
ROC Confidence Bands: An Empirical Evaluation

Sofus A. Macskassy SMACSKAS@STERN.NYU .EDU

Foster Provost FPROVOST@STERN.NYU .EDU

New York University, Stern School of Business, 44 W. 4th Street, New York, NY 10012

Saharon Rosset SROSSET@US.IBM .COM

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract
This paper is about constructing confidence bands around ROC
curves. We first introduce to the machine learning community
three band-generating methods from the medical field, and evalu-
ate how well they perform. Such confidence bands represent the
region where the “true” ROC curve is expected to reside, with
the designated confidence level. To assess the containment of
the bands we begin with a synthetic world where we know the
true ROC curve—specifically, where the class-conditional model
scores are normally distributed. The only method that attains
reasonable containment out-of-the-box produces non-parametric,
“fixed-width” bands (FWBs). Next we move to a context more
appropriate for machine learning evaluations: bands that with a
certain confidence level will bound the performance of the model
on future data. We introduce a correction to account for the
larger uncertainty, and the widened FWBs continue to have rea-
sonable containment. Finally, we assess the bands on10 rela-
tively large benchmark data sets. We conclude by recommending
these FWBs, noting that being non-parametric they are especially
attractive for machine learning studies, where the score distribu-
tions (1) clearly are not normal, and (2) even for the same data set
vary substantially from learning method to learning method.

1. Introduction
Many machine learning studies plot ROC curves to il-
lustrate the possible tradeoffs of true-positive and false-
positive rates that would be expected from a learned model.
This paper addresses the problem of creating confidence
bands around such ROC curves.1 Confidence intervals gen-
erally are designed to contain (with probability1−δ) the
expectation of a function being estimated. For ROC curves
this amounts to specifying a region of ROC space where
some ROC curve of interest is expected to lie. For exam-
ple, given a scoring model and a domain of interest, rather
than simply plotting an ROC curve for a particular sample,
it may be more informative to show the region expected to
contain the “true” ROC curve—the ROC curve defined by
the model and the distribution generating the data. We will
call these “true-curve” confidence bands.

1We are not consideringpointwiseconfidence bounds in this
paper. We discuss these elsewhere (Macskassy et al., 2005).
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In machine learning research (and practice), confidence
bands rarely are drawn on ROC curves, and the field gener-
ally is unaware of methods (introduced elsewhere) to pro-
duce such bands. There has been almost no research on
the evaluation of confidence bands for ROC curves, and
no research in a machine learning context (with the excep-
tion of the workshop paper that we extend here (Macskassy
& Provost 2004)).2 We first introduce the machine learn-
ing community to three existing methods from the medical
literature for estimating confidence bands on ROC curves.
We then assess the containment of these bands.

In a machine-learning setting with real data, we do not
know the true ROC curve for a particular learned model,
which stymies evaluations of true-curve containment on
real data. However, being accustomed to estimating ex-
pectedfutureperformance, it is natural to evaluate whether
confidence bands properly contain the ROC curves pro-
duced by a particular model on future data from the same
domain. For this we will need to adjust the true-curve
confidence bands to account for the added uncertainty in
the composition of the future data. Furthermore, to gen-
erate these “future-curve” confidence bands, we also must
take into account the size of the data set used to generate
the ROC curve, because this influences the variance of the
ROC curve (Macskassy & Provost, 2004). In sum, we want
to generate a “future-curve” band that with a probability of
1−δ will contain the ROC curve traced by the model on a
future data set containingr examples.

Another issue is whether the bands are created for a spe-
cific, fixed model (perhaps a learned model), where varia-
tion comes only from the test data, or whether we are in-
terested in bounding the performance of a learning algo-
rithm, given different training data sets and different test
data sets. While the latter problem is certainly important,
we concentrate here on the simpler, more tractable problem
of evaluating a fixed model.

2Extending the prior workshop paper, here we clarify many
details of the various methods, evaluate true-curve containment,
introduce adjusted curves for future-curve evaluation, evaluate
future-curve containment with a suite of real data sets, andclearly
recommend one method.
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For ROC analysis, it is sufficient to represent a (learned)
model simply by the class-conditional score distributions
it produces (G+ and G−). We begin by adopting the
conventional assumption thatG+ and G− are normally
distributed, and assess the containment of the true-curve
bands. We show that one of the three methods, non-
parametric fixed-width bands (FWBs), outperforms the
others. We next introduce an adjustment to widen the
FWBs so that they are appropriate as future-curve bands,
and demonstrate that the widened FWBs continue to have
reasonable containment. Finally, we assess the bands on10
relatively large benchmark data sets.

We conclude by recommending FWBs, noting that being
non-parametric they are especially attractive for machine
learning studies, where the score distributions (1) clearly
are not normal, and (2) even for the same data set vary sub-
stantially from learning method to learning method.

2. Confidence bands on ROC curves
Prior work in machine learning on creating confidence in-
tervals for ROC curves for the most part has created one-
dimensional, pointwise confidence intervals (cf. (Bradley,
1997; Provost et al., 1998; Fawcett, 2003)), which are not
the focus of this paper. Many methods in the medical liter-
ature also generate pointwise intervals (cf. (Hilgers, 1991;
Metz et al., 1998; Claeskens et al., 2003; Hall et al., 2004;
Zou et al., 1997)) and are not considered here either. Con-
necting pointwise intervals to form confidence bands is a
mistake: due in part to problems of multiple comparisons,
these bands generally will be too narrow.

Medical researchers have examined the use of ROC curves
extensively and have introduced techniques for creating
confidence boundaries (pointwise intervals or bands). We
consider three methods for generating (“simultaneous” or
“joint” (Ma & Hall, 1993)) confidence bands on ROC
curves. Working-Hotelling bands (WHB) are based on the
Working-Hotelling hyperbolic confidence bands for simple
regression lines (Working & Hotelling, 1929).Simulta-
neous joint confidence regions(SJR) use the distribution
theory of Kolmogorov (Conover, 1980) to generate sepa-
rate confidence intervals for TP and FP rates (Campbell,
1994), and use these to form bands. Finally,fixed-width
simultaneous confidence bands (FWB) are non-parametric
confidence bands created by displacing the entire ROC
curve “northwest” and “southeast” a fixed amount (Camp-
bell, 1994). FWBs require a set of ROC curves, which
can be generated by evaluating the model on multiple test-
ing sets or by resampling one test set. We resample with
the bootstrap (Efron & Tibshirani, 1993), which also has
been used in machine learning as a robust way to evalu-
ate expected performance, for example for evaluating cost-
sensitive classifiers (Margineantu & Dietterich, 2000).

2.1. Simultaneous Joint Confidence Regions (SJR)
The simultaneous joint confidence region (SJR) uses the
Kolmogorov-Smirnov (KS) (Conover, 1980) test statistic to

δ
Set Size 0.20 0.15 0.10 0.05 0.01
> 35 1.07√

n

1.14√
n

1.22√
n

1.36√
n

1.63√
n

Table 1.Kolmogorov-Smirnov (KS) critical values for rejecting
H0 for set sizes> 35.
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Figure 1.Transforming SJR into confidence bands.

identify confidence intervals for TP and FP independently
(Campbell, 1994). The KS statistic tests whether two sam-
ples come from the same underlying distribution by con-
sidering the maximal vertical distance in their respective
estimated cumulative density functions. In our case, there
are two relevant distributions we would like to test: for FP
and TP. Thus, we can build a separate KS-based confidence
band for FP, which would translate to a maximum horizon-
tal distance allowed from the ROC curve, and a separate
one for TP, which would translate to a maximum vertical
distance allowed. The KS test identifies these two distances
based on the number of instances in each sample—i.e., the
number of positives,m, and the number of negatives,n. To
generate these distances, we look upd ande, the critical
distances for a fixed TP and FP respectively, at confidence
level (1−δ)—Table 1 shows how these are calculated for
sufficiently large set sizes (> 35).

The way confidence bands are generated using these re-
gions is by generating a confidence region for each distinct
point on the ROC curve constructed from the scored sam-
ples inD. We trace the upper (lower) points of the confi-
dence region to define the upper (lower) confidence band,
cropped to stay within ROC space. Figure 1 illustrates this
transformation.

Campbell (1994) argues that this procedure should give a
(1−δ)2 confidence band for the true ROC curve. As we
will see below, this is not the case, and in fact the proce-
dure typically gives an implied confidence that is even big-
ger than1−δ. To understand this, we should clarify that
the horizontal and vertical bands we are building are using
the model scores as the independent variable characteriz-
ing the distribution. Assume we build a separate box (fp
± d, tp ± e) around each point in our ROC curve, char-
acterized by a threshold on the continuous scores. Then
the two independent KS bands imply that with probability
(1−δ)2 every threshold on the population score distribu-
tion would give a point in ROC space which falls within
the box characterized by this score value. This rather com-



ROC Confidence Bands: An Empirical Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
P

os
iti

ve

False Positive

Fixed Width Bands - displacement

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
P

os
iti

ve

False Positive

Fixed Width Bands - realized

Figure 2.Displacing curve to generate FWB confidence bands.

plicated “score containment” characterization is not partic-
ularly useful for our case, since we are operating in (FP,
TP) space, and ignoring the scores. The interesting thing
about it is that “score containment” guarantees the “curve
containment” we are interested in, but not the other way
around. Hence we would expect the real confidence level
to be higher than(1−δ)2.

2.2. Fixed-Width Bands (FWB)
To generatefixed-width bands(FWB) we start by identi-
fying a slope,b < 0, along which to displace the original
ROC curve (Campbell, 1994). The upper (lower) limit of
the confidence band comprises each of the points of the
observed ROC curve displaced “northwest” (“southeast”)
of its original location along an intersecting line of this
slope. The resultant confidence band has a fixed width
(along slopeb) across the entire curve. Figure 2 illustrates
this transformation.

Following Campbell (1994), we setb = −
√

(m/n)
(Campbell discusses how this is an approximation to the
ideal, which would be to use the ratio of the standard devi-
ations of TP and FP), and we use the bootstrap to identify
the distance to displace the curve to generate the confidence
bands. Given sampleD, we generate bootstrap sampleD∗
(sample fromD with replacement a set of the same size as
D) and calculate themaximumdistance along slopeb from
the ROC curve generated byD to the ROC curve generated
by D∗. We need the maximum distance because this is the
width needed in order forD∗ to be completely within the
band. We sample1000 D∗’s, and find the distance needed
in order to keep1−δ of all the curves completely within the
generated bands. In our experiments below we observe that
the FWBs attain containments of curves that for small sam-
ple sizes are smaller than the desired confidence level. This
probably exposes one of the weaknesses of the bootstrap
resampling methodology, when the sample from which we
are resampling is not large enough to contain the full range
of diversity of the population.

2.3. Simultaneous Working-Hotelling Bands (WHB)
Following Ma and Hall (1993) and Metz et al. (1998),
we adapt a method for using Working-Hotelling hyperbolic
bands (Working & Hotelling, 1929) to generate simultane-
ous confidence bands on an ROC curve. We use a pub-

licly available implementation of the LABROC4 algorithm
(Metz et al., 1998), which generates a “smooth” maximum
likelihood (ML) estimation of an empirical ROC curve as
well as pointwise confidence bounds.3 The method is too
complex to describe in detail here; we will give an intuitive
overview and the interested reader is referred to the original
sources.

Previously, much work on generating ROC curves in the
medical literature dealt with ordinal decision categories,
notably estimating ROC curves using maximum likelihood
(ML) estimation based on an assumed parametric form for
the ROC curve. However, we are interested in continuous
decision scores (e.g., estimates of the probability of class
membership). Metz et al. observed that ML estimation of
an ROC curve from continuous scores is equivalent to ML
estimation from ordinal scores if runs of positives/negatives
(as well as equal-scored cases) in the rank-ordered data are
interpreted as ordinal categories. LABROC4 first groups
the data into such runs. Then assuming a binormal score
distribution it uses an ordinal (“rating method”) algorithm
(Dorfman & Alf, 1969) to fit a smooth ROC curve. Two
different notions of binormality are taken by this approach.
One, which we use later, is that the class-conditional score
distributionsG+ and G− are normally distributed. The
second is that the ROC curve is a straight line using
“normal-deviate” axes—the so-called “probit” space; that
is, Φ−1(TP ) = a + bΦ−1(FP ), whereΦ(·) represents the
cumulative normal distribution function andTP andFP
are the true- and false-positive rates. This straight line in
probit space corresponds to a smooth curve in ROC space.

Ma and Hall (Ma & Hall, 1993) describe the construction
of different sorts of confidence bands for such ROC curves.
Following their line of reasoning, the LABROC4 program
generates pointwise confidence bounds via the ROC re-
gression line in probit space, which is fit using maximum-
likelihood estimation (MLE). Specifically, the bands are
composed of points defined by the functionl:

l(x, k) = a − b · x + k · σ(x), (1)

wherek is a constant defined below, positive for the up-
per band and negative for the lower band,x is a probit-
transformed false-positive rate, andσ(x) is the estimated
variance of the prediction atx, using the standard linear
regression inference methodology.

The constants±k are determined by the confidence level
(1− δ) and the type of band being generated. To gen-
erate confidence bands, we use Ma and Hall’s simultane-
ous unrestricted Working-Hotelling bands, where,kδ is de-
termined using a chi-square distribution with 2 degrees of
freedom:

kδ =
√

−2 ln(δ) (2)

3We acquired the LABROC4 FORTRAN source code from a
public web-site and modified its I/O to work with our ROC analy-
sis toolkit. Our Java 1.5 toolkit will be released to the public later
this year.
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Figure 3.Example distribution used in study below.
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Figure 4.ROC curves generated for distribution as we varyθ.

3. Data Generation
To evaluate the different confidence bands, we generateG+

andG− as two normal distributions, only differing in their
parameters. Our synthetic worldW is defined by five pa-
rameters:

1. P (+), the probability that an instance is fromG+;

2. the two model parameters forG+: θ+ andσ+;

3. the two model parameters forG−: θ− andσ−.

For the study below, we fixP (+) = 0.5, σ+ = 3.75,
and σ− = 3.0, making G+ “fatter” than G− (fol-
lowing an observation of Bennett (2003), discussed be-
low). We used a range of values ofθ, setting θ+ =
{0.75, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00}, andθ− = −θ+.
Figure 3 shows the distributions withθ = ±3.0. Figure 4
shows the resulting ROC curves for all values ofθ, gen-
erated by plotting the points(cdfG−(x), cdfG+(x)), for x
ranging from∞ down to−∞. The smallerθ, the closer the
true ROC curve will be to the random line (x = y); these
choices ofθ yield a range of AUCs from0.62 to 0.98.

4. “True-curve” Evaluation
We expect the “true” ROC curve to fall completely within
these bands with the specified probability (frequency)—in

1. Build a synthetic world,W , consisting of two distribu-
tions,G+ andG− with meansθ and−θ respectively.

2. Fix a sampling size,r, and sample fromW a confidence-
generation set,R, of sizer.

3. Generate(1−δ) confidence bands,Cb, based onR as
outlined in Section 2.

Table 2.Generating ROC Bands from Synthetic World.

other words, were we to generate bands repeatedly from
randomly drawn samples fromW , 1−δ of the bands would
contain the “true” ROC curve, where the “true” ROC curve
is the curve generated directly from the cdf’s (as above).

We generate the bands using the simple methodology out-
lined in Table 2, with three parameters: (1) the synthetic
world, which is defined byG+, G−, andP (+), (2) the
ROC-generation size,r, and (3) the confidence levelδ.

4.1. Evaluation
To evaluate the bands, for each experiment we generate
1000 bands based on the method shown in Table 2, and
count how many of them contain the true ROC curve.
We fix δ = 0.1 and examine the sensitivity of the con-
fidence calculations to the ROC-generation size,r ∈
{25, 100, 250, 1000, 2500, 10000} and the parameters of
the synthetic world. Ideally,1−δ of the calculated bands
would contain the “truth”.

4.2. Results
Figure 5 shows the containment for the3 band methods
for a subset of the values ofr (horizontal axis) andθ (dif-
ferent curves).4 We see very clear trends and interactions
between these two parameters for each method. SJR is uni-
versally too wide, except for small values ofr andθ. WHB
seems to fail completely. This is due to the performance
at small values of FP. By construction, the MLE curve fit-
ting starts at(0, 0) regardless of the empirical curve. This
leads the WHBs to fail for this region of the ROC curve.
If we modify the evaluation to start measuring containment
at FP > 0, then the containment of WHB increases,5 but
it never performs as well as FWB and it always performs
considerably worse at higher values ofθ.

The FWBs clearly exhibit the best containment, close to
δ = 0.1 in all cases, with two exceptions: very smallr, and
the combination of lowθ (low AUC) and larger (where
it’s still the best method of the three). Therefore, FWBs
seem to be the method of choice, with caution taken for
very small samples or extreme AUCs. For the rest of the
paper, we will examine only FWBs.

5. “Future-curve” Evaluation
As described above, for machine-learning evaluations we
don’t know the true ROC curve, but often have sufficient
data to answer a slightly different question. If the model

4We chose this subset for readability and to highlight the
trends.

5We evaluate at starting values ofFP = {0.01, 0.05, 0.10}
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Figure 5.Containment of “true-curve” bands atδ = 0.1. We show the containments for various values ofr. As we can see, only FWB
generates bands that are close to the expected containment.
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Figure 6.Variance problem with initial sampleR. Variance about
curves is correct, but the observed curve is off the true curve and
the estimated bands are therefore off the proper region.

were to be used subsequently on the domain in question, is
the resultant ROC curve likely to fall within the band?

To evaluate “future-curve” confidence bands, for each band
we generate1000 additional ROC curves, each based onr
samples fromW , and count how many were completely
contained by the band (wherer is the same size as that
used to generate the bands). Ideally,1−δ of the generated
curves would fall within the bands.

Not surprisingly, all the methods fail. Each places a band
about the observed curve. However, even if the methods
are estimating the true variance correctly, future curves will
be distributed about the true curve, not about the observed
curve. Figure 6 illustrates the problem. The variances
about the true and observed (sample) curves are very sim-
ilar. However, because the sample is so far off from the
true curve, the bands about it clearly are inappropriate for
bounding the position of future curves.

5.1. Widening the band
One approach to addressing this problem is to widen the
bands. Let us consider the true ROC curve (RT ), the sample
ROC curve (RM ) from which we will calculate the bands
(BM ) of width w, and an ROC curve sampled subsequently

Number of Absolute values ofθ
Samples0.75 1.0 1.5 2.0 3.0 4.0 5.0

25 0.86 0.91 0.96 0.83 0.76 0.69 0.86
100 0.94 0.88 0.96 0.95 0.95 0.88 0.86
250 0.93 0.93 0.96 0.89 0.93 0.92 0.93

1000 0.98 0.97 0.97 0.95 0.91 0.94 0.92
2500 0.97 0.95 0.95 0.92 0.96 0.94 0.92

10000 0.99 0.92 0.95 0.96 0.95 0.93 0.89

Table 3.Containments of FWB using calculated widths at(1−δ)
and widen them by

√
2. As expected, these bands generally are

slightly too wide (except at large values ofθ or atr ≤ 100).

(RM ′), which with probability(1−δ) should lie within BM .

Assume that we have a correct true-curve fixed-width band
around RM , calculated using the bootstrap approach or in
any other way, and denote the chosen width parameter by
w. This implies that the maximum distance between RT

and RM in the chosen direction (slope−
√

m/n, see Sec-
tion 2.2) has probability (1− δ) of being smaller thanw.
Denote this distance by d(RT , RM ). The distance measure
for RT and RM ′ , d(RT , RM ′), follows the same distribu-
tion and is independent. Now, if we assume that d(·) has a
Gaussian distribution, then it is easy to verify that:

P (d(RT , RM ) + d(RT , RM ′) ≤
√

2w) = 1−δ.

With non-Gaussian, but “reasonable” distributions, this
should still hold approximately. Sinced(RM , RM ′) ≤
d(RT , RM ) + d(RT , RM ′) we expect the resulting band
to be a little too wide, but this could be offset somewhat by
additional uncertainties not accounted for by our method-
ology, such as non-Gaussianity, change in the class propor-
tions (m, n) dictating the direction in whichw is chosen,
etc.

Table 3 shows the containments we get from applying this
technique, usingδ = 0.1. As suggested above, we see that
in general these bands are slightly too wide. Nevertheless,
we have not yet found an approach that performs better,
either in terms of accuracy of containment or consistency.

5.2. Evaluation on Real Data
Now we are equipped to assess the containment of ROC
confidence bands on real data, for which we do not know
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Data set Size Prior
Adult 48842 0.761
Bacteria 40262 0.693
CalHous 20640 0.516
Coding 20000 0.500
Covertype 495141 0.572
Intcensor 18821 0.589
Intrusion 311025 0.805
Letter-A 20000 0.961
Letter-V 20000 0.806
Mailing 191779 0.949

Table 4.Data sets used in the real world setting.
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Figure 7.Example bands on the Covertype dataset. The model is
a logistic regression model learned from100 random samples, the
bands were generated usingr = 1000.

the true ROC curve. Note that we need relatively large data
sets, in order to be able to do adequate bootstrap sampling
for creating the curvesand for the evaluation. We consider
10 relatively large data sets, used in prior machine learning
work (Perlich et al., 2003) and listed in Table 4. See the
original study for details on the data sets and the setup for
binary classification.

We first draw a stratified random sample of100 instances—
the learning set—and build various learned models us-
ing Weka6 (Witten & Frank, 2000)—logistic model trees
(LMT) (Landwehr et al., 2003), J48, naive Bayes trees
(NBT) (Kohavi, 1996), logistic regression (LR), and Naive
Bayes (NB). We then generate prediction scores for the re-
maining instances. The log-odds scores,log P (+|x)

P (−|x) , are
used as the base populationR from which to draw predic-
tions. Using the same values ofr as above, we sampler
prediction scores fromR to generate the confidence bands
and sample1000 scoring-sets of sizer from the remaining
prediction scores to evaluate the bands as “future” bands.
We do this10 times perR per data set to get containments
for one learned model. We generated10 models per learn-
ing algorithm by sampling10 different learning sets.

6We use version 3.4.2. Weka is available at
http://www.cs.waikato.ac.nz/˜ml/weka/

Number of Learning Method
SamplesLMT NBTREE LR J48 NB average

25 0.81 0.79 0.84 0.88 0.87 0.84
100 0.87 0.85 0.89 0.84 0.91 0.87
250 0.88 0.87 0.89 0.82 0.92 0.88

1000 0.89 0.87 0.92 0.77 0.95 0.88
2500 0.89 0.88 0.94 0.69 0.94 0.87

10000 0.79 0.80 0.77 0.45 0.92 0.75
average0.86 0.84 0.87 0.74 0.92 0.85

Table 5.Containments of FWB with a “widened” band to gener-
ate “future” bands based on prediction scores from the5 machine
learning methods. The models were learned from100 randomly
drawn samples. The scores reported are averages over9 of the
data sets.

Figure 7 shows one example band fitted to a logistic re-
gression model, withr = 1000. The figure shows the con-
fidence band and250 of the1000 verification ROCs. The
figure clearly shows the variance problem—the observed
ROC curve from which we generate the bands was obvi-
ously higher than the “true” curve, as the upper band is
much higher than all the later drawn curves. We also see
that FWB is much too wide at the extremes (due to its fixed
width) and that when future curves fall outside the bands,
they generally will do so in the middle.

Although there is considerable variance in the individual
containment results on the real data, they generally are fa-
vorable with the exception of the Letter-A data set.7 Table 5
shows the average containments (after removing Letter-A,
which has a small but noticeable effect) for each of the five
methods across various values ofr. The overall average
containment of the bands is0.85, somewhat lower value
than than desired. We increased the learning-set size to
2500 randomly drawn instances and repeated the evaluation
outlined above. Table 6 shows the average containments
(again after removing Letter-A) for each of the five learn-
ing methods across various values ofr. The overall aver-
age containment of the bands increased to0.87. The aver-
age containments clearly are dragged down by J48, which
in many of the experiments—especially with 100 training
examples—yielded poor containment. For these experi-
ments we used the raw, class frequencies at the leaves of
the trees (doing no smoothing), which are known to pro-
duce relatively poor ROC curves. Clearly by Table 6, with
2500 training examples the containments are substantially
better.

7For Letter-A for many cases (different learning techniques,
differentr values) the containment for Letter-A simply is0. This
deserves more investigation; we tentatively attribute thepoor per-
formance to the relatively small number of examples of the minor-
ity class. Letter-A has the most unbalanced class distribution and
also is one of the smaller data sets. As Stein (2002) has shown,
with a large class imbalance, the variance in ROC curves is ex-
tremely sensitive to the size of the minority class. Therefore, cau-
tion should be taken in extrapolating our results to data sets with
relatively few examples of one class.
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Figure 8.Score distributions of5 Machine Learning methods on the Covertype data set.

Number of Learning Method
SamplesLMT NBTREE LR J48 NB average

25 0.71 0.78 0.74 0.78 0.83 0.77
100 0.83 0.87 0.86 0.85 0.88 0.86
250 0.88 0.91 0.91 0.89 0.91 0.90

1000 0.90 0.91 0.93 0.92 0.90 0.92
2500 0.92 0.94 0.95 0.95 0.94 0.94

10000 0.83 0.94 0.92 0.63 0.93 0.85
average0.85 0.89 0.89 0.84 0.90 0.87

Table 6.Containments of FWB with a “widened” band to gener-
ate “future” bands based on prediction scores from the5 machine
learning methods. The models were learned from2500 randomly
drawn samples. The scores reported are averages over9 of the
data sets.
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Score distribution for Logistic Regression - 25000 samples

Figure 9.Sample logistic regression score distribution withr =
250000. These distributions are clearly not unimodal.

6. Discussion and Limitations
These results recommend the fixed-width bands, both for
the true- and future-curve settings. The results may seem
to justify applying the unwidened FWBs as true-curve
confidence bands for the real-data setting—after all, the

widened bands seem to give appropriate containment of
future curves. This is an intuitively appealing heuristic,
but one should keep in mind the assumptions on which the
widening is based (see above), which may not hold for any
particular data set and model.

A limitation of the fixed-width bands is their fixed width,
which at least based on the cases we have looked at is
too wide at toward the ends of the ROC curve. As we
saw, the WHBs were too narrow at the ends of the ROC
curve. Given that for many applications, the ends of the
ROC curve are of particular interest, this leaves room for
the design of better bands.

Non-parametric bands such as the FWBs have a special
appeal for machine learning studies. Of course it may be
that other bands, in particular bands based on binormal or
other parametric models, also could be adjusted to perform
well in the machine learning setting. However, machine-
learned models generally do not produce binormal score
distributions. A study by Bennett (2003) shows that stan-
dard ML methods do not induce models that generate Gaus-
sian class-conditional score distributions; he shows distri-
butions that have a closer fit to asymmetric Laplace dis-
tributions or asymmetric Gaussian distributions. Even for
the same data set, different machine learning methods pro-
duce models with widely differing score distributions. Fig-
ure 8 shows the positive and negative score distributions
generated by various types of learned model for the Cover-
type dataset. LMT has beautiful bell-shaped distributions,
which itself may be be worth further investigation. Al-
though LR and NB have fairly smooth distributions, they
are clearly not binormal. The distributions of J48 and
NBT are not even close to being bell-shaped. The naive
Bayes distributions are more-or-less in line with observa-
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tions made by Bennett (2003) (who studied naive Bayes
for text classification): they are asymmetric, bell-shaped
distributions where the positive distribution is fatter than
the negative.

Finally, we reemphasize that this paper treated the prob-
lem of placing a confidence band around the ROC curve of
a particular model for a particular domain (and testing-set
size, for the future-curve bands). We have not addressed
here the effect of using different values ofr for creating
the confidence bands and for testing them. We have shown
previously that the variance of an ROC curve is directly re-
lated tor (Macskassy & Provost, 2004), which makes it
crucial to ensure that these are equal. More importantly,
we have not addressed at all the problem of assessing the
confidence in the expected ROC performance of a learning
algorithm for a particular domain, which also must account
for the variance due to the choice of training data.

In conclusion, to produce confidence bands about ROC
curves, our results recommend the non-parametric, fixed-
width bands described by Campbell (1994), adjusted if nec-
essary to produce future-curve bands. A promising av-
enue is to extend the bootstrap procedure to generate fixed-
width confidence band for future curves, rather than use the
heuristicsqrt(2) correction. We hope eventually to offer a
full bootstrap-based FWB solution both for true-curve and
future-curve confidence bands.
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