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Abstract

A new covariance matrix estimator is proposed under the assumption that at every

time period all pairwise correlations are equal. This assumption, which is pragmati-

cally applied in various areas of finance, makes it possible to estimate arbitrarily large

covariance matrices with ease. The model, called DECO, is a special case of the CCC

and DCC models which involve first adjusting for individual volatilities and then es-

timating the correlations. A QMLE result shows that DECO can continue to give

consistent parameter estimates when the equicorrelation assumption is violated. Gen-

eralizations to block equicorrelation structures, models with exogenous variables, and

alternative specifications are explored and diagnostic tests are proposed. Estimation

is evaluated by Monte Carlo and using US stock return data.
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1 Introduction

Since the first volatility models were formulated in the early eighties there have been efforts

to estimate multivariate models. The specification of these models developed over the past

thirty years with a range of papers surveyed by Bollerslev, Engle and Nelson (1994) and

more recently by Bauwens et al. (2006). A general conclusion from this analysis is that it is

difficult to estimate multivariate GARCH models with more than half a dozen return series

because the specifications are so complicated.

Recently, Engle (2002) proposed Dynamic Conditional Correlation (DCC), greatly

simplifying multivariate specifications. For large systems, there is not only increasing diffi-

culty in estimating dynamic correlations, but also difficulty presenting and analyzing these

correlations. DCC is designed for high dimensional systems but has only been successfully

applied to up to 50 assets by Engle and Sheppard (2001). Even though there are only a

couple of parameters to estimate, the maximum likelihood estimator must invert a 50×50

matrix thousands of times and this is time consuming. With 50 assets there are 1225 corre-

lation time series; this output is large and difficult to store or plot. In a smaller study with

34 assets, by Capiello, Engle and Sheppard (2006), the output was averaged over various

regions and asset classes in order to better interpret the findings.

In this paper we propose a dramatic simplification that eliminates both the presenta-

tional difficulties and the computational difficulties of high dimension systems. We consider

a system where all pairs of returns have the same correlation on a given day but this corre-

lation varies over time; this general structure is called dynamic equicorrelation (abbreviated

DECO). DECO estimates only one correlation time series instead of averaging correlations

after estimating them.
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There is a substantial history of the use of equicorrelation. In early studies of asset

allocation Elton and Gruber (1973) found that the assumption that all pairs of assets had

the same correlation reduced estimation noise and provided superior portfolio allocations

over a wide range of alternative assumptions. This work is still widely referenced and is

in the leading investments textbook. The same assumption surfaces in derivatives trading.

A popular position is to buy an option on a basket of assets and then sell options on each

of the components, sometimes called a dispersion trade. By delta hedging each option, the

value of this position can be seen to depend solely on the correlations. Let the basket have

weights given by the vector w, and let the implied covariance matrix of components of the

basket be given by the matrix S. Then the variance of the basket can be expressed as

σ2 = w′Sw.

In general we only know about the variances of implied distributions, not the covariances.

Hence it is common to assume that all correlations are equal, giving

σ2 =
n

∑

j=1

w2
js

2
j + ρ

∑

i6=j

wiwjsisj

which can be solved for the implied correlation

ρ =
σ2 −

∑n

j=1 w2
js

2
j

∑

i6=j wiwjsisj

.

As a consequence, the value of this position depends upon the evolution of the implied

correlation. When each of the variances is a variance swap made up of a portfolio of options,

the full position is called a correlation swap. As the implied correlation rises, the value of

the basket variance swap rises relative to the component variance swaps.

Another application of this assumption is in the market for credit derivatives such

as collateralized debt obligations, or CDO’s. A key feature of the risk in loan portfolios
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is the degree of correlation between the default probabilities. A simple industry valuation

model allows this correlation to be one number if the firms are in the same industry and a

different and smaller number if they are in a different industry. Hence within each industry

an equicorrelation assumption is being made. This assumption may be implemented with

our block DECO generalization.

More generally, to price CDO’s, an assumption is often made that these are large

homogeneous portfolios (LHP’s) of corporate debt. As a consequence, each asset will have

the same variance, the same covariance with a market factor and the same idiosyncratic

variance. In a one factor world we can express the relation between the return on an asset

and the market return as

rj = βjrm + ej, σ2
j = β2

j σ
2
m + vj. (1)

In an LHP, the j subscripts disappear. The correlation between any pair of assets then

becomes

ρ =
β2σ2

m

β2σ2
m + v

.

In fact, the LHP assumption implies equicorrelation.

In Section 2 we develop the basic DECO model and a variety of extensions. Ap-

pealing to quasi-maximum likelihood theory, we provide a result that demonstrates DECO’s

robustness to an important model misspecification: when equicorrelation is violated, DECO

may still provide consistent estimates. In particular, when the true model is DCC, DECO

is a quasi-maximum likelihood estimator.

DECO, like many multivariate GARCH models, requires that the cross section com-

position remain fixed for the full sample. Among the extensions discussed in Section 2 is

a modified DECO model with linear correlation evolution, called LDECO, that solves this
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problem. A further advantage of LDECO is that it fixes the order of computational complex-

ity for any cross section size, making correlation estimation feasible for an arbitrary number

of assets. Section 2 goes on to explore questions regarding residual variance dynamics, fore-

casting and finally the block DECO model. We then propose diagnostic tests in Section 3

which may be used to assess the appropriateness of DECO specifications. Section 4 presents

results from several Monte Carlo experiments that examine the model’s performance for

various equicorrelated and non-equicorrelated generating processes. In Section 5 we apply

the DECO and block DECO models to US stock return data.

2 The Dynamic Equicorrelation Model

We begin by defining an equicorrelation matrix and presenting a result for its invertibility

and positive definiteness that will be useful throughout the paper.

Definition 2.1 A matrix Rt is an equicorrelation matrix of an n × 1 vector of random

variables if it is positive definite and takes the form

Rt = (1− ρt)In + ρtJn×n (2)

where ρt is the equicorrelation, In denotes the n-dimensional identity matrix and Jn×n is an

n× n matrix of ones.

Lemma 2.1 The inverse and determinant of the equicorrelation matrix, Rt, are given by

R−1
t =

1

1− ρt

[In −
ρt

1 + (n− 1)ρt

Jn×n] (3)

and

det(Rt) = (1− ρt)
n−1[1 + (n− 1)ρt]. (4)
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Further, R−1
t exists if and only if ρt 6= 1 and ρt 6= −1

n−1
, and Rt is positive definite if and only

if ρt ∈ ( −1
n−1

, 1).

Proof: For Equations 3 and 4 see Graybill (1983), Theorems 8.3.4 and 8.4.4. Existence of an

inverse relies on non-zero denominators in Equation 3. The positive definiteness condition

derives from its equivalence with all eigenvalues being positive; this can be seen in 4, which

is the product of the eigenvalues of Rt. Q.E.D.

Definition 2.2 A time series of n × 1 vectors {r̃t} satisfies a dynamic equicorrelation

(DECO) model if V art−1(r̃t) = DtRtDt, where Dt is a diagonal matrix with conditional

standard deviations on the diagonal and Rt is given by Equation 2 for all t. The equicorre-

lation, ρt, is a general, potentially time-varying, function.

DECO is adopted to individual applications by specifying a ρt process and specifying a

conditional volatility model (i.e., defining the process for Dt, for instance using a GARCH

model). We may abstract from the question of conditional volatility model by working with

volatility-standardized returns, which we denote by omitting the tilde, rt = D−1
t r̃t, so that

V art−1(rt) = Rt. In the empirical exercise of Section 5 we return to the question of modeling

individual volatilities.

2.1 DECO-DCC

The basic ρt specification we consider derives from the DCC model of Engle (2002) and

may be referred to as DECO-DCC. In DCC, the correlation matrix of standardized returns,

RDCC
t , is given by1

Qt = Q̄(1− α− β) + αrt−1r
′
t−1 + βQt−1 (5)

1The formulation in which the intercept of the Q process is Q̄(1 − α − β) is referred to as “correlation

targeting”. Often Q̄ is the unconditional return correlation estimated in a preliminary step rather than
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RDCC
t = diag {Qt}−1 Qt diag {Qt}−1 (6)

where diag {Qt} replaces the off-diagonal elements of Qt with zeros.

The DCC model is adapted to the equicorrelation framework by setting ρt equal to

the pairwise average of off-diagonal elements of RDCC
t ,

ρt =
1

n(n− 1)

∑

i6=j

qi,j,t√
qi,i,tqj,j,t

(7)

where qi,j,t is the i, jth element of Qt. As we show in subsequent sections, DECO possesses a

simpler likelihood function than DCC so that the model is estimable for large cross sections

while remaining a consistent (QMLE) estimator of the original DCC model.

The Q matrix (and hence the equicorrelation) will be mean reverting under the con-

dition α + β < 1. For a well behaved multivariate model, the correlation matrix should

always be positive definite. The next result shows that this is the case for DECO.

Lemma 2.2 The correlation matrices generated by every realization of a DECO process are

positive definite and invertible.

Proof: Following from Lemma 2.1 it is sufficient to show that ρt ∈ ( −1
n−1

, 1) ∀t. Q is a

weighted average of positive definite matrices and therefore positive definite. This implies

RDCC
t is also positive definite with ones along the main diagonal. For any positive definite

matrix Ω and non-zero vector x, x′Ωx > 0, from which we obtain that the pairwise average

of off-diagonal elements of RDCC
t satisfies ρt = 1

n(n−1)

∑

i6=j(R
DCC
t )i,j > −1

n−1
. Further, using

the fact that for any positive definite matrix Ω, ω2
i,j < ωi,iωj,j, we may obtain the upper

bound, ρt < 1. Q.E.D.

via maximum likelihood since it contains n(n − 1)/2 parameters. An alternative specification is to assume

Q̄ is equicorrelated, which contributes only one additional parameter that can be easily estimated in the

maximum likelihood step.
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2.2 Estimation

To use maximum likelihood estimation we begin by assuming joint normality of returns. Let

r̃t|t−1 ∼ N(0, Ht), with Ht = DtRtDt.

The consistent two-step estimation procedure for conditional correlations suggested

by Engle (2002) is applicable to the DECO model. As shown in that paper, the multivariate

Gaussian log likelihood function L can be decomposed as

L = −1

2

∑

t

(n log(2π) + log |Ht|+ r̃′tHtr̃t) (8)

= −1

2

∑

t

(

n log(2π) + log |Dt|2 + r̃′tD
−2
t r̃t − r′trt + log |Rt|+ r′tR

−1
t rt

)

.

Denote as Θ the vector of parameters for the univariate volatility processes (i.e., the

parameters contributing to the evolution of elements in the diagonal Dt matrix). Denote as

Φ the parameters affecting the correlation process. The log likelihood separates additively

into two terms,

L = LV ol(Θ) + LCorr(Θ, Φ). (9)

The first term, LV ol, is a function of the asset-specific volatility parameters. The second

term, LCorr, is a function of the equicorrelation parameters that are shared by all assets, in

addition to the individual volatility parameters.

When each of the returns series obeys a univariate GARCH model, LV ol is in fact

the sum of the individual GARCH likelihoods and is maximized by separately maximizing

each term. Assuming this is the case, the first step in the two-step procedure is to estimate

individual GARCH models for each {r̃i,t} series. The resulting standardized variables are

input into the above likelihood where the fitted Dt matrix is treated as a constant and Rt is

parameterized according to DECO. In the second step the likelihood is maximized to obtain

estimates of the parameters for the ρt process,
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max
Φ

L(Φ, r|Θ̂)

where

L = −1

2

∑

t

(n log(2π) + log |Rt|+ rt′R−1
t rt) (10)

= −1

2

∑

t

(

n log(2π) + log
(

[1− ρt]
n−1[1 + (n− 1)ρt]

)

+
1

1− ρt

[

∑

i

(r2
i,t)−

ρt

1 + (n− 1)ρt

(
∑

i

ri,t)
2
]

)

with n being the size of the cross section and ρt obeying Equation 7.

The payoff from making the equicorrelation assumption can now be appreciated. In

DCC, the conditional correlation matrices must be recorded and inverted for all t and their

determinants calculated; further, these T inversions and determinant calculations are re-

peated for each of the many iterations required in a numeric optimization program. This is

costly for small cross sections and potentially infeasible for very large ones. With DECO,

only the scalar equicorrelation parameter for each t is recorded, and the compact analyti-

cal forms for the determinant and inverse of a covariance matrix under the assumption of

equicorrelation, as presented in Lemma 2.1, make the computational demands for solving

the likelihood optimization problem manageable for large cross sections. When ρt follows

Equation 7, the extent of computation is reduced to n-dimensional vector outer products

with no matrix inversion or determinant computation required.

2.3 DECO, DCC and the Average Cross Sectional Correlation

Often the equicorrelation assumption fails so that there is cross sectional variation in pair-

wise correlations, as in DCC. In this case the DECO model remains a powerful tool. Indeed,
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DECO is a quasi-maximum likelihood estimator (QMLE) of DCC models, providing consis-

tent DCC parameter estimates despite misspecification.

To formally show that DECO is a consistent estimator when DCC is the true gen-

erating process we must demonstrate that the expectation of the score of the (misspecified)

DECO likelihood is equal to zero under the true model, DCC.

Let fDECO
t denote the time t conditional density under DECO. The log likelihood is

∑

t

log(fDECO
t ) =

∑

t

(

− 1

2
log(2π)− 1

2
log |Rt| −

1

2
r′tR

−1
t rt

)

. (11)

The score at each time t is a 2-vector

∂ log(fDECO
t )

∂(α, β)
=

∂ log(fDECO
t )

∂ρt

∂ρt

∂(α, β)
. (12)

Note that the second term of the product on the LHS of Equation 12 depends only on

information up to t − 1. Thus, since each of the partials of ρt with respect to the model

parameters is t− 1 measurable, the conditional expectation of the time t score is simply

Et−1

[

∂ log(fDECO
t )

∂ρt

]

∂ρt

∂(α, β)
. (13)

The expression inside the expectation is the derivative of the time t contribution to likelihood

Equation 11, which is given by

∂ log(fDECO
t )

∂ρt

= (1− ρt)
−2(1 + [n− 1]ρt)

−2

[

(n− 1)(1− ρt)
2(1 + [n− 1]ρt) (14)

−(n− 1)(1− ρt)(1 + [n− 1]ρt)
2 + (1 + [n− 1]ρt)

2
∑

i

r2
i,t

−(1 + [n− 1]ρ2
t )(

∑

i

ri,t)
2

]

.

All the terms of this expression are known at time t − 1 with the exception of
∑

i r
2
i,t and

(
∑

i ri,t

)2
. Under DECO, these have conditional expectations of n and n(n − 1)ρt + n,
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respectively. Plugging these into 14 we see that the score under DECO (Equation 13)

reduces to zero,

EDECO
t−1

[

∂ log(fDECO
t )

∂ρt

]

= (1− ρt)
−2(1 + [n− 1]ρt)

−2

[

(n− 1)(1− ρt)
2(1 + [n− 1]ρt) (15)

−(n− 1)(1− ρt)(1 + [n− 1]ρt)
2 + n(1 + [n− 1]ρt)

2

−n(1 + [n− 1]ρt)(1 + [n− 1]ρ2
t )

]

= 0

which ensures that the DECO score is also zero in expectation,

EDECO
t−1

[

∂ log(fDECO
t )

∂ρt

]

∂ρt

∂(α, β)
= 0

where EDECO makes explicit that the expectation is taken under DECO. For QML to be

invoked, is must also be true that the expectation of the DECO score is zero when the

expectation is taken under DCC. That is, QML requires

EDCC
t−1

[

∂ log(fDECO
t )

∂ρt

]

∂ρt

∂(α, β)
= 0. (16)

Equation 16 is satisfied if the conditional expectations of
∑

i r
2
i,t and

(
∑

i ri,t

)2
under DCC

are the same as the expectations under DECO. Indeed

EDCC [
(

∑

i

ri,t

)2
] =

∑

i6=j

ρi,j,t + n = n(n− 1)ρt + n (17)

and

EDCC [
∑

i

r2
i,t] = n (18)

the same as their DECO expectations.

We have shown that the expectation of the score under both models is zero, which,

following from White (1994)2, proves the following result.

Proposition 2.1 The maximum likelihood estimate of DECO is consistent for DCC param-

eters α and β when DCC is the true model.

2This is based on the QMLE consistency results in Chapter 3, particularly Theorem 3.5.
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2.4 Exogenous Variables and Asymmetric Terms

Prior research suggests that stock return correlations are subject to a gamut of influences

beyond past correlations. Ang and Chen (2002) find that downside moves are associated

with higher correlation levels than upside moves, suggesting inclusion of an asymmetric

market response term in the equicorrelation evolution. The result of Ribeiro and Veronesi

(2002) predicts an inverse relation between correlations and the state of the macroeconomy.

Veldkamp (2006) suggests that correlation levels will be affected by cost and quality of

information acquisition in a market. In a similar vein, Morck, Yeung, and Yu (2000) find that

the degree of financial development of an economy affects the amount of comovement among

its stocks. Further suggestions for determinants of correlation abound in the literature.

These effects may be easily added to the DECO evolution in Equation 5,

Qt = Q̄(1− α− β − γ′z̄) + αrt−1r
′
t−1 + βQt−1 + γ′zt−1Q̄ (19)

where zi > 0 with mean z̄i, and γi is its partial effect on Q. Since the terms incorporating

zi’s are positive definite, Q continues to be a weighted average of positive definite matrices

and is hence positive definite. To ensure that Q is mean reverting the model requires that

ω + α + β + γ′z̄ < 1.3

3For the LDECO form (see Section 2.5), exogenous terms are added to the equicorrelation dynamics with

similar ease, ρt = ω + αut−1 + βρt−1 + γ′zt−1. In that context, when zi ∈ ( −1
n−1 , 1) and γi > 0, Rt will be

positive definite if ω + α + β +
∑

i γi < 1. For more general z variables, a transformation to a variable that

lies in ( −1
n−1 , 1) is useful. The logit function f(zi) = (1+ 1

n−1 ) exp(zi)
1+exp(zi)

− 1
n−1 is an example of a mapping for

this purpose. To obtain γi > 0, the appropriate sign change of zi may be applied as part of the mapping.
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2.5 Alternative Specification: Linear DECO

It is common when working with large cross sections for the consituent assets to change over

time. Assets are frequently added and deleted from benchmark indices like the S&P 500

or the CDX. Investors drop and add assets in their portfolios in the course of rebalancing

or in response to firm delistings, acquisitions and new issues. Multivariate GARCH models

have difficulty accommodating changes of cross section elements; in DCC and DECO-DCC,

assets must remain uninterruptedly in the cross section for the duration of the sample due

to the structure of the process in Equation 5.

A linear variation of the DECO ρt process (abbreviated LDECO) overcomes this

difficulty. The key in this approach is extracting a measurement of the equicorrelation in

each time period using a statistic that is insensitive to the indexing of assets in the return

vector. Consider the expression

ut =
[
(
∑

i ri,t

)2 −∑

i(r
2
i,t)]/n(n− 1)

∑

i(r
2
i,t)/n

=

∑

i6=j ri,trj,t

(n− 1)
∑

i(r
2
i,t)

. (20)

This statistic estimates equicorrelation at time t without the need to maintain assets’ indices

in different time periods, nor does it require that the number of assets in the cross section

remains fixed. The LDECO updating equation based on ut is

ρt+1 = ω + αut + βρt. (21)

The update expression takes an intuitive form. The numerator is an estimate of the

covariance of returns (which is feasibly estimated from a single cross section thanks to the

equicorrelation assumption), while the denominator is an estimate of the variance for all

assets. Since returns have been volatility-standardized, they should have unit variance and

therefore the numerator should be a correlation estimate. The numerator is not restricted
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to the range that ensures positive definiteness of Rt, however, and it lacks robustness to

deviations from unity for the conditional variance estimate. ut standardizes this covariance

estimate by an estimate of the common variance. This lends some robustness to deviations

from unit conditional variance4 and, as shown in Lemma 2.3, ensures that ut lies within the

positive definite range.

Lemma 2.3 The LDECO update ut lies in the interval ( −1
n−1

, 1) almost surely.

Proof: By Holder’s Inequality,
(
∑

i(aibi)
)2 ≤ ∑

i a
2
i

∑

i b
2
i . Applying this to the term

∑

i6=j ri,trj,t, we obtain (
∑

i6=j ri,trj,t)
2 ≤ (n − 1)2(

∑

i r
2
i,t)

2. This ensures that ut ∈ [−1, 1].

Next,
(
∑

i ri,t

)2
=

∑

i6=j ri,trj,t +
∑

i r
2
i,t ≥ 0, which implies

∑
i6=j ri,trj,t
∑

i(r
2

i,t)
≥ −1, further imply-

ing
∑

i6=j ri,trj,t

(n−1)
∑

i(r
2

i,t)
≥ −1

n−1
. Since the cross sectional elements have continuous densities, this

completes the proof. Q.E.D.

Other update forms may be used in place of expression 20. One such form is the

time t cross sectional variance of the random variables. If all variables have unit conditional

variance, their cross sectional dispersion at any time will be informative about their correla-

tion that period. This is easy to see in the case of a factor model such as Equation 1. The

realization of the factor determines the average return, but the dispersion around the mean

is determined solely by correlations, that is, the relative magnitudes of the factor loadings

and the error variances, both of which are assumed equal for all i.

The update expression based on the cross sectional variance is

uvar
t = 1− 1

n− 1

∑

i

(ri,t − r̄t)
2.

The attractions of uvar
t are that it is an unbiased estimate of ρt and that it has a smaller

variance than ut in Equation 20. The drawbacks of uvar
t are three-fold. First, while bounded

4The problem of predictable deviations from unit variance is addressed in more detail in Section 2.6.
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above by one, this form may fall below the lower bound of −1
n−1

and thus requires trun-

cation to ensure positive definiteness of Rt. Truncation introduces bias into the update,

undermining one of its benefits. Second, it is sensitive to non-unit conditional variances.

As variances of returns deviate from one, the accuracy of uvar
t deteriorates as it cannot

distinguish non-unit variance effects from equicorrelation effects. This second point can be

a serious shortcoming in light of dynamics that remain in variances of large cross sections

even after “de-GARCHing”, a consideration discussed in more detail in the following section.

Lastly, the relative efficiency of uvar
t may be sensitive to non-normality. In the presence of

excess kurtosis, it is no longer necessarily true that uvar
t has a smaller variance than ut.

Simulations from an equicorrelated Student t distribution for 100 assets and four degrees of

freedom show that at low levels of correlation (at or below approximately 0.4) ut is in fact

the more efficient form.5 This is potentially problematic for financial returns, which tend to

exhibit fat tails, especially in light of the fact that the unconditional equicorrelation of the

datasets in Section 5 are between 0.2 and 0.3.

In consideration of these points we focus throughout the paper on the more robust

5Simulations are unreported and available from the authors upon request.
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LDECO update in Equation 20.6

While the DECO process in 7 (which we may call DECO-DCC) yields a large simpli-

fication in computational complexity, the linear alternative in Equation 21 simplifies compu-

tation even further. DECO-DCC requires n-vector outer product calculations in the matrix

Equations 5 and 6.7 While DECO-DCC model speeds up dynamic correlation estimation

making it feasible for very large cross sections, the computing time continues to increase

with n. In contrast, the LDECO evolution and resulting likelihood rely only on two easily

computed scalar series: the sum of squared standardized returns,
∑

i r
2
i,t, and their squared

sum,
(
∑

i ri,t

)2
. ut can be computed from these two series, thus these are the only required

data inputs for the entire likelihood (Equation 10).

There are three caveats to the simplification afforded by LDECO. First, the model is

no longer a QML estimator for the DCC model. Second, a Monte Carlo experiment in Section

6Yet another update that may be employed is derived from the maximum likelihood estimate of ρt based

on time t returns only. The log likelihood in any period t is

log
(

fr(rt, ρt)
)

= −n

2
log(2π)− 1

2
log |Rt| −

1

2
r′tR

−1
t rt.

Substituting expressions for the inverse and determinant of Rt based on Equations 3 and 4 and maximizing

with respect to ρt yields the first order condition for a maximum

(n− 1)(1− ρt)
2(1 + [n− 1]ρt)− (n− 1)(1− ρt)(1 + [n− 1]ρt)

2

+
∑

i

r2
i,t(1 + [n− 1]ρt)

2 −
(

∑

i

ri,t

)2

(1 + [n− 1]ρ2
t ) = 0.

The solution to this cubic function in ρt can serve as an update to the ρ process. Simulations (not reported)

show that this estimator behaves similarly to uvar
t in terms of unbiasedness, variance, and lack of robustness

to excess kurtosis and deviations from unit conditional variance.
7Since the Q matrix is being pre- and post-multiplied by diagonal matrices, the matrix multiplication

may be written as a Hadamard product of an n-vector outer product and an n-matrix.
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4 demonstrates that LDECO may be a less precise correlation estimator than DECO-DCC.

Lastly, the model’s simple regularity conditions on parameter values no longer hold exactly.

If ut were unbiased, stationarity and positive definiteness would be implied by the condition

ω/(1− α− β) ∈ (− 1
n−1

, 1). However, ut is a ratio of correlated random variables and hence

downward biased. One implication of this bias is that the model can be stationary for α +β

slightly in excess of 1. In practice, numeric optimization procedures can be altered to ensure

that the fitted equicorrelation process obeys the bounds (− 1
n−1

, 1) without imposing explicit

constraints on the sum of the parameters.

2.6 Alternative Specification: Residual Dynamic Equivariance

Estimating a conditional variance model such as GARCH for individual asset return series

and then standardizing the returns by the fitted conditional volatilities yields a collection of

time series of random variables, each with approximately constant conditional variance. If

univariate variance standardizations fully capture the variance dynamics of the cross section,

then the resulting conditional covariance matrices would in fact be correlation matrices. This

implies that the sum of squared standardized returns should be serially uncorrelated. While

univariate GARCH standardization generally removes the statistical detectability of serial

correlation in individual squared returns, an empirical regularity in financial data is that the

sum of squares for large groups of assets tends to demonstrate serial correlation even after

asset-by-asset standardization. The severity of this autocorrelation appears to increase with

the number of assets. Evidently, the conditional covariance matrices for large cross sections

of standardized returns are not exactly correlation matrices as over time they demonstrate

small predictable deviations from unity on the main diagonal. Including an equivariance

paramater in the covariance matrix of raw returns allows us to take this fact into account
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and improve correlation estimation. We can define an equicovariance matrix, St, which is

simply the DECO matrix multiplied by a conditional equivariance component, St = σ2
t Rt.

While we are particularly interested in the equicorrelation component, the equico-

variance structure adds an important flexibility to correlation models. Without this consid-

eration, dynamics in the sum of squares may be misattributed to the correlation process,

thus affecting the quality of correlation estimates. We propose an extension of the model

that includes a dynamic equivariance component in addition to the base univariate volatility

dynamics.

The time-varying equivariance parameter is assumed to obey

σ2
t+1 = γ + ηvt + φσ2

t . (22)

with update term vt =
∑

i r
2
i,t/n. This can be combined with any equicorrelation process

ρt. Under this specification, the covariance matrix of returns takes the form Ht = DtStDt =

Dt(σ
2
t Rt)Dt, so that the likelihood becomes

L = −1

2

∑

t

(

n log(2π) + log |Dt|2 + r̃′tD
−2
t r̃t − r′trt + log |Rt|+ n log σ2

t +
1

σ2
t

r′tR
−1
t rt

)

.

The likelihood decomposition of Equation 9 remains valid with the parameters of the equiv-

ariance process included in Φ and consistently estimated in the second step maximization.

The appropriateness of dynamic equivariance is an empirical question. Information

criteria may be used to choose between DECO specifications with and without it; similarly,

specification tests such as likelihood ratio and Lagrange multiplier tests may be the basis for

the choice.

When equivariance is included in LDECO, the model’s updates possess a favorable

optimality property. We can show that ut from Equation 21 and vt are the values for ρt and
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σ2
t that maximize the log likelihood of the time t cross section, as shown in the following

Lemma.

Lemma 2.4 The solutions to the optimization problem

max
ρt,σ

2

t

log
(

fr(rt, ρt, σ
2
t )
)

= max
ρt,σ

2

t

− n

2
log(2π)− 1

2
log |St| −

1

2
r′tS

−1
t rt

are given by

σ2
t
∗ =

1

n

∑

i

r2
i,t = vt, ρ∗t =

(
∑

i ri,t)
2 −

∑

i(r
2
i,t)

(n− 1)
∑

i(r
2
i,t)

= ut.

Proof: We first substitute expressions for the inverse and determinant of St based on Equa-

tions 3 and 4 and suppress t subscripts. The first order conditions for an optimum are

n−
∑

i r
2
i

σ2(1− ρ)
+

ρ(
∑

i ri)
2

σ2(1− ρ)(1 + [n− 1]ρ)
= 0 (23)

and

1− n

(1− ρ)
+

n− 1

1 + [n− 1]ρ
+

∑

i r
2
i

σ2(1− ρ)2
−

(1 + ρ

1−ρ
− ρ(n−1)

1+[n−1]ρ
)(
∑

i ri)
2

(1− ρ)(1 + [n− 1]ρ)
= 0. (24)

Equation 23 may be rewritten as

σ2 =
(1 + [n− 1]ρ)

∑

i r
2
i − ρ(

∑

i ri)
2

n(1− ρ)(1 + [n− 1]ρ)
. (25)

Subsituting this into 24 and solving for σ2 we obtain ρ∗, which can then be used in 25 to

obtain σ2∗. The second order conditions for an optimum are satisfied by the concavity of

the likelihood in both arguments. Q.E.D.

Lemma 2.4 say that the updates to LDECO with equivariance are the period-by-

period ML estimates. It is in this sense that ut and vt optimally extract correlation infor-

mation from each return realization.
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2.7 Forecasting

Often the correlation between two returns must be forecast several periods ahead. In many

GARCH models, the variance evolution is linear and the expected value of the evolution

update is equal to the variance itself. When this is the case, analytical expressions for

multi-period ahead forecasts can be obtained by recursively solving forward the evolution

equation. The nonlinearity of DCC precludes the convenient recursive solution method

used for GARCH. Engle and Sheppard (2001) suggest analytical forecast approximation

techniques for DCC and demonstrate their accuracy in simulations. Likewise, DECO does

not give exact analytical correlation forecasts, though the approximation methods of Engle

and Sheppard (2001) may be applied in this context as well. The first analytical forecast

method begins with the approximation Et[rt+1r
′
t+1] ≈ Qt, which leads to the K-step ahead

forecast for the Q matrix

Et[Qt+K ] =
K−2
∑

k=0

Q̄(1− α− β)(α + β)k + (α + β)K−1Qt+1.

This is used to obtain the K-step ahead ρ forecast

Et[ρt+K ] =
1

n(n− 1)

∑

i6=j

Et[qi,j,t+K ]
√

Et[qi,i,t+K ]Et[qj,j,t+K ]
.

The second analytical forecast derives from the approximation Et[Rt+1] ≈ Et[Qt+1],

which is then used to calculate

Et[Rt+K ] =
K−2
∑

k=0

Q̄(1− α− β)(α + β)k + (α + β)K−1Rt+1

which gives K-step ahead ρ forecast

Et[ρt+K ] =
K−2
∑

k=0

q̄(1− α− β)(α + β)k + (α + β)K−1ρt+1

where q̄ is the average off-diagonal element of the correlation target matrix, Q̄.
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An alternative to analytical approximation is simulation-based forecasting. In this

approach, the estimated model through date t is used as the data generating process to

repeatedly simulate the model an additional K − 1 periods forward, using rt and the fitted

value of ρt to initiate the process. For each iteration z, data is generated according to

Qz
t+k = Q̄(1− α̂− β̂) + α̂rz

t+k−1r
z′
t+k−1 + β̂Qz

t+k−1, k = 2, ..., K,

where parameters with hats are estimated using data through time t. The simulated K-

period ahead equicorrelation is

ρz
t+K =

1

n(n− 1)

∑

i6=j

qz
i,j,t+K

√

qz
i,i,t+Kqz

j,j,t+K

and the simulation-based K-period forecast is the average of the equicorrelation over all

simulations,

ESim
t [ρt+K ] =

1

Z

Z
∑

z=1

ρz
t+K .

2.8 The Block Dynamic Equicorrelation Model

For some applications it is useful to consider more flexible correlation structures yet re-

tain some of the tractability and robustness of the equicorrelation model. For instance,

one may model the correlation of common stock returns with particular interest in intra-

and inter-industry correlation dynamics by imposing the restriction of equicorrelation within

and between industries. Each industry has its own single dynamic equicorrelation param-

eter and each industry pair has a dynamic cross-equicorrelation parameter. With block

equicorrelations, richer cross-sectional variation is accomodated while still greatly reducing

the dimensionality of the estimation problem. In this section we develop an extension to

block DECO models and examine their properties. We now define the class of block dynamic

equicorrelation (BDECO) models.
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Definition 2.3 Rt is a k-block equicorrelation matrix if it is invertible and positive definite

and takes the form

Rt =















(1− ρ1,1,t)In1
0 · · ·

0
. . . 0

... 0 (1− ρk,k,t)Ink















+















ρ1,1,tJn1×n1
ρ1,2,tJn1×n2

· · ·

ρ2,1,tJn2×n1

. . .

... ρk,k,tJnk×nk















(26)

where ρl,m,t = ρm,l,t ∀l, m.

As in the DECO model, the BDECO model for a cross section of random variables

specifies that, conditional on the past, each variable is identically Gaussian distributed with

mean zero, variance one, and correlations taking the structure in Equation 26. The return

vector rt is partitioned into k sub-vectors; each sub-vector rl contains nl×1 elements. Cross-

correlations between elements of sub-vectors rl,t and rm,t are also assumed to be equicorre-

lated. Thus, a separate DECO process is specified for each of the k diagonal blocks and each

of the k(k − 1)/2 unique off-diagonal blocks. For DECO-DCC, blocks on the main diagonal

have equicorrelations that follow

ρl,l,t =
1

nl(nl − 1)

∑

i∈l,j∈l,i6=j

qi,j,t√
qi,i,tqj,j,t

, (27)

and for blocks off the main diagonal

ρl,m,t =
1

nlnm

∑

i∈l,j∈m

qi,j,t√
qi,i,tqj,j,t

. (28)

The configuration of coefficient matrices in the Q process is a specification choice. The

simplest form assumes that parameters are the same for all subgroups, which implies scalar

coefficients and thus the Q process is identical to that in Equation 5. This allows for block

specific equicorrelations while imposing the restriction that the equicorrelation response to

past correlations and return cross products is the same for all blocks.
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A richer parameterization allows each block to have its own set of parameters. The

elements of the Q matrix in block l, m follow

qi,j,t = q̄i,j(1− αl,m − βl,m) + αl,mrt−1r
′
t−1 + βl,mqi,j,t−1 (29)

with (αl,m, βl,m) = (αm,l, βm,l). This can be written in matrix form as

Qt = Q̄(I − A−B) + A⊙ rt−1r
′
t−1 + B ⊙Qt−1

where A and B are matrices containing the α’s and β’s, respectively, and⊙ denotes Hadamard

product. For the two block case these matrices are

A =







α1,1Jn1×n1
α1,2Jn1×n2

α1,2Jn2×n1
α2,2Jn2×n2






, B =







β1,1Jn1×n1
β1,2Jn1×n2

β1,2Jn2×n1
β2,2Jn2×n2






.

For the remainder of the section we focus on the two block case to simplify exposition.

Block equicorrelations will be required to satisfy conditions ensuring the invertibility

and positive definiteness of the correlation matrix for each t. The following lemma estab-

lishes these conditions and demonstrates that the same analytic tractability provided by the

equicorrelation assumption extends to the block structure. We suppress t subscripts in the

following lemma since all terms are contemporaneous.

Lemma 2.5 If R is a two block equicorrelation matrix, that is, if

R =







(1− ρ1,1)In1
0

0 (1− ρ2,2)In2






+







ρ1,1Jn1×n1
ρ1,2Jn1×n2

ρ1,2Jn2×n1
ρ2,2Jn2×n2







then,

i. the inverse is given by

R−1 =







b1In1
0

0 b2In2






+







c1Jn1×n1
c3Jn1×n2

c3Jn2×n1
c2Jn2×n2






(30)
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where

bi =
1

1− ρi,i

, i = 1, 2

and

c1 =
ρ1,1

(

ρ2,2(n2 − 1) + 1
)

− ρ2
1,2n2

(ρ1,1 − 1)
(

[ρ1,1(n1 − 1) + 1][ρ2,2(n2 − 1) + 1]− n1n2ρ2
12

)

c2 =
ρ2,2

(

ρ1,1(n1 − 1) + 1
)

− ρ2
1,2n1

(ρ2,2 − 1)
(

[ρ1,1(n1 − 1) + 1][ρ2,2(n2 − 1) + 1]− n1n2ρ2
1,2

)

c3 =
ρ1,2

n1n2ρ2
12 −

(

ρ1,1(n1 − 1) + 1
)(

ρ2,2(n2 − 1) + 1
)

ii. the determinant is given by

det(R) = (1− ρ1,1)
n1−1(1− ρ2,2)

n2−1
[

(1 + [n1 − 1]ρ1,1)(1 + [n2 − 1]ρ2,2)− ρ2
1,2n1n2

]

iii. R is invertible if and only if

ρi,i 6=
−1

ni − 1
and ρi,i 6= 1, i = 1, 2

and

ρ1,2 6=

√

(

ρ1,1(n1 − 1) + 1
)(

ρ2,2(n2 − 1) + 1
)

n1n2

iv. R is positive definite if and only if

ρi ∈
( −1

ni − 1
, 1

)

, i = 1, 2

and

ρ12 ∈
(

−

√

(

ρ1,1(n1 − 1) + 1
)(

ρ2,2(n2 − 1) + 1
)

n1n2

,

√

(

ρ1,1(n1 − 1) + 1
)(

ρ2,2(n2 − 1) + 1
)

n1n2

)

.
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Proof: Part (i) can be shown by multiplying R and R−1. The restriction that the product

equals the identity matrix gives a system of five equations in five unknowns. The result

follows as the solution to this system. Part (ii) follows from Graybill (1983) Theorem 8.2.1.

Part (iii) follows from the form given in part (i), and part (iv) is equivalent to the statement

that all eigenvalues of R are positive, which is equivalent to R being positive definite. Q.E.D.

With this result in hand, the likelihood function of a two block dynamic equicorrela-

tion model can, as in the simple equicorrelation case, be written to avoid costly inverse and

determinant calculations.

L = −1

2

∑

t

(

n log(2π) + log |Rt|+ r′tR
−1
t rt

)

(31)

= −1

2

∑

t

[

n log(2π) + log

(

(1− ρ1,1,t)
n1−1(1− ρ2,2,t)

n2−1

×
[

(1 + [n1 − 1]ρ1,1,t)(1 + [n2 − 1]ρ2,2,t)− ρ2
1,2,tn1n2

]

)

+r′t

(







b1In1
0

0 b2In2






+







c1Jn1×n1
c3Jn1×n2

c3Jn2×n1
c2Jn2×n2







)

rt

]

= −1

2

∑

t

[

n log(2π) + log

(

(1− ρ1,1,t)
n1−1(1− ρ2,2,t)

n2−1

×
[

(1 + [n1 − 1]ρ1,1,t)(1 + [n2 − 1]ρ2,2,t)− ρ2
1,2,tn1n2

]

)

+

(

b1

n1
∑

i

r2
i,1 + b2

n2
∑

i

r2
i,2 + c1,t(

n1
∑

i

ri,1)
2 + 2c3,t(

n1
∑

i

ri,1)(

n2
∑

i

ri,2) + c2,t(

n2
∑

i

ri,2)
2

)

]

The model is estimated by maximum likelihood using the parameterization of Equations 27

and 28 in likelihood Equation 31.

These results may be generalized to k-block equicorrelation matrices.8 For higher

numbers of blocks the invertibility and positive definiteness restrictions become increasingly

8This involves the following approach. Hypothesize the form of the inverse (this is simply the k-block

analogy of Equation 30), then use the restriction that the product of the block equicorrelation matrix and
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complex. One simplification that avoids cumbersome restrictions for the off-diagonal block

equicorrelations is to force them to zero, yet allow dynamic block equicorrelations for all

blocks on the main diagonal. For the equicorrelation matrix to be invertible in this envi-

ronment the restrictions are trivial. If ρb is the equicorrelation for a given block on the

main diagonal of R, invertibility and positive definiteness are equivalent to the condition

ρb ∈ ( −1
nb−1

, 1) ∀b.910

its inverse equals the identity matrix to identify a system of k(k + 1)/2 equations in that many unknowns.

The restrictions on invertibility are determined by the conditions dictating the existence of a solution to

this system. The inequality restrictions for positive definiteness can be derived from the expression of the

determinant of a partitioned matrix as done in the proof of Lemma 2.5.
9BDECO can accomodate LDECO as well. When using the LDECO form, equicorrelations are assumed

to follow

ρl,m,t+1 = ωl,m + αl,mul,m,t + βl,mρl,m,t

where ui,j,t represents a measurement of the equicorrelation update for the l,m block. For the blocks on the

main diagonal, the update is the usual LDECO update ut using the appropriate sub-vector rl,t. That is, for

the lth diagonal block

ul,l,t ≡
(
∑

i rm,i,t)
2 −∑

i(r
2
m,i,t)

(n− 1)
∑

i(r
2
m,i,t)

.

The off-diagonal block updates are

ul,m,t ≡
(
∑

i rl,i,t)(
∑

j rm,j,t)
√

nlnm

∑

i(r
2
l,i,t)

∑

j(r
2
m,j,t)

for l = 1, ..., k, m < l, i = 1, ..., nl, and j = 1, ..., nm.
10Equivariance may also be included. For a k block model, including a separate equivariance for each

block adds 3k(k− 1)/2 parameters to the model. A parsimonious alternative includes a single equivariance,

which requires simply replacing Rt in Equation 31 with St = σ2
t Rt.
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3 Diagnostic Tests

As in all multivariate volatility models, we may write V art−1(r̃t) = DtRtDt. Therefore

V art−1(D
−1
t r̃t) = V art−1(rt) = Rt, so that V art−1(R

− 1

2

t rt) = I. In DECO, the matrix R
− 1

2

t

can be expressed as

R
− 1

2

t =
[

(1− ρt)I + ρtJ
]− 1

2 = atI + btJ

where at and bt depend only on the correlation ρt and the size of the cross section,

at =
1√

1− ρt

, bt =
−1±

√

1− 1ρtn

(1+[n−1]ρt)

n
√

1− ρt

.

Consequently, we can construct residuals which should be i.i.d. with an identity covariance

matrix if the model is correctly specified. These are given by

η̂t = âtrt + nb̂tιr̄t.

where ι is a vector of ones. The η̂’s are weighted averages of the first stage volatility-adjusted

residuals and an equally weighted factor. These residuals might be called correlation-adjusted

residuals to distinguish them from the volatility-adjusted residuals from the first stage. Var-

ious diagnostic tests can be constructed with these adjusted residuals to assess the degree

to which covariance dynamics have been removed from the data.

3.1 Conditional Moment Tests

A conditional covariance model ideally achieves adjusted returns that have constant condi-

tional variance of unity and constant conditional correlation of zero.11 To formally examine

the quality of a conditional covariance model we adopt the conditional moment test (CMT)

11One may also wish to test unconditional variances and correlations. Conditional tests tend to have have

power against a wider set of alternatives and are therefore our focus here (Engle and Ding, 1996).
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framework developed by Newey (1985) to construct asymptotic specification tests in the

context of MLE. This approach tests relevant moment conditions while taking into account

the fact that the ML parameters are estimated, and hence random variables rather than

constants. It is possible to test any moment restrictions implied by the null model either

individually or jointly. The test statistic is given by

dT = ι′MT

[

M ′
T

(

I − ST (S ′TST )−1S ′T
)

MT

]−1
M ′

T ι

which is distributed χ2
p under the null where p is the number of moment conditions being

considered. Calculation of dT requires the construction of two matrices. The first is a vector

of elements that additively compose the relevant sample moments. These are time t elements

of the function

MT (r, θ̂T ) =
(

m1(r, θ̂T ), . . . ,mT (r, θ̂T )
)′

which depends on the return data matrix r and the fitted DECO parameter estimates. Each

element mt(r, θ̂T ) is the period t analog of the p-dimensional moment condition being tested

(ι′MT /T is the corresponding sample moment). Also needed for dT is the score matrix

(denoted with script S to distinguish from the equicovariance matrix St) evaluated at the

ML estimates,

ST =
(

s(r1, θ̂T ), . . . , s(rT , θ̂T )
)′

where s(rt, θ) = ∂ log f(rt|θ)/∂θ. I and ι are a comformable identity matrix and vector of

ones, respectively.

A test of primary interest for the DECO model is that conditional equicorrelations

are zero,

H0 : Et(ρt+1) = 0, ∀t. (32)
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This hypothesis is tested by calculating the sample covariance between an estimate

of the correlation (among η̂’s) and conditioning variables. One estimate of equicorrelation in

adjusted returns is ct = 1
n(n−1)

∑

i6=j η̂i,tη̂j,t. To make the test conditional we interact ct with

variables in the t− 1 information set. Interesting conditioning variables to consider are lags

of c, which makes the test similar to a Ljung-Box test with the exception of an adjustment

to account for parameter uncertainty, which the Ljung-Box test ignores. Under the null in

32, E[ctct−1] = 0, so mt(r, θ̂T ) = ctct−1. The asymptotic test distribution in this example is

χ2
1 since only one moment is used.

3.2 Lagrange Multiplier Tests

A different testing method is to specify an alternative and derive an optimal test against it.

Lagrange Multiplier (LM) tests are ideal for this approach.

The general setup assumes a model with parameter vector θ containing a subvector

of parameters γ. The LM statistic is

LM = T−1
[(

∑

t

s(η̂t, θ̃T )
)

ℑ̂(η̂t, θ̃T )−1
(

∑

t

s(η̂t, θ̃T )′
)]

(33)

where θ̃T is the vector of ML estimates imposing the restriction γ = 0, and ℑ̂ is an estimate

of the information matrix. LM is asymptotically distributed as χ2
p, where p is the dimension

of the restricted parameter vector, γ.

Many interesting alternatives that present dimensionality problems in other testing

frameworks (such as conditional moment tests) are easily implemented with an LM test. For

instance, a CMT of pairwise conditional correlations is a test of n(n − 1)/2 moments, and

calculation of the test statistic requires inverting a matrix of this dimension, which may not

be feasible when the number of assets is large. By sacrificing some of the generality of that
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approach, a parsimonious LM test can be formulated to test if pairwise correlations differ.

As an example, let the alternative correlation model be such that each off-diagonal element

of Rt follows DECO plus an additional term depending on the history of that pair of assets.

That is,

ρi,j,t = ρt + γui,j,t−1 (34)

where

ui,j,t−1 = ri,t−1rj,t−1.

Suppose data has been generated according to this model using the basic DECO specification,

that is, omitting the pair-specific effects. Using the LM approach as a diagnostic test requires

re-estimating the base DECO model using the DECO-adjusted η̂’s and calculating the test

statistic imposing the restriction γ = 0.

4 Correlation Monte Carlos

In this section we present results from a series of Monte Carlo experiments that allow us to

evaluate the performance of the DECO framework when the true data generating process is

known.

4.1 Equicorrelated Processes

We begin by exploring the model’s estimation ability when the generating process is DECO-

DCC or LDECO. For each model, asset return data for cross section sizes n=10, 30 and

100 are simulated over 1,250 periods (corresponding to roughly five years of trading), then

the correctly specified model is estimated. The simulations are repeated 1000 times and
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summary statistics for the maximum likelihood parameter estimates are calculated; results

are reported in Table 1. We also report the root mean squared error of the fitted DECO

process and the average pairwise rolling correlation estimator (using rolling window length

of 30 days) versus the true DECO process. The results show that point estimates are quite

accurate with the exception of a slight downward bias in β estimates, a common effect seen in

GARCH models. For DECO-DCC, asymptotic standard error approximations closely match

the standard deviation of coefficient estimates. This is also true of LDECO, though for

smaller n the asymptotic standard error approximation for β underestimates its variability

in simulations. For both DECO-DCC and LDECO the precision of estimates improves as

the number of assets increases.

Our next set of analyses evaluates the performance of the DECO model when the

true correlation structure is known, but the generating process is a Gaussian equicorrelation

process other than DECO. We assume the true equicorrelation parameter evolves according

to one of four deterministic functions shown in Figure 1:

1. Low frequency sine wave (“Slow Sine”)

2. High frequency sine wave (“Fast Sine”)

3. Gradually rising then falling sharply (“Climb and Drop”)

4. Step function (“Step”)

For each of the four generating processes, return data for a cross section of 30 assets

is simulated over 1,250 periods, repeated 1000 times. Fitted equicorrelations are then cal-

culated using the DECO-DCC, LDECO and average pairwise rolling correlation estimators.

Table 2 reports root mean squared errors for fitted equicorrelation processes versus the true

equicorrelation functions.

DECO-DCC is consistently more precise than LDECO and rolling correlations. The
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benefit of LDECO over the simple rolling correlation estimator is only evident when corre-

lations change rapidly, as in the “Fast Sine” and “Climb and Drop” functions.

4.2 Non-Equicorrelated Processes

Proposition 2.1 highlights the ability of DECO to consistently estimate the parameters of a

DCC-style process despite the violation of equicorrelation. To demonstrate the performance

of the DECO model in this light we simulate time series that follow the DCC model. In

DCC the correlation of any pair i, j follows

ρi,j,t =
qi,j,t√

qi,i,tqj,j,t

(35)

where

qi,j,t = ωi,j + αri,t−1rj,t−1 + βρi,j,t−1. (36)

Thus, while equicorrelation is violated, the average pairwise correlation behaves according

to DECO.

Using DCC as the data generating process12 we simulate asset return data over 1,250

periods for cross sections of size n =10, 30 and 100. This data is then used to estimate both

DECO and DCC. Table 3 reports summary statistics of coefficient estimates and the RMSE

of each model’s fitted average correlation in relation to the true average.

DECO is able to accurately estimate DCC parameters, though estimates of β appear

slightly downward biased, and for cross sections of 10 and 30 assets QMLE standard errors

12The simulations use correlation targeting, that is, ωi,j = q̄i,j(1− α− β), where q̄i,j is the unconditional

correlation for the pair. The target matrix is non-equicorrelated; its standard deviation of off-diagonal

elements equal to 0.33, demonstrating that the differences in pairwise correlations for the simulated cross

sections are substantial.

32



substantially underestimate the true variability of point estimates for β. This is not true for

α standard errors, and the shortfall for β disappears when the cross section is large.

4.3 Forecasting

To evaluate the three forecast methods outlined in Section 2.7 we simulate returns for n=10

and 100 assets over 500 (and 1250) periods under DECO-DCC, and use the first 250 (and

1000) days of data to estimate the model. The fitted parameters are used to forecast ρ for

the remaining 250 periods by the simulation-based method and two analytical approxima-

tion methods. These forecasts are then compared to the true equicorrelation process and

to a naive constant method that forecasts all future correlations as the most recent fitted

correlation. The Monte Carlo results are shown in Figure 2a. The two analytical approx-

imations are indistinguishable. Simulation based forecasting is only slightly more accurate

for long-horizon forecasts in terms of root mean squared forecast error.

The same experiment is conducted for the LDECO model. Since the value for α + β

may exceed one for this form of the model, the obvious analytical approximation, Et[ut+1] =

Et[ρt+1], can lead to divergent forecasts. To avoid this we only consider simulation-based

forecasting and naive constant forecasts. The results are shown in Figure 2b.

5 Equicorrelation in US Stock Returns

Our assessment of DECO has thus far relied on simulated data. To get a sense of its ability to

fit actual data we apply it to daily US stock returns from January 2000 through December

2005. We consider two samples, consituents of the Dow Jones Industrial and S&P 500

indexes. To be included in our sample we require that a stock was listed for the full length
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of the sample and was a member of one of the indexes at any time during the sample period.

This amounts to 32 stocks in the Dow Jones sample and 484 stocks in the S&P 500 sample.

The first step of the consistent two-step estimation procedure is to estimate univari-

ate GARCH models for each asset return series. Conditional variances are modeled with

asymmetric13 GARCH(1,1) models, and these variances are used to construct volatility-

standardized returns (ri,t) which may be used to estimate DECO.14

The second step correlation estimation is performed for four versions of the DECO

model, DECO-DCC and LDECO, both with constant (unit) equivariance and dynamic equiv-

ariance.

The Dow Jones has the attractive feature that all its constituents have actively traded

stock options. This allows us to use implied volatilities from options on the Dow Jones index

and each of its members to calculate implied correlations, which provide an informative

comparison series for DECO. The benefit of option implied correlations is that they are a

daily measure incorporating up to date information embedded in market prices.15

To calculate the implied correlation series we use standardized 30-day constant matu-

rity call and put option implied volatilities from OptionMetrics, and account for four changes

13The form of the asymmetric term follows Glosten, Jagannathan and Runkle (1993).
14Other GARCH models were tried, such as factor GARCH (discussed in the context of factor DCC in

Engle 2007), Student t GARCH, and other asymmetric forms. Our results are qualitatively insensitive to

these variations.
15Implied correlation is not exactly comparable to daily DECO estimates since implied correlations are

naturally market expectations of future correlations over the time to expiration of the contract, and take as

inputs Black-Scholes implied volatilities. Any implied volatility distortions due to model inaccuracy will be

inherited by implied correlations. Nonetheless, model-based implied correlations are a natural starting point

and reasonable approximation for our purposes. For an analysis of implied correlations based on model free

option implied volatilities see Driessen, Maenhout and Vilkov (2005).
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in the index during our sample period.16

Index volatility is given by σindex,t =
√

w′tΩtwt, where wt is the vector of index weights

and Ωt is the conditional covariance matrix of returns. The Dow Jones is a price weighted

index, hence returns on the index are an equal weighted average of constituent returns, so

wt = (1/n, ..., 1/n). If we use option implied volatilities for each σ, we can calculate the

implied average correlation as

ρ̄implied
t =

σ2
index,t − 1

n2

∑

i σ
2
i,t

1
n2

∑

i6=j σi,tσj,t

.

Implied correlations cannot be computed for the S&P 500 sample since many of

its members do not have actively traded options. As an alternative comparison series we

calculate the average pairwise rolling correlation of the S&P 500 sample.

Estimation results are presented in Table 4. Panel A compares DECO-DCC and

LDECO with and without dynamic equivarance for Dow Jones stocks and Panel B repeats

the analysis for the larger S&P 500 sample. For each DECO-DCC specification the model

is estimated twice, once using the unconditional correlation as the target matrix, and once

assuming an equicorrelated target whose parameter is estimated in the maximum likelihood

step (see footnote 1). Figures 3 and 4 plot the fitted equicorrelation series and Figure 5

shows fitted dynamic equivariances.

A few points of interest emerge from this estimation. First, for both data sets, the

Akaike and Bayesian information criteria prefer the DECO-DCC version over LDECO as

a description of the data data. Second, for all models and datasets, likelihood ratio tests

and information criteria suggest that a dynamic equivariance component be included (LR

16The changing constituency of the Dow Jones over time demonstrates an advantage LDECO provides in

accommodating non-constant cross section composition over time, which cannot be addressed with DECO-

DCC.
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test p-value < .001). Also, the persistence in equicorrelation is high for all models judging

by the value of (α + β). For the S&P 500 sample, however, the α estimate is substantially

higher for both models17 than in the smaller Dow Jones sample. This indicates that the

model incorporates more information from the most recent return when S&P data is used.

Intuitively, this may suggest that the equicorrelation information in a given realized return

vector is richer the larger the sample. Fitted equicorrelations show substantial day-to-day

variation ranging from correlations of nearly zero to levels exceeding 0.60. The patterns of

fitted correlations closely resemble equicorrelations implied from options data or calculated

using rolling estimators. Finally, estimates for γ, η, and φ show that the dynamic equivari-

ance process is much more persistent in the larger sample. This is also visible in the plots

of the the Dow Jones and S&P equivariances.

The last empirical exercise fits the two block DECO model to a sample divided into

high growth and high value stocks. The first block is comprised of 25 randomly selected high

value stocks (stocks in the highest book-to-market quintile according to Daniel, Grinblatt,

Titman and Wermers (1997) for all months in the sample) and the second block contains

25 randomly selected high growth stocks (those in the lowest lowest book-to-market quin-

tile). For reference, we first estimate the base DECO-DCC model without separate block

equicorrelations. The second model is two block DECO-DCC with scalar coefficients, which

allows each block a separate equicorrelation process, while restricting α and β to be equal

for all blocks. Results are presented in Table 5 and Figure 6. Despite the fact that number

of parameters has not changed, the likelihood improves using the two block structure. The

fitted series reveal that high value stocks tend to have higher correlation levels on average

17This point refers to the models including equivariance, since specification analysis suggests this is the

superior form.
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than growth stocks, a fact that could prove valuable, for instance, when hedging a portfolio

designed to capture the value spread.

6 Conclusion

The DECO model represents a major simplification in modeling time varying conditional

covariance matrices for returns of an arbitrary number of assets. The equicorrelation assump-

tion arises in derivatives valuation and trading for securities such as CDO’s and correlation

swap positions. We examine a range of model extensions accommodating data regularities

that have traditionally been challenges for multivariate covariance models such as changes in

portfolio composition and residual aggregate variance dynamics. We have shown that DECO

is a valuable model even in the presence of non-equicorrelated series by its QML property

when the true generating process DCC. DECO allows for incorporation of exogenous effects

or asymmetric correlations, and the block DECO generalization provides added flexibility in

the correlation structure while retaining much of the simplicity of DECO. Diagnostic tests

based on conditional moment restrictions implied by the null model are a general class of

tests of the efficacy of DECO specifications for removing dynamics in conditional covariances.

Finally, we take DECO to simulated data as well as return data for Dow Jones

and S&P 500 stocks. Simulations reveal that DECO satisfactorially fits data even in the

presence of misspecified generating processes or violations of equicorrelation. In US stock

data, fitted equicorrelations show substantial day-to-day variation and closely match patterns

of equicorrelations implied from options data. Lastly, we apply two block DECO to a sample

divided into high growth and high value stocks. The fits demonstrate how grouping stocks

can capture a degree of cross-sectional heterogeneity while maintaining the tractability of
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DECO.
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Figure 1. Alternative Equicorrelation Processes for Simulations. 
The figure presents functions used for simulations of non-DECO equicorrelated Gaussian variables corresponding to the 
results in Table 2.  Clockwise, the graphs represent the functions “Slow Sine”, “Fast Sine”, “Step” and 
“Climb and Drop”. 
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Figure 2a. DECO-DCC Multi-Step Forecasting Monte Carlo. 
The figure shows root mean squared forecast error using three forecasting methods under the DECO-DCC specification. 
Asset return data for cross section size n=10 are simulated over 500 (and 1,250) periods, then the correctly specified 
model is estimated using the first 250 (and 1000) periods of data. The fitted model is used to contruct two analytical 
forecast approximations (dotted line), which are based on the simplifications Et[rt+1rt+1’ ] ≈ Qt and Et[Rt+1’ ] ≈ Et[Qt+1’ ], 
as well as a simulation-based forecast (solid line).  The construction of the analytical approximation and simulation-
based forecast (using iteration count Z=500) is described in Section 2.6. The experiment is repeated 1000 times and the 
mean squared forecast error for each method is averaged over the simulations.  The two analytical approximations are 
essentially indistinguishable, thus they are represented by a single line in for each n,T combination. 
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Figure 2b. LDECO Multi-Step Forecasting Monte Carlo. 
The figure repeats the experiment described in the header of Figure 2a for the LDECO model, reporting results for 
simulation-based forecasts. 
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Figure 3. Fitted Dynamic Equicorrelation for Dow Jones Stocks, 2000-2005. 
The figure plots fitted dynamic equicorrelation series from DECO-DCC and LDECO models along with average 
pairwise rolling correlation using daily return data on Dow Jones Industrial index constituents from January 2000 
through December 2005.  Both models are specified to include dynamic equivariance, and the DECO-DCC model uses 
the unconditional correlation as the correlation target.  The series shown correspond to parameter estimates reported in 
Table 4.  
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Figure 4. Fitted Dynamic Equicorrelation for S&P 500 Stocks, 2000-2005. 
The figure plots fitted dynamic equicorrelation series from DECO-DCC and LDECO models along with average 
pairwise rolling correlation using daily return data on S&P 500 index constituents from January 2000 through 
December 2005.  Both models are specified to include dynamic equivariance, and the DECO-DCC model uses the 
unconditional correlation as the correlation target.  The series shown correspond to the parameter estimates reported in 
Table 4. 
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Figure 5. Fitted Dynamic Equivariance for Dow Jones and S&P 500 Stocks, 2000-2005. 
The figure compares fitted dynamic equivariance series from the DECO-DCC model using daily return data on Dow 
Jones and S&P 500 index constituents from January 2000 through December 2005.  The series shown correspond to the 
parameter estimates reported in Table 4. 
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Figure 6. Fitted Block Dynamic Equicorrelation for Growth and Value Stocks, 2000-2005. 
The figure shows fitted correlation series corresponding to the two-block DECO-DCC model parameters reported in 
Table 5.  The sample consists of daily stock returns for US high growth and high value stocks.  The first block is 
comprised of 25 randomly selected high value stocks (stocks in the highest book-to-market quintile according to Daniel, 
Grinblatt, Titman and Wermers (1997) for all months in the sample) and the second block contains 25 randomly 
selected high growth stocks (those in the lowest lowest book-to-market quintile).   
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Table I. DECO Correct Specification Monte Carlo Results. 
The table reports summary statistics for point estimates of the DECO model. Using model forms DECO-DCC and 
LDECO, asset return data for cross section sizes n=10, 30 and 100 are simulated over 1,250 periods (corresponding to 
roughly five years of trading), then the correctly specified model is estimated. The simulations are repeated 1000 times 
and summary statistics for the maximum likelihood parameter estimates are calculated. Asymptotic standard errors are 
calculated using the Hessian; the reported value is the mean asymptotic standard error over all simulations.  For the 
DECO-DCC version, correlation targeting is used.  In this case, we report an intercept calculated as the average of off-
diagonal elements of the sample unconditional correlation matrix, thus the ML asymptotic standard error is not 
calculated for this coefficient. We also report the root mean squared error for the true DECO process versus the fitted 
DECO process and the average pairwise rolling correlation estimator (using rolling window length of 30 days).  The 
reported value is the average RMSE over all simulations.   
 

DECO-DCC  LDECO 
    RMSE      RMSE 
  Int. α β DECO Rolling     ω α β DECO Rolling 
             
True Value 0.200 0.040 0.950    True Value 0.200 0.040 0.950   

n=10             
Mean 0.195 0.040 0.945 0.014 0.040  Mean 0.007 0.040 0.940 0.016 0.054 
Median 0.192 0.040 0.947    Median 0.006 0.039 0.947   
Std. Dev. 0.041 0.009 0.016    Std. Dev. 0.007 0.014 0.033   
Asymp. SE - 0.009 0.015    Asymp. SE 0.004 0.013 0.025   

n=30             
Mean 0.191 0.039 0.947 0.009 0.031  Mean 0.007 0.041 0.943 0.011 0.045 
Median 0.188 0.039 0.948    Median 0.006 0.040 0.946   
Std. Dev. 0.031 0.007 0.012    Std. Dev. 0.005 0.010 0.022   
Asymp. SE - 0.007 0.012    Asymp. SE 0.003 0.010 0.017   

n=100             
Mean 0.194 0.040 0.949 0.008 0.028  Mean 0.006 0.041 0.945 0.008 0.042 
Median 0.188 0.040 0.949    Median 0.006 0.041 0.945   
Std. Dev. 0.031 0.005 0.007    Std. Dev. 0.002 0.005 0.010   
Asymp. SE - 0.005 0.007    Asymp. SE 0.002 0.006 0.010   
                          

 



 
46 

Table 2. Alternative Equicorrelation Generating Process Monte Carlo Results. 
The table reports root mean squared errors for fitted equicorrelation processes versus the Gaussian equicorrelation 
processes shown in Figure 1. Fitted equicorrelations are calculated using the DECO-DCC, LDECO and average 
pairwise rolling correlation (using rolling window length of 30 days) estimators.  For each of the four generating 
processes, asset return data for a cross section of size n=30 are simulated over 1,250 periods (corresponding to roughly 
five years of trading), repeated 1000 times.  The reported value is the average RMSE over all simulations.   
 

  DECO-DCC LDECO Rolling 
    
Slow Sine 0.070 0.107 0.072 
Fast Sine 0.157 0.188 0.354 
Climb and Drop 0.079 0.080 0.090 
Step 0.083 0.101 0.087 
        

 
Table 3. Monte Carlo Performance of DECO Under DCC Misspecification. 
The table compares estimates from DECO and DCC when DCC is the data generating process.  Asset return data for 
cross sections of size n=10, 30 and 100 are simulated over 1,250 periods (corresponding to roughly five years of 
trading). The simulation is repeated 1000 times. For the DECO model, asymptotic standard errors are calculated using 
QMLE standard errors.  For DCC, asymptotic standard errors are calculated using the Hessian.  We also report the root 
mean squared error for the true average pairwise DCC process versus the fitted DECO and DCC counterparts. The 
reported value is the average RMSE over all simulations.  The model uses correlation targeting, thus the estimated 
intercept term is the same for both models and not reported. 
 

 DECO DCC 
  α β α β 
     
True Value 0.03 0.96 0.03 0.96 

n=10     
Mean 0.031 0.945 0.032 0.962 
Median 0.030 0.955 0.032 0.962 
Std. Dev. 0.013 0.096 0.001 0.002 
Asymp. SE 0.012 0.025 0.001 0.001 
RMSE 0.016 0.011 

n=30     
Mean 0.033 0.939 0.031 0.968 
Median 0.031 0.955 0.031 0.968 
Std. Dev. 0.021 0.079 0.000 0.001 
Asymp. SE 0.017 0.036 0.000 0.000 
RMSE 0.013 0.011 

n=100     
Mean 0.034 0.947 0.029 0.970 
Median 0.033 0.951 0.029 0.970 
Std. Dev. 0.009 0.020 0.000 0.000 
Asymp. SE 0.018 0.027 0.000 0.000 
RMSE 0.010 0.008 
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Table 4. DECO Parameter Estimates for Dow Jones and S&P 500 Stocks, 2000-2005. 
The table reports parameter estimates from the DECO-DCC and LDECO models for two samples of daily returns on US stocks.  Panel A shows results for the 
sample of Dow Jones constituent stocks and Panel B gives results for S&P 500 constituent stocks.  The DECO-DCC model is estimated once imposing constant unit 
equivariance and one including dynamic equivariance.  For each of these DECO-DCC specifications the estimates are calculated first using correlation targeting (the 
left two columns under each sub-heading) and next estimating an equicorrelated intercept matrix in the ML step (the right two columns under each sub-heading).  
The LDECO model is estimated once imposing constant unit equivariance and one including dynamic equivariance, and the intercepts are estimated in both cases in 
the ML step.  p-values for parameter estimates are calculated using QMLE standard errors.  LL denotes the log likelihood and the p-value adjacent to likelihood 
values corresponds to a likelihood ratio test of the dynamic equivariance version of the model versus constant equivariance.  Also reported are the Akaike and 
Bayesian information criteria.  The DECO-DCC models using the unconditional correlation matrix as a target have n(n-1)/2-1 parameters in additional to the 
counterpart that estimates the intercept matrix, where n=32 and 484 for the Dow Jones and S&P 500, respectively. 
 
 DECO-DCC   LDECO 
 Unit Equivariance   Dynamic Equivariance   Unit Equivariance Dynamic Equivariance 
  Coeff. p-value Coeff. p-value   Coeff. p-value Coeff. p-value   Coeff. p-value   Coeff. p-value 
                
Panel A: Dow Jones               
Intercept / ω 0.298 - 0.120 0.036  0.298 - 0.382 0.001  0.000 <.001  0.000 <0.001 
α 0.038 <.001 0.036 <.001  0.096 0.006 0.102 0.014  0.044 <.001  0.040 <0.001 
β 0.958 <.001 0.960 <.001  0.897 <0.001 0.890 <0.001  0.965 <.001  0.971 <0.001 
                
γ      0.438 <0.001 0.443 <0.001     0.500 <0.001 
η      0.268 <0.001 0.273 <0.001     0.276 <0.001 
φ      0.335 0.003 0.332 0.004     0.265 0.006 
                
LL -18522  -18502   -18141 <0.001  <0.001  -18523   -18194 <0.001 
AIC 38039  37010   37284     37052   36399  
BIC 40711  37026   39971     37068   36432  
                
Panel B: S&P 500               
Intercept / ω 0.217 - 0.030 0.771  0.217 - 0.483 <0.001  0.002 0.118  0.002 0.945 
α 0.032 <.001 0.047 <.001  0.368 <0.001 0.380 <0.001  0.026 <.001  0.275 0.002 
β 0.968 <.001 0.953 <.001  0.596 <0.001 0.575 <0.001  0.983 <.001  0.794 <0.001 
                
γ      0.164 <0.001 0.209 <0.001     0.150 <0.001 
η      0.318 <0.001 0.337 <0.001     0.252 <0.001 
φ      0.529 <0.001 0.499 <0.001     0.599 <0.001 
                
LL -264860  -264829   -260271 <0.001 -260221 <0.001  -264369   -260763 <0.001 
AIC 763496  529664   754325  520453   528745   521538  
BIC 1390622  529680   1381466  520486   528761   521570  
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Table 5. Block DECO Estimates for Growth and Value Sample, 2000-2005. 
The table reports estimates of the two-block DECO model for a sample of daily returns on US high growth and high 
value stocks.  The first block is comprised of 25 randomly selected high value stocks (stocks in the highest book-to-
market quintile according to Daniel, Grinblatt, Titman and Wermers (1997) for all months in the sample) and the second 
block contains 25 randomly selected high growth stocks (those in the lowest lowest book-to-market quintile).  The first 
set of estimates are for the base DECO-DCC model without separate block equicorrelations.  The second set of 
estimates uses the two block DECO-DCC model with scalar coefficients (ie. each block has a separate equicorrelation 
process, but the α and β parameters are restricted to be equal for all blocks).  The reported intercepts are the average of 
elements in the unconditional correlation matrix (the target matrix) corresponding the each block.  All reported model 
parameters are significant at the 0.1% level using QMLE standard errors. 
 

    
  DECO   BLOCK DECO 
    

Intercept1,1 0.115  0.116 

Intercept2,2 -  0.117 

Intercept1,2 -  0.110 
α 0.028  0.014 
β 0.972  0.986 
    
γ 0.231  0.228 
η 0.105  0.103 
φ 0.630  0.635 
    
LL -28999  -28933 
        

 
 


