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1.  Introduction 

Merton’s (1973) intertemporal capital asset pricing model (ICAPM) provides a positive equilibrium 

relation between the conditional mean and variance of excess returns on the aggregate market portfolio. 

However, Abel (1988), Backus and Gregory (1993), and Gennotte and Marsh (1993) develop models in 

which a negative relation between expected return and volatility is consistent with equilibrium. Similarly, 

empirical studies are still not in agreement on the direction of a time-series relation between expected return 

and risk. The estimates for the relative risk aversion coefficient are mostly insignificant or even negative. 

Due to the fact that the conditional mean and volatility of stock market returns are not observable, different 

approaches and specifications used by previous studies in estimating the two conditional moments are largely 

responsible for the conflicting empirical evidence. 

Following the traditional literature, we estimate the risk-return tradeoff using a single series of the 

U.S. equity market index. Three different approaches are utilized when investigating the ICAPM based on 

the market portfolio: GARCH-in-mean, realized volatility, and range volatility models. Consistent with 

earlier studies, the risk aversion estimates provide no evidence for a significant link between the conditional 

mean and volatility of excess returns on the value-weighted NYSE/AMEX/NASDAQ index. 

These results indicate that despite its fundamental importance, the intertemporal risk-return relation 

is inherently difficult to estimate. Most studies find low R-squares on the risk-return regressions, showing the 

existence of large noise in the realized market returns. Without a proper identification scheme, these large 

noises can completely disguise the fundamental relation between the expected excess return and the 

conditional variance. In this paper, we move away from the narrow focus on the single series of a market 

portfolio return. Instead, by using a cross-section of equity portfolios, we effectively enlarge our sample of 

observations and gain statistical power in identifying the risk-return tradeoff.  

Merton’s (1973) ICAPM predicts that an asset’s expected return depends on its covariance with the 

market portfolio and with state variables that proxy for investment opportunities. In other words, Merton’s 

prediction that expected returns should be related to conditional risk applies not only to the market portfolio, 

but also to individual stocks and stock portfolios. Indeed, for the model to be cross-sectionally consistent, the 

intertemporal relation between the expected excess return and its covariance with the market portfolio should 

universally be the same across all stock portfolios. In this paper, we exploit this cross-sectional universality 

of the risk-return relation and find a positive and significant intertemporal relation for equity portfolios.  

Different from the traditional literature, we divide the aggregate stock market portfolio into ten book-

to-market portfolios over the sample period of July 1926 to December 2007. We then estimate different 

forms of a multivariate GARCH-in-mean model with the constant conditional correlation (CCC) model of 

Bollerslev (1990) and the mean-reverting dynamic conditional correlation (DCC) model of Engle (2002). 

Following the original theoretical work of Merton (1973), we restrict the relative risk aversion coefficient to 

be the same across all portfolios and the common slope estimate turns out to be positive, highly significant, 
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and robust to variations in the conditional covariance specifications and including a wide variety of state 

variables that proxy for the intertemporal hedging demand. 

We investigate whether the power of our methodology is coming from (1) the GARCH-based time-

varying conditional covariances, or (2) pooling the time series and cross section together, or (3) both. 

Consistent with the existing literature, we find that the GARCH-in-mean model cannot generate a positive 

and significant relation between risk and return on the aggregate market portfolio. That is, the GARCH-based 

methodology itself cannot resolve the issue if one narrowly focuses on a single series of the market portfolio 

return. When we pool the time-series and cross-section together, we find that the unconditional measures of 

market risk cannot predict expected future returns on equity portfolios, implying insufficiency of the 

unconditional ICAPM. Put differently, pooling the time series and cross section together without the time-

varying conditional covariances cannot help identify a significant risk-return tradeoff either. Our results 

indicate that estimating the conditional ICAPM with a pooled panel of time series and cross sectional data in 

a multivariate GARCH-in-mean framework is essential in identifying the positive risk-return tradeoff.  

This paper tests for the first time the cross-sectional consistency of the intertemporal relation. We 

estimate the multivariate GARCH-in-mean model with a different slope coefficient for each equity portfolio. 

The maximum likelihood estimates of the slope coefficients are found to be positive, similar in magnitude, 

and statistically significant for all the ten portfolios of book-to-market ratio. The statistical results indicate 

the equality of slope coefficients on the conditional variance-covariance matrix, supporting the empirical 

validity and sufficiency of the conditional ICAPM with a common slope. 

While estimating the multivariate GARCH-in-mean models, we allow the intercepts to be different 

across portfolios. The intercepts capture the monthly abnormal returns on each portfolio that cannot be 

explained by the conditional measures of market risk. One implication of the ICAPM is that the intercepts 

should not be jointly different from zero assuming that the covariances of risky assets with the market 

portfolio have enough predictive power for expected future returns. To examine the empirical validity of the 

conditional ICAPM, we test the joint hypothesis that all intercepts equal zero. The Wald statistics fail to 

reject the null hypothesis, implying that the conditional measures of market risk have significant predictive 

power for the time-series and cross-sectional variations in expected returns on the book-to-market portfolios. 

The paper also tests whether the return differences between the value and growth portfolios (value 

premium) can be explained by the conditional ICAPM. The results clearly indicate that the DCC- and CCC-

based time-varying conditional covariances can explain the value premium because the average risk-adjusted 

return difference between the value and growth portfolios is found to be economically and statistically 

insignificant within the conditional ICAPM framework. 

When investigating the intertemporal hedging demands and the associated risk premiums induced by 

the conditional covariation of portfolio returns with a set of macroeconomic variables, we find that the 

common slope coefficients on the conditional covariances with the unexpected news in the inflation rate and 
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the aggregate dividend yield are statistically significant, implying that the inflation-related and dividend-

related shocks contain systematic risks rewarded in the stock market and they can be viewed as a proxy for 

investment opportunities. However, the innovations in default spread, term spread, short-term interest rate, 

and the growth rate of industrial production do not play a significant role in intertemporal hedging demand. 

Incorporating the conditional covariation with any of these state variables does not change the positive risk 

premium induced by the conditional covariation of portfolio returns with the market portfolio. 

The paper is organized as follows. Section 2 briefly discusses the intertemporal relation between risk 

and return. Section 3 describes the data. Section 4 presents results from estimating the risk-return tradeoff on 

the market portfolio. Section 5 provides a cross-sectional investigation of the conditional ICAPM. Section 6 

estimates the intertemporal relation with the unconditional measures of market risk. Section 7 examines the 

risk-return tradeoff by accounting for the intertemporal hedging demand. Section 8 concludes the paper. 

 

2.  The intertemporal relation between expected return and risk 

Merton’s (1973) ICAPM implies the following equilibrium relation between expected return and risk 

for any risky asset i: 

       iximi r σλσβμ ⋅+⋅=− ,                             (1) 

where r is the risk-free interest rate, ri −μ  denotes the expected excess return on the risky asset i, imσ  

denotes the covariance between the excess returns on the risky asset i and the market portfolio m, and ixσ  

denotes a ( k×1 ) row of covariances between the excess returns on the risky asset i and the k state variables 

x. β  is the relative risk aversion coefficient and λ  measures the market’s aggregate reaction to shifts in a k-

dimensional state vector that governs the stochastic investment opportunity set. Equation (1) states that in 

equilibrium, investors are compensated in terms of expected return for bearing market (systematic) risk and 

for bearing the risk of unfavorable shifts in the investment opportunity set. 

Many empirical studies focus on the time-series implication of the equilibrium relation in eq. (1) and 

apply it narrowly to the market portfolio. Without the hedging demand component ( 0=ixσ ), this focus leads 

to the following risk-return relation: 

          2
mm r σβμ ⋅=− .                              (2) 

When considering stochastic investment opportunity, the literature often implicitly or explicitly projects the 

covariance vector ixσ  linearly to the state variables x to obtain the following relation: 

     xr mm ⋅+⋅=− λσβμ 2 .                             (3) 

Our work in this article differs from the above literature in two major ways. First, we estimate the 

intertemporal relation eq. (1) not on the single series of the market portfolio, but simultaneously on equity 

portfolios, and constrain all these portfolios to have the same cross-sectionally consistent proportionality 
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coefficients β  and λ . Second, we directly estimate the conditional covariances imσ  and ixσ  using the 

constant conditional correlation model of Bollerslev (1990) and the dynamic conditional correlation model of 

Engle (2002). We do not make any linear projection assumptions on the state variables. 

The second term in eq. (1) reflects the investors’ demand for the asset as a vehicle to hedge against 

unfavorable shifts in the investment opportunity set. An “unfavorable” shift in the investment opportunity set 

is defined as a change in x such that future consumption c will fall for a given level of future wealth. That is, 

an unfavorable shift is an increase in x if ∂c/∂x < 0 and a decrease in x if ∂c/∂x > 0. 

Merton (1973) shows that all risk-averse utility maximizers will attempt to hedge against such shifts 

in the sense that if ∂c/∂x < 0 (∂c/∂x > 0), then, ceteris paribus, they will demand more of an asset, the more 

positively (negatively) correlated the asset’s return is with changes in x. Thus, if the ex post opportunity set is 

less favorable than was anticipated, investors will expect to be compensated by a higher level of wealth 

through the positive correlation of the returns. Similarly, if the ex post returns are lower, they will expect a 

more favorable investment environment. 

In this paper, we focus on the sign and statistical significance of the common slope coefficient ( β ) 

on imσ  in the following risk-return relation: 

      imii r σβαμ ⋅+=− .                          (4) 

According to the original ICAPM of Merton (1973), the relative risk aversion coefficient β  is restricted to 

be the same across all risky assets and it should be positive and statistically significant, implying a positive 

risk-return tradeoff.  

We test whether the slopes on imσ  are different across risky assets. Earlier studies assume a common 

slope coefficient ( β ) following the original theoretical work of Merton (1973) and do not question the 

validity of this assumption. In this paper, we examine the sign and statistical significance of different slope 

coefficients ( iβ ) on imσ  in the following risk-return relation: 

      imiii r σβαμ ⋅+=− .                          (5) 

To determine whether there is a common slope coefficient ( β ) on imσ  corresponding to the average relative 

risk aversion, we examine the cross-sectional consistency of the intertemporal relation by testing the joint 

hypothesis that  H0: nβββ === ...21  assuming that we have n risky assets. 

Another implication of the ICAPM is that the intercepts ( iα ) in eq. (4) should not be jointly different 

from zero assuming that the covariances of risky assets with the market portfolio have enough predictive 

power for the time-series and cross-sectional variations in expected returns. To determine if imσ  has 

significant explanatory power, we test the joint hypothesis that H0: 0...21 ==== nααα . 
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We think that macroeconomic variables such as the default spread, term spread, relative T-bill rate, 

aggregate dividend yield, inflation rate, and economic growth can be viewed as potential state variables that 

may affect the stochastic investment opportunity set. Hence, we examine whether the innovations in these 

state variables are priced in the conditional ICAPM framework. In other words, we test if the changes in 

these macroeconomic variables are risks rewarded in the stock market. Specifically, we first test the 

statistical significance of the common slope coefficient (λ ) on ixσ  in equation (6),  

       iximii r σλσβαμ ⋅+⋅+=− ,                  (6) 

and then examine whether the common slope ( β ) on imσ  remains positive and significant after including 

ixσ  to the risk-return relation. 

 

3.  Data 

We use the monthly excess returns on the value-weighted book-to-market portfolios and the monthly 

excess returns on the value-weighted stock market portfolio. The aggregate market portfolio is proxied by the 

value-weighted NYSE/AMEX/NASDAQ index, which is also known as the value-weighted index of the 

Center for Research in Security Prices (CRSP). The CRSP index contains all stocks trading at NYSE, 

AMEX, and NASDAQ and hence it can be viewed as the broadest possible index for the U.S. equity market. 

Excess returns on portfolios are obtained by subtracting the returns on the one-month Treasury bill from the 

raw returns on equity portfolios. The data are obtained from Kenneth French’s online data library: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. We use the longest sample period 

available, from July 1926 to December 2007, yielding a total of 978 monthly observations.  

 

3.1.  Value-Weighted Book-to-Market Portfolios 

As described in Fama and French (1993), book-to-market portfolios are formed on the ratio of book 

value equity (BE) to market value of equity (ME) at the end of each June using NYSE breakpoints. They use 

all NYSE, AMEX, and NASDAQ stocks for which they have market equity for December of year T-1 and 

June of year T, and book equity for year T-1. BE used in June of year T is the book equity for the last fiscal 

year end in T-1. ME is price times shares outstanding at the end of December of year T-1. In June of each 

year, Fama and French (1993) rank all NYSE stocks in CRSP based on the ratio of BE/ME to determine the 

NYSE decile breakpoints according to the ranked values of BE/ME for NYSE stocks. Then, they break all 

NYSE, AMEX, and NASDAQ stocks into 10 book-to-market groups based on the NYSE breakpoints.  

 Appendix A presents summary statistics for the monthly excess returns on the 10 value-weighted 

book-to-market (BM) portfolios. “Growth” (Decile 1) is the portfolio of growth stocks with the lowest book-

to-market ratios and “Value” (Decile 10) is the portfolio of value stocks with the highest book-to-market 
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ratios. Mean, median, maximum, minimum, and standard deviation are reported for each portfolio in Panel 

A.  

For the sample period from July 1926 to December 2007, the value-weighted average excess return 

increases from 0.57% per month (growth portfolio) to 1.09% per month (value portfolio). The average return 

difference between the value and growth portfolios is 0.52% per month with the OLS t-statistic of 2.46 and 

the Newey-West (1987) adjusted t-statistic of 2.39, implying that value stocks on average generate higher 

returns than growth stocks. This indicates economically and statistically significant value premium (52 basis 

points per month) over the sample period of 1926-2007. As shown in Panel A, the value-weighted median 

excess return increases from 0.75% per month (growth portfolio) to 0.96% per month (value portfolio), 

indicating value premium based on the median return differences. 

 The last two columns of Panel A suggest that there can be a risk-based explanation of the return 

differences between growth and value stocks. Specifically, the standard deviation of excess returns increases 

from 5.75% to 9.34% per month as we move from the growth to value portfolios. That is, value stocks are 

expected to generate higher returns than growth stocks because value stocks are riskier. Furthermore, there is 

a significant difference between the market betas of the growth and value portfolios. As shown in the last 

column of Panel A, the market beta of the growth portfolio is 1.0063 whereas the market beta of the value 

portfolio is 1.4466. These results indicate that value stocks have higher systematic risk than growth stocks 

over the sample period of 1926-2007.  

 

3.2.  Value-Weighted Market Portfolio 

Panel B of Appendix A presents summary statistics for the monthly excess returns on the value-

weighted NYSE/AMEX/NASDAQ index. The average excess return on the market portfolio is 0.65% per 

month corresponding to the expected market risk premium of 7.8% per annum. The maximum excess return 

on the market portfolio is 38.27% per month observed in April 1933, whereas the minimum excess return on 

the market portfolio is –29.04% per month observed in September 1931. The standard deviation of excess 

returns on the market portfolio is 5.41% per month. The average Sharpe ratio (or the expected excess return 

per unit risk) is about 0.12 (0.0065/0.0541) for the aggregate market over the sample period of 1926-2007. 

 

3.3.  Macroeconomic Variables 

Some studies find that macroeconomic variables associated with business cycle fluctuations can 

predict the stock market. The commonly chosen variables include Treasury bill rates, default spread, term 

spread, and dividend-price ratios. We study how variations in the default spread, term spread, de-trended 

short-term interest rate, and the aggregate dividend yield predict variations in the investment opportunity set 
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and how incorporating the conditional covariances of portfolio returns with the innovations in these variables 

affects the intertemporal risk-return relation. 

We obtain the monthly yields on the 3-month Treasury bill, 10-year Treasury bond, BAA-rated and 

AAA-rated corporate bonds from the H.15 database of the Federal Reserve Board. The default spread (DEF) 

is computed as the difference between the yields on the BAA-rated and AAA-rated corporate bonds. The 

term spread (TERM) is calculated as the difference between the yields on the 10-year Treasury bond and the 

3-month Treasury bill. The relative T-bill rate (RREL) is the de-trended short-term interest rate, defined as 

the difference between the 3-month T-bill rate and its 12-month backward moving average. We download 

the monthly aggregate dividend yield from Robert Shiller’s website: http://aida.econ.yale.edu/~shiller/. The 

aggregate dividend yield (DIV) is defined as the ratio of the monthly dividends of the S&P 500 index to the 

current level of the S&P 500 index.1 

 In addition to the aforementioned macroeconomic variables, we use the monthly inflation rate and 

the monthly growth rate of industrial production proxying for economic growth. The inflation rate (INF) is 

the monthly growth rate of the Consumer Price Index available at Robert Shiller’s website. The economic or 

output growth (OUT) is defined as the monthly growth rate of the Industrial Production Index obtained from 

the G.17 database of the Federal Reserve Board. The sample period for all these macroeconomic variables is 

from July 1926 to December 2007. 

 

4.  Risk-return tradeoff on the market portfolio 

Merton’s (1973) ICAPM indicates that the conditional expected excess return on a risky market 

portfolio is a linear function of its conditional variance plus a hedging component that captures the investor’s 

motive to hedge for future investment opportunities. Ignoring the hedging demand component, the 

equilibrium relation between risk and return is defined as: 

        )()( 2
1,1, ++ ⋅= tmttmt ERE σβ ,                 (7) 

where )( 1, +tmt RE  and )( 2
1, +tmtE σ  are, respectively, the conditional mean and variance of excess returns on 

the market portfolio, and β > 0 is the average risk aversion of market investors. Equation (7) establishes the 

dynamic relation that investors require a larger risk premium at times when the market is riskier. 

A large number of studies fail to identify a robust and significant intertemporal relation between risk 

and return on the aggregate stock market portfolio. French, Schwert, and Stambaugh (1987) find that the 

coefficient estimate ( β ) in eq. (7) is not significantly different from zero when they use past daily returns to 

estimate the monthly conditional variance. Follow-up studies by Baillie and DeGennaro (1990), Campbell 

                                                 
1 At an earlier stage of the study, we also used the aggregate dividend yield from the CRSP value-weighted index with 
and without dividends. The results from the CRSP data are very similar to our findings reported in the paper. 
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and Hentchel (1992), Chan, Karolyi, and Stulz (1992), Glosten, Jagannathan, and Runkle (1993), Harrison 

and Zhang (1999), Goyal and Santa-Clara (2003), and Bollerslev and Zhou (2006) rely on the GARCH-in-

mean and realized volatility models that provide no evidence for a robust, significant link between expected 

return and risk on the aggregate market portfolio.  

Some studies find that the intertemporal relation between risk and return is negative (e.g., Campbell 

(1987), Breen, Glosten, and Jagannathan (1989), Turner, Startz, and Nelson (1989), Nelson (1991), Glosten, 

Jagannathan, and Runkle (1993), Whitelaw (1994, 2000), Harvey (2001), and Brandt and Kang (2004)). 

Some studies do provide evidence supporting a positive and significant relation between expected return and 

risk on individual stocks (e.g., Bali and Engle (2008)) and equity portfolios (e.g., Bollerslev, Engle, and 

Wooldridge (1988), Scruggs (1998), Ghysels, Santa-Clara, and Valkanov (2005), Guo and Whitelaw (2006), 

Lundblad (2007), and Bali (2008)). 

For comparison, we follow the traditional literature and estimate the risk-return tradeoff using a 

single series of the value-weighted NYSE/AMEX/NASDAQ index. We use three different approaches when 

testing ICAPM based on the market portfolio: Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH), Realized Volatility, and Range Volatility models.  

 

4.1. GARCH-in-Mean Model 

The following GARCH-in-mean model is used to estimate the intertemporal relation between the 

expected excess return and risk on the market portfolio:2 

           1,
2

|1,1, +++ +⋅+≡ tmttmtmR εσβα ,                         (8) 

            2
,2

2
,10

2
|1,

2
1, )|( tmtmttmttmE σγεγγσε ++==Ω ++ ,                (9) 

where 1, +tmR  is the excess return on the market portfolio for month t+1, 2
|1,1, )|( ttmttmRE ++ ⋅+≡Ω σβα  is the 

conditional mean of excess market returns for month t+1 based on the information set up to time t denoted by 

Ωt, ttmttm zε |1,11, +++ ⋅= σ  is the error term with 0)( 1, =+tmεE , ttm |1, +σ  is the conditional standard deviation of 

monthly excess returns on the market portfolio, and )1,0(~1 Nzt+  is a random variable drawn from the 

standard normal density and can be viewed as information shocks in the equity market. 2
|1, ttm +σ  is the 

conditional variance of monthly excess returns based on the information set up to time t. The conditional 

variance, 2
|1, ttm +σ , in equation (9) follows a GARCH(1,1) process as defined by Bollerslev (1986) to be a 

function of the last period’s unexpected news (or information shocks), zt, and the last period’s variance, 2
,tmσ . 

                                                 
2 The GARCH-in-mean models are originally introduced by Engle, Lilien, and Robins (1987) and then used by a large 
number of studies including Engle, Ng, and Rothschild (1990), Baillie and DeGennaro (1990), Nelson (1991), and 
many recent papers on risk-return tradeoff. 
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Our focus is to examine the magnitude and statistical significance of the risk aversion parameter β  in 

equation (8).  

Table 1 presents the maximum likelihood parameter estimates and the t-statistics in parentheses for 

the GARCH-in-mean model. The risk aversion parameter ( β ) is estimated to be positive, 1.1442, but 

statistically insignificant based on the normal and the Bollerslev-Wooldridge (1992) robust t-statistics. For a 

robustness check of this finding, we consider the conditional standard deviation and the conditional log-

variance in the conditional mean equation:  

          1,|1,1, +++ +⋅+≡ tmttmtmR εσβα ,               (10) 

      1,
2

|1,1, ln +++ +⋅+≡ tmttmtmR εσβα ,                       (11) 

As presented in Table 1, the slope coefficient on 1, +tmσ  is positive, 0.1156, but statistically insignificant with 

the Bollerslev-Wooldridge t-statistic of 1.04. Similarly, the slope coefficient on 2
|1,ln ttm +σ  is positive, 0.0023, 

but insignificant with t-stat.= 0.88.  The results from alternative specifications of the GARCH-in-mean 

model provide no evidence for a significant link between expected return and risk on the market portfolio.  

 Another notable point in Table 1 is the significance of volatility clustering. For all specifications of 

the volatility process, the conditional variance parameters (γ1, γ2) are positive, between zero and one, and 

highly significant. The results indicate the presence of rather extreme conditionally heteroskedastic volatility 

effects in the stock return process because the GARCH parameters, γ1 and γ2, are not only highly significant, 

but also the sum (γ1 + γ2) is close to one. This implies the existence of substantial volatility persistence in the 

stock market. 

 

4.2. Realized Volatility Model 

Earlier studies that investigate the monthly risk-return tradeoff generally rely on the GARCH-in-

mean or Realized Volatility models. Following earlier studies, we calculate the monthly realized variance 

using the within-month daily return data: 

          ∑∑
=

−
=

⋅+=
tt D

d
dmdm

D

d
dmtm RRR

2
1,,

1

2
,

2
, 2σ ,               (12) 

where Dt is the number of trading days in month t and dmR ,  is the daily return on the value-weighted market 

portfolio on day d. The aggregate market portfolio is measured by the value-weighted CRSP index. The 

second term on the right hand side adjusts for the autocorrelation in daily returns using the approach of 

French, Schwert, and Stambaugh (1987).3 

                                                 
3 As discussed in French, Schwert, and Stambaugh (1987), equation (12) is not strictly speaking a variance measure 
because it does not demean returns before taking the expectation. However, for short holding periods, the impact of 
subtracting the means is trivial. Using daily data, French, Schwert, and Stambaugh (1987) and Schwert (1989) find the 



 10

We first generate the monthly realized variance based on equation (12) and then estimate the 

following risk-return regressions: 

        1,
2

,1, ++ +⋅+= tmtmtmR εσβα  
        1,,1, ++ +⋅+= tmtmtmR εσβα                 (13) 

      1,
2

,1, ln ++ +⋅+= tmtmtmR εσβα        

where 1, +tmR  is the one-month ahead excess return on the value-weighted NYSE/AMEX/NASDAQ index 

and the expected conditional variance of the market portfolio, )( 2
1, +tmtE σ , is proxied by the lagged realized 

variance measure, i.e., 2
,

2
1, )( tmtmtE σσ =+ . As shown in equation (13), we consider the lagged realized 

standard deviation ( tm,σ ) and the lagged log realized variance ( 2
,ln tmσ ) in the risk-return regressions as well. 

Table 2 presents the parameter estimates and their OLS and Newey-West (1987) adjusted t-statistics 

from the risk-return regressions with monthly realized volatility. The relative risk aversion parameter ( β ) on 

2
,tmσ  is estimated to be positive, 0.1220, but statistically insignificant with the Newey-West t-statistic of 0.12. 

Similar results are obtained when the realized standard deviation and log-variance are used to test the 

significance of the intertemporal relation. Specifically, the slope coefficient on tm,σ  is estimated to be 0.0397 

with t-stat.= 0.28 and the slope on 2
,ln tmσ  is 0.0009 with t-stat.= 0.32. These results indicate that the monthly 

realized volatility cannot predict future returns on the market portfolio, implying an insignificant 

intertemporal relation between expected return and risk. 

 

4.3. Range Volatility Model 

It is not common to use a range volatility estimator when testing the significance of a risk-return 

tradeoff. Following Alizadeh, Brandt, and Diebold (2002) and Brandt and Diebold (2006), monthly range 

volatility is defined as the difference between the logarithms of the highest and lowest index levels.  

             )ln()ln( min
,

max
,, tdtd

range
tm PP −=σ ,                           (14)   

where max
,tdP  and min

,tdP  are the maximum and minimum daily index levels of the NYSE/AMEX/NASDAQ on 

day d in month t.4  

We first generate the monthly range variance, standard deviation, and log-variance based on equation 

(14) and then estimate the risk-return regressions given in equation (13). Table 3 presents the parameter 

estimates and their OLS and Newey-West corrected t-statistics from the risk-return regressions with monthly 
                                                                                                                                                                  
squared mean term is irrelevant to variance calculations. At an earlier stage of the study, we used the demeaned daily 
returns in equation (12) and the qualititative results remained intact. We also eliminated the second term on the right of 
equation (12) and the qualitative results turned out to be very similar to those reported in our tables. 
4 Alizadeh et al. (2002) and Brandt and Diebold (2006) indicate that the range-based volatility estimator is highly 
efficient, approximately Gaussian and robust to certain types of microstructure noise such as bid-ask bounce. 
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range volatility. The relative risk aversion parameter ( β ) on 2
,tmσ  is estimated to be positive, 0.1529, but 

statistically insignificant with the Newey-West t-statistic of 0.46. Similar results are obtained when the range 

standard deviation and log-variance are used to test the significance of the intertemporal relation. 

Specifically, the slope coefficient on tm,σ  is estimated to be 0.0414 with t-stat. = 0.92 and the slope on 

2
,ln tmσ  is 0.0010 with t-stat.= 0.42. These results indicate that the monthly range volatility cannot predict the 

time-series variation in excess market returns, implying an insignificant link between risk and return. 

To make sure that our results from estimating equation (7) are not due to model misspecification, we 

added to the regressions a set of control variables that have been used in the literature to capture changes in 

the investment opportunity set. As discussed in Appendix B, including a wide variety of macroeconomic 

variables does not affect the insignificant relation between risk and return on the aggregate market portfolio. 

Among the control variables, we find a significantly negative (positive) relation between the excess market 

return and the inflation rate (the aggregate dividend yield), whereas the default spread, term spread, relative 

T-bill rate, and output growth cannot predict future returns on the market portfolio. 

 

5.  A cross-sectional investigation of the conditional ICAPM 

Consistent with the existing literature, when we use a single series of the market portfolio return, we 

find no evidence for a significant link between risk and return in the aggregate stock market. Different from 

the traditional literature, in this section, we first divide the aggregate market portfolio into ten book-to-

market portfolios and then estimate the cross-sectionally consistent slope coefficient on the conditional 

variance-covariance matrix. Second, we investigate the cross-sectional consistency of the intertemporal 

relation by testing the equality of slope coefficients in the multivariate GARCH-in-mean model. Finally, we 

test whether the value premium can be explained within the conditional ICAPM framework.5 
 

5.1.  Investigating ICAPM with Constant Conditional Correlations 

We estimate the risk aversion coefficient ( β ) based on the following multivariate GARCH-in-mean 

model with constant conditional correlations (CCC): 
 

       1,1,1, +++ +⋅+= titimitiR εσβα                      (15) 

                   1,
2

1,1, +++ +⋅+= tmtmmtmR εσβα                      (16) 

               [ ] 2
,2

2
,10

2
1,

2
1, ti

i
ti

ii
tititE σγεγγσε ++=≡ ++                (17) 

                                                 
5 In addition to the book-to-market portfolios, at an earlier stage of the study we used the ten value-weighted momentum 
and industry portfolios which are available at Kenneth French’s online data library. We also used the ten equal-
weighted size portfolios from the CRSP database. The qualitative results from the size, momentum and industry 
portfolios turn out to be similar to our findings reported in the paper. They are available upon request. 
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           [ ] 2
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tmtmtE σγεγγσε ++=≡ ++                (18) 

           [ ] 1,1,1,1,1, +++++ ⋅⋅=≡ tmtiimtimtmtitE σσρσεε                (19) 

 
where 1, +tiR  and 1, +tmR  denote the time (t+1) excess return on portfolio i and the market portfolio m over a 

risk-free rate, respectively, and [.]tE  denotes the expectation operator conditional on time t information. 

2
1, +tiσ  is the time-t expected conditional variance of 1, +tiR , 2

1, +tmσ  is the time-t expected conditional variance 

of 1, +tmR , and 1, +timσ  is the time-t expected conditional covariance between 1, +tiR  and 1, +tmR . imρ  is the 

constant conditional correlation between between 1, +tiR  and 1, +tmR . In the conditional mean given by 

equations (15)-(16), we have a common slope coefficient ( β ) but different intercepts for each book-to-

market portfolio ( iα ) and the stock market portfolio ( mα ). The conditional variance parameters are assumed 

to be different for each stock ) , ,( 210
iii γγγ  and the market portfolio ) , ,( 210

mmm γγγ .  

 We use the maximum likelihood methodology with the multivariate normal density to estimate 

equations (15)-(19) in one step.  Using 1+tε  and 1+Σt  to denote, respectively, the multivariate residual vector 

and the conditional variance-covariance matrix, 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅−−

⋅−−
=

++

++
+ 2

1,1,

1,1,
1

tmmtm

timiti
t R

R

σβα

σβα
ε ,     ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=Σ

++

++
+ 2

1,1,

1,
2

1,
1

    

     

tmtim

timti
t

σσ

σσ
, 

 

we can write the conditional log-likelihood function as 

    [ ]∑
=

+
−
+++ Σ+Σ+−=Θ

N

t
tt

T
ttL

1
1

1
111ln)2ln(

2
1)( εεπ , 

where Θ  denotes the vector of parameters in the specifications in (15) to (19), and N denotes the number of 

monthly observations for each series. Since we have a total of 11 portfolios (including the market portfolio), 
1+tε  is 11× 1 and 1+Σt   is 11× 11 matrix. 

The parameters are estimated using the 10 value-weighted book-to-market portfolios and the value-

weighted NYSE/AMEX/NASDAQ index as a market portfolio. Since we have a total of 11 portfolios, we 

estimate a total of 100 parameters simultaneously. Specifically, we have 11 conditional means with a total of 

12 parameters (11 intercepts and a common slope), we have 11 conditional variances with a total of 33 

parameters, and we have a total of 55 constant conditional correlations.  

Table 4 reports the common slope estimate ( β ), the abnormal returns ( iα , mα ) for each portfolio, 

the t-statistics of the parameter estimates, and the maximized log-likelihood value. Estimation is based on the 

monthly excess returns over the sample period of July 1926 to December 2007. The risk aversion coefficient 
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is estimated to be positive ( 1733.4=β ), and highly significant with the t-statistic of 4.69. This implies a 

positive and significant intertemporal relation between expected return and risk on equity portfolios. 

When estimating the multivariate GARCH-in-mean model in equations (15)-(19), we allow the 

intercepts ( iα , mα ) to be different across portfolios. These intercepts capture the monthly abnormal returns 

on each portfolio that cannot be explained by the conditional covariances with the market portfolio. The first 

column of Table 4 shows that the abnormal return on the growth portfolio (with the lowest book-to-market 

ratio) is %15.01 −=α  per month with the t-statistic of –0.72, whereas the abnormal return on the value 

portfolio (with the highest book-to-market ratio) is %18.010 =α   per month with the t-statistic of 0.81.  

One implication of the ICAPM is that the intercepts ( iα , mα ) should not be jointly different from 

zero assuming that the covariances of risky assets with the market portfolio have enough predictive power 

for expected future returns. To examine the empirical validity of ICAPM, we test the joint hypothesis that 

0...: 10210 ===== mH αααα . As presented in Table 4, the Wald statistic is 15.84 with a p-value of 

14.71%, which fails to reject the null hypothesis that all intercepts equal zero. This result indicates that the 

conditional covariances of the book-to-market portfolios with the aggregate market portfolio have significant 

predictive power for the time-series and cross-sectional variations in expected returns.  

According to the original ICAPM of Merton (1973), the relative risk aversion coefficient β  is 

restricted to be the same across all risky assets and it should be positive and statistically significant. The 

common slope estimate in Table 4 provides empirical support for the positive risk-return tradeoff. 

We now test whether the slopes on ( imσ , 2
mσ ) are different across risky assets. Earlier studies assume 

a common slope coefficient ( β ) following the original theoretical work of Merton (1973) and do not 

question the validity of this assumption. In this paper, we examine the sign and statistical significance of 

different slope coefficients ( iβ , mβ ) on ( imσ , 2
mσ ) in the following multivariate GARCH-in-mean model 

with constant conditional correlations: 
 

        1,1,1, +++ +⋅+= titimiitiR εσβα ,                     (20) 

                   1,
2

1,1, +++ +⋅+= tmtmmmtmR εσβα ,                     (21) 
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To determine whether there is a common slope coefficient ( β ) on imσ  corresponding to the average relative 

risk aversion, we first estimate the portfolio-specific slope coefficients ( iβ , mβ ) and then test the joint 

hypothesis that mH ββββ ==== 10210 ...: . 

Table 5 presents the maximum likelihood parameter estimates based on the 10 value-weighted book-

to-market portfolios and the value-weighted NYSE/AMEX/NASDAQ index. Compared to equations (15)-

(19), we have an additional 10 slope coefficients to estimate in equations (20)-(24), yielding a total of 110 

parameters.  As shown in Table 5, all of the slope coefficients ( iβ , mβ ) are estimated to be positive and 

highly significant without any exception. Specifically, the minimum slope is about 3.57 with t-stat. = 2.81, 

and the maximum slope is about 4.72 with t-stat. = 3.97. We should note that the average of these 11 slope 

coefficients is about 4.13, which is close to the common slope estimate of 4.17 reported in Table 4. These 

results indicate a positive and significant intertemporal relation between risk and return on equity portfolios. 

We examine the cross-sectional consistency of the intertemporal relation by testing the equality of 

slope coefficients based on the likelihood ratio (LR) test statistic. As shown in Tables 4 and 5, the maximized 

log-likelihood value of the restricted model (with a common slope coefficient) is 27,798.18, whereas the 

maximized log-likelihood value of the unrestricted model (with different slope coefficients) is 27,803.62. 

These maximized log-likelihood values yield the LR test statistic of 10.88 with a p-value of 45.34%, which 

cannot reject the joint hypothesis that mH ββββ ==== 10210 ...: .6   

When estimating the multivariate GARCH-in-mean model in equations (20)-(24), we allow the 

intercepts ( iα , mα ) to be different across portfolios. The first column of Table 5 shows that the abnormal 

return on the growth portfolio is %02.01 −=α  per month with the t-statistic of –0.07, whereas the abnormal 

return on the value portfolio is %15.010 =α  per month with the t-statistic of 0.81. We test whether there is a 

significant average risk-adjusted return difference between the value and growth portfolios. Specifically, we 

test the null hypothesis that 1010 : αα =H . The Wald statistic reported in Table 5 is about 0.20 with a p-value 

of 65.54%, indicating insignificant value premium over the sample period 1926-2007.  

As shown in Appendix A, the average excess return is 0.57% per month for the growth portfolio and 

1.09% per month for the value portfolio. The average raw return difference between the value and growth 

portfolios is 0.52% per month with the Newey-West t-statistic of 2.39, implying that value stocks on average 

generate higher raw returns than growth stocks. However, after controlling for the conditional covariance 

risk, the average risk-adjusted return difference between the growth and value portfolios reduces to 0.17% 

                                                 
6 LR statistic is calculated as LR = –2(LogL* – LogL), where LogL* is the value of the log likelihood under the null 
hypothesis, and LogL is the log likelihood under the alternative: LR = –2(27,798.18 – 27,803.62) = 10.88. The critical 
Chi-squared values with 11 degrees of freedom are χ2

(11,0.10) = 17.28, χ2
(11,0.05) = 19.68, and χ2

(11,0.01) = 24.72 at the 10%, 
5% and 1% level of significance, respectively. 



 15

per month and it is statistically insignificant. In other words, the conditional ICAPM explains the value 

premium for the sample period of July 1926–December 2007.7 

To further examine the empirical validity and sufficiency of the conditional ICAPM, we test whether 

the abnormal returns on equity portfolios are jointly equal to zero. As shown in Table 5, the Wald statistic is 

7.22 with a p-value of 78.14%, which fails to reject the joint hypothesis that 0...: 10210 ===== mH αααα . 

This result implies that the conditional covariances of the book-to-market portfolios with the aggregate 

market portfolio can capture the time-series and cross-sectional variations in expected returns.  

 

5.2.  Investigating ICAPM with Dynamic Conditional Correlations 

In this section, we estimate the risk aversion coefficient ( β ) based on the multivariate GARCH-in-

mean model with the mean-reverting dynamic conditional correlations (DCC) of Engle (2002):  
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where imρ  is the unconditional correlation between tiu ,  and tmu , . In the conditional mean given by eqs. (25)-

(26), we have a common slope coefficient ( β ) but different intercepts for book-to-market portfolios ( iα ) 

and the stock market portfolio ( mα ). The conditional variance parameters are assumed to be different for 

each stock ) , ,( 210
iii γγγ  and the market portfolio ) , ,( 210

mmm γγγ . Following Engle (2002), we assume that the 

correlation parameters (a1, a2) in the mean-reverting DCC model are constant across portfolios. 

 To ease the parameter convergence, we use correlation targeting assuming that the time-varying 

correlations mean revert to the sample correlations imρ . To reduce the overall time of maximizing the 

conditional log-likelihood, following Engle (2009), we first estimate all pairs of the bivariate GARCH-in-

mean model and then use the median values of β , a1 and a2 as starting values along with the bivariate 

GARCH-in-mean estimates of the variance parameters (γ0, γ1, γ2). Even after going through these steps to 

                                                 
7 This result is consistent with Ang and Chen (2007) who estimated a conditional CAPM specification with stochastic 
market beta. 
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increase the speed of parameter convergence, it takes long time to obtain the full set of parameters in the 

multivariate GARCH-in-mean model with 11 portfolios and 978 time-series observations. The common 

slope and the intercepts are estimated using the monthly excess returns on the 10 value-weighted book-to-

market portfolios for the sample period from July 1926 to December 2007. The aggregate market portfolio is 

proxied by the value-weighted NYSE/AMEX/NASDAQ index.  

Table 6 shows that the risk-return coefficient ( β ) on the conditional variance-covariance matrix is 

estimated to be about 5.12 with the t-statistic of 6.47. The magnitude and statistical significance of the 

common slope turns out to be similar to our earlier findings from the constant conditional correlations. We 

test the joint hypothesis that all intercepts equal zero and the Wald statistic is found to be 16.19 with a p-

value of 13.43%. Overall, the results in Table 6 provide similar evidence that there is a significantly positive 

relation between risk and return on equity portfolios and the abnormal returns are individually and jointly 

equal zero, suggesting validity of the conditional ICAPM. Put differently, the DCC-based conditional 

covariances can explain the time-series and cross-sectional variations in portfolio returns.  

We now test whether the slopes on the conditional variance-covariance matrix are different across 

stock portfolios. Specifically, we examine the sign and statistical significance of different slope coefficients  

( iβ , mβ ) on ( imσ , 2
mσ ) in the multivariate GARCH-in-mean model with DCC: 
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Table 7 shows that all of the slope coefficients ( iβ , mβ ) are estimated to be positive and highly 

significant without any exception. Specifically, the minimum slope is about 4.22 with t-stat.= 3.18, and the 

maximum slope is about 5.63 with t-stat.= 5.27. We should note that the average of these 11 slope 

coefficients is about 4.98, which is close to the common slope estimate of 5.12 reported in Table 6. These 

results show a positive and significant intertemporal relation between risk and return on equity portfolios. 

We investigate the cross-sectional consistency of the intertemporal relation by testing the equality of 

slope coefficients based on the likelihood ratio (LR) test statistic. As shown in Tables 6 and 7, the maximized 

log-likelihood value of the restricted model (with a common slope coefficient) is 27,874.77, whereas the 
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maximized log-likelihood value of the unrestricted model (with different slopes) is 27,881.38. These 

maximized log-likelihood values yield the LR statistic of 13.22 with p-value = 27.92%, which cannot reject 

the joint hypothesis mH ββββ ==== 10210 ...: .   

The first column of Table 7 shows that the abnormal return on the growth portfolio is %05.01 −=α  

per month with t-stat.= –0.20, whereas the abnormal return on the value portfolio is %01.010 =α  per month 

with t-stat.= 0.04. We test whether there is a significant average risk-adjusted return difference between the 

value and growth portfolios. The Wald statistic from testing the null hypothesis 1010 : αα =H  is about 0.04 

with p-value = 83.36%, indicating insignificant value premium over the sample period of 1926-2007. After 

controlling for the market risk with the DDC-based time-varying conditional covariances, the average risk-

adjusted return difference between the growth and value portfolios becomes only 6 basis points per month 

and statistically insignificant. To further examine the empirical validity of the conditional ICAPM, we test 

whether the abnormal returns on equity portfolios are jointly equal to zero. As shown in Table 7, the Wald 

statistic is 9.46 with p-value = 57.98%, which fails to reject the joint hypothesis of zero intercepts. These 

results indicate that the conditional ICAPM with the dynamic conditional correlations has significant 

predictive power for the time-series and cross-sectional variations in expected returns and explains the value 

premium over the long sample period 1926- 2007.8 

 

6.  A cross-sectional investigation of the unconditional ICAPM 

It is well documented in the literature that narrowly focusing on a single series of the market 

portfolio, it is difficult to find a significant intertemporal relation between risk and return in the aggregate 

stock market. Our results from the GARCH-in-mean, realized, and range volatility models are aligned with 

the existing literature. However, by pooling the time series and cross section together, we find that the DCC- 

and CCC-based time-varying conditional covariances generate a significantly positive intertemporal relation 

between expected return and risk on book-to-market portfolios. The significant, robust and sensible estimates 

highlight the added benefits of using the GARCH-based conditional measures of market risk and by 

estimating the conditional ICAPM with a pooled panel of time series and cross sectional data.9 

We investigate whether the power of our methodology is coming from (1) the GARCH-based time-

varying conditional covariances, or (2) pooling the time series and cross section together, or (3) both. In this 

section, we provide a cross-sectional investigation of the unconditional ICAPM. Specifically, we examine 

whether the unconditional measures of market risk can predict expected future returns on equity portfolios. 

                                                 
8 Appendix C presents descriptive statistics of the DCC- and CCC-based conditional covariance estimates which are key 
to our cross-sectional investigation of the conditional ICAPM. 
9 Although some of our findings are not presented in the paper to save space, the results are robust across different 
equity portfolios (book-to-market, size, momentum, industry), different specifications of the conditional covariance 
process, and including a large set of control variables to the panel of multivariate GARCH-in-mean model.  
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We have already shown that the GARCH-in-mean model cannot generate a positive and significant relation 

between risk and return on the aggregate market portfolio. In other words, the GARCH-based methodology 

itself cannot resolve the issue if one narrowly focuses on a single series of the market portfolio return.  

We now take a closer look at the effect of using a pooled panel of time series and cross sectional data 

on the identification of risk-return tradeoff. Earlier studies starting with Fama and French (1992) and French, 

Schwert, and Stambaugh (1987) show that the unconditional beta (or the unconditional covariance of risky 

assets with the market portfolio) cannot predict the cross-sectional variation in stock returns and that the 

intertemporal risk-return relation is not significantly positive in time-series regressions.10 Based on the 

rolling regressions, Fama and French (1992) first estimate the unconditional market beta using the past 24 to 

60 months of returns (as available) on individual stocks trading at the NYSE, AMEX, and NASDAQ. Then, 

they show that there is no significant relation between the unconditional measures of market risk and the 

cross-section of expected returns. 

In this paper, following Fama and French (1992), we use the monthly rolling regressions and 

estimate the unconditional variance of excess returns on the market portfolio as well as the unconditional 

covariances between excess returns on the book-to-market portfolios and the market portfolio using the past 

24, 36, 48, and 60 months of data. Given the unconditional covariances and the unconditional variance of the 

market portfolio for each month in our sample, we estimate the intertemporal relation from the following 

system of equations: 
 

1,,1, ++ +⋅+= titimitiR εσβα ,               (37) 

            1,
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where the expected conditional variance of the market portfolio, )( 2
1, +tmtE σ , is proxied by the one-month 

lagged realized variance, i.e., 2
,

2
1, )( tmtmtE σσ =+ , and similarly the expected conditional covariance of book-

to-market portfolios with the market portfolio, )( 1, +timtE σ , is proxied by the one-month lagged realized 

covariance, i.e., timtimtE ,1, )( σσ =+ .   

We estimate the system of equations (37)-(38) using a weighted least square method that allows us to 

place constraints on coefficients across equations. We constrain the slope coefficient ( β ) on the 

                                                 
10 Empirical studies of the ICAPM diverge into two perpendicular dimensions. Studies that focus on the intertemporal 
risk-return relation often choose to use merely one return series on the market portfolio, ignoring the model’s 
implication that the same relation between excess returns and their conditional covariances with the market should hold 
across all stock portfolios to guarantee cross-sectional consistency. However, some of the earlier studies on conditional 
CAPM (e.g., Jagannathan and Wang (1996)) deal with an unconditional implication of the conditional relation by 
regressing excess returns on the unconditional beta and an unconditional covariance term that accounts for the 
covariation between the conditional beta and the conditional market risk premium. What this exercise ignores is that a 
more direct test of the conditional relation is to estimate the conditional relation itself, instead of dealing with the 
unconditional implication of the conditional relation. The narrow focus of both strands of the literature often leads to 
insignificant estimates on market beta or market variance. 
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unconditional variance-covariance matrix to be the same across all portfolios for cross-sectional consistency. 

We allow the intercepts ( mi αα , ) to differ across portfolios. Under the null hypothesis of the unconditional 

ICAPM, the intercepts should be jointly zero and the common slope coefficient ( β ) should be positive and 

statistically significant. We use insignificant estimates of β  and the deviations of the intercept estimates 

from zero as a test against the validity and sufficiency of the unconditional ICAPM specification. We 

compute the t-statistics of the parameter estimates accounting for heteroskedasticity and autocorrelation as 

well as contemporaneous cross-correlations in the error terms. The estimation methodology for the system of 

equations (37)-(38) can be regarded as an extension of the seemingly unrelated regression (SUR) method. 

Table 8 presents the SUR panel regression estimates of the portfolio-specific intercepts, common 

slope coefficients on the unconditional variance-covariance matrix, and their t-statistics (in parentheses). The 

parameters and their t-statistics are estimated using the excess returns on the market portfolio and the 10 

book-to-market portfolios.11 The last row presents the Wald statistics and their p-values in square brackets 

from testing the joint hypothesis that all intercepts equal zero: 0...: 10210 ===== mH αααα . A notable 

point in Table 8 is that the common slope coefficient ( β ) is found to be positive, but statistically 

insignificant for all measures of unconditional market risk. Specifically, the risk aversion coefficient on the 

unconditional variance-covariance matrix is estimated to be in the range of 0.17 to 0.50 with the t-statistics 

ranging from 0.43 to 1.42. Another notable point in Table 8 is that all intercepts are positive and highly 

significant without any exception. The Wald statistics reject the joint hypothesis that all intercepts equal zero. 

These results indicate that the unconditional measures of market risk cannot explain the time-series 

and cross-sectional variations in expected returns, implying insufficiency of the unconditional ICAPM. Put 

differently, pooling the time series and cross section together without the time-varying conditional 

covariances cannot help identify a significant risk-return tradeoff. Estimating the conditional ICAPM with a 

pooled panel of time series and cross sectional data in a multivariate GARCH-in-mean framework is 

essential in identifying the positive risk-return tradeoff. 

 

7.  Risk-return tradeoff with intertemporal hedging demand 

In this section, we investigate the intertemporal relation between risk and return after taking into 

account the intertemporal hedging demand. Specifically, we test the significance of risk premia induced by 

the conditional covariation of book-to-market portfolios with the innovations in economic factors. We also 

                                                 
11 Although the original sample period is from July 1926 to December 2007, when 2

,tmσ  and tim,σ  are estimated using 
the monthly rolling regressions with a fixed window of 24 months, the panel regression is run for the sample period of 
July 1928-December 2007 because the first 24 observations are lost for the estimation of realized variance-covariance 
matrix. Similarly, when 2

,tmσ  and tim,σ  are estimated using a fixed rolling window of 60 months, the panel regression 
is run for the sample period of July 1931-December 2007. 
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examine the significance of market covariance risk after controlling for risk premia induced by the 

conditional covariation with the unexpected news in macroeconomic variables. 

Financial economists often choose certain macroeconomic variables to control for stochastic shifts in 

the investment opportunity set. To investigate how these macroeconomic variables vary with investment 

opportunities and whether covariations of equity portfolios with them induce additional risk premia, we 

estimate the following GARCH-in-mean model with the mean-reverting DCC model and then analyze how 

the portfolios’ excess returns respond to their conditional covariance with these economic factors: 
 

1,1,1,1, ++++ +⋅+⋅+= titixtimitiR εσλσβα  

           1,1,
2

1,1, ++++ +⋅+⋅+= tmtmxtmmtmR εσλσβα  
       [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ tmtitimtimtmtitE σσρσεε               (39) 
        [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ txtitixtixtxtitE σσρσεε  
       [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ txtmtmxtmxtxtmtE σσρσεε  

 
where the parameters and their t-statistics are estimated using the excess returns on the market portfolio and 

the 10 value-weighted book-to-market portfolios for the sample period of July 1926–December 2007. 1, +tixσ  

measures the time-t expected conditional covariance between the excess returns on each portfolio )( 1, +tiR  

and the innovations in a macroeconomic variable proxied by the first difference )( 11 ttt XXX −=Δ ++ , and 

1, +tmxσ  measures the time-t expected conditional covariance between the excess returns on the market 

portfolio )( 1, +tmR  and the innovations in a macroeconomic variable )( 1+Δ tX . Although not presented in eq. 

(39) to save space, the conditional variances are estimated based on the GARCH(1,1) specification, and the 

time-varying conditional correlations are estimated based on the mean-reverting DCC model of Engle 

(2002). 

Table 9 reports the common slope estimates ( β , 1λ , 2λ , 3λ , 4λ ) and their t-statistics from the 

multivariate GARCH-in-mean model with the GARCH(1,1) conditional variances and the dynamic 

conditional correlations: 

1,1,,41,,31,,21,,11,1, +++++++ +⋅+⋅+⋅+⋅+⋅+= titDIVitRRELitTERMitDEFitimitiR εσλσλσλσλσβα  

1,1,,41,,31,,21,,1
2

1,1, +++++++ +⋅+⋅+⋅+⋅+⋅+= tmtDIVitRRELitTERMitDEFitmmtmR εσλσλσλσλσβα  
 
where 1,, +tDEFiσ , 1,, +tTERMiσ , 1,, +tRRELiσ , and 1,, +tDIViσ  measure, respectively, the time-t expected conditional 

covariance between the excess returns on each portfolio i and the change in default spread (ΔDEF), the 

change in term spread (ΔTERM), the change in short-term interest rate (RREL), and the change in aggregate 

dividend yield (ΔDIV). 

The parameter estimates in Panel A of Table 9 reveal several important results. The slope 

coefficients on 1,, +tDEFiσ , 1,, +tTERMiσ , and 1,, +tRRELiσ  ( 1λ , 2λ , 3λ ) are all negative, but statistically 



 21

insignificant, implying that the innovations in default spread, term spread, and short-term interest rate are not 

priced in the stock market. Incorporating the covariance of portfolio returns with any of these 

macroeconomic variables does not alter the magnitude and statistical significance of the risk aversion 

estimates. In all cases, the common slope coefficient ( β ) on 1, +timσ  is positive, in the range of 5.32 and 6.07, 

and highly significant with the t-statistics between 4.90 and 5.39.  

The other state variable considered in the paper is the aggregate dividend yield that moves positively 

with optimal consumption. As shown in Panel A of Table 9, the slope coefficient on 1,, +tDIViσ  ( 4λ ) is 

positive and statistically significant with t-stat. = 2.23. The positive coefficient estimate, 93.04 =λ , on the 

covariance of portfolio returns with the dividend-related shocks indicates that an increase in a portfolio’s 

covariance with the unexpected dividend yield predicts a higher excess return on the portfolio.  

In addition to the commonly used macroeconomic variables (DEF, TERM, RREL, DIV), we 

investigate whether the innovations in fundamental economic factors (INF, OUT) are priced in the 

conditional ICAPM framework. Panel B of Table 9 presents the common slope estimates ( β , 1λ , 2λ ) and 

their t-statistics from the following GARCH-in-mean model with dynamic conditional correlations: 
 

1,1,,21,,11,1, +++++ +⋅+⋅+⋅+= titOUTitINFitimitiR εσλσλσβα  

1,1,,21,,1
2

1,1, +++++ +⋅+⋅+⋅+= tmtOUTitINFitmmtmR εσλσλσβα  
 
where 1,, +tINFiσ  and 1,, +tOUTiσ  measure the time-t expected conditional covariance between the excess 

returns on each portfolio i and the change in the monthly inflation rate (ΔINF) and the change in the output 

growth (ΔOUT) proxied by the growth rate of industrial production. 

As presented in Panel B of Table 9, the slope coefficient on the conditional covariances between the 

excess monthly returns and the inflation-related shocks are negative and statistically significant with t-stat. = 

–2.19. The slope estimate for the conditional covariances between the excess monthly returns and the output-

related shocks is positive, but statistically insignificant. This result holds when the conditional covariances 

with both the inflation- and output-related shocks are used simultaneously in the multivariate GARCH-in-

mean model. Similar to our earlier findings, incorporating the covariance of portfolio returns with ΔINF and 

ΔOUT does not change the magnitude and statistical significance of the risk aversion estimates. In all cases, 

the common slope coefficient ( β ) on 1, +timσ  is positive, in the range of 5.53 and 6.40, and highly significant 

with the t-statistics between 3.12 and 5.30.  

Our findings can be interpreted within the context of ICAPM. In Merton (1973)’s original setup, 

when the investment opportunity set is stochastic, investors adjust their investment to hedge against future 

shifts in the investment opportunity and achieve intertemporal consumption smoothing. If an asset return 

moves against the shifts in the investment opportunity, investors increase their investment in the asset for its 
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positive role in intertemporal consumption smoothing. In equilibrium, investors are willing to accept a lower 

expected excess return on this asset for its intertemporal hedging function. 

 Note that inflation moves negatively with optimal consumption. Thus, the negative coefficient 

estimate on the conditional covariances of returns with inflation-related shocks indicates that an increase in a 

portfolio’s covariance with unexpected inflation predicts a lower excess return on the portfolio. In the 

context of Merton (1973)’s ICAPM, this negative slope estimate suggests that an increase in unexpected 

inflation predicts a decrease in optimal consumption and hence an unfavorable shift in the investment 

opportunity set. This generates an increase in intertemporal hedging demand for the portfolio, which in 

equilibrium reduces the excess return on the portfolio, and hence a negative coefficient on the conditional 

covariance of returns with unexpected inflation.12 

Note that the growth rate of industrial production moves positively with optimal consumption. 

Hence, the positive coefficient estimate on the covariance of returns with output-related shocks indicates that 

an increase in a portfolio’s covariance with unexpected economic growth predicts a higher excess return on 

the portfolio. This positive slope estimate suggests that an increase in unexpected output growth predicts an 

increase in optimal consumption and hence a favorable shift in the investment opportunity set. However, as 

shown in Panel B of Table 9, the positive slope estimate for the conditional covariances of returns with the 

unexpected news in output growth is statistically insignificant with the t-statistics ranging from 1.43 to 1.54, 

implying that the growth rate of industrial production is not priced in the stock market. 

Our results have so far indicated that the innovations in inflation rate and aggregate dividend yield 

are risks rewarded in the stock market, whereas the innovations in default spread, term spread, short-term 

interest rate, and output growth do not play a significant role in intertemporal hedging demand. To test 

whether the inflation and aggregate dividend yield can simultaneously play a significant role in optimal 

consumption smoothing, we consider their covariances jointly in the ICAPM specification. Specifically, we 

estimate the following GARCH-in-mean model with dynamic conditional correlations: 
 

1,1,,21,,11,1, +++++ +⋅+⋅+⋅+= titDIVitINFitimitiR εσλσλσβα  

1,1,,21,,1
2

1,1, +++++ +⋅+⋅+⋅+= tmtDIVitINFitmmtmR εσλσλσβα  

                                                 
12 There are several channels by which inflation surprises may have effects on stock prices. A direct, negative effect 
could emerge if a positive surprise in announced inflation induces investors to raise their level of expected inflation. The 
explanation for this finding is that investors use inflation-swelled nominal interest rates to capitalize corporate earnings. 
Higher expected inflation leads to higher nominal interest rates. The anticipation of higher rates in the future causes 
investors to sell securities immediately, forcing interest rates upward. Higher interest rates then lead to lower stock 
prices, assuming investors view these assets as substitutes. A second channel by which inflation surprises may affect 
stock prices occur if investors believe that policymakers react to inflation news. Unexpectedly high inflation may lead 
to more restrictive policies, which in turn lead to reduced cash flows for firms and lower stock prices. Similarly, if a 
positive inflation surprise causes investors to revise upward their assessment of future money demand, higher interest 
rates and lower stock prices may result if investors further expect the Federal Reserve to maintain its previous monetary 
growth objectives. In any event, all of these potential links suggest that stock prices may be negatively related to 
surprises in announced measures of inflation. 
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Panel C of Table 9 demonstrates that the slope coefficient on the conditional covariances between 

the portfolio returns and the surprises in inflation is negative and significant with t-stat. = –1.98. However, 

the slope estimate for the conditional covariances between the portfolio returns and the innovations in 

aggregate dividend yield is positive but statistically insignificant with t-stat. = 1.28. Overall, we can conclude 

that the inflation-related shocks play a significant role in intertemporal hedging demand, whereas the 

intertemporal hedging function of the aggregate dividend yield is weaker. Panel C also shows that 

incorporating the covariance of portfolio returns with ΔINF and ΔDIV does not alter the magnitude and 

statistical significance of the risk-return coefficient. The common slope coefficient ( β ) on 1, +timσ  remains 

positive, 6.02, and highly significant with t-stat.= 4.03.  

 

8.  Conclusion 

A large number of studies examine the significance of an intertemporal relation between expected 

return and risk in the aggregate stock market. However, the existing literature has not yet reached a 

consensus on the presence of a positive risk-return tradeoff for stock market indices. For comparison, we 

follow the traditional literature and estimate the risk-return tradeoff using a single series of the value-

weighted NYSE/AMEX/NASDAQ index. Consistent with earlier studies, the results from alternative 

specifications of the GARCH-in-mean, realized volatility, and range volatility models provide no evidence 

for a significant link between the conditional mean and volatility of excess returns on the market portfolio. 

Different from the existing literature, we estimate the monthly intertemporal relation between risk 

and return using a cross section of book-to-market portfolios. By so doing, we not only guarantee the cross-

sectional consistency of the estimated intertemporal relation, but also gain statistical power by pooling 

multiple time series together for a joint estimation with common slope coefficients. The average risk 

aversion of market investors is estimated to be positive, highly significant, and robust to variations in the 

conditional covariance process and including a large set of state variables proxying for the intertemporal 

hedging demand.  

Following the original theoretical work of Merton (1973), we first restrict the relative risk aversion 

coefficient to be the same across all portfolios and the common slope estimate turns out to be positive and 

highly significant. Then, to test the cross-sectional consistency of the intertemporal relation, we estimate the 

multivariate GARCH-in-mean model with different slopes and the statistical results indicate the equality of 

slope coefficients on the conditional variance-covariance matrix. This result provides support for the 

empirical validity and sufficiency of the conditional ICAPM with a common slope coefficient.  

One implication of the ICAPM is that the intercepts (or abnormal returns on each portfolio) should 

not be jointly different from zero assuming that the covariances of risky assets with the market portfolio have 

enough predictive power for expected future returns. To further examine the empirical sufficiency of the 
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conditional ICAPM, we test the joint hypothesis that all intercepts equal zero. The Wald statistics fail to 

reject the null hypothesis, providing evidence that the time-varying conditional measures of market risk have 

significant predictive power for the time-series and cross-sectional variations in expected returns on book-to-

market portfolios. The estimates on the abnormal returns also indicate that the conditional ICAPM can 

explain the return differences between the value and growth portfolios.  

We estimate the risk-return tradeoff by accounting for the intertemporal hedging demand identified 

by the conditional covariation of portfolio returns with the innovations in a set of macroeconomic variables.  

The common slope coefficients on the conditional covariances with the unexpected news in the inflation rate 

and the aggregate dividend yield are found to be statistically significant, implying that the inflation-related 

and dividend-related shocks contain systematic risks rewarded in the stock market and they can be viewed as 

a proxy for investment opportunities. However, the innovations in default spread, term spread, short-term 

interest rate, and output growth do not play a significant role in intertemporal hedging demand. Incorporating 

the conditional covariation with any of these state variables does not change the positive risk premium 

induced by the conditional covariation of portfolio returns with the market portfolio. 

The negative (positive) slope estimate suggests that an increase in inflation (dividend yield) predicts 

a decrease (increase) in optimal consumption and hence an unfavorable (favorable) shift in the investment 

opportunity set. Intertemporally, an increase in the covariance of returns with unexpected inflation 

(unexpected dividend growth) leads to an increase (decrease) in the hedging demand, which in equilibrium 

decreases (increases) the excess return on the portfolio, and hence a negative (positive) slope estimate for the 

conditional covariance of returns with the innovations in inflation (dividend yield). The importance of a 

negative (positive) and significant inflation-return (dividend-return) relations is that it may indicate hedging 

opportunities for investors and that the changes in inflation and dividend can be viewed as a priced factor. 
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Appendix A.  Descriptive Statistics 
 
 
 
Panel A.  Monthly Excess Returns on the Value-Weighted Book-to-Market Portfolios 
 
This table presents summary statistics for the monthly excess returns on the 10 value-weighted book-
to-market portfolios. “Growth” is the portfolio of growth stocks with the lowest book-to-market ratios 
and “Value” is the portfolio of value stocks with the highest book-to-market ratios. Mean, median, 
maximum, minimum, standard deviation, and market beta are reported for each portfolio. The sample 
period is from July 1926 to December 2007 (978 monthly observations). 
 
 

Portfolio Mean Median Maximum Minimum Std. Dev. Beta 
Growth 0.0057 0.0075 0.3867 –0.2915 0.0575 1.0063 
BM 2 0.0066 0.0097 0.3479 –0.2686 0.0551 0.9794 
BM 3 0.0067 0.0080 0.3120 –0.2746 0.0537 0.9477 
BM 4 0.0066 0.0097 0.5703 –0.2440 0.0605 1.0602 
BM 5 0.0073 0.0091 0.4626 –0.2909 0.0564 0.9768 
BM 6 0.0078 0.0098 0.5832 –0.3419 0.0617 1.0641 
BM 7 0.0080 0.0095 0.6161 –0.3368 0.0670 1.1303 
BM 8 0.0095 0.0088 0.7173 –0.3144 0.0696 1.1556 
BM 9 0.0100 0.0107 0.6428 –0.3903 0.0762 1.2534 
Value 0.0109 0.0096 1.0226 –0.4545 0.0934 1.4466 

 
 
 
 
 
Panel B.  Monthly Excess Returns on the Value-Weighted NYSE/AMEX/NASDAQ Index 
 
This table presents summary statistics for the monthly excess returns on the value-weighted CRSP 
index. Mean, median, maximum, minimum, and standard deviation are reported for the value-
weighted CRSP index. The sample period is from July 1926 to December 2007, yielding a total of 978 
monthly observations. 
 
 

Market Portfolio  Mean  Median  Maximum  Minimum  Std. Dev. 
NYSE/AMEX/NASDAQ 0.0065 0.0097 0.3827 –0.2904 0.0541 
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Appendix B.  Risk-Return Tradeoff after Controlling for Macroeconomic Variables 
 

With the intertemporal hedging demand, Merton’s ICAPM implies the following equilibrium relation 
between risk and return: 

             ttmxttmtmt RE |1,
2

|1,1, )( +++ ⋅+⋅= σλσβ ,                                           (B.1) 

where ttmx |1, +σ  is the time-t expected conditional covariance between the excess returns on the market portfolio 
and the innovations in a set of state variables x for time t+1. Earlier studies assume that ttmx |1, +σ  is a linear 
function of state variables, i.e., tttmx Xba ⋅+=+ |1,σ , such that equation (B.1) can be rewritten as: 

             tttmtmt XRE ⋅+⋅+= ++ λσβα 2
|1,1, )( ,                                           (B.2) 

where the state variables (Xt) are directly introduced to the risk-return regressions along with 2
|1, ttm +σ . The 

commonly chosen variables include the default spread (DEF), term spread (TERM), relative T-bill rate (RREL), 
and aggregate dividend yield (DIV). We study how variations in these macroeconomic variables affect the 
intertemporal risk-return relation. We test the significance of the risk aversion parameter, β , based on the 
GARCH-in-mean model after controlling for macroeconomic variables: 

         1,4321
2

|1,1, +++ +⋅+⋅+⋅+⋅+⋅+= tmttttttmtm DIVRRELTERMDEFR ελλλλσβα  
        1,4321|1,1, +++ +⋅+⋅+⋅+⋅+⋅+= tmttttttmtm DIVRRELTERMDEFR ελλλλσβα                 (B.3) 

      1,4321
2

|1,1, ln +++ +⋅+⋅+⋅+⋅+⋅+= tmttttttmtm DIVRRELTERMDEFR ελλλλσβα  

          ( ) 2
,2

2
,10

2
|1,

2
1, | tmtmttmttmE σγεγγσε ++==Ω ++ . 

 Panel A of Table B1 presents the maximum likelihood parameter estimates and the t-statistics in 
parentheses from estimating equation (B.3) based on the value-weighted CRSP index. For the variance, standard 
deviation, and log-variance specifications of the GARCH-in-mean model, the risk aversion parameter ( β ) is 
estimated to be very small both economically and statistically. The Bollerslev-Wooldridge robust t-statistics are 
0.23 for the variance, –0.50 for the standard deviation, and –0.93 for the log-variance specification. 
 Another point worth mentioning in Table B1 is that the slope coefficients on the relative T-bill rate 
(RREL) are negative and highly significant. More specifically, the slope on RREL (λ3) is estimated to –5.91 for 
the variance, –5.90 for the standard deviation, and –5.92 for the log-variance models. The normal t-statistics of 
these slope estimates are in the range of –3.10 and –3.12. The Bollerslev-Wooldridge robust t-statistics are 
somewhat lower, but they are still statistically significant, in the range of –2.41 and –2.43. The slope coefficients 
on the aggregate dividend yield (DIV) are positive and highly significant without any exception. The slope on 
DIV (λ4) is estimated to be 0.22 for the variance and 0.23 for the standard deviation and log-variance 
specifications. The Bollerslev-Wooldridge robust t-statistics of these slope estimates are in the range of 2.42 and 
2.51, implying strong statistical significance. As shown in Table B1, the default spread (DEF) and the term 
spread (TERM) have no predictive power for the one-month ahead return on the market portfolio since the slope 
coefficients (λ1, λ2) on DEF and TERM have very low t-statistics. 

The empirical evidence on the intertemporal relation between macroeconomic factors and equity returns 
is inconclusive. Bodie (1976), Fama (1981), Geske and Roll (1983), Pearce and Roley (1983, 1985) document a 
negative impact of inflation and money growth on equity values. Chan, Chen, and Hsieh (1985), Chen, Roll, and 
Ross (1986), and Chen (1991) find that changes in aggregate production, inflation, and the short-term interest 
rates are important economic indicators in determining equilibrium expected returns on securities. In time-series 
analyses, Fama and Schwert (1977), Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller 
(1988), and Fama and French (1988, 1989) find that the short-term interest rates, expected inflation, and 
dividend yields can predict the expected returns of bonds and stocks. Cutler, Poterba, and Summers (1989) find 
that the growth rate of industrial production is significantly positively correlated with real stock returns over the 
period 1926-1986, but not in the 1946-1985 sub-period. Flannery and Protopapadakis (2002) identify six 
candidates for priced factors: three nominal variables (CPI, PPI, and a Monetary Aggregate) and three real 
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variables (Balance of Trade, Employment Report, and Housing Starts). Popular measures of overall economic 
activity, such as Industrial Production or GNP are not represented. 

The basic approach taken in previous empirical work has been to estimate time-series regression of the 
aggregate equity returns on a group of macro variables that proxy for inflation and/or real economic activity. In 
this paper, we use the monthly inflation rate and the monthly growth rate of industrial production proxying for 
economic growth. The inflation rate (INF) is the monthly growth rate of the Consumer Price Index available at 
Robert Shiller’s website. The economic or output growth (OUT) is defined as the monthly growth rate of the 
Industrial Production Index obtained from the G.17 database of the Federal Reserve Board.  

We examine the significance of the risk aversion parameter, β , based on the GARCH-in-mean model 
after controlling for inflation and output growth: 

  1,21
2

|1,1, +++ +⋅+⋅+⋅+= tmttttmtm OUTINFR ελλσβα  
 1,21|1,1, +++ +⋅+⋅+⋅+= tmttttmtm OUTINFR ελλσβα                   (B.4) 

1,21
2

|1,1, ln +++ +⋅+⋅+⋅+= tmttttmtm OUTINFR ελλσβα  

       ( ) 2
,2

2
,10

2
|1,

2
1, | tmtmttmttmE σγεγγσε ++==Ω ++  

Panel B of Table B1 reports the maximum likelihood parameter estimates and the t-statistics in 
parentheses from estimating equation (B.4) based on the value-weighted NYSE/AMEX/NASDAQ index. For 
alternative specifications of the GARCH-in-mean model, the risk aversion parameter ( β ) is estimated to be 
positive, but statistically insignificant. The Bollerslev-Wooldridge robust t-statistics are 1.17 for the variance, 
1.08 for the standard deviation, and 1.04 for the log-variance specification. Another notable point in Panel B of 
Table B1 is that the slope coefficients on the inflation rate (INF) are negative and highly significant. More 
specifically, the slope on INF (λ1) is estimated to –1.10 for the variance, –1.12 for the standard deviation, and –
1.13 for the log-variance models. The Bollerslev-Wooldridge robust t-statistics are statistically significant and in 
the range of –3.75 and –3.85. The slope coefficients on the growth rate of industrial production (OUT) are very 
small both economically and statistically. The Bollerslev-Wooldridge robust t-statistics of the slope coefficients 
on OUT (λ2) are in the range of –0.31 and –0.60. 

Table B2 presents the parameter estimates of the Realized Volatility model with control variables. As 
shown in Panel A, after incorporating DEF, TERM, RREL, and DIV to the risk-return regressions, the risk 
aversion parameter ( β ) is estimated to be negative, but statistically insignificant with very low t-statistics. The 
same qualitative results are obtained for the realized variance, standard deviation, and log-variance estimators. A 
notable point in Panel A of Table B2 is that the slope coefficients on the aggregate dividend yield (DIV) are 
positive and statistically significant. The slope on DIV (λ4) is estimated to be 0.27 for the realized variance, 
standard deviation, and log-variance estimators. The Newey-West t-statistics of these slope estimates are in the 
range of 2.16 and 2.19. The default spread, term spread, and relative T-bill rate have no predictive power for the 
one-month ahead returns on the market portfolio since the slope coefficients (λ1, λ2, λ3) on DEF, TERM, and 
RREL have very low t-statistics. Panel B of Table B2 reports the parameter estimates of the Realized Volatility 
model with the inflation rate and output growth. The risk aversion parameter ( β ) is estimated to be positive, but 
statistically insignificant with very low t-statistics. Similar to our earlier findings in Table B1, the slope 
coefficients on the inflation rate (INF) are negative and significant, whereas the slopes on the growth rate of 
industrial production (OUT) are positive but statistically insignificant. 

Table B3 shows the parameter estimates of the Range Volatility model with DEF, TERM, RREL, and 
DIV. As reported in Panel A, the risk aversion parameter ( β ) is estimated to be small both economically and 
statistically. The slope coefficients on the aggregate dividend yield (DIV) are positive, in the range of 0.27 to 
0.28, and statistically significant. The default spread, term spread, and relative T-bill rate cannot explain the 
time-series variation in monthly returns on the NYSE/AMEX/NASDAQ index. Panel B of Table B3 reports the 
parameter estimates of the Range Volatility model with INF and OUT. The risk aversion parameter is estimated 
to be positive, but statistically insignificant with very low t-statistics. The slope coefficients on the inflation rate 
are negative and significant although marginally in some cases, whereas the slopes on output growth are positive 
but statistically insignificant. Overall, the parameter estimates of the GARCH-in-mean, Realized, and Range 
Volatility models reported in Tables B1, B2, and B3 provide evidence that the inflation rate and aggregate 
dividend yield have significant predictive power for the one-month excess returns on the market portfolio.  
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Table B1.  Testing ICAPM with GARCH-in-mean Models after Controlling for Macroeconomic Variables 
 
This table presents the parameter estimates of the GARCH-in-mean models with conditional variance, conditional standard deviation (std dev), and 
conditional log-variance after controlling for macroeconomic variables. The detrended relative rate (RREL) is defined as the difference between the 3-
month T-bill rate and its 12-month backward moving average. The term spread (TERM) is defined as the difference between the yields on the 10-year 
Treasury bond and the 3-month Treasury bill. The default spread (DEF) is defined as the difference between the yields on the BAA-rated and AAA-rated 
corporate bonds. The aggregate dividend-price ratio (DIV) is obtained from Robert Shiller’s website: http://aida.econ.yale.edu/shiller/. The inflation rate 
(INF) is the monthly growth rate of the Consumer Price Index. The output growth (OUT) is defined as the growth rate of the Industrial Production Index. 
The parameters are estimated using the NYSE/AMEX/NASDAQ (CRSP) value-weighted index return for the sample period of January 1926 to 
December 2007, yielding a total of 984 monthly observations. The normal t-statistics are given in parentheses and Bollerslev-Wooldridge (1992) robust 
t-statistics are given in square brackets. 
 
 

Panel A. Controlling for DEF, TERM, RREL, and DIV 
 
 

GARCH-in-mean with Variance: 1,4321
2

|1,1, +++ +⋅+⋅+⋅+⋅+⋅+= tmttttttmtm DIVRRELTERMDEFR ελλλλσβα  
GARCH-in-mean with Std Dev:  1,4321|1,1, +++ +⋅+⋅+⋅+⋅+⋅+= tmttttttmtm DIVRRELTERMDEFR ελλλλσβα  

GARCH-in-mean with Log-Variance: 1,4321
2

|1,1, ln +++ +⋅+⋅+⋅+⋅+⋅+= tmttttttmtm DIVRRELTERMDEFR ελλλλσβα  

       ( ) 2
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GARCH α  β  1λ  2λ  3λ  4λ  0γ  1γ  2γ  
 

Variance 
–0.0003 
(–0.07) 
[–0.06] 

0.2596 
(0.22) 
[0.23] 

–0.7179 
(–0.15) 
[–0.14] 

0.2564 
(0.16) 
[0.14] 

–5.9066 
(–3.12) 
[–2.41] 

0.2197 
(2.38) 
[2.42] 

6.34× 10-5 
(3.11) 
[2.22] 

0.1251 
(6.23) 
[4.88] 

0.8556 
(46.04) 
[28.64] 

 
Std. Dev. 

0.0012 
(0.21) 
[0.22] 

–0.0726 
(–0.47) 
[–0.50] 

1.5863 
(0.33) 
[0.30] 

0.2337 
(0.15) 
[0.13] 

–5.9045 
(–3.10) 
[–2.42] 

0.2255 
(2.47) 
[2.46] 

6.18× 10-5 
(3.15) 
[2.19] 

0.1243 
(6.32) 
[4.91] 

0.8571 
(46.95) 
[29.21] 

  
Log-Variance 

–0.0239 
(–0.93) 
[–0.92] 

–0.0032 
(–0.90) 
[–0.93] 

2.6856 
(0.59) 
[0.53] 

0.2548 
(0.16) 
[0.14] 

–5.9217 
(–3.10) 
[–2.43] 

0.2324 
(2.59) 
[2.51] 

6.15× 10-5 
(3.17) 
[2.17] 

0.1234 
(6.34) 
[4.94] 

0.8580 
(47.35) 
[29.61] 
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Table B1 (continued) 
 
 

Panel B. Controlling for INF and OUT 
 
 

    GARCH-in-mean with Variance: 1,21
2

|1,1, +++ +⋅+⋅+⋅+= tmttttmtm OUTINFR ελλσβα  
    GARCH-in-mean with Std Dev:  1,21|1,1, +++ +⋅+⋅+⋅+= tmttttmtm OUTINFR ελλσβα  

GARCH-in-mean with Log-Variance:  1,21
2

|1,1, ln +++ +⋅+⋅+⋅+= tmttttmtm OUTINFR ελλσβα  

            ( ) 2
,2

2
,10

2
|1,

2
1, | tmtmttmttmE σγεγγσε ++==Ω ++  

 
 

GARCH α  β  1λ  2λ  0γ  1γ  2γ  
 

Variance 
0.0091 
(4.04) 
[3.92] 

0.9888 
(1.21) 
[1.17] 

–1.1021 
(–4.19) 
[–3.75] 

–0.0654 
(–0.80) 
[–0.31] 

6.37× 10-5 
(3.29) 
[2.28] 

0.1329 
(6.62) 
[4.90] 

0.8485 
(47.16) 
[29.41] 

 
Std. Dev. 

0.0063 
(1.32) 
[1.44] 

0.1137 
(1.02) 
[1.08] 

–1.1168 
(–4.26) 
[–3.81] 

–0.0633 
(–0.77) 
[–0.60] 

6.28× 10-5 
(3.22) 
[2.27] 

0.1327 
(6.64) 
[5.10] 

0.8492 
(47.21) 
[28.52] 

  
Log-Variance 

0.0281 
(1.58) 
[1.69] 

0.0026 
(0.97) 
[1.04] 

–1.1282 
(–4.30) 
[–3.85] 

–0.0622 
(–0.76) 
[–0.59] 

6.20× 10-5 
(3.16) 
[2.26] 

0.1327 
(6.66) 
[5.11] 

0.8497 
(47.40) 
[28.77] 
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Table B2.  Testing ICAPM with Realized Volatility after Controlling for Macroeconomic Variables 
 
This table presents the parameter estimates of the risk-return regressions with lagged realized variance, lagged 
realized standard deviation (std dev), and lagged realized log-variance. Monthly realized variance is calculated as 
the sum of squared daily returns within a month. The detrended relative rate (RREL) is defined as the difference 
between the 3-month T-bill rate and its 12-month backward moving average. The term spread (TERM) is defined 
as the difference between the yields on the 10-year Treasury bond and the 3-month Treasury bill. The default 
spread (DEF) is defined as the difference between the yields on the BAA-rated and AAA-rated corporate bonds. 
The aggregate dividend yield (DIV) is obtained from Robert Shiller’s website: http://aida.econ.yale.edu/shiller/. 
The inflation rate (INF) is the monthly growth rate of the Consumer Price Index. The output growth (OUT) is 
defined as the growth rate of the Industrial Production Index. The parameters are estimated using the 
NYSE/AMEX/NASDAQ (CRSP) value-weighted index return for the sample period of January 1926 to December 
2007, yielding a total of 984 monthly observations. The OLS t-statistics are given in parentheses and the Newey-
West (1987) adjusted t-statistics are given in square brackets. 
 
 
 

Panel A. Controlling for DEF, TERM, RREL, and DIV 
 
 

       Realized Variance:  1,4321
2

,1, ++ +⋅+⋅+⋅+⋅+⋅+= tmtttttmtm DIVRRELTERMDEFR ελλλλσβα  
       Realized Std Dev:  1,4321,1, ++ +⋅+⋅+⋅+⋅+⋅+= tmtttttmtm DIVRRELTERMDEFR ελλλλσβα  

       Realized Log-Variance:  1,4321
2

,1, ln ++ +⋅+⋅+⋅+⋅+⋅+= tmtttttmtm DIVRRELTERMDEFR ελλλλσβα  

        ∑∑
=

−
=

⋅+=
tt D

d
dmdm

D

d
dmtm RRR

2
1,,

1

2
,

2
, 2σ  

 
 

Realized α  β  1λ  2λ  3λ  4λ  
 

Variance  
 

–0.0057 
(–1.17) 
[–0.71] 

–0.3279 
(–0.73) 
[–0.36] 

1.6662 
(0.39) 
[0.24] 

0.4706 
(0.21) 
[0.21] 

–4.1246 
(–1.56) 
[–1.39] 

0.2721 
(2.21) 
[2.16] 

 
Std. Dev.  

 

–0.0046 
(–0.89) 
[–0.55] 

–0.0402 
(–0.50) 
[–0.31] 

1.5086 
(0.33) 
[0.20] 

0.4622 
(0.20) 
[0.20] 

–4.1462 
(–1.56) 
[–1.38] 

0.2690 
(2.17) 
[2.19] 

 
Log-Variance  

 

–0.0124 
(–0.76) 
[–0.60] 

–0.0010 
(–0.45) 
[–0.41] 

1.3979 
(0.30) 
[0.17] 

0.4595 
(0.20) 
[0.20] 

–4.1603 
(–1.57) 
[–1.40] 

0.2663 
(2.13) 
[2.18] 
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Table B2 (continued) 
 
 

Panel B. Controlling for INF and OUT 
 

 
Realized Variance:   1,21

2
,1, ++ +⋅+⋅+⋅+= tmtttmtm OUTINFR ελλσβα  

Realized Std Dev:   1,21,1, ++ +⋅+⋅+⋅+= tmtttmtm OUTINFR ελλσβα  

Realized Log-Variance:  1,21
2

,1, ln ++ +⋅+⋅+⋅+= tmtttmtm OUTINFR ελλσβα  

  ∑∑
=

−
=

⋅+=
tt D

d
dmdm

D

d
dmtm RRR

2
1,,

1

2
,

2
, 2σ  

 
 

Realized α  β  1λ  2λ  
 

Variance  
 

0.0078 
(3.63) 
[3.12] 

0.0269 
(0.07) 
[0.03] 

–0.6674 
(–2.07) 
[–1.99] 

0.0858 
(0.91) 
[0.65] 

 
Std. Dev.  

 

0.0068 
(2.06) 
[1.40] 

0.0256 
(0.39) 
[0.19] 

–0.6531 
(–2.02) 
[–1.94] 

0.0882 
(0.94) 
[0.68] 

 
Log-Variance  

 

0.0124 
(1.07) 
[0.66] 

0.0007 
(0.39) 
[0.26] 

–0.6599 
(–2.06) 
[–1.94] 

0.0885 
(0.94) 
[0.68] 
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Table B3.  Testing ICAPM with Range Volatility after Controlling for Macroeconomic Variables 
 
This table presents the parameter estimates of the risk-return regressions with lagged range variance, lagged range 
standard deviation (std dev), and lagged range log-variance. Monthly range volatility (std dev) is calculated as the 
difference between the natural logarithms of the highest daily index and the lowest daily index levels in a month. 
The detrended relative rate (RREL) is defined as the difference between the 3-month T-bill rate and its 12-month 
backward moving average. The term spread (TERM) is defined as the difference between the yields on the 10-year 
Treasury bond and the 3-month Treasury bill. The default spread (DEF) is defined as the difference between the 
yields on the BAA-rated and AAA-rated corporate bonds. The aggregate dividend-price ratio (DIV) is obtained 
from Robert Shiller’s website: http://aida.econ.yale.edu/shiller/. The inflation rate (INF) is the monthly growth rate 
of the Consumer Price Index. The output growth (OUT) is defined as the growth rate of the Industrial Production 
Index. The parameters are estimated using the NYSE/AMEX/NASDAQ (CRSP) value-weighted index return for 
the sample period of January 1926 to December 2007, yielding a total of 984 monthly observations. The OLS t-
statistics are given in parentheses and the Newey-West (1987) adjusted t-statistics are given in square brackets. 
 
 
 

Panel A. Controlling for DEF, TERM, RREL, and DIV 
 

 
Range Variance: 1,4321

2
,1, ++ +⋅+⋅+⋅+⋅+⋅+= tmtttttmtm DIVRRELTERMDEFR ελλλλσβα  

Range Std Dev:  1,4321,1, ++ +⋅+⋅+⋅+⋅+⋅+= tmtttttmtm DIVRRELTERMDEFR ελλλλσβα  

Range Log-Variance: 1,4321
2

,1, ln ++ +⋅+⋅+⋅+⋅+⋅+= tmtttttmtm DIVRRELTERMDEFR ελλλλσβα  

)ln()ln( min
,

max
,, tdtdtm PP −=σ  

 
 

Range α  β  1λ  2λ  3λ  4λ  
 

Variance  
 

–0.0053 
(–1.09) 
[–0.66] 

0.0255 
(0.16) 
[0.08] 

–0.0386 
(–0.01) 
[–0.01] 

0.6096 
(0.27) 
[0.26] 

–4.0960 
(–1.54) 
[–1.36] 

0.2760 
(2.25) 
[2.14] 

 
Std. Dev.  

 

–0.0054 
(–1.07) 
[–0.65] 

–0.0016 
(–0.03) 
[–0.02] 

0.3114 
(0.07) 
[0.04] 

0.5676 
(0.25) 
[0.24] 

–4.1118 
(–1.55) 
[–1.35] 

0.2760 
(2.25) 
[2.17] 

 
Log-Variance  

 

–0.0099 
(–0.76) 
[–0.58] 

–0.0007 
(–0.37) 
[–0.33] 

1.0128 
(0.23) 
[0.13] 

0.4445 
(0.20) 
[0.19] 

–4.1914 
(–1.58) 
[–1.39] 

0.2728 
(2.21) 
[2.16] 
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Table B3 (continued) 
 
 

Panel B. Controlling for INF and OUT 
 

 
Range Variance: 1,21

2
,1, ++ +⋅+⋅+⋅+= tmtttmtm OUTINFR ελλσβα  

Range Std Dev:  1,21,1, ++ +⋅+⋅+⋅+= tmtttmtm OUTINFR ελλσβα  

Range Log-Variance: 1,21
2

,1, ln ++ +⋅+⋅+⋅+= tmtttmtm OUTINFR ελλσβα  

   )ln()ln( min
,

max
,, tdtdtm PP −=σ  

 
 

Range α  β  1λ  2λ  
 

Variance  
 

0.0071 
(3.40) 
[2.99] 

0.1213 
(0.87) 
[0.38] 

–0.6318 
(–1.96) 
[–1.79] 

0.0891 
(0.95) 
[0.68] 

 
Std. Dev.  

 

0.0058 
(1.84) 
[1.30] 

0.0339 
(0.86) 
[0.42] 

–0.6342 
(–1.97) 
[–1.83] 

0.0918 
(0.98) 
[0.70] 

 
Log-Variance  

 

0.0131 
(1.38) 
[0.86] 

0.0009 
(0.56) 
[0.38] 

–0.6564 
(–2.05) 
[–1.91] 

0.0905 
(0.96) 
[0.70] 
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Appendix C.  DCC- and CCC-based Conditional Covariance Estimates 
 

Figure 1 displays the DCC-based conditional covariance estimates between the monthly excess returns 
on the value-weighted book-to-market portfolios and the value-weighted market portfolio over the sample 
period of July 1926 to December 2007. A notable point in Figure 1 is that the conditional covariances exhibit 
significant time variation for all portfolios. The conditional covariances of the value portfolio (BM 10) with the 
market are greater than the conditional covariances of the growth portfolio (BM 1) throughout the sample 
period. A common observation in Figure 1 is that there is a big spike in September 1932 for all portfolios, and 
the covariance stays at an extremely high level for about 3 months including October and November 1932. A 
similar spike is observed in June 1933 and it also lasts for about 3 months including May and July 1933. The 
next big spike is observed in July 1938, and it remains to be high in August and September 1938. Because of the 
significant level differences in the conditional covariance estimates before and after the World War II, Figure 1 
seems to suggest that there is not much variation after the 1940s. Hence, in Figure 2, we plot the same DCC-
based conditional covariance estimates for the sample period of January 1946 to December 2007. Figure 2 
shows that the fluctuations in the conditional covariances are so significant that one should take into account the 
dynamics of conditional covariances when investigating the significance of an intertemporal relation between 
risk and return.  

Figures 3 and 4 demonstrate the CCC-based conditional covariance estimates for the sample period of 
July 1926–December 2007 and January 1946–December 2007, respectively. The time-series pattern (including 
the dates of the spikes) observed in the CCC-based conditional covariances is very similar to the pattern 
obtained from the DCC-based conditional covariances. The time-series plots in Figures 1 to 4 suggest that 
investigating ICAPM with the DCC- and CCC-based conditional covariances provides similar conclusions. 

To test whether the mean-reverting DCC model of Engle (2002) and the constant conditional correlation 
model of Bollerslev (1990) generate reasonable conditional covariance estimates, we compute the value-
weighted averages of the conditional covariances of the book-to-market portfolios with the aggregate market 
portfolio. Then, we compare the weighted average conditional covariances with the benchmark of the 
conditional market variance. In Figure 5, the dashed line denotes the conditional variance of monthly excess 
returns on the market portfolio. The solid line denotes the value-weighted average of the conditional 
covariances. Panel A (Panel B) compares the empirical performance of the DCC-based (CCC-based) conditional 
covariance estimates. In both panels, the value-weighted average covariances are in the same range as the 
conditional variance of the market portfolio. The two series in both panels move very closely together. In fact, it 
is almost impossible to visually distinguish the two series in Figure 5. Specifically, in Panel A the sample 
correlation between the value-weighted average DCC-based covariances and the market variance is 99.96% and 
in Panel B the sample correlation between the value-weighted average CCC-based covariances and the market 
variance is 99.92%. The affinity in magnitudes and time-series fluctuations between the weighted average 
covariances and market portfolio variance provides evidence for reasonable conditional variance and covariance 
estimates from the DCC and CCC models. 
 The table below compares the sample mean, median, maximum, minimum, and standard deviation 
measures for the value-weighted average DCC- and CCC-based conditional covariance estimates and the 
conditional variance of the market portfolio for the sample period of July 1926–December 2007. Although the 
descriptive statistics indicate superior performance of both models, the mean-reverting DCC model provides 
slightly more accurate estimates of the conditional measures of market risk. 
 

 Value-Weighted Average Conditional Covariance  Conditional Variance of the Market 
 CCC Model DCC Model  GARCH Model 

Mean 0.002954 0.002963  0.002991 
Median 0.001857 0.001848  0.001849 

Maximum 0.038903 0.040164  0.039648 
Minimum 0.000646 0.000625  0.000540 
Std. Dev. 0.003914 0.004029  0.004036 
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Figure 1.  DCC-based conditional covariances: January 1926 – December 2007 
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Figure 2.  DCC-based conditional covariances: January 1946 – December 2007 
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Figure 3.  CCC-based conditional covariances: January 1926 – December 2007 
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Figure 4.  CCC-based conditional covariances: January 1946 – December 2007 
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Figure 5.  Weighted Average Conditional Covariance vs. Conditional Variance of the Market 

 

Panel A presents the value-weighted average covariance and market variance estimates from the Dynamic Conditional 
Correlation (DCC) model. Panel B presents the value-weighted average covariance and market variance estimates from the 
Constant Conditional Correlation (CCC) model. The dashed line denotes the conditional variance of monthly excess returns 
on the value-weighted market portfolio. The solid line denotes the value-weighted average of the conditional covariances of 
monthly excess returns on the ten value-weighted book-to-market portfolios with the monthly excess returns on the value-
weighted market portfolio. The market portfolio is measured by the value-weighted NYSE/AMEX/NASDAQ index. 
 
 

Panel A.  Value-Weighted Average Conditional Covariance vs. Conditional Variance of the Market:  DCC Model
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Panel B.  Value-Weighted Average Conditional Covariance vs. Conditional Variance of the Market:  CCC Model
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Table 1.  Testing ICAPM with GARCH-in-mean Model 
 
This table presents the parameter estimates of the GARCH-in-mean model with conditional variance, 
conditional standard deviation (std dev), and conditional log-variance. The parameters are estimated using 
the NYSE/AMEX/NASDAQ (CRSP) value-weighted index return for the sample period of January 1926 to 
December 2007, yielding a total of 984 monthly observations. The normal t-statistics are given in 
parentheses and Bollerslev-Wooldridge (1992) robust t-statistics are given in square brackets. 
 
 

GARCH-in-mean with Variance: 1,
2

|1,1, +++ +⋅+= tmttmtmR εσβα  
GARCH-in-mean with Std Dev:  1,|1,1, +++ +⋅+= tmttmtmR εσβα  

GARCH-in-mean with Log-Variance: 1,
2

|1,1, ln +++ +⋅+= tmttmtmR εσβα  

     ( ) 2
,2

2
,10

2
|1,

2
1, | tmtmttmttmE σγεγγσε ++==Ω ++  

 
 
GARCH Volatility α  β  0γ  1γ  2γ  

 
Variance 

0.0056 
(2.80) 
[2.66] 

1.1442 
(1.41) 
[1.20] 

6.39× 10-5 
(3.21) 
[2.30] 

0.1269 
(6.38) 
[5.05] 

0.8540 
(46.71) 
[29.54] 

 
Std. Dev. 

0.0029 
(0.63) 
[0.63] 

0.1156 
(1.05) 
[1.04] 

6.30× 10-5 
(3.16) 
[2.29] 

0.1265 
(6.40) 
[5.04] 

0.8549 
(46.88) 
[29.74] 

  
Log-Variance 

0.0228 
(1.27) 
[1.31] 

0.0023 
(0.84) 
[0.88] 

6.23× 10-5 
(3.11) 
[2.28] 

0.1265 
(6.43) 
[5.03] 

0.8554 
(47.15) 
[29.88] 
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Table 2.  Testing ICAPM with Realized Volatility 
 
This table presents the parameter estimates of the risk-return regressions with lagged 
realized variance, lagged realized standard deviation (std dev), and lagged realized log-
variance. Monthly realized variance is calculated as the sum of squared daily returns within a 
month. The parameters are estimated using the NYSE/AMEX/NASDAQ (CRSP) value-
weighted index return for the sample period of January 1926 to December 2007, yielding a 
total of 984 monthly observations. The OLS t-statistics are given in parentheses and the 
Newey-West (1987) adjusted t-statistics are given in square brackets. 
 

Realized Variance: 1,
2

,1, ++ +⋅+= tmtmtmR εσβα  
Realized Std Dev: 1,,1, ++ +⋅+= tmtmtmR εσβα  

Realized Log-Variance: 1,
2

,1, ln ++ +⋅+= tmtmtmR εσβα  

∑∑
=

−
=

⋅+=
tt D

d
dmdm

D

d
dmtm RRR

2
1,,

1

2
,

2
, 2σ  

 
 

Realized Volatility α  β  
 

Variance  
 

0.0062 
(3.19) 
[2.88] 

0.1220 
(0.32) 
[0.12] 

 
Std. Dev.  

 

0.0049 
(1.58) 
[1.00] 

0.0397 
(0.62) 
[0.28] 

 
Log-Variance  

 

0.0123 
(1.07) 
[0.63] 

0.0009 
(0.51) 
[0.32] 
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Table 3.  Testing ICAPM with Range Volatility 
 
This table presents the parameter estimates of the risk-return regressions with lagged range 
variance, lagged range standard deviation (std dev), and lagged range log-variance. Monthly 
range volatility (std dev) is calculated as the difference between the natural logarithms of the 
highest daily index and the lowest daily index levels in a month. The parameters are 
estimated using the NYSE/AMEX/NASDAQ (CRSP) value-weighted index return for the 
sample period of January 1926 to December 2007, yielding a total of 984 monthly 
observations. The OLS t-statistics are given in parentheses and the Newey-West (1987) 
adjusted t-statistics are given in square brackets. 
 

Range Variance: 1,
2

,1, ++ +⋅+= tmtmtmR εσβα  
Range Std Dev:  1,,1, ++ +⋅+= tmtmtmR εσβα  

Range Log-Variance: 1,
2

,1, ln ++ +⋅+= tmtmtmR εσβα  

)ln()ln( min
,

max
,, tdtdtm PP −=σ  

 
 

Range Volatility α  β  
 

Variance  
 

0.0056 
(2.99) 
[2.90] 

0.1529 
(1.11) 
[0.46] 

 
Std. Dev.  

 

0.0040 
(1.38) 
[0.50] 

0.0414 
(1.06) 
[0.92] 

 
Log-Variance  

 

0.0125 
(1.33) 
[0.80] 

0.0010 
(0.65) 
[0.42] 
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Table 4.  Multivariate GARCH-in-mean Model with Constant Conditional Correlations 
and a Common Slope Coefficient: 10 Value-Weighted Book-to-Market Portfolios 

 
Entries report the maximum likelihood parameter estimates of the multivariate GARCH-in-
mean model with constant conditional correlations and a common slope coefficient on the 
conditional variance-covariance matrix: 
 

1,1,1, +++ +⋅+= titimitiR εσβα  

1,
2

1,1, +++ +⋅+= tmtmmtmR εσβα  

[ ] 2
,2

2
,10

2
1,

2
1, ti

i
ti

ii
tititE σγεγγσε ++=≡ ++  

[ ] 2
,2

2
,10

2
1,

2
1, tm

m
tm

mm
tmtmtE σγεγγσε ++=≡ ++  

[ ] 1,1,1,1,1, +++++ ⋅⋅=≡ tmtiimtimtmtitE σσρσεε  
     
where ijρ  is the constant conditional correlation between 1, +tiR  and 1, +tjR . The parameters and 
their t-statistics are estimated using the excess returns on the aggregate market portfolio and the 
10 value-weighted book-to-market (value vs. growth) portfolios for the sample period from July 
1926 to December 2007.  
 
 

Portfolio Intercepts Coefficient t-statistic 

Growth 1α  -0.0015 -0.72 
BM 2 2α  -0.0008 -0.41 
BM 3 3α  -0.0005 -0.29 
BM 4 4α  -0.0002 -0.10 
BM 5 5α  0.0009 0.54 
BM 6 6α  0.0010 0.57 
BM 7 7α  0.0010 0.56 
BM 8 8α  0.0019 1.09 
BM 9 9α  0.0020 1.04 
Value 10α  0.0018 0.81 

Market mα  -0.0006 -0.34 
 

Common Slope β  4.1733 4.69 
 

Maximized log-likelihood LogL 27,798.18  
 
 

0...: 210 ==== mH ααα   ⇒   Wald statistic = 15.84 (p-value = 14.71%) 
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Table 5.  Multivariate GARCH-in-mean Model with Constant Conditional Correlations  
and Different Slope Coefficients: 10 Value-Weighted Book-to-Market Portfolios 

 
Entries report the maximum likelihood parameter estimates of the multivariate GARCH-in-mean model 
with constant conditional correlations and different slopes on the conditional variance-covariance matrix: 
 

1,1,1, +++ +⋅+= titimiitiR εσβα  

1,
2

1,1, +++ +⋅+= tmtmmmtmR εσβα  

[ ] 2
,2

2
,10

2
1,

2
1, ti

i
ti

ii
tititE σγεγγσε ++=≡ ++  

[ ] 2
,2

2
,10

2
1,

2
1, tm

m
tm

mm
tmtmtE σγεγγσε ++=≡ ++  

[ ] 1,1,1,1,1, +++++ ⋅⋅=≡ tmtiimtimtmtitE σσρσεε  
 

                    
where ijρ  is the constant conditional correlation between 1, +tiR  and 1, +tjR . The parameters and their t-
statistics are estimated using the excess returns on the aggregate market portfolio and the 10 value-
weighted book-to-market (value vs. growth) portfolios for the sample period July 1926-December 2007. 
 
 

Intercepts Coefficient t-statistic  Slopes Coefficient t-statistic 

1α  -0.0002 -0.07  1β  3.5879 2.38 

2α  -0.0014 -0.55  2β  4.5015 3.82 

3α  -0.0016 -0.65  3β  4.7199 3.97 

4α  0.0004 0.19  4β  3.9099 3.39 

5α  0.0020 0.89  5β  3.6286 2.96 

6α  0.0022 0.94  6β  3.5694 2.81 

7α  0.0008 0.36  7β  4.3335 3.74 

8α  0.0011 0.56  8β  4.6363 4.30 

9α  0.0016 0.73  9β  4.4346 4.17 

10α  0.0015 0.56  10β  4.3777 3.72 

mα  0.0003 0.14  mβ  3.7612 3.62 
    

LogL 27,803.62      
 
 

mH βββ === ...: 210     ⇒   LR statistic = 10.88 (p-value = 45.34%) 
 

0...: 210 ==== mH ααα    ⇒   Wald statistic = 7.22 (p-value = 78.14%) 
 

1010 : αα =H         ⇒   Wald statistic = 0.20 (p-value = 65.54%)   
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Table 6.  Multivariate GARCH-in-mean Model with Dynamic Conditional Correlations 
and a Common Slope Coefficient: 10 Value-Weighted Book-to-Market Portfolios 

 
Entries report the maximum likelihood parameter estimates of the multivariate GARCH-in-
mean model with dynamic conditional correlations and a common slope coefficient on the 
conditional variance-covariance matrix: 
 

1,1,1,1, ++++ +⋅+= tititimiti uR σσβα  

           1,1,
2

1,1, ++++ +⋅+= tmtmtmmtm uR σσβα  

        [ ] 2
,2

2
,

2
,10

2
1,

2
1, ti

i
titi

ii
titit uE σγσγγσε ++=≡ ++  

    [ ] 2
,2

2
,

2
,10

2
1,

2
1, tm

m
tmtm

mm
tmtmt uE σγσγγσε ++=≡ ++  

     [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ tmtitimtimtmtitE σσρσεε   

    
1,1,

1,
1,

++

+
+ ⋅
=

tmmtii

tim
tim qq

q
ρ ,    ( ) ( )imtimimtmtiimtim qauuaq ρρρ −⋅+−⋅⋅+=+ ,2,,11,    

 
where imρ  is the unconditional correlation between tiu ,  and tmu , . The parameters and their t-
statistics are estimated using the excess returns on the aggregate market portfolio and the 10 
value-weighted book-to-market (value vs. growth) portfolios for the sample period from July 
1926 to December 2007. 
 
 

Portfolio Intercepts Coefficient t-statistic 

Growth 1α  -0.0023 -1.30 
BM 2 2α  -0.0017 -1.05 
BM 3 3α  -0.0014 -0.91 
BM 4 4α  -0.0011 -0.72 
BM 5 5α  0.00010 0.07 
BM 6 6α  0.00012 0.09 
BM 7 7α  0.00010 0.07 
BM 8 8α  0.0009 0.63 
BM 9 9α  0.0007 0.45 
Value 10α  0.0008 0.46 

Market mα  -0.0014 -0.91 
 

Common Slope β  5.1185 6.47 
 

Maximized log-likelihood LogL 27,874.77  
 
 

0...: 210 ==== mH ααα   ⇒   Wald statistic = 16.19 (p-value = 13.43%) 
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Table 7. Multivariate GARCH-in-mean Model with Dynamic Conditional Correlations 
and Different Slope Coefficients: 10 Value-Weighted Book-to-Market Portfolios 

 
Entries report the maximum likelihood parameter estimates of the multivariate GARCH-in-
mean model with dynamic conditional correlations and different slopes on the conditional 
variance-covariance matrix: 
 

1,1,1,1, ++++ +⋅+= tititimiiti uR σσβα  

           1,1,
2

1,1, ++++ +⋅+= tmtmtmmmtm uR σσβα  

        [ ] 2
,2

2
,

2
,10

2
1,

2
1, ti

i
titi

ii
titit uE σγσγγσε ++=≡ ++  

     [ ] 2
,2

2
,

2
,10

2
1,

2
1, tm

m
tmtm

mm
tmtmt uE σγσγγσε ++=≡ ++  

     [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ tmtitimtimtmtitE σσρσεε   

    
1,1,

1,
1,

++

+
+ ⋅
=

tmmtii

tim
tim qq

q
ρ ,    ( ) ( )imtimimtmtiimtim qauuaq ρρρ −⋅+−⋅⋅+=+ ,2,,11,    

 
where imρ  is the unconditional correlation between tiu ,  and tmu , . The parameters and their t-
statistics are estimated using the excess returns on the aggregate market portfolio and the 10 
value-weighted book-to-market (value vs. growth) portfolios for the sample period from July 
1926 to December 2007. 
 
 
Intercepts Coefficient t-statistic  Slopes Coefficient t-statistic 

1α  -0.0005 -0.20  1β  4.2193 3.18 

2α  -0.0021 -0.98  2β  5.3753 4.97 

3α  -0.0023 -1.13  3β  5.6301 5.27 

4α  -0.00012 -0.06  4β  4.6176 4.37 

5α  0.0014 0.74  5β  4.3834 4.13 

6α  0.0015 0.78  6β  4.3359 3.80 

7α  0.00009 0.05  7β  5.1603 4.94 

8α  0.00019 0.11  8β  5.5864 5.65 

9α  0.00031 0.17  9β  5.3793 5.43 

10α  0.00009 0.04  10β  5.5420 5.36 

mα  -0.00036 -0.20  mβ  4.5907 4.91 
    

LogL 27,881.38      
 
 

mH βββ === ...: 210     ⇒   LR statistic = 13.22 (p-value = 27.92%) 
 

0...: 210 ==== mH ααα    ⇒   Wald statistic = 9.46 (p-value = 57.98%) 
 

1010 : αα =H          ⇒   Wald statistic = 0.0442 (p-value = 83.36%)   
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Table 8.  Estimating Risk-Return Tradeoff with Unconditional Measures of Risk  
and a Common Slope Coefficient: 10 Value-Weighted Book-to-Market Portfolios 

 
Entries report the SUR panel regression estimates of the portfolio-specific intercepts, common slope coefficients 
on the unconditional variance-covariance matrix, and their t-statistics (in parentheses) from the following system 
of equations: 

1,,1, ++ +⋅+= titimitiR εσβα  

1,
2

,1, ++ +⋅+= tmtmmtmR εσβα  
 
where the parameters and their t-statistics are estimated using the excess returns on the market portfolio and the 
10 value-weighted book-to-market portfolios. The t-statistics adjust for heteroskedasticity and autocorrelation 
for each series and cross-correlations among the portfolios. The one-month lagged unconditional variance of 
excess returns on the market portfolio ( 2

,tmσ ) and the one-month lagged unconditional covariances between 
excess returns on the book-to-market portfolios and excess returns on the market portfolio ( tim,σ ) are obtained 
from the past 24, 36, 48, and 60 months of data. The last row presents the Wald statistics and their p-values in 
square brackets from testing the joint hypothesis that all intercepts equal zero 0...: 10210 ===== mH αααα . 
 

Portfolio Intercepts 24-month 36-month 48-month 60-month 

Growth α1 
0.0046 
(2.32) 

0.0045 
(2.21) 

0.0045 
(2.19) 

0.0042 
(2.00) 

BM 2 α2 
0.0060 
(3.11) 

0.0057 
(2.87) 

0.0055 
(2.76) 

0.0051 
(2.52) 

BM 3 α3 
0.0057 
(3.05) 

0.0056 
(2.91) 

0.0054 
(2.79) 

0.0052 
(2.62) 

BM 4 α4 
0.0059 
(2.81) 

0.0058 
(2.66) 

0.0056 
(2.52) 

0.0053 
(2.35) 

BM 5 α5 
0.0067 
(3.43) 

0.0065 
(3.23) 

0.0063 
(3.07) 

0.0062 
(2.96) 

BM 6 α6 
0.0071 
(3.30) 

0.0071 
(3.21) 

0.0068 
(3.00) 

0.0066 
(2.88) 

BM 7 α7 
0.0073 
(3.14) 

0.0073 
(3.03) 

0.0069 
(2.83) 

0.0068 
(2.75) 

BM 8 α8 
0.0088 
(3.65) 

0.0089 
(3.58) 

0.0087 
(3.40) 

0.0084 
(3.25) 

BM 9 α9 
0.0093 
(3.52) 

0.0092 
(3.39) 

0.0090 
(3.24) 

0.0087 
(3.12) 

Value α10 
0.0099 
(3.09) 

0.0101 
(3.06) 

0.0100 
(2.98) 

0.0096 
(2.81) 

Market αm 
0.0057 
(2.98) 

0.0056 
(2.84) 

0.0054 
(2.73) 

0.0052 
(2.55) 

    

Common Slope β 
0.1729 
(0.73) 

0.1184 
(0.43) 

0.2864 
(0.92) 

0.5030 
(1.42) 

    

H0: Intercepts = 0 Wald 23.38 
[0.0156] 

22.06 
[0.0239] 

20.60 
[0.0377] 

19.28 
[0.0563] 
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Table 9.  Risk Premiums Induced by Conditional Covariation with Macroeconomic Variables 
 
Entries report the maximum likelihood parameter estimates of the ICAPM with intertemporal hedging 
demand based on the dynamic conditional correlation model with a common slope coefficient on the 
conditional variance-covariance matrix: 
 

1,1,1,1, ++++ +⋅+⋅+= titixtimitiR εσλσβα  

           1,1,
2

1,1, ++++ +⋅+⋅+= tmtmxtmmtmR εσλσβα  
       [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ tmtitimtimtmtitE σσρσεε    
         [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ txtitixtixtxtitE σσρσεε  
       [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ txtmtmxtmxtxtmtE σσρσεε  

 
where 1| +tijρ  is the dynamic conditional correlation between 1, +tiR  and 1, +tjR . The parameters and their t-
statistics are estimated using the excess returns on the aggregate market portfolio and the 10 value-
weighted book-to-market (value vs. growth) portfolios for the sample period from July 1926 to December 
2007. 1, +timσ  measures the time-t expected conditional covariance between the excess returns on each 
portfolio )( 1, +tiR  and the market portfolio )( 1, +tmR , 1, +tixσ  measures the time-t expected conditional 
covariance between the excess returns on each portfolio )( 1, +tiR  and the innovations in a macroeconomic 
variable proxied by the first difference )( 11 ttt XXX −=Δ ++ , and 1, +tmxσ  measures the time-t expected 
conditional covariance between the excess returns on the market portfolio )( 1, +tmR  and the innovations in 
a macroeconomic variable )( 1+Δ tX . 
 
 

Panel A. Controlling for Conditional Covariation of Portfolio Returns with DEF, TERM, RREL, and DIV 
 

1,1,,41,,31,,21,,11,1, +++++++ +⋅+⋅+⋅+⋅+⋅+= titDIVitRRELitTERMitDEFitimitiR εσλσλσλσλσβα  

1,1,,41,,31,,21,,1
2

1,1, +++++++ +⋅+⋅+⋅+⋅+⋅+= tmtDIVitRRELitTERMitDEFitmmtmR εσλσλσλσλσβα  
 
where 1,, +tDEFiσ , 1,, +tTERMiσ , 1,, +tRRELiσ , and 1,, +tDIViσ  measure, respectively, the time-t expected 
conditional covariance between the excess returns on each portfolio i and the change in default spread 
(ΔDEF), the change in term spread (ΔTERM), the change in short-term interest rate (RREL), and the 
change in aggregate dividend yield (ΔDIV). 
 
 

Cov(Ri, Rm) Cov(Ri, ΔDEF) Cov(Ri, ΔTERM) Cov(Ri, RREL) Cov(Ri, ΔDIV) 
6.0727 
(5.39) 

–1.3573 
(–0.41) 

   

5.2349 
(4.76) 

 –0.7462 
(–0.64) 

  

5.3244 
(4.90) 

  –0.3459 
(–0.50) 

 

5.1246 
(4.65) 

   0.9327 
(2.23) 
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Table 9 (continued) 
 
 

Panel B. Controlling for Conditional Covariation of Portfolio Returns with INF and OUT 
 

1,1,,21,,11,1, +++++ +⋅+⋅+⋅+= titOUTitINFitimitiR εσλσλσβα  

1,1,,21,,1
2

1,1, +++++ +⋅+⋅+⋅+= tmtOUTitINFitmmtmR εσλσλσβα  
 
where 1,, +tINFiσ  measures the time-t expected conditional covariance between the excess 
returns on each portfolio i and the change in the monthly inflation rate (ΔINF) and 1,, +tOUTiσ  
measures the time-t expected conditional covariance between the excess returns on each 
portfolio i and the change in the output growth (ΔOUT). 
 
 

Cov(Ri, Rm) Cov(Ri, ΔINF) Cov(Ri, ΔOUT) 
5.5301 
(5.30) 

–1.9004 
(–2.19) 

 

5.9496 
(3.12) 

 0.8379 
(1.54) 

6.3966 
(3.34) 

–1.6447 
(–2.04) 

0.7057 
(1.43) 

 
 
 
 
 

Panel C. Controlling for Conditional Covariation of Portfolio Returns with INF and DIV 
 

1,1,,21,,11,1, +++++ +⋅+⋅+⋅+= titDIVitINFitimitiR εσλσλσβα  

1,1,,21,,1
2

1,1, +++++ +⋅+⋅+⋅+= tmtDIVitINFitmmtmR εσλσλσβα  
 
where 1,, +tINFiσ  measures the time-t expected conditional covariance between the excess 
returns on each portfolio i and the change in the monthly inflation rate (ΔINF) and 1,, +tDIViσ  
measures the time-t expected conditional covariance between the excess returns on each 
portfolio i and the change in the aggregate dividend yield (ΔDIV). 
 
 

Cov(Ri, Rm) Cov(Ri, ΔINF) Cov(Ri, ΔDIV) 
6.0231 
(4.03) 

–1.3154 
(–1.98) 

0.2396 
(1.28) 
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