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Abstract

Building models for high dimensional portfolios is important in risk management and asset
allocation. Here we propose a novel and fast way of estimating models of time-varying covari-
ances that overcome an undiagnosed incidental parameter problem which has troubled existing
methods when applied to hundreds or even thousands of assets. Indeed we can handle the case
where the cross-sectional dimension is larger than the time series one. The theory of this new
strategy is developed in some detail, allowing formal hypothesis testing to be carried out on
these models. Simulations are used to explore the performance of this inference strategy while
empirical examples are reported which show the strength of this method. The out of sample
hedging performance of various models estimated using this method are compared.

Keywords: ARCH models; composite likelihood; dynamic conditional correlations; incidental
parameters; quasi-likelihood; time-varying covariances.
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1 Introduction

The estimation of time-varying covariances between the returns on hundreds of assets is a key in-

put in modern risk management. Typically this is carried out by calculating the sample covariance

matrix based on the last 100 or 250 days of data or through the RiskMetrics exponential smoother.

When these covariances are allowed to vary through time using ARCH-type models, the computa-

tional burden of likelihood based fitting is overwhelming in very large dimensions, while the usual

two step quasi-likelihood estimators of the dynamic parameters indexing them can be massively

biased due to an undiagnosed incidental parameter problem even for very simple models. In this

paper we introduce novel econometric methods which sidestep both of these issue allowing richly

parameterised ARCH models to be fit in vast dimensions, which potentially can be much larger

than the time series dimension.

Early work on time-varying covariances in large dimensions was carried out by Bollerslev (1990)

in his constant correlation model, where the volatilities of each asset were allowed to vary through

time but the correlations were time invariant. This has been shown to be empirically problematic

by, for example, Tse (2000) and Tsui and Yu (1999). A survey of more sophisticated models is

given by Bauwens, Laurent, and Rombouts (2006) and Silvennoinen and Terasvirta (2008), while

Engle (2008a) reviews the topic.

The only econometric work that we know of which allows correlations to change through time

in vast dimensions is that of RiskMetrics by J.P. Morgan released in 1994, the DECO model of

Engle and Kelly (2007) and the MacGyver estimation method of Engle (2008b)1. Engle and Kelly

(2007) assume that the correlation amongst assets changes through time but is constant across the

cross-section of K assets, an assumption that allows the log-likelihood to be computed in O(K)

calculations, which is highly convenient. However, this equicorrelation model is quite restrictive

since the diversity of correlations is often the key to risk management.

The RiskMetrics estimator of the conditional covariance matrix is parameter free and has the

structure of an integrated GARCH type model but applied to outer products of daily returns.

Formally this is a special case of the scalar BEKK process discussed by Engle and Kroner (1995).

It has been widely used in industry and was until recently the only viable method that had been

suggested which could be applied in hundreds of dimensions.

An alternative method was suggested by Engle (2008b) where he fit many pairs of bivariate

estimators, governed by simple dynamics, and then took a median of these estimators. This method

is known as the MacGyver estimation strategy, but it requires O(K2) calculations, is not invariant

1The MacGyver method is related to the estimation theory of Chen, Jacho-Chavez, and Linton (2007), which
studies the theory of estimators which are average of other estimators in a cross-sectional data setup.
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to reparameterisation and formalising this method in order to conduct inference is difficult. Our

method has some similarities to the MacGyver strategy but is more efficient and is invariant.

A further set of papers have been written which advocate methods which can be used on

moderately high dimensional problems, such as 50 assets. The first was the covariance tracking

and scalar dynamics BEKK model of Engle and Kroner (1995), the second was the DCC model

of introduced by Engle (2002) and studied in detailed by Engle and Sheppard (2001) — recent

developments in this area include Aielli (2006), Engle (2008a) and Pesaran and Pesaran (2007).

When these methods have been implemented in practice, they always use a two stage estimation

strategy which removes an enormously high dimensional nuisance parameter using a method of

moments estimator and then maximises the corresponding quasi-likelihood function. We will show

that even if we could compute the quasi-likelihood function for these models in 100s of dimension,

the incidental parameter problem causes quasi-likelihood based inference to have economically

important biases in the estimated dynamic parameters.

Our approach is to construct a type of composite likelihood, which we then maximise to deliver

our preferred estimator. The composite likelihood is based on summing up the quasi-likelihood of

subsets of assets. Each subset yields a valid quasi-likelihood, but this quasi-likelihood is only mildly

informative about the parameters. By summing over many subsets we can produce an estimator

which has the advantage that we do not have to invert large dimensional covariance matrices.

Further and vitally it is not effected by the incidental parameter problem. It can also be very fast

— it can be O(1) if needed and does not have the biases intrinsic to the usual quasi-likelihood when

the cross-section is large.

A special case of our estimation strategy is used in Fast-GARCH model (Bourgoin (2002)).

Fast-GARCH estimates a single univariate GARCH model for one asset, and then combines this

estimate with the sample variance of the returns to fit a variance-targeted model using the method

of Engle and Mezrich (1996).

The approach we advocate here can also be used in the context of more structured models, which

impose stronger a priori constraints on the model. Factor models with time-varying volatility are

the leading example of this, where leading papers include King, Sentana, and Wadhwani (1994),

Harvey, Ruiz, and Sentana (1992), Fiorentini, Sentana, and Shephard (2004) and Chib, Nardari,

and Shephard (2006). Our approach allows us to impose a factor structure on the models if this

is desirable.

The structure of the paper is as follows. In Section 2 we outline the model and discuss alterna-

tive general methods for fitting time-varying covariance models. We also discuss the usual use of

covariance tracking, which helps us in the optimisation of the objective functions discussed in this
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paper. In Section 3 we discuss the core of the paper, where we average in different ways the results

from many small dimensional “sub”-models in order to carry out inference on a large dimensional

model. We show this method has a hidden incidental parameter problem and that the use of com-

posite likelihoods largely overcomes this problem. Section 4 provides a Monte Carlo investigation

comparing the finite sample properties of our estimator with the usual quasi-maximum likelihood.

Section 5 illustrates our estimator on 95 components of the S&P 100, finding evidence of both

qualitative and quantitative differences. We extend this analysis to cover 480 components of the

S&P 500. In Section 6 we discuss some important additional topics. Section 7 concludes, while the

Appendix contains some derivations and further observations of interest.

2 The model and the usual quasi-likelihood

2.1 Framework

We write a K-dimensional vector of log-returns as rt where t = 1, 2, ..., T . A typical risk manage-

ment model of rt given the information available at time t is to assume:

Assumption 1

E(rt|Ft−1) = 0, Cov(rt|Ft−1) = Ht, (1)

where Ft−1 is the information available at time t− 1 to predict rt.

Thus rt is a F-martingale difference sequence with a time-varying covariance matrix. We will

model how Ht depends upon the past data allowing it to be indexed by some parameters ψ ∈ Ψ.

We intend to estimate ψ. For simplicity in our examples we have always used single lags in the

dynamics. The extension to multiple lags is trivial but rarely used in empirical work.

Example 1 Scalar BEKK. This puts

Ht = (1 − α− β) Σ + αrt−1r
′
t−1 + βHt−1, α ≥ 0, β ≥ 0, α+ β < 1,

which is a special case of Engle and Kroner (1995). Typically this model is completed by setting

H1 = Σ. Hence in this model ψ =
(
λ′, θ′

)′
, where λ = vech(Σ) and θ = (α, β)′.

Example 2 Nonstationary covariances with scalar dynamics:

Ht = αrt−1r
′
t−1 + (1 − α)Ht−1, α ∈ [0, 1) .

A simple case of this is RiskMetrics, which puts α = 0.06 for daily returns and 0.03 for monthly

returns. Inference for this EWMA model is usually made conditional on λ = vech(H0), which has

to be estimated, while θ = α and ψ =
(
λ′, θ′

)′
.
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The standard inference method is based on a Gaussian quasi-likelihood

logL(ψ; r) =

T∑

t=1

lt(ψ), (2)

where

lt(ψ) = −1

2
log |Ht| −

1

2
rt

′H−1
t rt.

Maximising this quasi-likelihood (2) directly in high-dimension models is difficult since

• the parameter space is typically large, which causes numerical and statistical challenges;

• each of the T inversions of Ht takes O(K3) computations per likelihood evaluation2.

This paper will show how to side-step these two problems.

2.2 Nuisance parameters

In Example 1, Σ has to be estimated along with the dynamic parameters of interest α and β. Σ

has K(K + 1)/2 free parameters, which will be vast if K is large. Similar issues arise in a large

number of multivariate models.

More abstractly we write the dynamic parameters of interest as θ and the nuisance parameters

as λ whose dimension is P . Then the quasi-likelihood is

logL(θ, λ; r).

Often we can side step the optimising over λ by concentrating at some moment based estimator λ̃.

Example 3 For Example 1 Engle and Mezrich (1996) suggested putting Σ̃ = 1
T

∑T
t=1 rtr

′
t, then

λ̃ = vech(Σ̃). This is called covariance tracking. For Example 2 one can put H̃0 = 1
T

∑T
t=1 rtr

′
t and

λ̃ = vech(H̃0).
3

2In modern software packages, matrix inversion is implemented as a series of matrix multiplications. As a result,
the complexity of the matrix multiplication is the dominant term when computing a matrix inverse. By direct
inspection the multiplication of K × K matrices can be easily seen to be no worse than O(K3). This is because
K rows must be paired with K columns, and each dot product involves K multiplications and K − 1 additions, or
2K − 1 computations. Most common implementations are O(K3) although faster, but somewhat unstable inversions
can be computed in O(Klog

2
7) ≈ O(K2.81) or faster (Strassen (1969)).

In practice we have also found that when estimating models of dimension 100 or more then great care needs to
be taken with the numerical precision of the calculation of the inverse and determinant in (2) in order to achieve
satisfactory results when optimising over ψ.

3When we use quasi-likelihood estimation to determine α in the EWMA model a significant problem arises when
K is large for α̃ will be forced to be small in order that the implied Ht has full rank — for a large α and large K will
imply Ht is singular. This feature will dominate other ones and holds even though element by element the conditional
covariance matrix will very poorly fit the data.
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We then maximise to deliver the m-profile4 quasi-likelihood estimator (MMLE)

θ̃ = argmax
θ

logL(θ, λ̃; r).

When K is small compared to T then inference can be thought of as a two stage GMM problem,

whose theory is spelt out in, for example, Newey and McFadden (1994) and Engle and Sheppard

(2001). All this is well known.

Unfortunately when K is large the dimension of λ is also large, and so estimating λ can mean

θ̃ is thrown far from its true value. This generic statistical characteristic has been known since the

work of, for example, Neyman and Scott (1948) and Nickell (1981). There are some hints that this

might be a problem in the multivariate volatility literature. Engle and Sheppard (2001) report

that for their DCC models, which we will discuss in Section 3.7, some of their quasi-likelihood

based estimated dynamic parameters seem biased when K is moderately large in Monte Carlo

experiments.

2.3 Empirical illustration

Here we estimate the models given in Examples 1 and 2 (and the DCC model discussed in Section

3.7) using data for all companies at one point listed on the S&P 100, plus the index itself, over the

period January 1, 1997 until December 31, 2006 taken from the CRSP database. This database has

124 companies although 29, for example Google, have one or more periods of non-trading, (e.g. prior

to IPO or subsequent to an acquisition). Selecting only the companies that have returns throughout

the sample reduced this set to 95 (+1 for the index). This means T = 2, 516 and K ≤ 96. To allow

K to increase, which allows us to assess the sensitivity to K, we set the first asset as the market

and the other assets are arranged alphabetically by ticker5. The results for fitting the two models

using λ̃ are given in Example 3. The estimated θ parameters from an expanding cross-section of

assets are contained in Table 1.

The empirical results suggest the increasing K destroys the MMLE as α̃ falls dramatically as

K increases. These results will be confirmed by detailed simulation studies in Section 4 which

produce the same results by simulating BEKK or DCC models and then estimating them using

MMLE techniques. In addition Section 5 suggests the MMLE parameter values when K = 96 are

poor when judged using a simple economic criteria.

These results are reinforced by an empirical study based exactly the same type of database, but

now based on the corresponding components of the S&P 500. Including the index this produces a

4Although at first sight l(θ, λ̂) looks like a profile likelihood, it is not as λ̂ is not a maximum quasi-likelihood
estimator but an attractive moment estimator. Hence we call it a moment based profile likelihood, or m-profile
likelihood for short. This means θ̂ is typically less efficient than the maximum quasi-likelihood estimator.

5For stocks that changed tickers during the sample, the ticker on the first day of the sample was used
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S&P 100 Components S&P 500 Components

Scalar BEKK EWMA DCC Scalar BEKK DCC

K α̃ β̃ α̃ α̃ β̃ K α̃ β̃ α̃ β̃

5 .0189 .9794 .0134 .0141 .9757 5 .0261 .9715 .0101 .9823
10 .0125 .9865 .0103 .0063 .9895 25 .0080 .9909 .0030 .9908
25 .0081 .9909 .0067 .0036 .9887 50 .0055 .9932 .0018 .9882
50 .0056 .9926 .0045 .0022 .9867 100 .0034 .9934 .0015 .9524
96 .0041 .9932 .0033 .0017 .9711 250 .0015 .9842 .0020 .5561

480 .0032 .5630 .0013 .2556

Table 1: Parameter estimates from a covariance targeting scalar BEKK, EWMA (estimating H0)
and DCC using maximum m-profile likelihood (MMLE). Based upon a real database built from
daily returns from 95 companies plus the index from the S&P100, from 1997 until 2006. The same
analysis is also reported on 480 components from the S&P 500 over the same time period.

dataset with K = 480. The results in Table 1 show dramatic distortions — where the estimated β

also crash towards zero as K increases.

We now turn to our preferred estimator which allows K to have any relationship to T , yielding

consistency as T → ∞. In particular, the estimator will work even when K is larger than T .

3 The main idea: composite-likelihood

3.1 Many small dimensional models

To progress it is helpful to move the return vector rt into a data array Yt = {Y1t, ..., YNt} where Yjt

is itself a vector containing small subsets of the data (there is no requirement for the Yjt to have

common dimensions)

Yjt = Sjrt,

where Sj as non-stochastic selection matrix. In our context the leading example is where we look

at all the unique “pairs” of data

Y1t = (r1t, r2t)
′ ,

Y2t = (r1t, r3t)
′ ,

...

YK(K−1)
2

t
= (rK−1t, rKt)

′ ,

where N = K(K − 1)/2. Our model (1) trivially implies

E(Yjt|Ft−1) = 0, Cov(Yjt|Ft−1) = Hjt = SjHtS
′
j. (3)

Then a valid quasi-likelihood can be constructed for ψ off the j-th subset

logLj(ψ) =

T∑

t=1

ljt(ψ), ljt(ψ) = log f(Yjt;ψ)
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where

ljt(ψ) = −1

2
log |Hjt| −

1

2
Y ′

jtH
−1
jt Yjt.

This quasi-likelihood will have information about ψ but more information can be obtained by

averaging6 the same operation over many submodels

ct(ψ) =
1

N

N∑

j=1

logLjt(ψ).

Of course if the {Y1t, ..., YNt} were independent this would be the exact likelihood — but this

will not be the case for us. Such functions, based on “submodels” or “marginal models”, are call

composite likelihoods (CLs), following the nomenclature introduced by Lindsay (1988)7. See Varin

(2008) for a review. Summing over the time series we have the sample CL function

CL(ψ) =

T∑

t=1

ct(ψ).

For fixed N , as T increases to infinity, the estimator which maximises this CL, written ψ̂, has well

known asymptotic properties as the CL is a particular form of a quasi-likelihood. Appropriate

references include Cox (1961), Eicker (1967), White (1982) and Gallant and White (1988).

Evaluation of ct(ψ) costs O(N) calculations. In the case where all distinct pairs are used this

means the CL costs O(K2) calculations — which is distinctively better than the O(K3) implied

by (2). One can also use the subset of contiguous pairs {rjt, rj+1t}, which would be O(K), or an

economically motivated selection like the so called “beta CL” discussed in Section 6.3 which is also

O(K) and is based on using all pairs involving the market index returns. Some of the computational

considerations are illustrated in Table 2 which show some computational times for a problem based

on modelling up to 480 assets. A detailed discussion of this will be given in Section 5.4.

An alternative is to choose only O(1) pairs, which is computationally faster. It is tempting to

randomly select N pairs and make inference conditional on the selected pairs as the selection is

6It may make sense to also define the weighted CL

1

N

N∑

j

wjt logLjt(θ),

where wj,t are non-negative weights determined by the economic importance of the subset of assets, e.g. making
the weights proportional to the geometric average of the asset’s market value. The weights can be allowed to vary
through time, but this variation should depend at time t solely on functions of Ft−1. This weighting add little
complexity to the asymptotic theory of the weighted CL.

7This type of marginal analysis has appeared before in the non-time series statistics literature. An early example
is Besag (1974) in his analysis of spatial processes, more recently it was used by Fearnhead (2003) in bioinformatics,
deLeon (2005) on grouped data, Kuk and Nott (2000) and LeCessie and van Houwelingen (1994) for correlated binary
data. This type of objective function is sometimes call CL methods, following the term introduced by Lindsay (1988),
or “subsetting methods”. See Varin and Vidoni (2005). Cox and Reid (2003) discusses the asymptotics of this problem
in the non-time series case.
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MMLE All Pairs Contiguous Pairs
K m-profile maximum m-profile maximum m-profile

5 24s 1.4s 0.1s 0.6s 0.2s
25 46s 31s 2.1s 2.3s 0.2s
50 2m 10s 2m 11s 10s 5.1s 0.5s

100 1h 50m 14m 51s 39s 16s 0.8s
250 15h 11m 1h 0m 4m 7s 29s 1.6s
480 85h 33m 3h 39m 18m 6s 50s 4.5s

Table 2: CPU time required to estimate a covariance targeting scalar BEKK on the assets of the
S&P 500. All models were estimated on a 2.5GHz Intel Core 2 Quad.

strongly exogenous. We will see in a moment that the efficiency loss of using only O(1) subsets

compared to computing all possible pairs can be extremely small.

Using a CL reduces the computational challenges in fitting very large dimensional models. We

now turn our attention to the statistical implications.

3.2 Many small dimensional nuisance parameters

We now make our main assumption that

ct(ψ) =
1

N

N∑

j=1

logLjt(θ, λj),

that is it is possible to write the CL in terms of the common finite dimensional θ and then a vector

of parameters λj which is specific to the j-th pair. Our interest is in estimating θ and so the

λj are nuisances. As N increases then so does the number of nuisance parameters. This type of

assumption appeared, outside the CL, first in the work of Neyman and Scott (1948), which has

been highly influential in econometrics8. In that literature this is sometimes named a stratified

model with a stratum of nuisance parameters and can be analysed by using two-index asymptotics,

e.g. Barndorff-Nielsen (1996).

3.3 Parameter space

For the j-th submodel we have the common parameter θ and nuisance parameter λj. The joint

model (1) may imply there are links across the λj.

8Recent papers on the analysis of this setup include Barndorff-Nielsen (1996), Lancaster (2000) and Sartori (2003).
In those papers, stochastic independence is assumed over j and t. Then the maximum likelihood estimator of θ is
typically inconsistent for finite T and N → ∞ and needs, when T increases, N = o(T 1/2) for standard distributional
results to hold (Sartori (2003)) with rate of convergence

√
NT . However, in our time series situation we are content

to allow T to be large, while the important cross-sectional dependence implied by CL amongst the logLjt(θ, λj) will
be shown to reduce the rate of convergence to rate

√
T , not

√
NT . Under those circumstances we will see the MCLE

will be consistent and have a simple limit theory however N relates to T .
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Example 4 The scalar BEKK model of Example 1

Y1t = (r1t, r2t)
′ , Y2t = (r2t, r3t)

′ ,

then

λ1 = (Σ11,Σ21,Σ22)
′ , λ2 = (Σ22,Σ32,Σ33)

′ .

Hence, the joint model implies there are common elements across the λj .

As econometricians we may potentially gain by exploiting these links in our estimation. An

alternative, is to be self-denying and to never use these links, even if they exist in the data generating

process. The latter means the admissible values are

(λ1, λ2, ..., λN ) ∈ Λ1 × Λ2 × ...× ΛN , (4)

i.e. they are variation-free (e.g. Engle, Hendry, and Richard (1983)).

In the context of CLs imposing variation freeness on inference has great conceptual virtues for it

allows the estimation to be carried out for λj based solely on Yj1, ..., YjT and the common structure

determined by θ. Of course, this approach risks efficiency loss — but not bias. Throughout our

paper we will impose variation-free on our estimation strategy (of course inference will be agnostic

to it). Our experiments, not reported here, which have used the cross-submodel constraints indicate

the efficiency loss in practice of this is tiny when N is large.

Remark 1 This variation-free structure requires that λj is identified using the j-th submodel’s

likelihood, given knowledge of θ. For many models this will be the case, e.g. an unstructured Σ in

a scalar BEKK model. If a factor model is impose on Σ however, some care needs to be taken that

the dim(Yjt) is larger than the dimension of the factor.

3.4 Estimators

Our estimation strategy can be generically stated as solving

θ̂ = argmax
θ

1

N

T∑

t=1

N∑

j=1

logLjt(θ̂, λ̂j),

where λ̂j solves for each j

T∑

t=1

gjt(θ̂, λ̂j) = 0.

Here gjt is a dim(λj)-dimensional moment constraint so that for each j and θ there exists a single

λjθ which solves

E {gjt(θ, λjθ)} = 0, t = 1, 2, ..., T.

10



This structure has some important special cases.

Example 5 The maximum CL estimator (MCLE) follows from writing

gjt(θ, λj) =
∂ logLjt(θ, λj)

∂λj
,

so

λ̂j(θ) = argmax
λj

T∑

t=1

logLjt(θ, λ̂j),

which means

1

N

T∑

t=1

N∑

j=1

logLjt(θ, λ̂j)

is the profile CL which θ̂ maximises.

Example 6 Suppose Gjt = Gjt(Yjt) and

gjt(θ, λj) = Gjt − λj , where E(Gjt) = λj,

then

λ̂j =
1

T

T∑

t=1

Gjt.

We call the resulting θ̂ a m-profile CL estimator (MMCLE).

3.5 Consistency of θ̂

3.5.1 Statement of the result

In this subsection we will give general conditions under which θ̂ will be consistent.

Theorem 1 . Assume the following conditions hold.

1. Θ and Λj are compact.

2. For each θ ∈ Θ there exists a pseudo-true value λ∗jθ ∈ Λj which uniquely solves

E
{
gjt

(
θ, λ∗jθ

)}
= 0.

3. The non-nuisance parameter version of the composite likelihood delivers a consistent estima-

tor, i.e.

arg sup
θ∈Θ

1

TNT

T∑

t=1

NT∑

j=1

ljt(θ, λ
∗
jθ)

p→ θ∗. (5)
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4. For every j and t, ljt(θ, λj) is continuously differentiable in λj ∈ Λj .

5. Define

ct,T (rt) =
1

NT

NT∑

j=1

sup
θ∈Θ,λj∈Λj

∣∣∣∣
∂ljt(θ, λj)

∂λj

∣∣∣∣ .

Assume that

1

T

T∑

t=1

ct,T (rt)

satisfies a weak law large number as T → ∞.

6. Write λ =
(
λ′1, λ

′
2, ..., λ

′
NT

)′
and assume that

sup
θ∈Θ

max
j∈{1,2,...,NT }

∣∣∣λ̂jθ − λ∗jθ

∣∣∣ = op(1). (6)

Then

θ̂
p→ θ∗.

Proof. Given in the Appendix.

3.5.2 Discussion

There are two major points to be made about the assumptions in this theorem. First when there

are no incidental parameters the composite likelihood takes the form of

1

T

T∑

t=1

lt,T (θ), where lt,T (θ) =
1

NT

NT∑

j=1

ljt(θ, λ
∗
jθ)

which is simply an array version of a standard quasi-likelihood. Hence general quasi-likelihood

theory applies to this in a straightforward way and raises no new issues — see White (1994) and

Cox and Reid (2003).

Second the condition (6) means that supθ∈Θ maxj

∣∣∣λ̂jθ − λjθ

∣∣∣ p→ 0 goes to zero as T increases

even though NT can increase with T . For the scalar BEKK and DECC models

sup
θ∈Θ

∥∥∥λ̂θ − λθ

∥∥∥
∞

≤ sup
θ∈Θ

∥∥∥Σ̂θ − Σθ

∥∥∥
∞

the long run unconditional covariance of the asset returns. Recall that for a p-dimensional vector

z that ‖z‖∞ = max {|z1| , |z2| , ..., |zp|}.
In the MMCLE case the dependence on θ can be dropped and we get

sup
θ∈Θ

∥∥∥λ̂θ − λθ

∥∥∥
∞

≤
∥∥∥Σ̂ − Σ

∥∥∥
∞
, Σ̂ =

1

T

T∑

t=1

rtr
′
t.
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Fan, Zhang, and Yu (2008) have studied
∥∥∥Σ̂ − Σ

∥∥∥
∞

under a variety of regularity assumptions. In

particular they show that when rt and rtr
′
t each have an autoregressive representation, driven by

a martingale error terms (plus some additional technical conditions about the memory of these

processes) that

∥∥∥Σ̂ − Σ
∥∥∥
∞

= Op

(√
logK

T

)

which shows the size of the problem only impacts the estimator at a logarithmic rate. This implies

that the consistency of composite likelihood is largely immune from problems of high dimensionality.

This may be a rather conservative result for our Monte Carlo results suggest that K has no impact

on the consistency of θ̂ — proving this result is however beyond this paper.

Finally, trivially, Assumption 4 will hold if rt is ergodic by an array law of large numbers.

3.6 Central limit theorem for θ̂

We now turn to some distributional results for this class of estimator, which will be followed by a

detailed Monte Carlo study. Throughout our asymptotics will have T → ∞ while the cross-sectional

dimension NT can potentially increase with T .

Theorem 2 . Assume θ̂ is consistent. Throughout all functions are evaluated at (θ∗, λ∗jθ). We

assume ljt is twice continuously differentiable and gjt once continuously differentiable. We first

define some terms:

Fj,T =

(
1

T

T∑

t=1

∂2ljt
∂θλ′jt

)(
1

T

T∑

t=1

∂gjt

∂λ′jt

)−1

,

Zt,T =
1

NT

NT∑

j=1

(
∂ljt
∂θ′

− Fj,Tgjt

)
,

Dj,θθ,T =

(
1

T

T∑

t=1

∂2ljt
∂θ∂θ′

)
− Fj,T

(
1

T

T∑

t=1

∂gjt

∂θ′

)
,

Dθθ,T =
1

NT

NT∑

j=1

Dj,θθ,T .

Then assume the following:

1. θ∗ is an interior point of Θ.

2. λ∗jθ is an interior point of Λj .

3. If T is large then over all j the smallest eigenvalue of

1

T

T∑

t=1

∂gjt

∂λ′jt

13



is bounded above zero.

4. That as T → ∞

√
T

1

T

T∑

t=1

Zt,T
d→ N(0,Iθθ). (7)

We also assume that Iθθ has diagonal elements which are bounded from above and Iθθ > 0.

5. That as T → ∞

Dθθ,T
p→ Dθθ > 0,

where Dθθ is invertible.

Then

√
T
(
θ̂ − θ

)
d→ N(0,D−1

θθ IθθD−1
θθ ).

Proof. Given in the Appendix.

The most important assumption we will need to produce this results is that Iθθ has diagonal

elements which are bounded from above and Iθθ > 0. Intuitively it means the average score does

not exhibit a law of large numbers in the cross-section.

In order to implement this theory we have to estimate Dθθ and Iθθ. The former can be estimated

by Dθθ,T where we evaluate the functions at estimates rather than the true parameter points. The

small dimensional Iθθ is estimated by using a HAC estimator (e.g. Andrews (1991)) applied to

{Zt,T }. Notice the dimension of Zt,T does not vary with NT .

Example 7 In the case where λ̂j is a moment estimator, Example 6, then gjt = Gjt − λj, so

Fj,T = −
(

1

T

T∑

t=1

∂2ljt
∂θλ′jt

)
.

Remark 2 We can directly see the effect on the efficiency of this procedure of NT by studying (7).

Then for large NT

Var

(
1√
T

T∑

t=1

Zt,T

)
=

1

N2
T

NT∑

j=1

Var

(
1√
T

T∑

t=1

Zj,t,T

)
+

1

N2
T

NT∑

j 6=k

Cov

(
1√
T

T∑

t=1

Zj,t,T ,
1√
T

T∑

t=1

Zk,t,T

)

≃ 1

N2
T

NT∑

j 6=k

Cov

(
1√
T

T∑

t=1

Zj,t,T ,
1√
T

T∑

t=1

Zk,t,T

)
.

So as NT increases it knocks out the variance term in Zj,t,T and this drives the gains of using the

cross-sectional information. It also shows that there is no expectation, for our applications, that

14



as NT increases that this variance is driven to zero. Instead the limit

Var

(
1√
T

T∑

t=1

Zt,T

)
≃ lim

N→∞

1

N2

N∑

j 6=k

Cov

(
1√
T

T∑

t=1

Zj,t,T ,
1√
T

T∑

t=1

Zk,t,T

)
,

the average covariance between randomly selected pairs

{
1√
T

T∑

t=1

Zj,t,T ,
1√
T

T∑

t=1

Zk,t,T

}

for j 6= k.

3.7 Extended example: DCC model

The DCC model of Engle (2002) and Engle and Sheppard (2001) allows a much more flexible

time-varying covariance model than Examples 1 and 2. Write the submodel based on a pair as

Yjt = {r1jt, r2jt} , Cov(Yjt|Ft−1) =

(
h

1/2
1jt 0

0 h
1/2
1jt

)
Rjt

(
h

1/2
1jt 0

0 h
1/2
1jt

)
,

where we construct a model for the conditional variance hijt = Var(rijt|Ft−1, ηij), which is indexed

by the variation free parameters ηij
9. This has a log-likelihood for the {rijt} return sequence of

logEijt = −1

2
log hijt −

1

2
r2ijt/hijt, i = 1, 2.

The devolatilised series is defined as

Sjt =

(
h
−1/2
1jt 0

0 h
−1/2
1jt

)(
r1jt

r2jt

)
, so Cov(Sjt|Ft−1) = Rjt = Cor(Yjt|Ft−1).

We build a model for Rjt using the cDCC dynamic introduced by Aielli (2006). It is defined as

Rjt = P
−1/2
jt QjtP

−1/2
jt , Pjt =

(
Q11jt 0

0 Q22jt

)
,

9The first step of fitting the cDCC models is to model hjt = Var(rjt|Ft−1). It is important to note that although
it is common to fit standard GARCH models for this purpose, allowing the hjt to depend the lagged squared returns
on the j-th asset, in principle Ft−1 includes the lagged information from the other assets as well — including market
indices. Many of the return series exhibited large moves in volatility during this period. This large increase has been
documented by, for example, Campbell, Lettau, Malkeil, and Xu (2001) and appears both in systematic volatility and
idiosyncratic volatility. Initial attempts at fitting the marginal volatilities Var(rjt|rjt−1, rjt−2, ...) included a wide
range of “standard” ARCH family models failed residual diagnostics tests for our data.

To overcome this difficulty, a flexible components framework has been adopted which brings in a wider information
set. The first component is the market volatility as defined by the index return, rt = 1

K

∑K
j=1 rj,t. The volatility was

modeled using an EGARCH specification Nelson (1991),

ln h•,t = ω• + α•|ǫ•,t−1 −
√

2/π| + κ•ǫ•,t−1 + β
•
ln h•,t−1, ǫ•,t = rth

−1/2
•,t . (8)

A second component was included for assets other than the market, resulting in a factor structure for each asset j,

ln h̃j,t = ωj + αj |ǫj,t−1 −
√

2/π| + κjǫj,t−1 + βj ln hj,t−1, hj,t = h•,th̃j,t, ǫj,t = rj,th
−1/2
j,t . (9)

This two-component model was able to adequately describe the substantial variation in the level of volatility seen in
this panel of returns.
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where

Qjt = Ψj (1 − α− β)+αP
1/2
jt−1

(
Sjt−1S

′
jt−1 −Rjt−1

)
P

1/2
jt−1 +(α+ β)Qjt−1, Ψj =

(
1 ϕj

ϕj 1

)
.

It has the virtue that if we let S∗
jt = P

1/2
jt Sjt, then Cov

(
S∗

jt|Ft−1

)
= P

1/2
jt RjtP

1/2
jt = Qjt, and so

1
T

∑T
t=1 S

∗
jtS

∗′
jt

p→ Ψj.

The parameters for this model are θ = (α, β)′, λj =
(
η′1j, η

′
2j , ϕj

)′
. The corresponding ingredi-

ents into the estimation of θ from this model is the common structure

logLjt = −1

2
log |Rjt| −

1

2
S′

jtR
−1
jt Sjt,

while for the j-th submodel

gjt =




∂ log E1jt

∂η1j
∂ log E2jt

∂η2j
1
T

∑T
t=1 S

∗
1jtS

∗
2jt − ϕj


 .

4 Monte Carlo experiments

4.1 Relative performance of estimators

Here we explore the effectiveness of three estimators of the parameters in the DCC model discussed

above,

• maximum m-profile likelihood based estimator (MMLE), based on the quasi-likelihood in

Section 2;

• maximum m-profile CL based estimator (MCLE), using all the pairs to construct the CL as

in Section 3;

• maximum m-profile subset CL estimators (MSCLE), using contiguous pairs to construct the

CL as in Section 3.

The Appendix A.3 mirrors exactly the same setup based upon the scalar BEKK model: the

results are very similar for that model.

A Monte Carlo study based on 2, 500 replications has been conducted across a variety of sample

sizes and parameter configurations. As in Engle and Sheppard (2001), we assume away ARCH

effects by setting σ2
jt = 1. Throughout we used T = 2, 000, K is one of {3, 10, 50, 100} and the

returns were simulated according to a cDCC model given in Section 3.7. Three choices spanning

the range of empirically relevant values of the temporal dependence in the Q process were used
(
α
β

)
=

(
0.02
0.97

)
,

(
0.05
0.93

)
, or

(
0.10
0.80

)
.
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Bias RMSE

MMLE MCLE MSCLE MMLE MCLE MSCLE
K α β α β α β α β α β α β

α = .02, β = .97

3 .001 -.011 .001 -.012 .001 -.017 .006 .033 .007 .038 .008 .059
10 -.001 -.004 -.000 -.005 -.000 -.006 .002 .005 .002 .006 .003 .009
50 -.003 -.003 -.000 -.005 -.000 -.005 .003 .003 .001 .005 .002 .006

100 -.005 -.004 -.000 -.005 -.000 -.005 .005 .004 .001 .005 .001 .005

α = .05, β = .93

3 -.000 -.005 -.000 -.006 -.000 -.007 .008 .015 .009 .016 .011 .022
10 -.002 -.001 -.000 -.003 -.000 -.004 .003 .004 .003 .006 .005 .009
50 -.009 .003 -.001 -.003 -.001 -.003 .009 .003 .002 .004 .003 .005

100 -.014 .002 -.001 -.003 -.001 -.003 .014 .002 .002 .004 .002 .004

α = .10, β = .80

3 -.001 -.007 -.001 -.008 -.001 -.010 .016 .037 .017 .040 .019 .051
10 -.003 -.003 -.001 -.005 -.001 -.006 .006 .011 .007 .016 .009 .022
50 -.014 .000 -.001 -.004 -.001 -.004 .014 .004 .004 .009 .005 .011

100 -.024 -.003 -.001 -.004 -.001 -.004 .024 .004 .004 .008 .005 .010

Table 3: Properties of the estimators of α and β in the cDCC model using T = 2, 000. The
estimators are: subset CL (MSCLE), full CL (MCLE), and m-profile likelihood (MMLE) estimators.
Based on 2, 500 replications.

The parameters were estimated using a constraint that 0 ≤ α < 1, 0 ≤ β < 1, α+ β < 1. None of

the estimators were on the boundary of the parameter space.

The intercept Ψ was chosen to match the properties of the S&P 100 returns studied in the

previous Section. The unconditional correlations were constructed from a single-factor model, the

unconditional covariance from a strict factor model where

ǫi,t = πift +
√

1 − πiηi,t (10)

where both ft and ηi,t have unit variance and are independent. Here π is distributed according

to a truncated normal with mean 0.5, standard deviation 0.1 where the truncation occurs at ±4

standard deviations. This means π ∈ (0.1, 0.9). Obviously E(ǫi,t|πi) = 0 and

Cov

{(
ǫi,t
ǫj,t

)
|πi, πj

}
=

(
1 πiπj

πiπj 1

)
. (11)

so unconditionally, in the cross section, the ǫi,t and ǫj,t have a correlation of 0.25. This choice for Ψ

produces assets which are all positively correlated and ensures that the intercept is positive definite

for any cross-sectional dimension K.10

Tables 3 contains the bias and root mean square error of the estimates. The maximum m-

profile likelihood (MMLE) method develops a significant bias in estimating α as K increases. This

10The effect of this choice of unconditional correlation was explored in other simulations. These results of these
runs indicate that the findings presented are not sensitive to the choice of unconditional correlation.
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Bias RMSE

MMLE MCLE MSCLE MMLE MCLE MSCLE
T α β α β α β α β α β α β

K = 10

100 -.021 -.161 -.011 -.141 -.009 -.218 .025 .237 .021 .221 .028 .347
250 -.006 -.018 -.002 -.021 -.002 -.026 .008 .021 .008 .026 .012 .042
500 -.003 -.005 -.001 -.008 -.001 -.009 .005 .008 .005 .011 .007 .016

1,000 -.002 -.001 -.001 -.003 -.001 -.003 .003 .004 .004 .006 .005 .009
2,000 -.001 -.000 -.000 -.002 -.000 -.002 .002 .003 .003 .004 .004 .006

K = 50

100 -.050 -.915 -.014 -.091 -.013 -.108 .050 .915 .016 .103 .018 .146
250 -.022 -.034 -.003 -.018 -.003 -.019 .022 .034 .005 .020 .006 .022
500 -.013 -.004 -.001 -.007 -.001 -.007 .013 .004 .003 .009 .004 .010

1,000 -.009 .003 -.001 -.003 -.001 -.003 .009 .003 .002 .004 .003 .005
2,000 -.006 .003 -.000 -.001 -.000 -.001 .006 .003 .001 .002 .002 .003

K = 100

100 – – -.014 -.090 -.014 -.098 – – .016 .103 .017 .121
250 -.037 -.108 -.003 -.019 -.003 -.019 .037 .109 .004 .020 .005 .021
500 -.021 -.013 -.001 -.007 -.001 -.007 .021 .013 .003 .008 .003 .009

1,000 -.014 .001 -.001 -.003 -.001 -.003 .014 .002 .002 .004 .002 .004
2,000 -.010 .004 -.000 -.001 -.000 -.001 .010 .004 .001 .002 .002 .003

K = 200

100 – – -.014 -.086 -.013 -.082 – – .016 .092 .016 .095
250 -.050 -.913 -.002 -.018 -.003 -.018 .050 .918 .004 .019 .005 .019
500 -.033 -.053 -.001 -.007 -.001 -.007 .033 .053 .002 .008 .003 .008

1,000 -.021 -.006 -.000 -.003 -.001 -.003 .022 .006 .002 .004 .002 .004
2,000 -.015 .003 -.000 -.002 -.000 -.001 .015 .003 .001 .002 .001 .002

Table 4: Results from a simulation study for the cDCC model using the true values of α = .05,
β = .93. The estimators were: subset CL (MSCLE), CL (MCLE), and m-profile likelihood (MMLE)
estimators. Based on 2, 500 replications.
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is consistent with the findings of Engle and Sheppard (2001) and our theoretical discussion given

in Section 2.2.

To further examine the bias across T and K a second experiment was conducted for K =

{10, 50, 100, 200} and T = {100, 250, 500, 1000, 2000}. Only the results for the α = .05, β = .93

parameterization are reported.

All of the estimators are substantially biased when T is very small. For any cross-section size

K, the bias in the MMLE is monotonically decreasing in T . For large K, α is biased downward by

30% even when T = 2, 000. The MCLE and MSCLE show small biases for any cross-section size as

long as T ≥ 250. Moreover, the bias does not depend on K. This experiment also highlights that

the MCLE and MSCLE estimators are feasible when T ≤ K. Results for the MMLE in the T ≤ K

case are not reported because the estimator failed to converge in most replications.

Overall the Monte Carlo provides evidence of the MCLE has better RMSE for all cross-section

sizes and parameter configurations. There seems little difference between the MCLE and MSCLE.

In simulations not reported here, both estimators substantially outperform the Engle (2008b) esti-

mator. The evidence presented here suggests MSCLE is attractive from statistical and computa-

tional viewpoints for large dimensional problems.

4.2 Efficiency gains with increasing cross-section length

Figure 1 contains a plot of the square root of the average variance against the cross-section size

for the maximized MCLE and MSCLE. Both standard deviations rapidly decline as the cross-

section dimension grows and the standard deviation of the MCLE is always slightly smaller than

the MSCLE for a fixed cross-section size. Recall that the MCLE uses many more submodels than

the MSCLE when the cross-section size is large, and so when K = 50 the MCLE is based on 1, 225

submodels while the MSCLE is using only 49.

This Figure shows there are very significant efficiency gains from using a CL compared to

the simplest strategy for estimating θ — which is to fit a single bivariate model. The standard

deviation goes down by a factor of 4 or so, which means the cross-sectional information is equivalent

to increasing the time series dimension by a factor of around 16 when K is around 50.

Another interesting feature of the Figure is the expected result that as K increases the standard

error of the MCLE and MSCLE estimators become very close. In the limit they will both asymptote

to a value above zero — it looks like this asymptote is close to being realised by the time K = 100.

4.3 Performance of asymptotic standard errors

The Monte Carlo study was extended to assess the accuracy of the asymptotic based covariance

estimator in Section 3.6. Data was simulated according to a cDCC model using the previously
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Figure 1: Standard deviation of the CL estimators drawn against K calculated from a Monte Carlo
based upon α = .05, β = .93 using T = 2, 000. K varies from 2 up to 100. Graphed are the results
for the maximum CL estimator (MCLE) and the subset version (MSCLE) based on only contiguous
submodels.

described configuration for α = .05, β = .93 with T = 2, 000. The MCL estimator and the MSCL

estimator, for both the maximized and m-profile strategies, were computed from the simulated data

and the covariance of the parameters was estimated. This was repeated 1, 000 times and the results

are presented in Table 5. The Table contains square root of the average asymptotic variance,

σ̄α =

√√√√ 1

1000

1000∑

i=1

σ̂2
i,α (12)

and the standard deviation of the Monte Carlo’s estimated parameters,

σ̂α =

√√√√ 1

1000

1000∑

i=1

(α̃i − ¯̃α)
2
, ¯̃α =

1

1000

1000∑

i=1

α̃i, (13)

for both α and β.

The results are encouraging, except when K is tiny, the asymptotics performs quite accurately

and yield a sensible basis for inference for this problem.

20



MCLE MSCLE

m-profile maximized m-profile maximized

K σ̄α σ̂α σ̄β σ̂β σ̄α σ̂α σ̄β σ̂β σ̄α σ̂α σ̄β σ̂β σ̄α σ̂α σ̄β σ̂β

α=.02, β=.97

3 .010 .008 .261 .152 .009 .008 .123 .147 .008 .007 .052 .028 .009 .008 .085 .028
10 .002 .002 .004 .004 .002 .002 .004 .004 .003 .003 .008 .007 .003 .003 .008 .007
50 .001 .001 .002 .002 .001 .001 .002 .002 .002 .002 .003 .003 .002 .002 .003 .003

100 .001 .001 .002 .001 .001 .001 .002 .001 .001 .001 .002 .002 .001 .001 .002 .002

α=.05, β=.93

3 .009 .009 .016 .015 .009 .009 .016 .015 .011 .010 .021 .019 .011 .011 .021 .019
10 .003 .003 .006 .006 .003 .004 .006 .006 .005 .005 .009 .009 .005 .005 .009 .009
50 .002 .002 .003 .003 .002 .002 .003 .003 .003 .003 .004 .004 .003 .003 .004 .004

100 .002 .002 .003 .003 .002 .002 .003 .003 .002 .002 .003 .003 .002 .002 .003 .003

α=.10, β=.80

3 .017 .016 .041 .040 .017 .017 .040 .040 .020 .019 .052 .049 .020 .019 .053 .049
10 .007 .006 .015 .014 .007 .006 .014 .014 .009 .010 .022 .022 .010 .010 .022 .022
50 .004 .004 .008 .008 .004 .004 .008 .008 .005 .005 .011 .011 .005 .005 .011 .011

100 .003 .003 .007 .007 .003 .003 .007 .007 .004 .004 .009 .009 .004 .004 .009 .009

Table 5: Square root of average asymptotic variance, denoted σ̄α and σ̄β, and standard deviation
of the Monte Carlo estimated parameters, denoted σ̂α and σ̂β.

5 Empirical comparison

5.1 Database

The data used in this empirical illustration is the same as used in Section 2.3. Recall this database

includes the superset of all companies listed on the S&P 100, plus the index itself, over the period

January 1, 1997 until December 31, 2006 taken from the CRSP database. This set included 124

companies although 29, for example Google, have one or more periods of non-trading, for example

prior to IPO or subsequent to an acquisition. Selecting only the companies that have returns

throughout the sample reduced this set of 95 (+1 for the index).

We will use pairs of data and look at two MMCLE estimators for a variety of models. One is

based on all distinct pairs, which has N = K(K − 1)/2. The other just looks at contiguous pairs

Yjt = (rjt, rj+1t)
′ so N = K − 1. The results, given in Table 6, are directly comparable with Table

1. The figures in brackets are asymptotic standard errors.

The results for the m-profile CL are reasonably stable with respect to K and they do not vary

much as we move from using all pairs to a subset of them. The corresponding results for the

maximum CL estimator, optimising the CL over λ, are also reported in Table 6. Again the results

are quite stable with respect with K.

Estimates from the MMLE are markedly different from those of any of the CL based estimators,

which largely agree with each other. The parameter estimates of the MMLE and other estimators

also produced meaningfully different fits.
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m-profile maximised

Scalar BEKK EWMA DCC Scalar BEKK DCC

K α̃ β̃ α̃ α̃ β̃ α̃ β̃ α̃ β̃

All Pairs

5 .0287
(.0081)

.9692
(.0092)

.0205
(.0037)

.0143
(.0487)

.9829
(.0846)

.0288
(.0073)

.9692
(.0082)

.0116
(.0048)

.9873
(.0056)

10 .0281
(.0055)

.9699
(.0063)

.0211
(.0027)

.0107
(.0012)

.9881
(.0016)

.0276
(.0050)

.9705
(.0057)

.0107
(.0013)

.9875
(.0021)

25 .0308
(.0047)

.9667
(.0055)

.0234
(.0023)

.0100
(.0009)

.9871
(.0017)

.0327
(.0043)

.9646
(.0047)

.0102
(.0010)

.9866
(.0021)

50 .0319
(.0046)

.9645
(.0056)

.0225
(.0026)

.0101
(.0008)

.9856
(.0018)

.0345
(.0037)

.9615
(.0042)

.0104
(.0009)

.9848
(.0017)

96 .0334
(.0041)

.9636
(.0049)

.0249
(.0019)

.0103
(.0009)

.9846
(.0019)

.0361
(.0031)

.9601
(.0034)

.0106
(.0009)

.9841
(.0018)

Contiguous Pairs

5 .0284
(.0083)

.9696
(.0094)

.0189
(.0037)

.0099
(.0033)

.9885
(.0045)

.0251
(.0070)

.9733
(.0079)

.0078
(.0055)

.9917
(.0059)

10 .0272
(.0054)

.9709
(.0062)

.0201
(.0027)

.0093
(.0016)

.9886
(.0018)

.0266
(.0049)

.9717
(.0055)

.0088
(.0018)

.9900
(.0020)

25 .0307
(.0049)

.9668
(.0056)

.0227
(.0024)

.0089
(.0011)

.9889
(.0012)

.0315
(.0044)

.9660
(.0050)

.0088
(.0012)

.9894
(.0013)

50 .0316
(.0047)

.9647
(.0057)

.0220
(.0029)

.0092
(.0010)

.9869
(.0019)

.0347
(.0038)

.9612
(.0043)

.0095
(.0011)

.9864
(.0019)

96 .0335
(.0043)

.9634
(.0051)

.0247
(.0020)

.0094
(.0009)

.9860
(.0014)

.0364
(.0032)

.9598
(.0035)

.0095
(.0009)

.9863
(.0012)

Table 6: Based on the maximum m-profile and maximum CL estimator (MMCLE) using real and
simulated data. Top part uses K(K−1)/2 pairs based subsets, the bottom part uses K-1 contiguous
pairs. Parameter estimates from a covariance targeting scalar BEKK, EWMA (estimating H0)
and DCC. The real database is built from daily returns from 95 companies plus the index from the
S&P100, from 1997 until 2006. Numbers in brackets are asymptotic standard errors.

It is interesting to see how sensitive the contiguous pairs estimator is to the selection of the

subset of pairs. The bottom row of Figure 2 shows the density of the estimator as we select

randomly 1,000 sets of different subsets of K − 1 pairs. We see the estimate is hardly effected at

all.

To examine the fit of the models, the conditional correlations of the 95 individual stocks with

the S&P 500 from the MCLE and MMLE are presented in Figure 3. Rather than present all of the

series simultaneously, the figure contains the median, inter-quartile range, and the maximum and

minimum. The parameter estimates from the MCLE produce large, persistent shifts in conditional

correlations with the market, including a marked decrease in the conditional correlations near the

peak of the technology boom in 2001. The small estimated α for MMLE produces conditional

correlations which are nearly constant and exhibiting little variation even at the height of the

technology bubble in 2001.

5.2 Out of sample comparison of hedging performance

To determine whether the fit from the estimators was statistically different, a simple hedging

problem is considered in an out-of-sample period. The out-of-sample comparison was conducted

using the first 75% of the sample: January 2, 1997 until July 1, 2002 as the “in-sample” period for

parameter estimation, and July 2, 2002 until December 31, 2006 as the evaluation period. All of
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0.008 0.009 0.01 0.011 0.012 0.013
α̃

cDCC

0.978 0.98 0.982 0.984 0.986 0.988 0.99

cDCC

β̃

0.0325 0.033 0.0335 0.034 0.0345
α̃

Scalar BEKK

0.9625 0.963 0.9635 0.964 0.9645

β̃

Scalar BEKK

Figure 2: Sensitivity to random selection of pairs. Density of the maximum m-profile CL estimator
based on K−1 distinct but randomly choosen pairs. Top row are the estimators of the cDCC model
and the bottom row are the corresponding estimators for the scalar BEKK.

the parameters were estimated once and used throughout the tests.

We examined the hedging errors of a conditional CAPM where the S&P 100 index proxied

for the market. Using one-step ahead forecasts, the conditional time-varying market betas were

computed as

β̂j,t =
ĥ

1/2
j,t ρ̂jm,t

ĥ
1/2
m,t

, j = 1, 2, ...,K, hj,t = Var(rj,t|Ft−1), (14)

hj,t = Var(rj,t|Ft−1), ρjm,t = Cor(rj,t, rm,t|Ft−1) (15)

and the corresponding hedging errors were computed as ν̂j,t = rj,t − β̂j,trm,t. Here rj,t is the return

on the j-th asset and rm,t is the return on the market. Since all of the volatility models are identical

in the DCC models in this comparison and use the same parameter estimates, all differences in the

hedging errors are directly attributable to differences in the correlation forecast.

We use the Giacomini and White (2006) (GW) test to examine the relative performance of the

MCLE to the MMLE. The GW test is designed to compare forecasting methods, which incorporate

such things as the forecasting model, sample period and, importantly from our purposes, the

estimation method employed11.

11The related tests of Diebold and Mariano (1995) and West (1996) focus solely on comparing forecast models and
are thus well-suited for our problem.
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Figure 3: How do the correlations with the market change through time? Plot of the median,
interquartile range and minimum and maximum of the correlations of the 95 included S&P 100
components with the index return using the estimates produced by the maximum CL estimator
(MCLE) and maximum m-profile likelihood estimator. Each day the 95 correlations were sorted to
produce the necessary quantiles.

Defining the difference in the squared hedging error

δ̂j,t =
{
ν̂j,t

(
ρ̂MCLE

j,t

)}2
−
{
ν̂j,t

(
ρ̂MMLE

j,t

)}2

where explicit dependence on the forecast correlation is used. If neither estimator is superior in

forecasting correlations, this difference should have 0 expectation. If the difference is significantly

different from zero and negative, the MCLE would be the preferred model while significant positive

results would indicate favor for the MMLE. The null of

H0 : E
(
δ̂j,t

)
= 0

was tested using a t-test,

GW =
δ̄j

avar
(√

T δ̄j

) (16)

where

δ̄j = P−1
P∑

t=R

δj,t
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Maximum

Model A Favours A No Decision Favours B Model B

DCC MCLE 37 56 2 DCC MMLE
DCC MCLE 92 3 0 DECO
DCC MCLE 28 60 7 Bivariate DCC
DCC MCLE 12 83 0 EWMA

BEKK MCLE 28 64 3 BEKK MMLE
BEKK MCLE 16 79 0 Bivariate BEKK

M-profile

Model A Favours A No Decision Favours B Model B

DCC MCLE 24 63 8 DCC MMLE
DCC MCLE 92 3 0 DECO
DCC MCLE 18 68 9 Bivariate DCC
DCC MCLE 9 82 4 EWMA

BEKK MCLE 29 65 1 BEKK MMLE
BEKK MCLE 50 44 1 Bivariate BEKK

Table 7: Which model and estimation strategy leads to smallest hedging errors? GW t-statistics
for testing the null of equal out of sample hedging performance using Giacomini-White tests with
95% critical values. 3 decisions can be made for each of the 95 single assets. Two CL methods
used: maximum CL estimation and maximum m-profile CL estimation. The test can favour model
A, model B or be indecisive. Table records the number of assets which fall in each of these three
buckets.

is the average loss differential. Under mild regularity conditions GW is asymptotically normal. See

Giacomini and White (2006) for further details12.

The test statistic was computed for each asset excluding the market, resulting in 95 test statis-

tics. The results are in Table 7, which 37 series which favour the MCLE estimator compared to 2

which prefer the MMLE based estimated model. 56 are inconclusive. The corresponding results for

the maximum m-profile CL estimator are 24 in favour of that estimator, 8 preferring MMLE and

63 inconclusive. We will see later that it is not a consistent pattern that maximum CL estimator

performs better than the m-profiled version, although for DCC models this is the general trend.

5.3 Out of sample comparison with other models

5.3.1 Scalar BEKK

We can use the CL methods to estimate the scalar BEKK model using this database. The results

are given in Table 1 and 6 — here we focus on the m-profile based estimators. The results have the

same theme as before, with the estimates from the quasi-likelihood parameters yielding extreme

values — in this case close to being non-responsive to the data.

The usual out of sample GW hedging error comparison is given in Table 7, which compares

MMLE and MCLE. They show the CL method delivering estimators which produce smaller hedging

errors than the conventional maximum m-profile likelihood technique.

12We also tried a heteroskedastically adjusted version of the GW test, in order to increase its power, but this had
no impact.
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α̃+ β̃

Figure 4: Should the data be pooled across pairs? Seperately estimated αj and βj for each bivariate
submodel for the beta-pair of the market and an individual asset. Dotted line is the CL estimator
— which acts as a pooling device.

5.3.2 Many bivariate models

An interesting way of assessing the effectiveness of the DCC model fitted by the CL method is to

compare the fit to fitting a separate DCC model to each pair — that is permit θ to be different for

each j. The Table 7 shows the multivariate DCC model, estimated using CL methods, performs

better than fitting a different model for each pair. This is a striking result — suggesting the

pooling of information is helpful in improving hedging performance.

Figure 4 shows us why the large dimensional multivariate model is so effective. This shows the

estimated value of αj and βj for each of the j-th submodels — it demonstrates a very significant

scatter. It has 22 of the estimated αj + βj on their unit boundary. We will see in a moment such

unit root models, which are often called EWMA models, perform very poorly indeed in terms of

hedging. Once in a while the estimates of αj + βj are pretty small.

Figure 5 shows four examples of estimated time varying correlations between a specific asset

and the market, drawn for 4 specific pairs of returns we have chosen to reflect the variety we have

seen in practice. The vertical dotted line indicates where we move from in sample to out of sample

data. Top right shows a case where the estimated bivariate model and the fit from the highly

multivariate model are very similar, both in and out of sample. The top left shows a case where
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Figure 5: Comparison of estimated conditional correlations for j-th model, including out of sampling
projections, using the high dimensional model and the bivariate model. Top left looks like the
bivariate model is overly noisy. Top right give results which are basically the same. Bottom left
gives a constant correlation for the bivariate model, while the multivariate model is more responsive.
Bottom right is a key example as we see it quite often. Here the bivariate model is basically estimated
to be an EWMA, which fits poorly out of sample.

the fitted bivariate model has too little dependence and so seems to give a fitted correlation which is

too noisy. The bottom left is the flip side of this, the bivariate model delivers a constant correlation

which seems very extreme. The bottom right is an example where the EWMA model is in effect

imposed in the bivariate case and this EWMA model fits poorly out of sample.

5.3.3 Equicorrelation model

The Engle and Kelly (2007) linear equicorrelation (DECO) model has a similar structure to the DCC

type models, with each asset price process having its own ARCH model, but assumes asset returns

have at each time point equicorrelation Rt = ρtιι
′ + (1 − ρt) I, while ρt = ω+ γut−1 +βρt−1, where

ut−1 is new information about the correlation in the devolatilised rt−1. A simple approach would

be to take ut−1 as the cross-sectional MLE of the correlation based on this simple equicorrelation

model.

Table 7 compares the out of sample hedging performance of this method with the cDCC fit.

We can see that cDCC is uniformly statistically preferable for this dataset.
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5.3.4 RiskMetrics

The MCLE fit of the cDCC model can be compared to the RiskMetrics method given in Example

2 using the Giacomini and White (2006) t-test. The results are reported in the bottom right of

Table 7, which shows that the cDCC outperforms RiskMetrics in terms of out of sample hedging

errors.

5.4 Extending the empirical analysis

In this subsection we will push the previous analysis to a higher dimensions. Our database consists

of the returns of all equities that appeared in the S&P 500 between January 1, 1997 and December

31, 2006 and were continuously available. This resulted in 480 unique assets, including the S&P

500 index, with 2, 516 observations of each. The data were extracted from CRSP and series were

ordered alphabetically according to their ticker on the first day of the sample. Obviously around

25% of the data used in this analysis has previously appeared in the S&P 100 comparison.

As before the scalar BEKK was fitted using maximum m-profile likelihood (MMLE), maximum

composite likelihood, maximum m-profiled composite likelihood, and the subset version of the

two composite likelihood estimators that uses contiguous pairs. The model was estimated across

K = {5, 25, 50, 100, 250, 480}. Results are presented in the top panel of Table 8.

The MMLE shows clear signs of bias as the cross-sectional dimension is increased, and for the

two largest panel sizes produces volatilities that are virtually constant. When the full cross-section

sample is used the smoothing coefficient β also shows a large downward bias. The composite

likelihood estimates are very similar, all with α ≈ .03, β ≈ .96, and the standard errors decline

quickly and then modestly as K increases. For large K the difference between the contiguous and

all pairs estimators is very small indeed. Further, the standard errors for the maximized composite

likelihood are approximately 30% smaller in the larger K case than for the m-profile CL estimator.

In the analysis of the cDCC model, for this wider set of data the best performing univariate

volatility model was the GJR-GARCH(1,1) for each margin13. The results for the cDCC model are

presented in Table 8. The MMLE of α for the cDCC model exhibits a strong bias as the sample size

increases and for K > 250 the β estimate is also badly affected. These estimates contrast sharply

with the estimates from the maximum composite and maximum m-profile composite likelihood

where α ≈ .008 and α+ β ≈ .995.14

13In particular we fitted

hj,t = ωj + δjr
2
j,t−1 + γjr

2
j,t−1I[rj,t−1<0] + κjhj,t−1. (17)

14The maximized composite likelihood was computed by jointly maximizing the correlation intercept with the
dynamics parameters. The estimates from the volatility models were held at their initial estimated values.
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Scalar BEKK

MMLE All Pairs Contiguous Pairs
m-profile maximum m-profile maximum m-profile

K α β α β α β α β α β

5 .0261 .9715 .0358
(.0065)

.9608
(.0074)

.0369
(.0057)

.9603
(.0065)

.0307
(.0055)

.9666
(.0063)

.0312
(.0053)

.9664
(.0061)

25 .0080 .9909 .0362
(.0066)

.9589
(.0075)

.0300
(.0062)

.9670
(.0075)

.0344
(.0058)

.9611
(.0066)

.0289
(.0055)

.9682
(.0067)

50 .0055 .9932 .0346
(.0049)

.9609
(.0056)

.0282
(.0051)

.9692
(.0062)

.0341
(.0048)

.9615
(.0055)

.0277
(.0049)

.9698
(.0059)

100 .0034 .9934 .0343
(.0038)

.9602
(.0044)

.0296
(.0046)

.9670
(.0057)

.0341
(.0038)

.9605
(.0044)

.0292
(.0045)

.9674
(.0056)

250 .0015 .9842 .0364
(.0036)

.9574
(.0042)

.0322
(.0049)

.9633
(.0064)

.0365
(.0035)

.9573
(.0041)

.0322
(.0048)

.9633
(.0063)

480 .0032 .5630 .0327
(.0030)

.9619
(.0035)

.0290
(.0041)

.9672
(.0054)

.0327
(.0029)

.9619
(.0034)

.0290
(.0040)

.9672
(.0053)

DCC

MMLE All Pairs Contiguous Pairs
m-profile maximum m-profile maximum m-profile

K α β α β α β α β α β

5 .0101 .9823 .0117
(.0090)

.9843
(.0193)

.0133
(.0041)

.9794
(.0081)

.0072
(.0038)

.9917
(.0043)

.0070
(.0033)

.9912
(.0038)

25 .0030 .9908 .0083
(.0024)

.9890
(.0055)

.0083
(.0015)

.9885
(.0031)

.0071
(.0036)

.9917
(.0048)

.0071
(.0011)

.9911
(.0016)

50 .0018 .9882 .0080
(.0014)

.9886
(.0031)

.0078
(.0010)

.9887
(.0021)

.0073
(.0015)

.9910
(.0021)

.0073
(.0010)

.9901
(.0019)

100 .0015 .9524 .0075
(.0007)

.9879
(.0016)

.0073
(.0007)

.9881
(.0015)

.0076
(.0027)

.9874
(.0061)

.0076
(.0010)

.9866
(.0028)

250 .0020 .5561 .0078
(.0007)

.9870
(.0015)

.0076
(.0007)

.9872
(.0015)

.0080
(.0010)

.9866
(.0023)

.0080
(.0016)

.9858
(.0039)

480 .0013 .2556 .0075
(.0007)

.9872
(.0015)

.0073
(.0007)

.9874
(.0016)

.0079
(.0010)

.9869
(.0021)

.0079
(.0008)

.9863
(.0020)

Table 8: Results for fitting the Scalar BEKK model using a variety of estimators. The database
is made up of the 480 components of the S&P 500, ordered alphabetically by ticker. K is the
dimension of problem fitted.

Table 2 contains the run times for each of the methods for estimating the scalar BEKK model

— the simpler of the two models. The MMLE method takes around 3.5 days on the K = 480

problem, while for K = 25 the time is quite modest being under a minute. This shows the impact

of the O(K3) computational load.

The composite methods can be carried out using full maximisation or m-profiling, the cost of

full maximisation is non-trivial, typically leading to an increase in time by a factor of 10 compared

to m-profiling, which makes the method based on all pairs slow by the time K goes much above

50. The contiguous pairs method is still reasonably fast even when K = 480.

When we use m-profiling the composite methods become much more rapid, with the all pairs

method still being quite fast for K = 100 and being around 200 times faster than MMLE in that

case. The contiguous pair method based on m-profiling is fast even when K = 480, just taking

a small handful of seconds. This means it is around 68, 000 times faster than MMLE in this vast

dimensional case.
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6 Additional remarks

6.1 Parametric bootstrap

Having fitted the model one could compute

εt = H
−1/2
t rt, t = 1, 2, ..., T,

which, ignoring the effect of model estimation, is a F-martingale difference sequence with Cov(rt|Ft−1) =

I. Consequently we could do a parametric bootstrap off the “population” of innovations

ε1, ε2..., εT ,

sampling from these K-dimensional random variables with replacement to produce

ε∗1, ε
∗
2..., ε

∗
T . (18)

In turn then we compute

y∗t = H
∗1/2
t ε∗t , (19)

which in the scalar BEKK case, for example, is driven by the dynamic

H∗
t = (1 − α− β)Σ + αy∗t−1y

∗
t−1 + βH∗

t , H∗
1 = Σ. (20)

The sampling from (18)-(20) can be carried out many times, allowing us to simulate interesting

quantities of interest such as a bootstrap distribution of the MMLE, MCLE and MMCLE or non-

parametric forecast distributions. A disadvantage of this procedure is that step (19) costs O(K3),

which will become expensive by the time K becomes 50 or more. This is not really a problem for

the MMLE strategy as this already has this cost, but is disappointing for the computational fast

composite strategies.

6.2 Composite bootstrap

An alternative, when we are bootstrapping the distribution of the estimator, is to bootstrap off the

objective function. This is inspired by the paper by Goncalves and White (2004). To be concrete

consider solely the CL estimator

ct(θ, λ) =
1

N

N∑

j=1

logLjt(θ, λj).

Then we construct the “population” of CL functions

c1(θ, λ), c2(θ, λ), . . . , cT (θ, λ),
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which we sample with replacement to produce

c∗1(θ, λ), c∗2(θ, λ), ..., c∗T (θ, λ).

We then samples these functions with replacement to produce a bootstrap sample of the CL function

c∗(θ, λ) =

T∑

t=1

c∗t (θ, λ).

We then maximise this with respect to θ and λ in the usual way.

This strategy has the advantage that its computational cost is O(N), the same as a single com-

posite estimation, which is pretty fast, at least in the contiguous estimator case. The asymptotic

justification of this strategy is implicitly in Goncalves and White (2004) when N is fixed and we

do not impose variation freeness. Dropping these two conditions and proving it for our case would

be interesting further work.

6.3 Beta CL

All statistical models are misspecified. If the goal is to estimate market betas, that is the dependence

between the market and individual assets, it may make sense to define the “beta CL” based on the

pairs

Y1t = (r1t, r2t)
′ ,

Y2t = (r1t, r3t)
′ ,

...

Y(K−1)t = (r1t, rKt)
′ ,

where N = K − 1 and {r1t} is the return on the market. Statistically, if the model was correctly

specified, this is likely to be less efficient than using K randomly chosen pairs, as the corresponding

submodel quasi-likelihoods logLjt (θ, λj) will be tightly dependent across j. However, as the models

will be incorrect then having this highly tuned to estimating betas may be beneficial — in effect

allowing one to pool information on the estimation of betas across assets.

6.4 CL and λ

CL estimation of θ does not necessarily deliver estimates of all λj, for some CL estimators do not

use all available pairs. Of course once θ is estimated all the missing elements in λ can be filled in

rapidly. In the scalar BEKK and DCC cases this will costs O(K2).
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6.5 Engle’s method

Before we wrote our paper, Engle (2008b) proposed a method for estimating large dimensional

models. He called it the MacGyver strategy, basing it on pairs of returns. Instead of averaging

the log-likelihoods of pairs of observations, the log-likelihoods were separately maximised and then

the resulting estimators were robustly averaged using medians. This overcomes the difficulty of

inverting H, but has the difficulty that (i) it is not clear that the pooled estimators should have

equal weight, (ii) it involves K(K − 1)/2 maximisations, (iii) no properties of this estimator were

derived, (iv) the resulting estimator may not be in the permissible parameter space15. Engle’s

MacGyver method has some similarities, but is distinct, with the Ledoit, Santa-Clara, and Wolf

(2003) flexible multivariate GARCH estimation procedure which also fits models to many pairs of

observations. It is distinctive as it is focused entirely on estimating a small number of common

parameters.

It is not difficult to study the asymptotic properties of this estimator in the case where we

replace the median by an average. This linear version of the MacGyver estimation method of Engle

(2008b) would average the submodels maximum quasi-likelihood estimators, which asymptotically

behave like

1

NT

NT∑

j=1

θ̂j =
1

NT

NT∑

j=1

θj −
1

TNT

NT∑

j=1

D−1
j,θθ,T

T∑

t=1

(
∂ljt
∂θ′

− Fj,T gjt

)
,

using the notation defined in Section 3.6. Hence its asymptotic variance can be estimated by

applying a HAC estimator to

ZM
t,T =

NT∑

j=1

D−1
j,θθ,T

(
∂ljt
∂θ′

− Fj,T gjt

)
.

In the linear MacGyver case the estimator is dominated by the submodel estimators with largest

variances — i.e. components which are least informative. We do not know how to extend this

analysis to when we replace the mean by the median.

6.6 Imposing factor structure on Σ

In some stationary multivariate models it might make sense to impose structure on Σ, particularly

when K is very large. There is a long history of using factor models in financial economics, see for

example, Chamberlain and Rothschild (1983), King, Sentana, and Wadhwani (1994) and Diebold

and Nerlove (1989). A leading candidate would be that Σ obeys a strict factor structure

Σ = ff ′ + Ω,

15An example is the scalar BEKK model where α, β ∈ [0, 1) and α+ β < 1. The median of pairs based estimators
of α and β, each constrained to satisfy the above conditions, will be in [0, 1) but there is no reason why the resulting
estimated α+ β < 1.
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where f is a K ×M matrix of factor loadings and Ω is a K by K diagonal matrix containing the

residual variances. This means that in the long run the covariances in the model obey a factor

structure but in the short run there can be departures from it. This is simple to carry out in the

m-profile case, using a two step procedure of estimating the constrained Σ and then plugging this

into a composite likelihood to estimate α and β.

We will take this model to the data. We estimate the factor model using the method of Jöreskog

(1967) which assumes the returns, factors and innovations are i.i.d. Gaussian. This method means

that the estimate Σ has the same diagonal elements of T−1
∑T

t=1 rtr
′
t and so only the correlations

estimates differ.

The parameters controlling the dynamics were estimated for M = 1, 2, 3 using a composite

likelihood. The estimates are presented in Table 9. The estimated parameters vary substantially as

the cross-sectional dimension increases. The m-profile estimates that use a factor intercept are very

close to α+β = 1, although the sum moves marginally away from this boundary as the cross section

increases. This is the classic sign of misspecification (Monte Carlo experiments, not reported here,

indicate the above estimation method does not yield biased estimators when the factor structure

is used as the data generator process), where the data wants to ignore the log-run Σ matrix and it

does this by imposing a near unit root on the parameters.

M = 1 M = 2 M = 3
K α β α β α β

5 0.0261 0.9715 0.0261 0.9715 0.0261 0.9715
25 0.0082 0.9909 0.0081 0.9909 0.0080 0.9908
50 0.0057 0.9935 0.0057 0.9934 0.0057 0.9933

100 0.0041 0.9949 0.0040 0.9947 0.0039 0.9946
250 0.0026 0.9955 0.0025 0.9953 0.0024 0.9950
480 0.0017 0.9964 0.0016 0.9963 0.0016 0.9961

Table 9: Parameter estimates from fitting a scalar BEKK to the S&P 500 components continu-
ously available between 1998 and 2007 using a factor-model-based estimate of the intercept and a
composite likelihood function for α and β. The dimension of the factor model is M . K denotes the
number of assets analysed.

6.7 Insights from panel data literature

Consider the diagonal BEKK model

Ht = (1 − α)Σ + αrt−1r
′
t−1 + βHt−1

then

γt = Ht −Ht−1 = α
(
rt−1r

′
t−1 − rt−2r

′
t−2

)
+ β (Ht−1 −Ht−2) ,
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so

γt − βγt−1 = α
(
rt−1r

′
t−1 − rt−2r

′
t−2

)
,

which is free of the incidental parameter Σ. This is similar in spirit, but somewhat more sophis-

ticated due to the lagged Ht, to the influential approach to autoregressive panel data model of

Arellano and Bond (1991) who estimate the parameters of interest based upon differences of data,

differencing out their incidental individual effects.

7 Conclusions

This paper has introduced a new way of estimating large dimensional time-varying covariance

models, based upon the sum of quasi-likelihoods generated by time series of pairs of asset returns.

This CL procedure leads to a loss in efficiency compared to a full quasi-likelihood approach, but it

is easy to implement, is not effected by the incidental parameter problem and scales well with the

dimension of the problem. These new methods can be used to estimate models in many hundreds

of dimensions, indeed the dimension could be larger than the time series dimension.
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A Appendix

A.1 Proof of Theorem 1

Due to assumption 2, we solely have to show that the following goes to zero:

V = sup
θ∈Θ

∣∣∣∣∣∣
1

TNT

T∑

t=1

NT∑

j=1

ljt(θ, λ
∗
jθ) −
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TNT
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j=1
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θ∈Θ

∣∣∣ljt(θ, λ∗jθ) − ljt(θ, λ̂j)
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=
1

T
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j=1

sup
θ∈Θ

∣∣∣∣
∂ljt(θ, λj)

∂λj

(
λ̂j − λ∗jθ

)∣∣∣∣ ,

where λj ∈
[
min(λ̂j , λj),max(λ̂j , λj)

]
by the mean value theorem using Assumption 3. Then

V ≤ max
j∈{1,2,...,NT }

∣∣∣λ̂j − λj
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θ∈Θ,λj∈Λj
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= max
j∈{1,2,...,NT }

∣∣∣λ̂j − λj

∣∣∣
1

T

T∑

t=1

ct,T ,

where

ct,T (rt) =
1

N

NT∑

j=1

sup
θ∈Θ,λj∈Λj
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∂ljt(θ, λj)
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∣∣∣∣ .

We assume that the fixed dimensional

1

T

T∑

t=1

ct,T (rt)

exhibits a weak law of large numbers. Then we have the result from Assumption 5.

A.2 Proof of Theorem 2

The asymptotic properties of these types of CL estimators were derived in Cox and Reid (2003)

in the non-time series context when there are no nuisance parameters. Our analysis relaxes these

conditions, although imposes another one which will appear in equation (B.1) which controls the

rate of convergence. We will assume consistency.

To study the properties of the CL estimator it is helpful to stack the moment constraints and

estimators. Write

1

T

T∑

t=1

kt,T (φ̂T ) = 0,

where

φT =
(
λ′1, ..., λ

′
NT
, θ′
)′

and

kt,T (φT ) =


g′1t, ..., g

′
NT t,

1

NT

NT∑

j=1

∂ljt
∂θ′




′

.

We assume for all t and T that kt,T is continuously differentiable in all elements of φT ∈ Ψ, where

Ψ is a compact subset of R
dim(φT ).

Then by the mean value theorem

0 =
1

T

T∑

t=1

kt,T (φT ) +DT (φT )
(
φ̂T − φT

)
,

where for each element of φT , φj,T ∈ min
(
φ̂jT , φjT

)
,max

(
φ̂jT , φjT

)
.

DT has the important block structure

DT (φT ) =

(
AT (φT ) CT (φT )
BT (φT ) JT (φT )

)
,

37



where

AT (φT ) =
1

T
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∂gNT t

∂λ′NT t

)
,

BT (φT ) =
1

T

T∑

t=1

(
∂2l1t

∂θλ′1t

, ...,
∂2lNtt

∂θ∂λ′NT t

)
,

CT (φT ) =
1

T

T∑

t=1

(
∂g1t

∂θ′
, ...,

∂gNT t

∂θ′

)′

,

JT (φT ) =
1

T

T∑

t=1


 1

NT

NT∑

j=1

∂2ljt
∂θ∂θ′


 .

The block diagonality of AT is vital here as it is an extremely large dimensional matrix — which

if unstructured would be difficult to deal with computationally and statistically.

Now our sole interest is in θ̂ − θ so we focus only on the lower block of the inverse of DT (φT ).

It is of the form of the low dimensional variables

θ̂ − θ = −D−1
θθ,T

(
1
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)

where
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and the average projected score
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Notice that
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Assumption 4 means

√
T

1

T

T∑

t=1

Zt,T
d→ N(0,Iθθ), (B.1)

and Iθθ > 0.

We will assume as T → ∞ that

Dθθ,T
p→ Dθθ > 0.

Taken together this delivers the result using Slutsky’s theorem.
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A.3 Scalar BEKK simulation

Here we report the results from repeating the experiments discussed in Section 4 but on the scalar

BEKK model given in Example 1. In this experiment the same values of α and β are used but with

Ψ being replaced by Σ.

The results are presented in Table 10, their structure exactly follows that discussed for the

cDCC model given in Section 4.

Bias RMSE
MMLE MCLE MSCLE MMLE MCLE MSCLE

N α β α β α β α β α β α β

α = .02, β = .97

3 .000 -.005 .000 -.005 .000 -.006 .005 .009 .005 .010 .006 .012
10 -.001 -.003 .000 -.004 .000 -.004 .002 .004 .003 .006 .003 .007
50 -.005 -.000 .000 -.004 .000 -.004 .005 .001 .002 .005 .002 .005
100 -.009 -.001 .000 -.004 .000 -.004 .009 .001 .002 .005 .002 .005

α = .05, β = .93

3 -.000 -.008 -.000 -.009 .000 -.010 .008 .023 .009 .025 .010 .029
10 -.001 -.005 -.000 -.007 -.000 -.007 .003 .009 .005 .014 .006 .015
50 -.006 -.003 -.000 -.006 -.000 -.006 .006 .004 .003 .009 .003 .009
100 -.012 -.004 -.000 -.006 -.000 -.006 .012 .004 .003 .009 .003 .009

α = .10, β = .80

3 -.001 -.005 -.001 -.006 -.001 -.006 .013 .028 .014 .030 .015 .033
10 -.003 -.003 -.001 -.005 -.001 -.005 .006 .011 .009 .019 .009 .019
50 -.014 .001 -.001 -.005 -.001 -.005 .015 .004 .006 .012 .006 .012
100 -.026 .001 -.001 -.005 -.001 -.005 .026 .003 .006 .012 .006 .012

Table 10: Bias and RMSE results from a simulation study for the covariance estimators of the
covariance targeting scalar BEKK model. We only report the estimates of α and β and their sum.
The estimators include the subset CL (MSCLE), the full CL (MCLE), and the m-profile likelihood
(MMLE) estimator. All results based on 2 , 500 replications.
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