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Why do networks matter in commerce?

= What are examples of “large sets of irregularly
connected entities” we observe as a consequence of
(electronic) commerce?

(intentionally blank)

Why are these “networked” data valuable?



Why do networks matter in commerce?

= What are examples of “large sets of irregularly
connected entities” that affect outcomes in
(electronic) commerce and which we do not observe ?

(intentionally blank)

What explains the formation and structure of these “underlying” networks?

A very basic framework
» There are underlying networks that affect outcomes

in electronic commerce.

= Manageable and useful abstractions of these networks which
are informed by theories from the social sciences can lead to
better theories that are related to electronic commerce.

= There are empirical networks generated as a by-
product of electronic commerce which can

= Describe outcomes of electronic commerce;
= Be used to predict future outcomes, and
= Influence underlying networks.

= Modeling these empirical networks in a rigorous way
can be informed by useful abstractions of the
underlying networks that generate them.



Agenda for this tutorial
= Abstracting networks towards better theory.
= Modeling for prediction using networked data.

= Modeling for explanation using networked data.

(1) Abstracting
networks to theorize



Abstracting networks to theorize

Goals of this part of the tutorial

= A basic understanding of the diversity of “complex” networks in
business, society and nature

= A basic understanding of some properties of these networks
that are useful.

= A basic understanding of the manageable mathematical
abstractions of these networks, and the connection between
these abstractions and the properties described above.

Examples of networks
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Examples of networks

High-school friendship network

Examples of networks

Yeast network



Examples of networks

Sexual contact network

Examples of networks
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Examples of networks

Machine Learning Papers

Examples of networks

The Web, circa 1998



Examples of networks
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Examples of networks

tuesdays with,
= MOII'I'IE

an kd i, young man.

and bies greatest besson

Books linked by co-purchases (partial...)

Overview of networks

= Some basic terminology
= Graph
= Node, edge
= Directed/undirected
= Degree (degree distribution)

= Component



Random graphs

= Analogous to random variables

» Poisson (Erdos-Renyi) random graph: q(x) =[:] pk(l— p)n_k
» Generalized random graphs
= Models of small-world graphs

Regular Small-world Random

Increasing randomness

Random graphs, more importantly...

= Conceptual construct for modeling networks

= Simplest abstraction: a graph is drawn from a set of
possible graphs according to some distribution

= More useful but less precise abstraction

= The distributions associated with the properties of the
graphs that are eventually drawn.

= So, what exactly is a network property?

10



Network properties

= Degree distribution
= Extent of and variation in “local connectedness” across nodes

» PageRank (and related measures)
= Extent of and variation in “centrality” across nodes

= Clustering
= Extent of and variation in “shared connectedness” across nodes

= Average distance (diameter)
= Extent of and variation in distance between nodes

= Assortative mixing/Homophily
= Extent of and variation in “within-class connectedness” across nodes

= Distribution of components, degree correlation,
community structure,...

Random graphs

= Conceptual construct for modeling networks

= Simplest abstraction: a graph is drawn from a set of
possible graphs according to some distribution
= Simplest less precise abstraction:

= Each draw is described in terms of a degree distribution
g(x) : fraction of nodes with degree x
= Need independence assumptions, a construction process

= Power-law networks: q(x) = X ¢

11



10°E

T RN R

T T T 10

Newman (2003) ‘

A

(a) collaborations %
in mathematics L\
I E RN B W RTET

(b) citations (e) World Wide Web

oo vl ol 4R 8 Bl vl vl ol ol

10 ) g
10 100 1 10 100 1000 10° 10% 10 108

Bk

=

Examples

(f) protein
interactions

;/\ IRTTI |

F (d) Internet \ : () power grid
23 I T R [ IR N Ll
1 10

100 1000 0 10 20 1 10

FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-
degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information [351]); (c) a 300 million vertex subset of the World Wide Weh, cirea 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212]. Of these networks, three of them, (c). (d) and (f), appear to have
power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree
distribution of some type, or possibly two separate power-law regimes with different exponents.
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Random graphs

= Conceptual construct for modeling networks

= Simplest abstraction: a graph is drawn from a set of
possible graphs according to some distribution

= Simplest less precise abstraction:
= Each instance is described in terms of a degree distribution
q(x) : fraction of nodes with degree x
= Need independence assumptions, a construction process

= Power-law networks: g(x) = x ¢

xq(x)
2 ka(k)

* Neighbor degree distribution: §(x) =

» This abstraction facilitates the development of powerful
theoretical models of complex networks with “local information”

Networks and theory: Examples

Graphical Economics (Kearns and others, 2004)

= Recognize that interactions between trading partners are often local,
and the nature of what is “local” can be described by an underlying
network.

= Reformulate a simplified version of the Arrow-Debreu economy based
on this recognition.

= Establish existence of an extension of the Arrow-Debreu equilibrium in
which “local” markets clear.

= Provide a polynomial time algorithm to compute this equilibrium for a
special class of underlying networks.

= (related: does computability of an equilibrium matter?)

13



Networks and theory: Examples
Local Network Effects (Sundararajan 2004, 2006, 2007)

= Recognizes that the value from shared interaction and adoption is often
local and described by an “underlying network”.

Defines how to integrate abstractions of complex networks into an
economic model whose outcome is described by a game-theoretic
equilibrium.

= Establishes a homeomorphism between the standard existing solution
(“fulfilled expectations” equilibria) and equilibria grounded in game
theory.

= Provides the first set of properties (a Pareto-ranking, monotonicity) of the
latter equilibria (a partial generalization has subsequently been provided
by Galeotti et al. 2006).

= Provides a mathematical formalization of the connection between
underlying networks and empirical networks.

= Shows that the optimal way to “seed” a network can often involve
targeting the least connected nodes in addition to the most connected
ones (and sometimes excluding the most connected ones).

Local networks

14



Local networks

Local networks

15



Local networks

Local network effects

= Agents make adoption decisions based on their
observed local networks, and partial information
about the entire network.
= Agents generally have:
» different local networks
= perfect information about the structure of their local network

= some information about the structure of the other local
networks they belong to (their neighbors’ local networks)

= very little or no information about the exact structure of the
rest of the social network

16



A model of local network effects

Set of potential customers N ={1,2,3,...,n}
Single homogeneous network good that costs ¢

Customers connected by an underlying social network modeled
as an instance of a random graph (more on this soon).

Each customer has:
= A neighbor set G;

= A degree d; (number of neighbors)

= A valuation type 0; (strength of adoption complementarity)
Each customer makes an adoption choice &, €{0,1}

Payoff from adoption for customer i:

ai[U(z a;,0;)-c]

i€Gj

The underlying social network

N :{1,2,3,,__,n} ri _ oNYi}
Set of graphs: T'cI', xI', x...xI'_
Distribution over this set: p: " —[0,1]

G: Draw from this distribution

17



Distribution of the social network (p)

For each x in D, denote
['; (x) =subset of I'; such that for each X e I';(x), | X |=x

Restrict the distribution over p as follows:
For each i, for each j € G, Pr[G; e [';(x) [ G;, 6,1 = q(X)
For each i,for each j ¢ G,,Pr[G, e T';(x)| G;, 6,1 = q(X)

Generalizes to posteriors conditional on degree
Admits generalized random graphs, standard models
of small world networks

Sequence of the game

» Nature draws 0; for each i, draws G eI
= Each agent i observes their type

= Each agent i chooses either to adopt (a;=1) or not
(a=0)

» Payoffs are realized

18



Information

4(x), F(0)

G(x), F(0)

S \ G(x), F (6
00.FE) a0, FO)

" 0. F ()

Results: Equilibria

= Each symmetric Bayes-Nash equilibrium involves a threshold
strategy:

0, 6, <6 (d)
s(d;,0;) = .
1, 6,>0(d)
with threshold 6" =[8(1), 8(2),...,8(m)]

= “No adoption” is always an equilibrium for pure network goods

= The equilibria can be Pareto ordered: e} :{GA, GB,...}

0" <08<...

19



Results: Properties of the equilibria

= The ordering of equilibria is based on the equilibrium probability
of neighbor adoption

2(0) = > q() L F (0()]
x=1

= “Higher” equilibria strictly Pareto-dominate lower ones, and
therefore, there is a best equilibrium, which has the highest
value of A(0")

= Each fulfilled expectations outcome with a local expectation A of
neighbor adoption has a corresponding Bayes-Nash equilibrium
with A(07) =

= Coordinating adoption may be simpler if it is (a) local and
(b) based on a simple parameter

= Greatest equilibrium is “weakly” coalition proof: establishes a
basis for stability in a standard model

The structure of adoption networks

Consider a generalized random graph with degree
distribution q(X), and moment generating function (MGF)

@, (W)= > 0w’

For identical 0, and for a threshold degree 6*, the MGF
of the degree distribution of the adoption network is

@, (W) =D [1-Q(5") +wQ(3")]
where

Q) =Prld; > x|} €G1= Y. a(0)

20



Networks and theory: Examples

Networks and Public Goods (Bramoulle & Kranton 2006)

Theorize that knowledge gained from “costly search” is
disseminated to a set of neighbors. Neighborhoods are defined by
an underlying undirected network.

The key insight: This kind of knowledge is a public good, but only
locally. If an agent has a high degree, his or her effort towards
searching is socially beneficial. However, agents with higher
degree have a lower incentive to search because they are more
connected, and are thus more likely to acquire the knowledge
costlessly from a neighbor.

Why is this related to e-commerce?

Collaborative filtering, perhaps?

Networks and theory: Examples

Networks and Social Collateral (Mobius & Szeidl 2007)

Theorize that knowledge gained from prior commercial
interaction can be transferred. The extent and reliability of
transfer is mediated by an underlying network of “trust”.

The key insight: This kind of transfer is welfare improving. If an
agent has a high degree, it is more likely that such transfer is
viable, since the agent is more trusted. In addition, an agent
who is not as connected, but whose local network is more
clustered can achieve similar viable transfer, since there is
better “shared” trust.

Why is this related to e-commerce?

Reputation systems, perhaps?

21



Challenge: diffusion in networks

= Current dynamic models are all rooted in a baseline model of
percolation on a graph.

» Probability of being “switched on” a function of how many
neighbors are “on”.

= SIR model

= Equilibrium cluster distributions when an infectious disease spreads.

= SIS model

» Approximate solutions to the cluster distribution.
* The Watts “information cascades” model.

* The output of these models tends to be a “steady state” and the
time dynamics are hard to characterize.

= Lopez-Pintado et al. and Jackson/Yariv provide some integration
of economic ideas, but only towards a steady-state.

= Major open question/direction for conceptual work: better
models of the dynamics of diffusion of anything on a network.

Network structure and dynamic adoption

= Fixed underlying social network structure (varies between pure
random and pure lattice), durable good.

= Myopic customers: adopt if their period (or myopic discounted
future) value is higher than period price.

= A set of initial adopters is randomly chosen.
= Adoption proceeds until nobody adopts.
Problem (A)

= Monopoly seller of a single product, sets a price each period

» What is the optimal price path, adoption path, and how does it
depend on the structure of the social network?

22



Network structure and dynamic adoption

= Fixed underlying social network structure (varies between pure
random and pure lattice), durable good.

Myopic customers: adopt if their period (or myopic discounted
future) value is higher than period price.

= A set of initial adopters is randomly chosen.

= Adoption proceeds until nobody adopts.

Problem (B)
= Monopoly seller of a single product, sets a price each period

= Customers “pay attention” only if someone they are connected
to has adopted:

= In the prior period (the “LinkedIn” model)

= In any prior period (the “persistent peer”, “Amway” model)

= What is the optimal price path, adoption path, and how does it
depend on the structure of the social network?

Network structure and dynamic adoption

= Fixed underlying social network structure (varies between pure
random and pure lattice), durable good.

= Myopic customers: adopt if their period (or myopic discounted
future) value is higher than period price.

= A set of initial adopters is randomly chosen.

= Adoption proceeds until nobody adopts.

Problem (C)

= Two competing sellers of ex-ante identical goods

= Sellers choose a constant price, fraction of initial adopters
= What are the equilibrium prices and fractions?

= What is the equilibrium adoption path?

= How clustered does the network have to be to support multiple
firms with similar market shares?

23



Network structure and dynamic adoption

» Rather than starting with no adopters, suppose a
subset S' N of agents are “seeded” (randomly?)

» Define

Git = GI ﬂst

dit :lGil

and

= Assume that an agent knows which of its neighbors is
already an adopter

» The strategy of an agent now depends on both
degree as well as number of neighbors who are
already adopters (that is, on both dit and d,)

» Therefore, each agent needs a posterior on both d}
and d; for eachjeG/

Network structure and dynamic adoption

= Each symmetric Bayes-Nash equilibrium involves a

threshold strategy:
0, 6, <67 (d!,[d, —d!

S(di,dit,ei): 1 *( | [ 1 I])

1, 6,26 (di,[d, —di])

= The threshold 8" (d,[d; —d']) is non-decreasing in
both its arguments

= This result holds for any arbitrary iid posterior on the
degree and adopter distribution of each j Git

24



Network structure and dynamic adoption

* From experiments with non-strategic agents
0, 6, <0 (d)
1, 6,>07(d)

» The price path is non-monotonic over time (often tends to
increase and then decrease, but not always)

s(d;, d7,6;) =

= Social networks with “small world” properties
= take longer to get to complete adoption
= yield higher profits

than social networks that are more random

(2) Modeling for prediction
using networked data

25



Modeling for prediction using
networked data

Goals of this part of the tutorial

» In the short amount of time that we have, it is impossible to
cover comprehensively the vast amount of related work (see
bibliography for a sample)

= We will:

= describe the four most important differences between
traditional predictive modeling and predictive modeling with
networked data.

= describe example techniques and provide pointers into the
literature to learn more

= jllustrate with some experiments and successful applications

= Considerable power for predictive inference is inherent in
the structure of many networks.

Prediction in networked data

= This part of the tutorial considers the task of modeling network
data with the goal of estimating some variable

— whose value currently is unknown
— whose value may be categorical or numeric

— the goal may be to estimate the value or a probability distribution
over possible values

= This may be a past, current, or future value.
— was this account defrauded?
— is this web page of interest?
— will this consumer respond positively to this offer?
= This will be called “prediction” to differentiate this sort of

modeling from modeling with the primary goal being
explanation

26



Prediction tasks in networked data

(cf. Getoor Tutorial 2005)

« Generic network prediction tasks
— Node attribute value prediction
— Node classification (special case of foregoing)
— Link attribute value prediction
— Predicting link existence
— Link cardinality estimation (e.g., who’s popular?)
— Entity Resolution (e.g., is this a guy who defaulted before?)
— Group Detection
« Related interesting network-data mining tasks
— Graph clustering
Subgraph/substructure discovery
Finding patterns in graphs
see resources at end of slides

Modeling for prediction

» We assume a basic knowledge of modeling for
prediction, as is done typically in applied statistics
and machine learning.

e Typical techniques include:

— linear/logistic regression, classification and regression trees,
support vector machines, ensemble models (bagging,
boosting, etc.), nearest-neighbor methods, neural networks,
and so on.

e For background, please see:

— Hastie, et al. (2001)

— Mitchell (1997)

27



Table of TOpiCS (perhaps incomplete)

univariate network modeling

network autocorrelation

— homophily, guilt-by-association

network feature construction

random fields (Markov, Gaussian, Conditional)
collective inference

— belief propagation, MCMC, relaxation, iterative classif., graph cuts

first-order logic modeling

probabilistic (relational) graphical models
combining logical and probabilistic modeling
incorporating node identifiers

aggregation

The problem: Prediction in Networked Data

L

28
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The problem: Prediction in Networked Data

estimate p(y; = c|Ay)

Here we’ll focus on the following prediction problem:
For any node i, variable y;, and value c,

Ag is everything known

about the network

Macskassy & P. (JMLR 2007)* 4 —°
provide a broad treatment
for univariate networks

Example social network application:
Ecommerce firms increasingly are collecting data
on explicit social networks of consumers
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Microsoft to enter internet telephony race
By Richard Waters in San Francisco
Published: August 31 2005 02:22 | Last updated: August 31 2005 02:22

Microsoft is preparing to introduce an
internet telephone service allowing calls from
PCs to fiked-line or mohile telephones,

m extending the rapid advances by internet
rivals such as Yahoo and Google into the
communications business.

The software company will on Wednesday

announce the acquisition of Teleo, 2 small
private company whose voice-over-IP (volP) technalogy will extend
the range of Microsoft's existing internet communications services
The deal echoes the acquisition by Yahoo two months ago of
Dialpad and comes a week after Google launched a service called
Google Talk that connects users over the PC

- .
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Example social network application:

Target consumers for new product

e Product: new communications service
e Long experience with targeted marketing
e Sophisticated segmentation models based on data
and intuition
e.g., demographic, geographic, loyalty data

e.g., intuition regarding the types of customers known or
thought to have affinity for this type of service

Hill, S., F.P., and C. Volinsky. “Network-based Marketing: Identifying likely
adopters via consumer networks. ” Statistical Science 21 (2) 256-276, 2006.
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Sales rates are substantially higher for
“network neighbors”

4.82
(1.35%)
2.96
(0.83%
7 0.4
(0.28%) (0.11%)
Non-NN 1-21 NN 1-21 NN 22 NN not
targeted

More-sophisticated network-based
attributes?

Attribute

Description

Degree

Number of unique customers communicated
with before the mailer

# Transactions

Number of transactions to/from customers
before the mailer

Seconds of
communication

Number of seconds communicated with
customers before mailer

Connected to

Is an influencer in your local neighborhood?

influencer?

Connected Size of the connected component target
component size belongs to.

Similarity Max overlap in local neighborhood with
(structural existing customer

equivalence)
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Ranking of “network neighbor” targets including
more-sophisticated network-based attributes

[72]
208 1
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o
0 T T T T T 1
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Cumulative % of Consumers Targeted (Ranked by Predicted
Sales)

So, what’s different about networked data?
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Unique Characteristics of
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
— allows “guilt-by-association” and related techniques
— autocorrelation among neighbors

2. Collective inference is possible
— inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences
about an entity

4. ldentifiers can play an important role in modeling
— being connected to specific individuals can be telling

Unique Characteristics of
Networked Data (for predictive inference)

> “Labeled” entities linked to “unlabeled” entities
— allows “guilt-by-association” and related techniques
— autocorrelation among neighbors

2. Collective inference is possible
— inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences
about an entity

4. ldentifiers can play an important role in modeling
— being connected to specific individuals can be telling
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Guilt by association: autocorrelation relationship
between labels™ of neighboring nodes

“a label here being the value of some variable of interest

How can predictive models incorporate
network autocorrelation? (Part 1)

= Features can be constructed that represent “guilt” of a node’s
neighbors:

y="1f(.X...)
where Xg is a (vector of) network-based guilt feature(s)

« In our network-based marketing example (Hill et al. 2006a)

— avariable was constructed to represent whether a social-network
neighbor currently uses the service.

— And more sophisticated variables help even more.
« In fraud detection

— variables can represent the degree to which an account is connected
(via “coreference’ or “cocitation” links) to known fraudulent accounts
(Fawcett & P., 1997)

— or the similarity in immediate network to known fraudulent accounts
(Cortes, et al. 2001; Hill et al. 2006b)
= In hypertext classification

— variables can be constructed representing (aggregations of) the
classes of linked pages/documents (Chakrabarti et al. 1998; Lu &
Getoor 2003)
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Some univariate network classification
teChniqueS (see Macskassy & P. JMLR 2007)

= network-only Bayesian classifier nBC
— Inspired by (Charabarti et al. 1998)

— multinomial naive Bayes on the neighboring class labels

< network-only link-based classifier
— Inspired by (Lu & Getoor 2003)

— logistic regression based on a node’s “distribution” of
neighboring class labels, Dy(v;) (multinomial over classes)

« relational-neighbor classifier (weighted voting)
— (Macskassy & P. 2003, 2007)
— More on this later 1

p(yi:ClNi):?ZWi,j'p(yjzcle)
vjeN

= relational-neighbor classifier (class distribution)
— Inspired by (Perlich & P. 2003)

p(y; =c[N;)=sim(Dy (v;), Dist(c))

How can predictive models incorporate
network autocorrelation? (Part 2)

e Treat network as a random field

— a probability measure over a set of random variables {X,,
..., X,,} that gives non-zero probability to any configuration
of values for all the variables.

e Convenient for modeling network data
A Markov random field satisfies:
p(X; = Xi|xj =X;,1# J)=p(X; = Xi|Ni)

— where N; is the set of neighbors of X; under some definition

of neighbor.

— in other words, the probability of a variable taking on a
value depends only on its neighbors

(Dobrushin, 1968; Besag, 1974;
Geman and Geman, 1984)
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How can predictive models incorporate
network autocorrelation? (Part 2, cont.)

1

A particularly simple guilt- p(y;=Cc|N;,)== Z:Wi'j -p(y; =c|N;)

by-association model is that Z vjeN;

a value’s probability is the ~ | —

average of its probabilities / / \ / N
\

at the neighboring nodes I

\ /|

» Gaussian random field (Besag 1975; Zhu et al. 2003)
* “Relational neighbor” classifier - wwRN (Macskassy & P. 2003)

How can predictive models incorporate
network autocorrelation? (Part 2, cont.)

< Random fields have a long history for modeling
regular grid data
— in statistical physics, spatial statistics, image analysis
— see Besag (1974)
» Besag (1975) applied such methods to what we
would call networked data (“non-lattice data”)
e Some notable example applications to electronic
commerce applications:
— hypertext classification (Chakrabarti et al. 1998)
— viral marketing (Domingos & Richardson 2001)
— eBay auction fraud (Pandit et al. 2007)
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Is guilt-by-association justified
theoretically?

‘ Thanks to (McPherson, et al., 2001)

» Birds of a feather, flock together
— attributed to Robert Burton (1577-1640)

* (People) love those who are like themselves
-- Aristotle, Rhetoric and Nichomachean Ethics

«  Similarity begets friendship

-- Plato, Phaedrus

« Hanging out with a bad crowd will get you into
trouble
-- Foster’'s Mom

Is guilt-by-association justified
theoretically?

Homophily

< fundamental concept underlying social theories

- (e.g., Blau 1977)

one of the first features noticed by analysts of social
network structure

— antecedents to SNA research from 1920’s (Freeman 1996)

fundamental basis for links of many types in social networks
(McPherson, et al., Annu. Rev. Soc. 2001)

— Patterns of homophily:
— remarkably robust across widely varying types of relations
— tend to get stronger as more relationships exist

Now being considered in mathematical analysis of networks
(“assortativity”, e.g., Newman (2003))

Does it apply to non-social networks?
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p(yi =C| Ni):% Zwi,j ) p(yJ' =C| Nj)

VjeNi

Unique Characteristics of
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
— allows “guilt-by-association” and related techniques
— autocorrelation among neighbors

» Collective inference is possible
— inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences
about an entity

4. ldentifiers can play an important role in modeling
— being connected to specific individuals can be telling
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p(yi =C| Ni):% Zwi,j ) p(yJ' =C| Nj)

VjeNi

Various techniques for collective inference
(see also Jensen et al. KDD 2004)

e Gibbs sampling (Geman & Geman 1984)

- Iterative classification (Besag 1986; ...)

e Relaxation labeling (Rosenfeld et al. 1976; ...)
e Loopy belief propagation (Pearl 1988)

e Graph-cut methods (Greig et al. 1989; ...)

Either:

1. estimate the maximum a posteriori joint probability
distribution of all free parameters

or

2. estimate the marginal distributions of some or all free

parameters simultaneously (or some related likelihood-based
scoring)
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Collective inference example:
iterative classification

1

p(yi :Cl Ni):

zwi,j ’ p(yj :Cl Nj)

VjeNi

Collective inference example:
iterative classification

1

p(yi=C|Ni)=Z

zwi,j -p(y; =c|N;)

vieN;
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Collective inference example:
iterative classification

1
p(yi =C| Ni)zf zwi,j ) p(yJ' =C| Nj)
VjeNi

Collective inference example:
iterative classification

1
p(y; =c| Ni):Z zwi,j -p(y; =c|N;)
vieN;
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Collective inference example:
iterative classification

1
p(yi =C| Ni)zf zwi,j ) p(yJ' =C| Nj)
VjeNi

Collective inference example:
iterative classification

1
p(y; =c| Ni):Z zwi,j -p(y; =c|N;)
vieN;
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Collective inference example:
iterative classification

p(yi =C| Ni):% zwi,j ) p(yJ' =C| Nj)

» recall network-based marketing example?

= collective inference can help for the nodes that are
not neighbors of existing customers
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Collective inference gives additional improvement,

especially for non-network neighbors

True Positive Rate

Hill et al. 2007
Attribute NN non-NN
All first-order network variables 0.61 0.71
All first-order + oracle (WvRN) 0.63 0.74
All first-order + CI score (WvRN) 0.62 0.74

-l
f
f_r/
vl
s
= random
“ global
® local
% = 150

False Positive Rate

True Positive Rate

=

False Positive Rate

So, how much “information” is in the

network structure alone?

1200

® random
= global

local
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Network Classification Case Study

e 12 data sets from 4 domains
« (previously used in ML research)

IMDB (Internet Movie Database) (e.g., Jensen & Neville, 2002)
Cora (e.g., Taskar et al., 2001) [McCallum et al., 2000]
WebKB [Craven et al., 1998]

e CS Depts of Texas, Wisconsin, Washington, Cornell
= multiclass & binary (student page)
« “cocitation” links

« yahoo data, prnewswire data
< Homogeneous nodes & links
— one type, different classes/subtypes
= Univariate classification
— only information: structure of network and (some) class labels
— guilt-by-association (wvRN) with collective inference
— plus several models
- that “learn” relational patterns

Industry Classification [Bernstein et al., 2003]

Macskassy, S. and F. P. "Classification in
Networked Data: A toolkit and a univariate
case study." Journal of Machine Learning
Research 2007.

How much information is in
the network structure?

* Labeling 90% of nodes
* Classifying remaining 10%
* Averaging over 10 runs

Data set Accuracy | Relative error reduction

over default prediction
wisconsin-student 0.94 86%
texas-student 0.93 86%
Cora 0.87 81%
wisconsin-multi 0.82 67%
cornell-student 0.85 65%
imdb 0.83 65%
wash-student 0.85 58%
wash-multi 0.71 52%
texas-multi 0.74 50%
industry-yahoo 0.64 49%
cornell-multi 0.68 45%
industry-pr 0.54 36%
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nBC %
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\ 0.2 . 0.5 0.8 1
Ratio Labeled

Univariate network classification techniques
(see Macskassy & Provost 2007)

< nBC - network-only Bayesian classifier
— Inspired by (Charabarti et al. 1998)

— multinomial naive Bayes on the neighboring class labels
e nLC - network-only link-based classifier
— Inspired by (Lu & Getoor 2003)
— logistic regression based on a node’s “distribution” of
neighboring class labels, Dy(v;) (multinomial over classes)

< WVRN - relational-neighbor classifier (weighted voting)
— (Macskassy & P. 2003, 2007)

p(Yi:C|Ni):%zWi,j'p(yJ':C|Nj)

vieN;

« cdRN relational-neighbor classifier (class distribution)
— Inspired by (Perlich & P. 2003)

p(y; =c[N;)=sim(Dy (v;), Dist(c))
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Ratio Labeled

RBN vs wvRN
Classifying linked documents (CoRA)

Accuracy

CoRA = FRH vz, WvEN

REN {PRH} ——
uuRF+RL i

. .
a,1 a2 a.3 6.4 8.5 a.6
Ratio Labeled

a,7
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Machine Learning Research Papers (from CoRA data)

prob meth. (yellow)
theory (green)
genetic algs (red)
rule learning (blue)
neural nets (pink)
RL (white)
case-based (orange)

'5046" bad-guy rankings for each iteration (1484 bad people)

T T T T T T
connected people +—f—
Poor concentration for primary-data only (iteration 0) known people —&—

AUC-0: 0.4723
AUC-1: 0.7883 High ion after one y phase (i ion 1)

rightmost
people are
completely
unknown,
therefore
ranking is
uniform

iteration

PUC=255710: 8375 ‘ (Macskassy & P., Intl. Conf. on Intel. Analysis 2005)
1 L . L f 5 J
2000 4000 6000 8000 10000 12000 14000‘
most suspicious | o 5046 is moderately noisy:
« high concentration of bad guys at “top” of suspicion ranking Y4 of “known” bad guys were
« gets better with increased secondary-data access mislabeled
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Unique Characteristics of
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
— allows “guilt-by-association” and related techniques
— autocorrelation among neighbors

2. Collective inference is possible
— inferences about entities can affect each other

» Other aspects of neighbors can affect inferences
about an entity

4. ldentifiers can play an important role in modeling
— being connected to specific individuals can be telling

Networks # Graphs?

» Networked data can be much more complex than
just sets of (labeled) vertices and edges.
— Vertices and edges can be heterogeneous
— Vertices and edges can have various information associated
with them
e Example: Consider the following problem

— Can we estimate the likelihood that a stock broker is/will be
engaged in activity that violates securities regulations?
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- Released: Thu 13-0ct-2005, 08:00 ET
- Printer-friendly Yersion

Securities Fraud Targeted by New Computing Tool

forgotten login
how o regiser
ABOUT NEWSWISE Business News SECURITIES FRAUD COMPUTER SCIENCE BROKERS

Libraries Keywords

Centact Information

Available for loggec-in raporters only

Description

The warld's largest private-sector securities regulator, the National Association of Securities Dealers, has teamed with computer scientists to create a new tool for the world of
securities fraud. By developing statistical models that assess data that most models can't manage, the scientists aim to help the NASD discover misconduct among brakers,

LIBRARIES o

Newswise — The world's largest private-sector securities regulator, the National Association of Securities Dealers, has teamed with University of Massachusetts Amherst researchers to
bring cutting-edge computer science to the world of securities fraud, By developing statistical models that assess data that most models can't manage, the scientists aim to help the
NASD discaver misconduct among brokers and concentrate regulatory attention on those who are most likely to misbehave.

Because broker malfeasance is often encouraged by the presence of those conspiring to commit fraud themselves, the researchers were given the task of developing statistical models
that made use of this social aspect of rule-breaking. Such "relational” data is dificult for many models, which often assume independance among records:

(= o)

Diavid Jensen, computer science, fikens the task to modeling medical diagnostics. When trying o predict the probability that an indiidual will catch a disease, information intrinsic ta the
individual—such as age or health history—can be critical. But clues can also be extracted from infarmation about the person's social and professional netwark, such as where they've
lived or worked, or with whom they've been in contact

"Our methods are uniguely suited to analyze this kind of information," says Jensen. "They allow you to easily look at the characteristics of the sumounding network."

LANNEES The work is part of an ongoing, joint project explaring fraud detection by UMass Amherst researchers and the MASD, and it was presented recently by doctoral student Jennifer Meville at
Breaking the Eleventh ACM SIGKDD International Conference an Knowledge Discovery and Data Mining

Mlore than 600 000 brokers are engaged in securities transactions, making NASD examiners a valuable and finite resource. While these human examiners have the acuity to spot
RESOURCES relational pattems that suggest a broker warrants further scruting, automating that sort of evaluation had proved dificult. But the relational probability trees (RPTs) developed by Nevile
and Jensen appear to make good use of this contextual information and they provide a ranking of risky brokers to boot

Using data from past years supplied by the NASD, Jensen, Meville and doctoralstudent Ozgur Simsek applied their algorithms to the networks of organizational relationships in the
securities world. For example, brakers are linked to the firms they wark for, customer complaints are linked to the brokers they reference, and branches are linked to their parent firms.

By analyzing records of brokers in the context of other records in their "neighborhood" the algarithms were able to predict which brokers would commit violations with surprising accuracy,
says Jensen

Detecting “bad brokers” (NASD)
(Neville et al. KDD 2005)
- - - .. D Disclosure

- + + -0 -8 - H Broker
- + _ - _ _ . Bad* Broker
- - - D Branch

= 4L = = — *"Bad” = having violated
securities regulations
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Data on brokers, branches, disclosures
(Neville et al. KDD 2005)

Broker Disclosure Branch

Has
Business Region

Relational Learning

- Relational learning and inference: learning and

inference where one cannot represent data as a single
relation/table of independently distributed entities, without
losing important information

 For example, data may be represented as a non-trivial,
multi-table relational database, or as a heterogeneous,
attributed graph, or in first-order logic.

= There is a huge literature on relational learning (see resources
slide toward end for pointers) and it would be impossible to do
justice to it in the short amount of time we have.

Let’s consider briefly three approaches
— model in first-order logic

— model as probabilistic graphical model
— do both
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Traditional Learning and Classification

Setting:

* Logistic regression
* Neural networks

* Naive Bayes

« Classification trees
*« SVMs

Non-relational classif.

e ® 00
o ®0 °
. ° °®

o %o

home location, main calling location, min of use, ...

NYC,NYC,4350,3,5,yes,n0,1,0,0,1,0,2,3,0,1,1,0,0,0,..
NYC,BOS,1320,2,n0,n0,1,0,0,0,0,1,5,1,7,6,7,0,0,1,...

.d_bBOS,BOS,6543,5,no,no,0,1 ,1,1,0,0,0,0,0,0,4,3,0,4,..
o ® o °

Network Learning and Classification

Setting:

Non-relational classif.

Network classification

Yi Terations yJ

BN

X<—’X

*ILP

* Probabilistic
relational models
(RBNs, RMNs, AMNSs,
RDMs, ...)

» Combinations of the
two (BLPs, MLNSs, ...)

home location, main calling location, min of use, ...

>

S

NYC,NYC,4350,3,5,yes,no0,1,0,0,1,0,2,3,0,1,1,0,0,0,..
NYC,B0OS,1320,2,n0,n0,1,0,0,0,0,1,5,1,7,6,7,0,0,1,...
»B0S,B0S,6543,5,n0,n0,0,1,1,1,0,0,0,0,0,0,4,3,0,4,..
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First-order logic modeling

= The field of Inductive Logic Programming has extensively
studied modeling in first-order logic, which can represent
complicated relational and graph data

- Although it has been changing, traditionally ILP did not
focus on representing uncertainty

— in the usual use of first-order logic,

each ground atom either is true or is -+-one of the reasons for the modern

rubric “statistical relational learning”

not true (cf., a Herbrand interpretation)

« First-order logic for statistical modeling of network data?

— a strength is its ability to represent and search for complex
and deep patterns in the network

— a weakness is its relative lack of support for aggregations
across nodes (beyond existence)

— more on this in a minute...

Network data in first-order logic

» broker(Amit), broker(Bill), broker(Candice), ...

« works_for(Amit, Bigbank), works_for(Bill, E_broker), works_for(Candice,
Bigbank), ...

« married(Candice, Bill)

< smokes(Amit), smokes(Candice), ...

» works_for(X,F) & works_for(Y,F) -> coworkers(X,Y)

o smokes(X) & smokes(Y) & coworkers(X,Y) -> friends(X,Y)

coworkers

married

friends
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Probabilistic graphical models

= Probabilistic graphical models (PGMs) are convenient methods
for representation of (and inference with) probability
distributions across a set of variables.

— Bayesian networks (BNs), Markov networks (MNs), Dependency
networks (DNs)

— See Pearl (1988), Heckerman et al. (2000)

< Typically BNs, MNs, DNs are used to represent a set of random
variables describing independent instances.

— For example, the probabilistic dependencies among the descriptive
features of a consumer—the same for different consumers

Example: A Bayesian network modeling
consumer reaction to new service

sophisticatio
Positive reaction
before trying service,
lead user
haracteristic:

Quality

sensitivity Positive reaction
after trying service

Amount
of use

56



Probabilistic relational models

The term “relational” recently has been used to
distinguish the use of PGMs to represent variables
across a set of dependent, multivariate instances.

— For example, the dependencies between the descriptive
features of friends in a social network

— We saw a “relational” Markov network earlier when we
discussed Markov random fields for univariate network
data

= although the usage is not consistent, “Markov random field”
often is used for a MN over multiple instances of the “same”
variable

— RBNSs (Koller and Pfeffer,1998; Friedman et al., 1999; Taskar et al.,
2001), RMNSs (Taskar et al. 2002), RDNs (Neville & Jensen,

200 Conditional random fields (CRFs, Lafferty et al., 2001) are random fields

Int where the probability of a node’s label is conditioned not only on the labels of
- neighbors (as in MRFs), but also on all the observed attribute data.

Aan& e e L L L L s O

Relational prob. model of broker variables
(Neville & Jensen, JMLR to appear)

Disclosure Branch

Has
Business Region

Is Fraud

On
Watch

>

note: needs to be “unrolled” across network
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Important concept!

e The network of statistical dependencies does not
necessarily correspond to the data network

e Example on next three slides...

Recall: broker dependency network

note: this dependency network needs to be “unrolled” across the data network
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Broker data network
(Neville et al. 2005)

D Disclosure
Statistical dependencies between brokers “jump B soker
across” branches; similarly for disclosures Bad" Broker
- - - .' I:l Branch
- . : - - - *"Badl" = having vliolated
- + _ - _ _ securities regulations
- _ . + _ . _ -
[ ]
= + - - =
[ ]
HEl HIRN
m | = L] g
[ ]
+ - - +
[ {1 [ i

Putting it all together:

Relational dependency networks
(Neville & Jensen, JMLR 2007)

Learn statistical
dependencies among
variables

Construct

“local”
dependency
network

f® Disclosure [® Branch

S
0ol

Unroll over particulai
data network for
(collective) inference
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Model unrolled on (tiny) data network

(three brokers, one branch)

Combining first-order logic and
probabilistic graphical models

 Recently there have been efforts to combine FOL

and probabilistic graphical models

— e.g., Bayesian logic programs (Kersting and de Raedt, 2001),

Markov logic networks (Richardson & Domingos, MLJ 2006)

— and see discussion & citations in (Richardson & Domingos, 2006)
e For example: Markov logic networks

— A template for constructing Markov networks

= and therefore, a model of the joint distribution over a set of variables

— A first-order knowledge base with a weight for each formula
= Advantages:

— Markov network gives sound probabilistic foundation

— first-order logic allows compact representation of large networks
and a wide variety of domain knowledge
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Unique Characteristics of
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
— allows “guilt-by-association” and related techniques
— autocorrelation among neighbors

2. Collective inference is possible
— inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences
about an entity

» ldentifiers can play an important role in modeling
— being connected to specific individuals can be telling

— A snippet from an actual network including “bad guys”

= N o Dialed-digit detector (Fawcett & P., 1997)
:o * nodes are people Communities of Interest (Cortes et al. 2001)

* links are communications

* red nodes are fraudsters
K e

these two bad guys are
well connected
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Side note: not just for “networked data” — id’s
important for any data in a multi-table RDB

’ challenge: aggregation over 1-to-n relationships ‘

" Wendor

....C.’F.O.I.Q.‘..I pim)

Purchase
Order

@ Teme>

Rk Pries=

i Pirchase

éi Order D:_ etails ¥

< Tidar Defail I = m

How to incorporate identifiers of related
objects (in a nutshell)

1. Estimate from known data:
- clgss—conditional distributions of related identifiers (say D* &

— can be done, for example, assuming class-conditional
independence in analogy to Naive Bayes

— save these as “meta-data” for use with particular cases

2. Any particular case C has its own “distribution” of related
identifiers (say D.)

3. Create features
— A(D,,D*), AD,, D7), (A(D,, D" ) — A(D,, D))
— where A is a distance metric between distributions

4. Add these features to target-node description(s) for
learning/estimation

Main idea:
“Is the distribution of nodes to which this case is linked
similar to that of a <whatever>?"
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(Perlich & P., 2006)

Density Estimation for Aggregation

CID | Class CID |id
1: Class-conditional distributions c1 lo c1 |B
Distr. A B co |1 c2 |A
DCIass 1 0.75 | 0.25 c3 1 c2 A
DCIassO 0.2 0.8 c4 0 c2 B
2: Case distributions: \ ( cs |A
D. |A 5 A c4 |B
c1 |o 1 ! c4 |B
c2 |0.66 |0.33 1 c4 |B
ca |A
cs |1 0 4: Extended feature vector:
c4 |0.25|0.75
CID |L2, L2, L2,-L2, |Class
3: L2 distances for C1: Cl 1.125 |0.08 -1.045 |0
L2(C1, Dgjpss 1) = 1.125 c2 0.014 |0.435 0.421 |1
L2(C1, Dejass o) = 0.08 c3 |0.125 |1.28 1.155 |1
ca 0.5 0.005 -0.495 |0

Classify buyers of most-common title from
a Korean E-Book retailer

—1 Estimate whether or not customer will purchase —
the most-popular e-book: Accuracy=0.98 (AUC=0.96)

0.06

005 HE4+ 1+ 1T

0.04 -

mClass 1

0.03
mClass 0

0.02

Conditional Prior

0.01 4

0 iIN

Class-conditional distributions across identifiers of 10 other popular books



Machine Learning Research Papers (from CoRA data)

prob meth. (yellow)
o+ theory (green)
genetic algs (red)
rule learning (blue)
neural nets (pink)
RL (white)
case-based (orange)

(recall CoRA from discussion of univariate network models)

Usina identifiers on CoRA

CoRA = PRH ws. wvRN wvs, ACORA

1
8.9
8.8
Fd
o
a
9
H
o
o
=
8.7
8.6
RBN (PRH} —+—
WvRN+#RL ——
ACORA —#—
8.5 L L L . L h
a e.1 a2 a3 a.4 a.5 8.6 a.7

(Perllch & P. 2006) Ratio Labeled
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Summary: Unique Characteristics of
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
— allows “guilt-by-association” and related techniques
— autocorrelation among neighbors

2. Collective inference is possible
— inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences
about an entity

4. ldentifiers can play an important role in modeling
— being connected to specific individuals can be telling

» Results show that there is a lot of power for
prediction just in the network structure

(3) Modeling for explanation
using networked data

65



Using networked data to explain
Goals of this part of the tutorial

= Recognize the difference between the “simple” approach of
associating network properties with outcomes and the emerging
modern structural approaches that emphasize identification.

= Become familiar with a couple of examples of properties that
have been useful in explaining ecommerce outcomes.

= Become familiar with a couple of emerging modern structural
approaches to modeling networks that will lead to
econometrically rigorous explanatory models.

Recall: Network properties

= Degree distribution
= Extent of and variation in “local connectedness” across nodes

» PageRank

= Extent of and variation in “centrality” across nodes

= Clustering
= Extent of and variation in “shared connectedness” across nodes

= Average distance (diameter)
= Extent of and variation in distance between nodes

= Assortative mixing/Homophily
= Extent of and variation in “within-class connectedness” across nodes

= Distribution of components
= Degree correlation, community structure
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The “simple” approach

» Theorize (perhaps using a mathematical model) how certain
network properties will affect certain outcomes

= Centrality and success

= In-degree and income

= Centrality and demand patterns
= Measure properties, outcomes

= Establish association between properties and outcomes by
estimating reduced form equations.

= Useful to establish co-movement, impossible to ascribe
causation in a scientific way, widely used.

Example: PageRank and the long tail

= Degree distribution
= Extent of and variation in “local connectedness” across nodes
» PageRank

= Extent of and variation in “centrality” across nodes
= Measure of “how important”, also “how influenced”

PageRank(i) = =% 4o 3° (w)
n ;56\ OutDegree( j)
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Example: PageRank and the long tail

SEARCH INSIDE!™ Information Rules: A Strategic Guide to the Network
Economy (Hardcover)
by Card si-agr Hal R. Varian “As the century closed. the world became

n Related Topics | Concordance | Text Stats | SIPs | CAPs
\wp--wm | Table of Contents | Excerpt | Index | Back Cover |

List Price: 33500
Price: $22.05 & eligble for FREE Super Saver Shipping on orders
over $25. Details
You Save: $12.95 (37%)
Availability: Usually ships within 24 hours. Ships from and seold by Amazon.com.
d

Want

Day Sh
Day Shi

red Tuesday, May 97 Order it in the next 69 hours and 2 minutes,

142 used & new available from $3.72

Avg. Customer Review: Sign in to rate this item
Also Available in: List Price: Our Price: Other Offers:
Digital (Dovnload: Microsoft Reader) $28-86 $18.87

Customers who bought this item also l:uuc]ht

Re-Thinking the Network Economy: The True Forces That Drive the Dig

Crossing the Chasm by Geol
T

4. Moore

lgmma

Innovater's ¢ Revelutionary Book that Will Change the Way You Do Busmess (HarperBusmass Essentials) by Clayton M,
n

The Economics of Network Industnes by Oz Shy

Example: PageRank and the long tail

= Gini coefficient

= Captures the extent to which demand is concentrated among the
highest selling products in a group. Measured by the area above the

Lorenz curve. Computers and Internet:

1009, Web Development

B
100%
The bottom b% of L®
products have a% of
the total demand .-
g 0% e
Sales rank percentile r
ginif2 100%_Science: Chemistry
A
al-- Lorenz
H Curve L(r)
b 100%
0%

Sales rank percentile r

68



Example: PageRank and the long tail

Log[GINI] = a + bLog[AVGDEMAND] + b,Log[AVGPAGERANK]
+ bLog[PAGERANKVAR] + b,Log[SIZE] + byLog[AMIXING]

-6%

20%

6%

0%

2/4
B

2 MM—%(T

—®— AVGDEMAND: Average demand for books in the category

—O— AVGPAGERANK: Average PageRank for books in the category

—*— PAGERANKVAR: Variance in PageRank across books in the category
—— SIZE: Number of books in the category
—— AMIXING: Fraction of co-purchase links to books within the same category

Example: PageRank and the long tail

Log[GINI] = a + b,Log[AVGDEMAND] + b,Log[AVGPAGERANK]
+ b,Log[PAGERANKVAR] + b,Log[SIZE] + b;Log[AMIXING]

Demand fraction

20% 1

0%

2/4

2/11 2/18

2/25

-20%

%WH—O—WO\OWWW

—=— AVGDEMAND: Average demand for books in the category
—O— AVGPAGERANK: Average PageRank for books in the category

100%
C: Top 20%
80%
60%
0.4 0.6 0.8

Gini coefficient

Demand fraction

69%1)

4%

2%

D: Bottom 20%

0.4

0.6 0.8 1
Gini coefficient

100%

Demand fraction

E: Top 50%

90%

80%

0.4 0.6 0.8 1
Gini coefficient
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Other co-purchase graph properties

A 12%

—s— Number of nodes
8%

(left scale)

—0— % of new nodes

(right scale)

Number of new edges,
as a % of total number
of edges in the network

[] Between two new nodes
Il With a new “source” node

[ with a new “sink” node

260,000 b—-—.—-—-—.—-—\ i
/\ i \
ja %
240,000 \\
\
|
220,000 \! {
2/1
15%
10%
5%
2/7vs.2/2  2/12vs.2/7  2/17 vs. 2/12 2/22vs. 2/17 2/27 vs. 2/22

Between pre-existing nodes

Other co-purchase graph properties

Random utility versus “location” model of choice?

10¢

0.1 0.2 03 04 05 06 0.7 08 09 1

Distribution of clustering
coefficients for a sample day

20%)

10%

. 0102 03 04 0506 07 08 09 1

Distribution of average assortative
mixing by category for a sample day

0.5

0.45 4

0.4 —S—8888 88883 i8guuai800gnuuaaa

0.35 WW
0.3 T T |

—s—Mixing
—o—Clustering

1-Feb 10-Feb

19-Feb

28-Fely

Average clustering coefficients, assortative mixing over a month
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Other co-purchase graph properties

Nineteen degrees of separation?

15%

10%

5%

10 15 20 25 30 35 40

5
Distribution of average distances for a sample day

19 b0-0-0-00-0-0-0-0""000-0 —a— Aj nodes
185 e oo N L | —o—*“Connected” nodes

L T g
18 AE.=.:.7.—.—-l<.7«lﬁ-IA--=.=.=|l

T
1-Feb 10-Feb 19-Feb 28-Feb

Average average distances over one month

Example: Position and Info. Advantage
Aral and Van Alstyne (2007)

» The network: email communication between employees in an
organization

» Establishes a relationship between network position and the
diversity of information an employee has access to.

» Associates these two effects with employee productivity.

» Findings:
= Larger, more diverse networks <-> more diverse information
= More diverse information <-> Higher productivity

= Diverse networks could play a role beyond simply providing
more diverse information

= Communication trails will be increasingly common networked
data sets in the future...
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Example: Position and Info. Advantage

0.9

0.8

0.7

0.6

0.5

044 ¢

0.3

First / First 7/
/
Order: ,/ Order: o .
Direct Second Direct Second
Contacts ~ Order: Contacts ~ Order:
Indirect Indirect
Contacts Contacts

Network diversity

Network Size & Information
Diyqrsij{x

AR
R

0242

0.14e.

\

LDependent Information | Information
Variable: Diversity Diversity
Specification Fixed Bffects QLS
Age, Gender, Education, dustry
SR Experience, Partner, Consultant
Total Email -.001 .001
Incoming L0071 L0017y
Wetwork 474 ke 296%
Bize (114 (138)
Network -272%* -.240%
Bize-Bouared [O89Y £1333
Network 128%* 268HwE ]
Diversity (052 (072
Structural -.0o5 062
Equivalence (033} (.096)
12e* 018
Constant C075) (634)
gzzgjgf:l Month Month
5.61 %%k 5.03%dk
F-Value (d.£ (13 19y
R2 14 24
Obs 540 434

Structural models to identify

= |dentification (vastly simplified): recovering structural equation
coefficients from reduced-form estimates.

= |dentification in networked data is hard

= Background: Peer effects (Manski, 1993)

y: outcome; x: characteristics; G: matrix defining “groups”

7
Outcome Exogenous
vector (contextual)
effect

y =0} +OL1GX+OtgGy+OLqX
7 -t ™~

Endogenous

Effect of own
effect characteristics

Real social effects cannot be separated from correlated effects

The “reflection problem” makes identifying the endogenous effects
from the exogenous effects hard.
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Identifying peer effects

= Often in networked data, the “groups” associated with each
observation are sufficiently different from each other.

y =oq +a,GX+a,Gy + 04X
= Under certain linear independence properties of G, this facilitates

the identification of social effects (Bramoulle et al, 2007)
= Other useful references: Lee (2003, 2006), Moffitt (2001)

Identifying peer effects

» The prior discussion helps identify social effects, but does not
actually solve the problem of identifying the effects associated
with the presence of an edge in a networked data set. (Notice
that y is on both sides of the equation below, or there are
contemporaneous and sometimes reciprocal effects of peers.)

y =0og+a,GX+a,Gy+ 03X
»= One possible approach:

= Estimate the outcome variables — that is, whatever you are
trying to show is influenced by the edge — using only the
exogenous variables (spatial autoregressive)

= Compute estimates of the outcomes (endogenous variables)
using these coefficients

= Use these estimated endogenous variables in complete model

» Example: Peer effects and recommendation networks
(Oestreicher-Singer and Sundararajan 2007).
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Co-evolution of networks and behavior

* In some situations, networks influence behaviors (or outcomes),
which in turn influence the networks over time. Recall the
examples that this tutorial started with.

= A structural (and somewhat integrative) approach based on a
more complete model of this kind is attempted by Snijders and
coauthors (2004, 2005, 2007)

Co-evolution of networks and behavior

» Basic idea (and analogy with discrete choice logit):

= Create a simplified (but internally complete) Markovian
dynamic model of the co-evolution of networks and behaviors
or actors in which all current outcomes and the current
network are collectively the state, and all changes to
outcomes and the network are “chosen” by actors.

= Use one or a combination of a number of network properties
to describe utility to each actor from each choice.

= Estimate the parameters of this model directly (typically,
maximum likelihood/Bayesian is not possible, and MCMC is
required)
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Explanation vs. Prediction

(intentionally blank)

Theories from the social sciences matter, whatever your research or business objective.

Questions and Discussion

http://pages.stern.nyu.edu/~fprovost/
http://oz.stern.nyu.edu/
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Other Resources

Here is a non-exhaustive list of resources to explore work on complex networks, explanatory modeling
(fairly thin) and predictive modeling with networked data (lots!). Beyond providing overviews and
details, and identifying particular research projects, these resources give a flavor for the variety of topics,
and a sampling of the researchers working on them.

» Books
— Introduction to Statistical Relational Learning, ed. Getoor and Taskar 2007
»  http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11331
— Relational Data Mining, ed. Dzeroski and Lavrac 2001
»  http://www-ai.ijs.si/SasoDzeroski/RDMBook/
— Random Graph Dynamics by Rick Durrett . Cambridge University Press, 2006
e http://www.math.cornell.edu/~durrett/RGD/RGD.html
— N.E.J Newman, The Structure and Function of Complex Networks. SIAM Review (this isn’t
a book but is better than any of the books that overview complex networks).
»  http://arxiv.org/abs/cond-mat/0303516

Tutorial on Statistical Relational Learning
—  http://www.cs.umd.edu/~getoor/Talks/SRL-ICML-ILP05-Tutorial.ppt

Tutorial on Complex Networks

— http://cnls.lanl.gov/~ebn/cn/

* Resources for Social Network Analysis

—  http://stat.gamma.rug.nl/snijders/

Special issues of the journal Machine Learning




— Multirelational data mining and statistical relational learning
»  http://www.springerlink.com/content/5830543713335321/

— Inductive logic programming
* (several)

— Mining and Learning with Graphs
e http://www.springer.com/cda/content/document/cda_downloaddocument/CFP 10994
171106.pdf?SGWID=0-0-45-334589-p35726603

Conference on Social Networks
— Sunbelt 2007: http://www.insna.org/2007/Sunbelt%202007.html
— Sunbelt 2006: http://www.insna.org/2006/sunbelt2006.html

Workshop on the Economics of Social Networks

— ESSET 2006: http://www.szgerzensee.ch/research/conferences/esset06/?L=1

Workshop on Statistical Network Analysis:

e http://www.icml2006.org/icml2006/technical/workshops.html

Workshops on statistical relational learning
* ICML 2004 http://www.cs.umd.edu/projects/srl2004/
* 1JCAI 2003 http://kdl.cs.umass.edu/srl2003/
*  AAAI 2000 http://robotics.stanford.edu/stl
Workshops on multi-relational data mining:
- http://wwwe-ai.ijs.si/SasoDzeroski/ MRDM2004/
. http://www-ai.ijs.si/SasoDzeroski/MRDM2003/
. http://www-ai.ijs.si/SasoDzeroski/MRDM2002/

Workshops on mining and learning with graphs

- http://www.inf.uni-konstanz.de/mlg2006/index.shtml
- http://mlg07.dsi.unifi.it/
- (see also MGTS 2003-2005)
Dagstuhl workshops on Probabilstic, Logical, & Relational Learning
- http://www.dagstuhl.de/05051/
- http://kathrin.dagstuhl.de/07161

Conferences on Inductive Logic Programming (annual)

NYU Workshops on the Economics of Information Technology
« 2006: http://w4.stern.nyu.edu/ceder/events.cfm?doc id=5583
« 2005: http://w4.stern.nyu.edu/ceder/events.cfm?doc_id=4174




