36√
n

1.63√
n

Table 1. Kolmogorov-Smirnov (KS) critical values for rejecting
H0 for set sizes > 35.

We look up d and e, the critical distances along TP and FP
respectively, at confidence level (1−δ). These identify the si-
multaneous joint confidence region for a given observed point
(fp, tp) to be (fp± d, tp± e) at confidence level (1−δ)2. Note
that while the confidence level is theoretically (1−δ)2, we em-
pirically test it as though it is at the (1−δ) level. Surprisingly,
we show that it generally achieves this tighter bound—i.e.,
(1−δ)2 would be too loose.
The way we generate the confidence bands using these re-

gions is by sweeping along FP in a similar fashion as was done
with VA. At regular intervals, we freeze FP and identify the
respective TP. We use the upper left (lower right) corners of
the confidence region to define the upper (lower) confidence
band, cropped to stay within ROC space. Figure 3 illustrates
this transformation.
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Figure 3. Transforming SJR into confidence bands.



3.7 Fixed-Width Bands (FWB)

The fixed-width bands (FWB) method works by identifying
a slope, b < 0, along which to displace the original ROC
curve to generate the confidence bands [5]. In other words,
the upper (lower) confidence band would consist of all the
points of the original observed ROC curve displaced “north-
west” (“southeast”) of their original location. This creates a
confidence band with a fixed width across the entire curve.
The question is what slope to use and what distance to dis-
place the curve. While the ideal slope would be the ratio of
the standard deviations associated, respectively, with TP and
FP, we here adopt the same approximation as that used in
the original work and use the slope b = −

√
(m/n). The way
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Figure 4. Displacing curve to generate FWB confidence bands.

we generate the confidence bands using this method is similar
to that of SJR. We sweep along the FP axis, freezing FP at
regular intervals and identify the TP value at that FP. We
add the upper (lower) boundary points by moving a distance

d in each direction along the line with slope b = −
√
(m/n).

Figure 4 illustrates this transformation.
As with our study, the original work used the bootstrap

to identify the distance to displace the curve to generate the
confidence bands. Using this distribution of ROC curves, we
identify the distance needed to have (1−δ) of all the curves
be completely contained within the confidence bands. This is
notably different from the approaches taken by TA and VA
which generated intervals on a per-point basis.

3.8 Working-Hotelling Bands (WHB)

We adapt a method for using Working-Hotelling hyperbolic
bands [28] to generate simultaneous confidence bands on an
ROC curve [13]. The confidence bands are fitted to a regres-
sion line, y = a− b · x, and are of the form:

l(x,±k) = a− b · x± k · σ(x), (1)

where k ≥ 0 is a constant which we define below, and
σ(x) =

√
σ2

a − 2ρσaσb · x+ σ2
b · x2, as defined by the covari-

ance matrix Σ:

Σ =

(
σ2

a ρσaσb

ρσaσb σ2
b

)
(2)

We use maximum-likelihood estimation (MLE) to gener-
ate a regression line to fit the ROC curve. We use our own
implementation of the ROCKIT algorithm [16] to do so.6

6 This is part of our ROC analysis toolkit, which we plan on re-
leasing to the public later this year. This toolkit is written in
Java.

The ROCKIT algorithm works by first grouping continuous
data into ’bins’ or ’runs’ of instances either with the same
model score and/or same label. Then it uses an ordinal (’rat-
ing method’) algorithm [7] to create a smooth binormal ROC
curve. The covariance matrix is also calculated as part of the
algorithm.
There are various constants, k, available at confidence level

(1−δ), depending upon the type of band being generated. For
the purpose of our study, we use two types of bands: two-sided
pointwise confidence bands (WHB-p) and simultaneous unre-
stricted confidence bands (WHB-s). The pointwise confidence
bands are analogous to the vertical averaging confidence in-
tervals under the binormal distribution. As such, WHB-p will
generate tighter bands than WHB-s, as we will show later.
For WHB-p, the constant kδ, for confidence level (1− δ) is
2Φ(x) − 1.7 For WHB-s, kδ is determined by the chi-square

distribution with 2 degrees of freedom: kδ =
√

−2ln(δ).

4 Evaluation

The key question we ask in this paper is how good are these
bands? As with confidence intervals on a single variable, we
would like to be able to say that given a δ, the bands generated
can be expected to fully contain the curve from a given model
with a probability of 1−δ (assuming that new test instances
come from the same distribution). As we will show, for only
one of the methods proposed above does this hold.

5 Case Study

5.1 Data

We now present a case study using the Covertype data set
from the UCI repository [2]. We chose this data set because
its large size enables in-depth testing across a wide range of
model-generation and ROC-generation set sizes. The Cover-
type data set consists of 581, 012 instances having 54 features,
10 being numerical and the rest being ordinal or binary. While
it has seven classes, there is a large variation in class mem-
bership sizes. To study the ROC curves, we chose examples
of the two classes with the most instances, giving us a data
set of 495, 141 instances (57.2% base error rate).

5.2 Scoring Model

We use a modified C4.5R8 [25] that generates probabilities of
class membership [21]. If a leaf matches p positive examples
and n negative examples, we apply a simple Laplace correc-
tion [20] giving us a probability estimate of p+1

p+n+2
, as we have

2 classes. Further, we do no pruning of the tree, as standard
pruning does not consider differences in scores that do not
affect 0/1 loss (but may deflate the ROC curve) [21].
Any classifier–even a fixed function—would suffice for this

step, as the final fixed model is used only as a score generator
for our ROC analysis.

7 This, it turns out, is equivalent to kδ = zδ/2, where zδ/2 is the
statistical constant for a two-sided bound of δ confidence.



5.3 Bootstrap-based Evaluation

To generate and evaluate confidence bands, we use the fol-
lowing method based on a bootstrapped empirical sampling
distribution.

1. Randomly split the complete data set into a model-
generation (MG) set of 256,000 instances and a ROC-
generation (RG) set of 125,000 instances, keeping these two
sets disjoint.

2. Fix the model-generation size, m, and sample with replace-
ment from MG a model-generation set, M , of size m.

3. Learn a classifier based on M .
4. Fix the ROC-generation size, r, and sample with replace-
ment from RG a ROC-generation set, R, of size r.

5. Generate multiple “fitting” sets Fi multiple verification
sets, Vi:

(a) Generate rfit “fitting sets”, Fi of size r by repeated sam-
pling with replacement from R. For each Fi, generate an
ROC curve, roc(Fi), for the model. The result is a set of
ROC curves, rocF = {roc(Fi)}.

(b) Generate confidence bands, C, based on rocF .

(c) Generate reval “verification” sets, Vj , of size r by re-
peated sampling with replacement from RG. For each
such sample, generate a verification ROC curve, roc(Vj).
The result is a set of ROC curves, rocV = {roc(Vj)}.

(d) Calculate the percentage of ROC curves in rocV that fall
completely within the generated confidence bands, C.

6. Repeat steps (4)–(5) 10 times to account for variability in
the generated confidence bands.

This methodology has four parameters: the model-
generation size, the ROC-generation size, the number of sam-
pling runs, rfit , used to generate rocF in step 5(b) to gener-
ate the confidence curves, and the number of sampling runs,
reval, used to generate rocV . We fix this latter number of sam-
pling runs to 1000. We examine the sensitivity to each of the
remaining parameters in the next section. Note that for this
paper, we do not consider variance in curves due to the model-
generation set—only confidence bands on the ROC curve of
a particular (learned) classifier. However, a similar methodol-
ogy would apply to the generation of confidence bands for a
learning algorithm.

5.4 Trends in Confidence Bands

In this section we examine the experimental parameters iden-
tified above. Unless stated otherwise, we will use the FWB
method for the figures presented as this method is the best
performer among the methods used in this study.

5.4.1 Model-Generation Set Size

This parameter is the least interesting for this particular case
study. As the model-generation set size increases, the ROC
curves become higher as would be expected. However, while
this has some effect on the width of the confidence bands, it
is more a matter of considering different learned models than
of how to generate good bands for a given model. As such, we
do not consider this to be an important dimension for further
discussion here and fix the size to 1000 instances.

5.4.2 ROC-Generation Set Size
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Figure 5. ROC bands using various ROC-generation sizes.

The ROC-generation set size should have an obvious ef-
fect on the bands generated. We varied the ROC-generation
set size between 625, 1250, 6250, 12500 and 25000 instances
(0.5%, 1%, 5%, 10% and 20%, respectively, of RG). As the
set size increases, as expected the approximate confidence in-
tervals generated by any of our methods become narrower and
therefore so do our confidence bands. With too few samples,
the estimate of the confidence interval tends to be inaccu-
rate and biased to be too wide. Figure 5 illustrates this effect
clearly.

5.4.3 Number of Fitting Curves
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Figure 6. ROC Bands using varying number of sampling runs,
using a ROC-generation size of 1000.

The number of samplings runs, rfit, used to create the em-
pirical distribution (step 5(a) in Section 5.3) is the last free
parameter that we consider. In order to generate the ROC
bands using VA, TA and FWB, we need to have a sample of
ROC curves from which to generate these bands. The question
to answer is how many such fitting ROC curves—the number
of sampling runs—are needed to generate reasonable bands.
While the effect of this variable is not as intuitive as the ROC-
generation or model-generation set sizes, it still does have an
effect as can be seen in Figure 6. While the upper band is



fairly stable we see that the lower band tightens with more
sampling runs.

5.5 How Good Are The Bands?

Having considered our experimental parameters, let us now
ask our main question: do the 1−δ confidence bands actually
contain 1−δ of the empirical distribution? For an initial an-
swer, we first fix the number of fitting curves to 1000 and the
ROC-generation size to 12,500.
As per our bootstrap-based methodology, we randomly

sampled 1000 ROC-generation sets of size 12,500 with replace-
ment from RG and counted the percentage of curves in rocV
that fell completely within the confidence band. We did this
for each of our methods using each of the applicable distri-
bution assumptions. Table 2 shows the coverage achieved by
each of the methods tested.

distribution assumption
Method empirical normal binomial binormal

FWB 95.6(0.7) — — —
SJR — 97.0(4.3) — —

WHB-p — — — 7.6(6.7)
WHB-s — — — 86.6(13.1)

VA 28.5(10.1) 34.5(1.0) 43.5(1.1) —
TA 0.2(0.2) 0.2(0.2) 42.2(1.0) —

Table 2. How many verification ROC curves fall within the
bands of each method using a given distribution for generating
bands? Each cell shows the percentage and standard deviation of
curves completely contained within the created confidence bands.

As we can see in the table, only two of the bands (FWB
and SJR) achieve the 95% bound that we would expect, al-
though WHB-s gets close with a coverage of 86, 6%. Not sur-
prisingly, neither TA nor VA get anywhere near the bound.8

It was suggested to us that the failure of these bounds are
to be expected for TA, VA and WHB-p due to the multiple
comparisons problem and that we should in fact be doing a
Bonferroni correction [3, 18], which in a nutshell states that
the probablity of a Type I error is 1− (1− δ)k, where k is
the number of comparisons. The problem with this correc-
tion is that it is overly conservative 1− (1− δ)100 = 0.994
for δ = 0.05—i.e.,, the probability of falsely rejecting H0 is
99.4%! In fact, we’d need to set δ = 0.0005 in order to gen-
erate a 95% confidence bound with 100 points on the ROC
curve. While there are less conservative alternatives to the
Bonferroni correction [12], they are still too conservative for
the number of comparisons done in our study (the different
points on ROC curves are very far from being independent).
Based on Table 2, it seems that VA, TA and WHB-p are not

good methods for generating confidence bands, while any of
the remaining three methods are plausible. In order to verify
these findings, we tested all the methods in a wider range of
ROC-generation set sizes (625, 1250, 6250, 12500, 25000) and
number of sampling runs (10, 100, 500, 1000, 5000) to verify
that these findings would hold. For the most part they do,
though there were some notable surprises. Except for TA

8 Recall that the bands generated by the TA method are overly
conservative and that better bands may be found with a better
connecting method.

and VA under the binomial distribution, all methods had
their performance be relatively consistent for a given ROC-
generation set size regardless of the number of sampling runs.
Under the binomial distribution, the fewer the sampling runs,
the wider the bands and thus the more containment. When
given only 10 runs (and 100 as well for TA), the methods had
100% containment for ROC-generation size ≥ 6250. However,
this quickly went to 0% containment as the number of sam-
pling runs increased or the ROC-generation size decreased.
TA otherwise generally had containment of less than 10% and
VA had containments from 10% to 40%. The remaining four
methods showed interesting containment curves, however, as
shown in Table 3.
Some immediate patterns emerge. All methods performed

equally “badly” when given smaller ROC-generation sets (and
this got worse if we made the ROC-generation sets even
smaller). Second, we see that both FWB and SJR are very
consistent. Interestingly, looking at different number of sam-
pling runs further strengthens the case for FWB, while SJR
has a higher variance in coverages, although that are all above
89% for ROC-generation sizes ≥ 1250. Interestingly, we see
that WHB-s actually starts to perform worse as we increase
the ROC-generation size, suggesting it might have a perfor-
mance curve similar to that of WHB-p but with a wider peak.

6 Discussion and Future Work

In this paper we evaluated various methods for generating
confidence bands for ROC curves. We adapted two methods
from the machine learning literature and introduced three
methods from the medical field. We described our general
framework, based on the bootstrap, for generating confi-
dence boundaries for ROC curves and empirically evaluating
whether they hold at their given confidence level.
Not surprisingly, methods that generate confidence inter-

vals (1-dimensional boundaries) did not translate well to con-
fidence bands and generated bands that were too tight. These
included vertical averaging (VA), threshold averaging (TA)
and pointwise Working-Hotelling bands. Surprisingly, the si-
multaneous Working-Hotelling bands, while at first seemingly
robust, did not hold up as we varied the parameters for gen-
erating the confidence bands. In all fairness, the failure of VA
and TA probably can be contributed to our naive methodol-
ogy for converting them into bands.
Two of the methods used in medical literature for genera-

tion of simultanous confidence boundaries did turn out to be
relatively robust to changes in the number of samples used
for generating the confidence boundaries and the number of
instances making up each sample. The simultaneous joint con-
fidence region method, while having higher overall variance, is
easy to use and does not require any samples in order to gener-
ate the confidence bands. The fixed-width confidence bands,
while requiring the bootstrap to empirically determine the
proper width, turned out to be very stable and consistently
achieve the desired containment of ROC curves used for the
verification.
Surprisingly, all of the methods were robust and did not

change performance markedly when we varied the number
of sampling curves used to generate the confidence bands.
More surprising, none of the methods were able to generate
confidence bands with the desired coverage as we lowered the



verification set size
Method 625 1250 6250 12500 25000

FWB 56.2( 1.2) 82.3(28.8) 95.7( 0.9) 95.6( 0.7) 95.1( 0.9)
SJR 62.4( 3.6) 91.8( 3.0) 96.2( 7.7) 97.0( 4.3) 96.5( 4.0)

WHB-p 54.4( 3.0) 78.4(28.0) 65.5(15.6) 7.6( 6.7) 0.0( 0.0)
WHB-s 56.2( 1.2) 73.0(38.6) 99.6( 0.5) 86.6(13.1) 35.9(16.8)

Table 3. Containments of FWB, SJR, WHB-p and WHB-s with 1000 verification curves with varying ROC-generation set sizes. Each
cell shows the percentage and standard deviation of verification curves completely contained within the created confidence bands.

number of instances drawn in each sampling run. When we
lowered this size to 625, the coverage fell to below 50% even
for the best performing methods.
One important question to ask, however, is whether these

findings hold across a wider variety of classifiers and data sets.
Our results were based on one classifier (C4.5R8) and one
data set (covertype). The question we would like to address
in future work is what are the conditions under which these
methods perform well (or poorly). For this, we plan to move
away from the classifier and specific data set and characterize
the problem based on class skew and how well the model can
separate one class from another. Work is currently under way
to address this issue.
One promising method recently proposed to us involves us-

ing the AUCs from the set of “fitting curves”, choosing the
curves with the middle 1−δ AUCs and using their upper and
lower hulls. We did not have time to implement this method
before submission, but plan on incorporating it in future work.
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