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1 Introduction

Component models have been widely used for volatility dynamics. The motivation is
typically based on either one of the following two arguments. First, the component
structure allows for a parsimonious representation of complex dependence structures.
Second, the components are sometimes linked to economic principles, namely the idea
that there are different short- and long-run sources that affect volatility. The purpose
of this paper is to propose a component model of dynamic correlations with a short-
and long-run component specification.1 We call this class of models DCC-MIDAS as
the key ingredients are a combination of the Engle (2002) DCC model, the Engle and
Lee (1999) component GARCH model to replace the original DCC dynamics with a
component specification and the Engle, Ghysels, and Sohn (2006) GARCH-MIDAS
component specification that allows us to extract a long-run correlation component
via mixed data sampling.

We address the specification, estimation and interpretation of correlation models that
distinguish short and long run components. We show that the changes in correla-
tions are indeed very different. Dynamic correlations are a natural extension of the
GARCH-MIDAS model to Engle (2002) DCC model. The idea captured by the DCC-
MIDAS model is similar to that underlying GARCH-MIDAS. In the latter case, two
components of volatility are extracted, one pertaining to short term fluctuations, the
other pertaining to a secular component. In the GARCH-MIDAS the short run com-
ponent is a GARCH component, based on daily (squared) returns, that moves around
a long-run component driven by realized volatilities computed over a monthly, quar-
terly or bi-annual basis. The MIDAS weighting scheme helps us extract the slowly
moving secular component around which daily volatility moves. Engle, Ghysels,
and Sohn (2006) explicitly link the extracted MIDAS component to macroeconomic
sources. It is the same logic that is applied here to correlations. Namely, the daily
dynamics obey a DCC scheme, with the correlations moving around a long run com-
ponent. Short-lived effects to correlations will be captured by the autoregressive dy-
namic structure of DCC, with the intercept of the latter being a slowly moving process

1It should be noted that there have been several prior attempts to think of component models for
correlations, see inter alia Karolyi and Stulz (1996). Our approach focuses on autoregressive condi-
tional correlation models.
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that reflects the fundamental or long-run causes of time variation in correlation.2

To estimate the parameters of the DCC-MIDAS model we follow the two-step pro-
cedure of Engle (2002). We start by estimating the parameters of the univariate
conditional volatility models. The second step consists of estimating the DCC-MIDAS
parameters with the standardized residuals. We also discuss the regularity condi-
tions we need to impose on the MIDAS-filtered long run correlation component as
models of correlations are required to yield positive definite matrices.

The paper concludes with an empirical illustration, showing the benefits of the com-
ponent specification. Empirical specification tests reveal the superior empirical fit,
both in- and out-of-sample of the new class of DCC-MIDAS correlation models.

The remainder of the paper is organized as follows. Section 2 introduces the correla-
tion component model and compares the DCC-MIDAS class of models with original
DCC models. Section 3 covers regularity conditions and estimation, while section 5
contains the empirical applications. Section 6 concludes the paper.

2 A new class of component correlation models

The purpose of this section is to introduce the class of DCC/MIDAS dynamic cor-
relation models. In a first subsection we provide some preliminaries. The second
subsection introduces the structure of DCC/MIDAS.

2.1 Notation and Preliminaries

Consider a set of n assets and let the vector of returns be denoted as rt = [r1,t, . . . , rn,t]
′ .

The novelty of our approach consists of describing the dynamics of conditional vari-
ances and correlations, where we take into account both short and long run compo-
nents. The long run component at time twill be a judiciously chosen weighted average
of historical correlations. The assumption is that the long run component can be fil-
tered from empirical correlations. Of course, what is critical is the choice of weights,

2In principle we can link the secular correlation component to macroeconomic sources, very much
like Engle, Ghysels, and Sohn (2006) and Schwert (1989), who study long historical time series and
link volatility directly to various key macroeconomic time series.
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which will be one of the key ingredients of the model specification. To proceed let us
assume that the vector of returns rt = [r1,t, . . . , rn,t]

′ follows the process:

rt ∼i.i.d. N(µ,H t) (2.1)

H t = DtRtDt

µ is where the vector of unconditional means,H t is the conditional covariance matrix
and Dt is a diagonal matrix with standard deviations on the diagonal, and:

Rt = Et−1[ξtξ
′
t] (2.2)

ξt = D−1
t (rt − µ)

Therefore rt = µ+H
1
2
t ξt with ξt ∼i.i.d. N (0, In) . In this section we introduce a new class

of component correlation models. In a first subsection we discuss model specification.
The next subsection covers regularity conditions and deals with estimation.

At the outset, it should be noted that component models for correlations also prompt
us to think about component models for volatility which feed into the correlation
specification. Indeed the decomposition of the conditional covariance matrix H t =
DtRtDt appearing in equation (2.1) withDt a diagonal matrix of standard deviations
andRt the conditional correlation matrix suggests a two-step model specification (and
estimation) strategy. Consequently, we will first specify Dt followed by Rt.

The univariate volatility models build on recent work by Engle and Rangel (2005)
and in particular Engle, Ghysels, and Sohn (2006). Both proposed component mod-
els for volatility, where long an short run volatility dynamics are separated. Engle
and Rangel (2005) introduce a Spline-GARCH model where the daily equity volatility
is a product of a slowly varying deterministic component and a mean reverting unit
GARCH. Unlike conventional GARCH or stochastic volatility models, this model per-
mits low frequency volatility to change over time. Engle and Rangel (2005) use an
exponential spline as a convenient non-negative parameterization. The recent work
of Engle, Ghysels, and Sohn (2006) combines insights from Engle and Rangel (2005)
with a framework that is suited to combine data that are sampled at different fre-
quencies. The new approach is inspired by the recent work on mixed data sampling,
or MIDAS discussed in Ghysels, Santa-Clara, and Valkanov (2005), Ghysels, Santa-
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Clara, and Valkanov (2006), Forsberg and Ghysels (2004), among others.3 Engle,
Ghysels, and Sohn (2006) replace the spline specification with a MIDAS polynomial.

The new class of models is called GARCH-MIDAS, since it uses a mean reverting unit
daily GARCH process, similar to Engle and Rangel (2005), and a MIDAS polynomial
which applies to monthly, quarterly, or bi-annual macroeconomic or financial vari-
ables. In what follows we will refer to gi and mi as the short and long run variance
components respectively for asset i. Engle, Ghysels, and Sohn (2006) consider various
specifications for gi and we select only a specific one where the long run component is
held constant across the days of the month, quarter or half-year. Alternatively, one
can specify mi based on rolling samples that change from day to day. The findings
in Engle, Ghysels, and Sohn (2006) show that they yield very similar empirical fits
- so we opted for the simplest to implement which involves locally constant long run
components. We will denote by N i

v the number of days that mi is held fixed. The
superscript i indicates that this may be asset-specific. The subscript v differentiates
it from a similar scheme that will be introduced later for correlations. It will be con-
venient to introduce two time scales t and τ. In particular, while gi,t moves daily, mi,τ

changes only once every N i
v days.

More specifically we assume that for each asset i = 1, . . . , n, univariate returns follow
the GARCH-MIDAS process:

ri,t = µi +
√
mi,τ · gi,tξi,t, ∀t = τN i

v, . . . , (τ + 1)N i
v (2.3)

where gi,t follows a GARCH(1,1) process:

gi,t = (1− αi − βi) + αi
(ri,t−1 − µi)2

mi,τ

+ βigi,t−1 (2.4)

while the MIDAS component mi,τ is a weighted sum of Liv lags of realized variances
3In the context of volatility, Ghysels, Santa-Clara, and Valkanov (2005) studied the traditional risk-

return trade-off and used monthly data to proxy expected returns while the variance was estimated
using daily squared returns. The idea was carried a step further in Ghysels, Santa-Clara, and Valka-
nov (2006) and Forsberg and Ghysels (2004), both papers focusing on predicting volatility at various
horizons with high frequency financial data using MIDAS.
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(RV ) over a long horizon:

mi,τ = mi + θi

Li
v∑

l=1

ϕl(ω
i
v)RVi,τ−l (2.5)

where the realized variances involve N i
v daily squared returns, namely:

RVi,τ =

τN i
v∑

j=(τ−1)N i
v+1

(ri,j)
2.

Note that N i
v could for example be a quarter or a month. The above specification

corresponds to the block sampling scheme as defined in Engle, Ghysels, and Sohn
(2006), involving so called Beta weights defined as:

ϕl(ω
i
v) =

(
1− l

Li
v

)ωi
v−1

∑Li
v

j=1

(
1− j

Li
v

)ωi
v−1

(2.6)

In practice we will consider cases where the parameters N i
v and Liv are independent

of i, i.e. the same across all series. Similarly, we can also allow for different decay
patterns ωiv across various series, but once again we will focus on cases with common
ωv (see the next subsection for further discussion). Obviously, despite the common
parameter specification, we expect that the mi,τ substantially differ across series, as
they are data-driven.

2.2 The class of DCC/MIDAS dynamic correlation models

Dynamic correlations are a natural extension of the GARCH-MIDAS model to the
Engle (2002) DCC model. More specifically, we will introduce two components, a long-
run and short-run one. In the case of volatility we noted that mi,τ can be formulated
either via keeping it locally constant, or else based on a local moving window. Engle,
Ghysels, and Sohn (2006) find for volatility that the difference between the two - as
noted before. For correlations, we have potentially the same choice. Since the trailing
local specification is more general, we adopt this for our formulation. Namely, using
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the standardized residuals ξi,t it is possible to obtain a matrixQt whose elements are:

qi,j,t = ρi,j,t (1− a− b) + aξi,t−1ξj,t−1 + bqi,j,t−1 (2.7)

ρi,j,t =

Lij
c∑

l=1

ϕl
(
ωijr
)
ci,j,t−l

ci,j,t =

∑t
k=t−N ij

c
ξi,kξj,k√∑t

k=t−N ij
c
ξ2
i,k

√∑t
k=t−Nc

ξ2
j,k

where the weighting scheme is similar to that appearing in (2.5). Note that in the
above formulation of ci,j,t we could have used simple cross-products of ξi,t. The nor-
malization will allow us later to discuss regularity conditions in terms of correlation
matrices. Correlations can then be computed as:

ρi,j,t =
qi,j,t√

qi,i,t
√
qj,j,t

We regard qi,j,t as the short run correlation between assets i and j, whereas ρi,j,t is a
slowly moving long run correlation. Rewriting the first equation of system (2.7) as

qi,j,t − ρi,j,t = a
(
ξi,t−1ξj,t−1 − ρi,j,t

)
+ b
(
qi,j,t−1 − ρi,j,t

)
(2.8)

conveys the idea of short run fluctuations around a time varying long run relation-
ship. The idea captured by the DCC-MIDAS model is similar to that underlying
GARCH-MIDAS. In the latter case, two components of volatility are extracted, one
pertaining to short term fluctuations, the other pertaining to a secular component. In
the GARCH-MIDAS the short run component is a GARCH component, based on daily
(squared) returns, that moves around a long-run component driven by realized volatil-
ities computed over a monthly, quarterly or bi-annual basis. The MIDAS weighting
scheme helps us extracting the slowly moving secular component around which daily
volatility moves. Engle, Ghysels, and Sohn (2006) explicitly link the extracted MI-
DAS component to macroeconomic sources. It is the same logic that is applied here to
correlations. Namely, the daily dynamics obey a DCC scheme, with the correlations
moving around a long run component. Short-lived effects on correlations will be cap-
tured by the autoregressive dynamic structure of DCC, with the intercept of the latter
being a slowly moving process that reflects the fundamental or secular causes of time
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variation in correlation. In principle we can link the long run correlation component
to macroeconomic sources, very much like Engle, Ghysels, and Sohn (2006) study long
historical time series, similar to Schwert (1989) and link volatility directly to various
key macroeconomic time series.4 Note that in equation (2.5) we can allow for different
weighting schemes across series. Likewise, the specification in (2.7) can potentially
accommodate weights ωijr , lag lengths N ij

c and span lengths of historical correlations
Lijc to differ across any pair of series.5 Typically we will use a single setting common
to all pairs of series, similar to the choice of a common MIDAS filter in the in the
univariate models. We will discuss in the next subsection the implications of a single
versus multiple parameter choices for the DCC-MIDAS filtering scheme.

It is also worth noting that our DCC-MIDAS model shares features with a local dy-
namic conditional correlation (LDCC) model introduced in Feng (2007), where vari-
ances are decomposed into a conditional and a local (unconditional) parts. The cor-
relation structure is modeled by a multivariate nonparametric ARCH-type approach
that accommodates the presence of regressors.

To conclude this subsection we fix some notation that will allow us to discuss the
general model specification. First, we will collect all the elements ωijr into a vector
ωr, keeping in mind that it may only contain a single element if all weights are equal
and we denote Nc = maxi,j N

ij
C . We then can write and collect the set of correlations

appearing in equation (2.7) yielding generically in matrix form:

Rt = (Q∗t )
−1/2Qt(Q

∗
t )
−1/2 (2.9)

Q∗t = diagQt, (2.10)

Qt = (1− a− b)Rt(ωr) + aξtξ
′
t + bQt−1 (2.11)

4We prefer not to do this in the current paper, because it would require selecting an ad hoc function
to link macro variables to correlations. This function should satisfy the restrictions that correlations
are bounded between −1 and 1 and the resulting correlation matrix must be positive semi-definite.

5Note that (ωij
r , N

ij
c , L

ij
c ) = (ωji

r , N
ji
c , L

ji
c ) are identical for all i and j.
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Rt (ωr) =
Lc∑
l=1

Φl (ωr)�Ct−l

Ct =


v1,t 0 0
... . . . 0

0 · · · vn,t


− 1

2 (
t∑

k=t−Nc

ξkξ
′
k

)
v1,t 0 0
... . . . 0

0 · · · vn,t


− 1

2

vi,t =
t∑

k=t−Nc

ξ2
i,k, ∀i = 1, . . . , n (2.12)

where Φl (ωr) = ϕl (ωr) ιι
′ and � stands for the Hadamard product.6

3 Estimation

To estimate the parameters of the DCC-MIDAS model we follow the two-step proce-
dure of Engle (2002). We start by collecting the parameters of the univariate con-
ditional volatility models into a vector Ψ ≡ [(αi, βi, ωi,mi, θi), i = 1, . . . , n]. and the
parameters of the conditional correlation model into Ξ ≡ (a, b, ωr). Then the (quasi-
)likelihood function QL can be written as:

QL(Ψ,Ξ) = QL1(Ψ) +QL2(Ψ,Ξ) (3.1)

≡ −
T∑
t=1

(
n log(2π) + 2 log |Dt|+ r′tD−2

t rt
)
−

T∑
t=1

(
log |Rt|+ ξ′tR−1

t ξt + ξ′tξt
)

Given the structure of the log likelihood function, namely the separation of QL(Ψ,Ξ)

into QL1(Ψ) and QL2(Ψ,Ξ), we can first estimate the parameters of the univariate
GARCH-MIDAS processes, i.e. the parameters in Ψ, using QL1(Ψ) and therefore each
single series separately - yielding Ψ̂. The second step consists of estimating the DCC-
MIDAS parameters with the standardized residuals ξ̂t = D̂

−1

t (rt− µ̂) using QL2(Ψ̂,Ξ).

The estimation of the MIDAS polynomial parameters in the dynamic correlations
require some further discussion. The approach we adopt is inspired by the estimation
of MIDAS polynomial parameters in the GARCH-MIDAS model.

6In a later section we will generalize this setup to allow for multiple MIDAS filters in the long-run
dynamics of correlations.
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So far we were not very explicit about the choice of the polynomial characteristics
Liv and N i

v in equation (2.5) and the choice of Lc and Nc in equation (2.7). In the
former case, i.e. the univariate GARCH-MIDAS models, Liv determines the number
of lags spanned in each MIDAS polynomial specifications for τt. The other is how to
compute RV, weighted by the MIDAS polynomials. As pointed out by Engle, Ghysels,
and Sohn (2006), this amounts to model selection with a fixed parameter space, and
therefore is achieved via profiling the likelihood function for various combinations of
Liv and N i

v. To determine the long run component of conditional correlations, Rt we
proceed in exactly the same way, namely we select the number of lags Lc for historical
correlations and the time span over which to compute the historical correlations Nc

in equation (2.7). The similarity between the two procedures is not surprising, given
the fact that DCC models build extensively on the ideas of GARCH and in both cases
we have a MIDAS filter extracting a component which behaves like a time-varying
intercept. We will provide an explicit discussion of the procedure in the empirical
applications, given the similarity with Engle, Ghysels, and Sohn (2006).

The asymptotic properties of the two-step estimator are discussed in Engle and Shep-
pard (2001), Comte and Lieberman (2003), Ling and McAleer (2003) and McAleer,
Chan, Hoti, and Lieberman (2006). These papers deal with fixed parameter DCC
models. It is beyond the scope of the current paper to establish the asymptotic prop-
erties of the MLE estimator when the MIDAS stochastic intercept is present. Re-
cent work by Dahlhaus and Subba Rao (2006) discussed general time-varying coeffi-
cient ARCH(∞) processes and regularity conditions for (local) MLE estimation. The
GARCH-MIDAS and DCC-MIDAS processes are to a certain degree special cases of
their setup. Namely, Dahlhaus and Subba Rao (2006) allow all parameters to vary
and assume a nonparametric setting to capture the time-varying coefficients. This
leads them, like Feng (2007), to consider kernel-based estimators. Our setting is
parametric, as the MIDAS filter is a parametric specification, and therefore presum-
ably simpler. We leave the regularity conditions that guarantee standard asymptotic
results for the two-step estimation of DCC-MIDAS as an open question for future
research. However, we do cover in this paper the regularity conditions we need to im-
pose on the MIDAS-filtered long run correlation component to obtain positive definite
matrices. This is the topic of the next section.
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4 Regularity Conditions

In this section, we turn our attention to the long run component and the choice of
weights ωijr , keeping the lag lengths N ij

c and span lengths of historical correlations Lijc
fixed across all pairs of series. Hence, we focus on the memory decay in the long run
correlations.

4.1 Long-Run dynamics

The first case to consider is the one of a common decay parameter ωr independent of
the pair of returns series selected. The covariance matrices can be shown to be pos-
itive definite under a relatively mild set of assumptions. When considering equation
(2.11) it is apparent that the matrix Qt is a weighted average of three matrices. The
matrix Rt is a positive semi-definite because it is a weighted average of correlation
matrices. The matrix ξtξ

′
t is always positive semi-definite by construction. Therefore,

if the matrix Q0 is initialized to a positive semi-definite matrix, it follows that Qt

must be positive semi-definite at each point in time.

The positive semi-definiteness of the covariance matrix can be guaranteed without
putting any restriction on the structure of the conditional variance estimators for the
individual return series. This means, for example, that it is possible to assume a
different number of GARCH-MIDAS lags for each return.

The case of two or more weighting schemes is more involved and therefore becomes
more interesting. Indeed it is not always the case that the matrix Rt (ωr) is posi-
tive semi-definite for any choice of MIDAS parameters and specific restrictions on
the parameter space ought to be imposed. The goal of this section is to provide suffi-
cient conditions under which the sequence of matrices {Φl}Lc

i=l defined in (2.11) is pos-
itive semi-definite. Since the sequence of matrices {Ct−i}Lc

i=1 is positive semi-definite
by construction, we can invoke the Schur product theorem to state that any matrix
Rt (ωr) =

∑Lc

l=1 Φl (ωr)�Ct−l is positive semi-definite as well.7

In this section we examine the case of block matrices, whose dynamics can be ac-
counted for by three parameters: the first two for block of correlations and the third

7For a proof of the Schur product theorem see Horn and Johnson (1985), theorem 7.5.3.
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one for the off-diagonal correlations. The following three definitions set the stage for
the kind of matrices that we deal with in this section.

Definition 1 (Diagonal MIDAS Block). Let ΦD
l (Na, ω

a
r ) be a symmetric, square matrix

of sizeNa such that all elements on the off-diagonal are equal to ϕl(ωar ) and all elements
on the main diagonal are ones.

Definition 2 (Off-Diagonal MIDAS Block). Let ΦF
l (Na, Nb, ω

c
r) be a matrix of size

Na, Nb such that all elements are equal to ϕl(ωcr).

Definition 3 (Block MIDAS matrix). Let

Φl

(
ωar , ω

b
r, ω

c
r, Na, Nb

)
=

(
ΦD
l (Na, ω

a
r ) ΦF

l (Na, Nb, ω
c
r)

ΦF
l (Na, Nb, ω

c
r)
′ ΦD

l

(
Nb, ω

b
r

) )

be a block matrix with ΦD
l (Na, ω

a
r ) and ΦD

l

(
Nb, ω

b
r

)
defined as in 1 and ΦF

l (Na, Nb, ω
c
r)

defined as in 2.

The following lemmas lead up to the main proposition of this section.

Lemma 1. The determinant of the matrix Φl in Definition 3 is equal to

det (Φl) = detA · detBCAC

where

detA = det
(
ΦD
l (Na, ω

a
r )
)

(4.2)

detBCAC = det
(
ΦD
l

(
Nb, ω

b
r

)
−ΦF

l (Na, Nb, ω
c
r)
′ΦD

l (Na, ω
a
r )
−1 ΦF

l (Na, Nb, ω
c
r)
)

(4.3)

Proof. See Appendix.

This lemma suggests that in order to ensure the positive definiteness of each weight-
ing matrix we can focus separately on the conditions that make the determinant of
the first block matrix positive and on those that make the determinant of the function
of matrices defined in (4.3) positive. We shall start by focusing on the first diagonal
matrix.

Lemma 2. If ϕl(ωar ) ≤ 1 then all leading principal minors of ΦD
l (Na, ω

a
r ) are non-

negative.
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Proof. See Appendix.

According to the previous lemma, the only condition that needs to be verified for the
leading principal minors of Φl up to the determinant of the first block matrix to be
positive is that ϕl(ωar ) is less than one. This condition is always satisfied when using
MIDAS filters.

The next two lemmas deal with the determinant of the function of sub-matrices de-
fined in (4.3).

Lemma 3. If ϕl(ωar ) ≥ 0 and ϕl(ω
b
r) ≤ 1, the scalar

l =
(
1− ϕl(ωbr)

)Nb−1 (
1 + (Nb − 1)ϕl(ω

b
r)
)
−NaNb [ϕl(ω

c
r)]

2 (4.4)

is always smaller than detBCAC defined in (4.3).

Proof. See Appendix.

Lemma 4. If ϕl(ωbr) ≤ 1 the function

l(Nb) =
(
1− ϕl(ωbr)

)Nb−1 (
1 + (Nb − 1)ϕl(ω

b
r)
)
−NaNb [ϕl(ω

c
r)]

2

is always non-increasing in Nb.

Proof. See Appendix.

We are now ready to state the first of the two propositions of this sub-section.

Proposition 1. Let ϕl(ωar ) < 1, ϕl(ωbr) < 1, and ϕl(ω
c
r) < 1 and

(
1− ϕl(ωbr)

)Nb−1 (
1 + (Nb − 1)ϕl(ω

b
r)
)
−NaNb [ϕl(ω

c
r)]

2 > 0 (4.5)

the matrix Φl

(
ωar , ω

b
r, ω

c
r, Na, Nb

)
is positive definite.

Proof. Follows directly from lemmas 1, 2, and 4.

The assumption that ϕl(ωar ) < 1, ϕl(ωbr) < 1, and ϕl(ω
c
r) < 1 is always verified when

using MIDAS filters, since they are all positive and are forced to sum up to one.
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Therefore, it amounts to checking that equation (4.5) is satisfied ∀i to ensure that
the weighting matrices are positive definite. This can amount to checking a non-
negligible amount of conditions in the case of lengthy MIDAS polynomial. For exam-
ple, in the empirical applications, we show that the likelihood is maximized for 144

lags. A more useful theorem can be stated that amounts to checking only the first one
of the conditions above. Its proof is a direct consequence of the following lemma and
of proposition 1.

Lemma 5. Let ϕl(ωbr) > ϕi+k(ω
b
r) and ϕl(ωcr) > ϕi+k(ω

c
r) for some positive scalar k. Then

l
(
ϕl(ω

b
r), ϕl(ω

c
r)
)
≤ l
(
ϕi+k(ω

b
r), ϕi+k(ω

c
r)
)

where the function l(·, ·) is defined in (4.4).

Proof. See Appendix.

Proposition 2. Let ωar , ωbr, and ωcr be the characteristic parameters of the MIDAS
filters {ϕl(ωjr)}

I
i=1, ∀j = {a, b, c} and let

{
ΦD
l (Na, ω

a
r ) ,Φ

D
l

(
Nb, ω

b
r

)
,ΦF

l (Na, Nb, ω
c
r)
}I
i=1

be
the associated sequences of block matrices according to definitions 1 and 2. If

(
1− ϕ1(ω

b
r)
)Nb−1 [

1 + (Nb − 1)ϕ1(ω
b
r)
]
−NaNb [ϕ1(ω

c
r)]

2 > 0

then each matrix in the sequence
{
Φl

(
ωar , ω

b
r, ω

c
r, Na, Nb

)}I
i=1

is positive definite.

Proof. Follows directly from proposition 1, from lemma 5 and from the fact that each
element of a MIDAS filter is bounded above by one.

This proposition conveniently states that in order to ensure the positive-definiteness
of the long-run correlation matrix, one only needs to check one simple condition in-
volving the first terms of the MIDAS polynomial. This condition is quite easily satis-
fied. For example, assume to have two sets of 10 series each (i.e. Na = Nb = 10): one
that is better described by a long memory dynamics (say that ωar = 2) and one that
can be characterized as a short memory process (say that ωbr = 15). Also assume that
the cross-correlations can be described as a MIDAS-average of the two process (i.e.
say that ωcr = 2+15

2
). The length of the MIDAS polynomial is Kc = 144, a parameter

that is shown to be optimal in the empirical application. Then, the left hand side
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of the condition of proposition 2 is equal to 0.4047. This simple example documents
that even in a 20 by 20 system, this parameterizations is quite flexible to ensure the
positive definiteness of the resulting long-run correlation matrix.

The multiple-MIDAS filters cases that we analyze in the empirical section are all
based on weighting matrices of the type:

Φl

(
ωar , ω

b
r, ω

c
r, Na, Nb

)
=

 1 ϕl(ω
a
r ) ϕl(ω

c
r)

ϕl(ω
a
r ) 1 ϕl(ω

c
r)

ϕl(ω
c
r) ϕl(ω

c
r) 1


where Na = 2, Nb = 1, and Kc = 144. The condition of proposition 2 boils down to
1 − 2ϕ1(ω

c
r)

2 > 0, which is always satisfied for ωcr < 175. Since a decay factor larger
than 20 or 30 is hardly ever reached, we can state that this kind of 3 by 3 systems is
always positive definite.

4.2 Short-Run dynamics

In general it will also prove convenient to allow for multiple sets of parameters to
describe the DCC part of the correlation dynamics. In this subsection we study the
positive semi-definiteness of the DCC part of the system, by imposing restrictions on
the matrices of parameters G, A, and B:

Qt = G�Rt(ωr) + A� ξt−1ξ
′
t−1 +B �Qt−1

We start with the case of three blocks of matrices.

Definition 4 (DCC Block matrices). Let {ai}3i=1, and {bi}3i=1 be positive scalars. The
DCC block matrices, A, B and G are

A =

[
a1 · ι′Nj

ιNj
a3 · ι′Nj

ιNk

a3 · ι′Nk
ιNj

a2 · ι′Nk
ιNk

]
, B =

[
b1 · ι′Nj

ιNj
b3 · ι′Nj

ιNk

b3 · ι′Nk
ιNj

b2 · ι′Nk
ιNk

]
, G = ι′Nj+Nk

ιNj+Nk
−A−B

where ιNl
= [ 1 . . . 1︸ ︷︷ ︸

Nl

], ∀l ∈ {j, k}.
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The following three assumptions are needed in order to prove the positive semi-
definiteness of the correlations matrices arising from the system above.

Assumption 1. Let {ai}3i=1, and {bi}3i=1 be non-negative scalars and let 1− ai − bi ≥ 0,
∀i = {1, 2, 3}.

Assumption 2. Let a1a2 − a2
3 ≥ 0 and b1b2 − b23 ≥ 0.

Assumption 3. The matrices G�Rt (ωr) are positive semi-definite.

Note that the first assumption is equivalent to the one needed to prove the existence
of well-defined correlation matrices in the standard DCC model.

We are now ready to state the main theorem of this sub-section.

Proposition 3. Let the conditions of assumptions 1-3 be satisfied. Then the DCC
block matrices, A, B, and G are positive semi-definite.

Proof. Any principal minor that is the determinant of a sub-matrix of order equal or
larger than three is zero, since it has at least two identical columns or rows. Any
principal minor that is the determinant of a sub-matrix of order equal or larger than
two is non-negative, because of assumptions 2 and 3. The fact that all entries of the
matrices are non-negative (by assumption 1) concludes the proof.

A special case of this specification is the Generalized-DCC model of Cappiello, Engle,
and Sheppard (2003).

Definition 5 (Generalized DCC matrices). Let there be 2 pairs of DCC parameters
{aj, bj}2j=1. The generalized DCC matrices, Ag, Bg, and Gg are

Ag = aa′, Bg = bb′, Gg = (ιι′ − aa′ − bb′)

where

a′ =

[ √
a1 . . . ,︸ ︷︷ ︸
Nk

√
a2 . . .︸ ︷︷ ︸
Nj

]
and b′ =

[ √
b1 . . . ,︸ ︷︷ ︸
Nk

√
b2 . . .︸ ︷︷ ︸
Nj

]
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This specification satisfies assumption 2 above with equality, but there is no specific
reason why that should be the case and, in any event, this is a testable restriction.
Therefore the DCC block structure provides a more flexible specification, that under
mild assumptions delivers well-defined correlation matrices.

5 Empirical Applications

We study various empirical examples, starting with a bi-variate system, next moving
to two examples with three assets. For the equities, the portfolios are formed based
on an industry classification8 In the bi-variate case, we only have one MIDAS filter,
hence the discussion pertaining to regularity conditions for positive semi-definiteness
in the previous section does not apply. We therefore move to the tri-variate systems to
discuss the selection of MIDAS filters. Each of the examples are designed to highlight
model estimation and specification issues. The section is divided in subsections which
cover the various examples.

5.1 An example of two assets: Energy portfolio and 10 year
bond

We start the investigation of short and long run correlation dynamics of industries
portfolios and 10 year bond, by focusing on a bi-variate case that involves the energy
industry portfolio and the 10 year bond only. The energy industry portfolio collects
stocks related to oil, gas, and coal extraction and products. It is convenient to outline
the various steps involved in the estimation procedure in the context of this simple
case.

We consider a sample of daily returns on an industry portfolio - the energy sector -
and a long term bond, namely a 10-year bond. The sample starts on 1971-07-15 and
ends on 2006-06-30. We first address the issue of selecting the number of MIDAS

8Data were downloaded from Kenneth French web site and correspond to the 10 industry portfolio
classification. Accordingly, each NYSE, AMEX, and NASDAQ stock is assigned to an industry portfolio
based on its four-digit SIC code. We report the details on the specific portfolios that we employed in
our empirical analysis in the Appendix.
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lags. We follow a procedure suggested in Engle, Ghysels, and Sohn (2006), since
the GARCH-MIDAS and DCC-MIDAS class of models share similar model selection
issues. A convenient property of both models, is that the lag selection of the MIDAS
filter involves a fixed number of parameters. Hence, Engle, Ghysels, and Sohn (2006)
compare various GARCH-MIDAS models with different time spans via profiling of
the likelihood function. The task can be easily accomplished by looking at the plots of
the log-likelihood functions of the GARCH-MIDAS and DCC-MIDAS estimators for
an increasing number of lags. The left panel of Figure 1 shows that a small number
of MIDAS lags is typically enough to accurately describe the long run dynamics of
the volatilities of the two series. We select the smallest number of MIDAS lags after
which the log-likelihoods of the two volatilities seem to reach their plateau. In this
case this criterion amounts to picking 36 lags of monthly realized volatilities. The
right panel of Figure 1 shows that DCC-MIDAS requires a larger number of lags
before its log-likelihood flattens out. This led us to select 144 lags.

Figure 2 reports the short and long run dynamics of volatilities and correlations.
The dark lines in the figure correspond to the long run correlation with short run
correlations snaking around it. These results show that despite the fact that the un-
conditional correlation of the two series is close to zero, the short-run correlation is
characterized by large departures from this value. The long-run correlation slowly
adjusts to account for periods of relatively higher and relatively lower correlation.
Table 2 reports the estimates of the parameters of the DCC-MIDAS and of the origi-
nal DCC, where the latter is modified to take into account the long-run dynamics of
volatilities only. It is interesting to note that the persistence parameters β of the two
GARCH processes are remarkably lower than we typically observe when neglecting
the long-run dynamics for daily series. The same is true also for the persistence pa-
rameter of the correlation b. Both facts can be attributed to the slowly moving MIDAS
adjustment.

Figure 3 shows how much the short run correlations are affected by ignoring time-
varying long-run dynamics. The solid line represents the differences in correlations
between the original DCC and the DCC-MIDAS. These differences can be as high as
0.05 in absolute value and the picture shows that they are typically positive when the
time varying long run correlation exceeds the unconditional one and negative when
the relationship between the two correlations is reversed.
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5.2 More than two assets

When we consider more than two assets we have the possibility that several long run
MIDAS filters as well as multiple DCC parameters apply.9 We provide two examples
involving three asset returns, one where a single MIDAS filter suffices, and another
where there is clearly a need for two filters. The former involves two industries and a
bond, namely Energy and Hi-Tech portfolios vs. 10 year bond. The results appear in
Figures 4 and 5 as well as Table 3. The first figure displays Energy-HiTech-10 year
Bond Variances and correlation and the second shows the differences with DCC and
unconditional correlations.

In Table 5 we report likelihood ratio tests for various nested model specifications in-
volving separate parameters for the DCC dynamics and/or MIDAS filters. Each entry
in the table represents the p-value for testing that the likelihood of the model of the
column is significantly higher than the likelihood of the model on the corresponding
row. The first row of the table documents that the baseline one DCC - one MIDAS
model may not be enough to account for the dynamics of the system. The specifica-
tions with two sets of DCC parameters seem to yield significant lower likelihoods in
all pairwise comparisons. It is also the case that adding an additional MIDAS param-
eter does not improve the model performance when a second pair of DCC parameters
has already been added. This is always true with the only possible exception of the
comparison between one and two MIDAS with two sets of non-generalized DCC pa-
rameters. The model with three distinct sets of DCC parameters does not appear to
significantly improve the likelihood.

These results convey that one MIDAS parameter is enough to account for the long-
run dynamics of the system, confirming the idea that one might have had by looking
at the small absolute differences in the estimated bi-variate models. The short-run
dynamics is the one needing a more flexible specification in this example. A model
with two sets of DCC parameters and one MIDAS parameter seems to suffice to ac-
curately describe the joint dynamics of the three assets. However we cannot draw
any conclusion as to whether we should employ the generalized or non-generalized
DCC structure on the grounds of the likelihood ratio tests, being the two models non

9The appendix reports the specifics and the names of the models that are being estimated in this
subsection.
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nested. The two left-most columns of table 4 show that the generalized specification
with two sets of DCC parameters and one MIDAS appears to perform better than its
non-generalized counterpart, according to the AIC and BIC criteria.

The next and final example shows that this is not always the case. In Table 8 we
report likelihood ratio tests for Ten year Bonds combined with Manufacturing and
Shops industries. The parameter estimates, for the single MIDAS filter appear in Ta-
ble 6 whereas the multiple filter case appears in Table 7. The bottom part of the table
shows that when the MIDAS parameters are estimated in all possible permutations
of bivariate systems, a value close to 7 appears to do the job for bond vs. manufactur-
ing and for for bond vs. shops. A decisively shorter memory achieves the maximum
likelihood when it comes to accounting for the long run dynamics of the correlation
between shops and manufacturing. The top part of table 7 shows that it can indeed
be quite restrictive to force one MIDAS parameter to describe the long-run dynamics
of all pairs of correlations. The introduction of an additional MIDAS parameter not
only brings the outcome of the estimation closer to what suggested by the analysis of
the bivariate systems, but it also sizeably increases the log-likelihood. Table 8 shows
that this increase is significant at a 1% confidence level.

The variances and correlations appear respectively in Figures 6 and 8. The former
shows the single filter patterns and the latter shows the patterns with two distinct
filters. We observe that the second filter clearly changes the long run component
correlation across the two industries. Figure 5 as well as figure 7 confirm once again
that the original DCC seems to overshoot on average the short run correlation when
the long run one is above its unconditional value, while the opposite happens when
the MIDAS long run correlation lies below its unconditional counterpart.

When we employ the Generalized DCC-MIDAS model, we obtain the parameters’ es-
timates reported in table 7. These estimates seem to confirm the need for a second
MIDAS filter to be applied to the correlation between the manufacturing and the
shops portfolios. Figure 9 shows that the long-run correlations filtered using this
specification appear to be a little smoother when the 10-year bond is one of the assets
compared to the results obtained under the previous specification. The low-frequency
correlation of the two portfolios is instead a little noisier. Aside for these small dif-
ferences, we take the results as confirming the need for multiple set of correlation
parameters.
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6 Concluding remarks

We introduced a class of DCC-MIDAS component models of dynamic correlations with
a short- and long-run component specification. The key ingredients are a combination
of the Engle (2002) DCC model, the Engle and Lee (1999) component GARCH model
to replace the original DCC dynamics with a component specification and the Engle,
Ghysels, and Sohn (2006) GARCH-MIDAS component specification that allows us
to extract a long-run correlation component via mixed data sampling. We addressed
the specification, estimation and interpretation of correlation models that distinguish
short and long run components. We show that the changes in correlations are indeed
very different. An empirical illustration shows the benefits of the component spec-
ification. Empirical specification tests are introduced and applied. They reveal the
superior empirical fit of the new class of DCC-MIDAS correlation models. While we
left the regularity conditions that guarantee standard asymptotic results for the two-
step estimation of DCC-MIDAS as an open question for future research we did cover
one important part of the regularity conditions dealing with the positive definiteness
of the MIDAS-filtered long run correlation component.
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Technical Appendix

Proofs of Lemmas

Proof of Lemma 1. Follows directly from decomposing the matrix as

Φl =

(
ΦD
l (Na, ω

a
r ) 0

ΦF
l (Na, Nb, ω

c
r)
′ INb

)
·(

INa ΦD
l (Na, ω

a
r )
−1 ΦF

l (Na, Nb, ω
c
r)

0 ΦD
l

(
Nb, ω

b
r

)
−ΦF

l (Na, Nb, ω
c
r)
′ΦD

l (Na, ω
a
r )
−1 ΦF

l (Na, Nb, ω
c
r)

)

Proof of Lemma 2. It follows directly from observing that any leading principal minor of ΦD
l (Na, ω

a
r )

can be written as

detk = (1− ϕl(ωar ))
k−1 (1 + (k − 1)ϕl(ωar )) , ∀k ≥ 1

Proof of Lemma 3. Since

detBCAC = −NaNb

(
1− ϕl(ωbr)

)Nb−1

1 + (1 +Na)ϕl(ωar )
[ϕl(ωcr)]

2 +
(
1− ϕl(ωbr)

)Nb−1 (
1 + (Nb − 1)ϕl(ωbr)

)
it amounts to showing that (

1− ϕl(ωbr)
)Nb−1

1 + (1 +Na)ϕl(ωar )
≤ 1

This is always the case since the numerator is always smaller than unity (because ϕl(ωbr) ≤
1 by assumption) and the denominator is always larger than one (because ϕl(ωar ) ≥ 0 by
assumption).

Proof of Lemma 4. Denote l(Nb) as the difference

l(Nb) = p(Nb)− q(Nb)

22



where

p(Nb) =
(
1− ϕl(ωbr)

)Nb−1 (
1 + (Nb − 1)ϕl(ωbr)

)
q(Nb) = NaNb [ϕl(ωcr)]

2

The term −q(Nb) is trivially always decreasing in Nb. The term p(Nb) can be written as

p(Nb) = 1 +
[
ϕl(ωbr)

]2 Nb−1∑
j=1

(−1)j · j · (ϕl(ωbr)− 1)j−1

with p(Nb = 1) = 1. The increments:

p(Nb)− p(Nb − 1) =
[
ϕl(ωbr)

]2
(−1)Nb−1 · (Nb − 1) · (ϕl(ωbr)− 1)Nb−2

are always negative, because ifNb is odd (even), the term (−1)Nb−1 is positive (negative), while
the term (ϕl(ωbr)− 1)Nb−2 is negative (positive), since ϕl(ωbr) ≤ 1, by assumption.

Proof of Lemma 5. Decompose l
(
ϕl(ωbr), ϕl(ω

c
r)
)

as

l
(
ϕl(ωbr), ϕl(ω

c
r)
)

= p
(
ϕl(ωbr)

)
− q (ϕl(ωcr))

where

p
(
ϕl(ωbr)

)
= 1 +

Nb−1∑
j=1

[
ϕl(ωbr)

]2
(−1)j · j ·

[
ϕl(ωbr)

]j−1

= 1 +
Nb−1∑
j=1

pj

(
ϕl(ωbr)

)
q (ϕl(ωcr)) = NaNb [ϕl(ωcr)]

2

The term −q (ϕl(ωcr)) is trivially decreasing in ϕl(ωcr). For the other term:

pj

(
ϕl(ωbr)

)
= −

[
ϕl(ωbr)

]2
(−1)j · j ·

∣∣∣ϕl(ωbr)∣∣∣j−1

≤ −
[
ϕi+k(ωbr)

]2
(−1)j · j ·

∣∣∣ϕi+k(ωbr)∣∣∣j−1
= pj

(
ϕi+k(ωbr)

)
, ∀j = {1, · · · , Nb − 1}
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Details on industry portfolios classification

Data are download from Kenneth French web-site. The Energy, Manufacturing, Hi-Tech,
and Shops portfolios that we use in the empirical section correspond to the collection of the
following SIC codes:

1. Energy: Oil, Gas, and Coal Extraction and Products
SIC codes: 1200-1399, 2900-2999

2. Manufacturing: Machinery, Trucks, Planes, Chemicals, Off Furn, Paper, Com Printing
SIC codes: 2520-2589, 2600-2699, 2750-2769, 2800-2829, 2840-2899, 3000-3099, 3200-
3569, 3580-3621, 3623-3629, 3700-3709, 3712-3713, 3715-3715, 3717-3749, 3752-3791,
3793-3799, 3860-3899

3. Hi-Tech: Computers, Software, and Electronic Equipment, Industrial controls, com-
puter programming and data processing, Computer integrated systems design, com-
puter processing, data prep, information retrieval services, computer facilities manage-
ment service, computer rental and leasing, computer maintenance and repair, computer
related services, R&D labs, research, development, testing labs
SIC codes: 3570-3579, 3622-3622, 3660-3692, 3694-3699, 3810-3839, 7370-7372, 7373-
7373, 7374-7374, 7375-7375, 7376-7376, 7377-7377, 7378-7378, 7379-7379, 7391-7391,
8730-8734

4. Shops: Wholesale, Retail, and Some Services (Laundries, Repair Shops)
SIC codes: 5000-5999, 7200-7299, 7600-7699

Summary of specifications

In the empirical section, we will analyze the performance of several combinations of
short- and long-run specifications for a number of 3 by 3 systems. To simplify the
reading of the results, we summarize and label the models in this sub-section.

1. MIDAS=1: the typical MIDAS correlation weighting matrix is

Φl (ω1) =

 1 ϕl(ω1) ϕl(ω1)

ϕl(ω1) 1 ϕl(ω1)

ϕl(ω1) ϕl(ω1) 1
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2. MIDAS=2: the typical MIDAS correlation weighting matrix is

Φl (ω1, ω2) =

 1 ϕl(ω2) ϕl(ω1)

ϕl(ω2) 1 ϕl(ω1)

ϕl(ω1) ϕl(ω1) 1


Hence, the second MIDAS polynomial insists on the correlation of the first two
assets with the third asset.

3. DCC=1: the short-run dynamics are governed by the scalars a1 and b1.

4. DCC=2: the short-run dynamics are described by the following matrices:

A =

 a2 a2 a1

a2 a2 a1

a1 a1 a1

 B =

 b2 b2 b1

b2 b2 b1

b1 b1 b1


5. DCC=3: the short-run dynamics are described by the following matrices:

A =

 a2 a2 a3

a2 a2 a3

a3 a3 a1

 B =

 b2 b2 b3

b2 b2 b3

b3 b3 b1


6. DCC=2 (G): the short-run dynamics are described by the following matrices:

A =

 a2 a2
√
a1a2

a2 a2
√
a1a2

√
a1a2

√
a1a2 a1

 B =

 b1 b1
√
b1b2

b1 b1
√
b1b2√

b1b2
√
b1b2 b2
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Tables start here

TABLE 1
MEAN ABSOLUTE ERRORS

Step Large Step Dbl Step Dbl Step Long Ramp Short Cycle Long Cycle
DCC 0.072 0.113 0.115 0.118 0.159 0.120 0.100
Original (.056, .091) (.093, .142) (.101, .132) (.100, .136) (.142, .173) (.106, .134) (.084, .122)

DCC 0.070 0.107 0.114 0.116 0.160 0.120 0.101
MIDAS (.053, .097) (.088, .133) (.099,.133) (.099,.133) (.143, .174) (.106, .134) (.084, .122)

Notes - Each entry represents the average Mean Absolute Error (MAE) obtained by
simulating correlations using the pattern reported in the corresponding column and
estimating them through the model in the corresponding row. The numbers in paren-
thesis are the 95% confidence intervals.

TABLE 2
ENERGY PORTFOLIO VS. 10 YEAR BOND

µ α β θ ω m

Energy 0.069 0.084 0.812 0.198 12.459 0.548

(0.077) (0.021) (0.006) (0.027) (0.000) (0.049)

Bond 0.022 0.058 0.919 0.203 2.566 0.296

(0.011) (0.000) (0.006) (0.018) (0.001) (0.075)

a b ω

DCC-MIDAS 0.015 0.979 1.774

(0.001) (0.003) (0.469)

DCC 0.015 0.981 −
(0.000) (0.000) −

Notes - The top panel reports the estimates of the GARCH-MIDAS coefficients for the
Energy portfolio and 10 year Bond. The bottom panel reports the estimates of the
DCC-MIDAS and original DCC parameters. The number of MIDAS lags is 36 for the
GARCH processes and 144 for the DCC process. The sample covers 1971-07-15 until
2006-06-30.
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TABLE 3
ENERGY, HI-TECH AND 10 YEAR BOND

µ α β θ ω m
Energy 0.070 0.087 0.804 0.199 12.602 0.545

(0.000) (0.000) (0.016) (0.065) (0.000) (0.123)
Hi-Tech 0.063 0.087 0.837 0.186 9.997 0.726

(0.000) (0.064) (0.001) (0.000) (0.000) (0.332)
Bond 0.022 0.059 0.915 0.204 3.090 0.284

(0.002) (0.000) (0.000) (0.002) (0.000) (0.000)

a b ω
DCC-MIDAS 0.018 0.977 1.683

(0.004) (0.000) (0.000)
DCC 0.016 0.981 −

(0.001) (0.001) −

Notes - The top panel reports the estimates of the GARCH-MIDAS coefficients for the
Energy portfolio, Hi-Tech portfolio and 10 year Bond. The bottom panel reports the
estimates of the DCC-MIDAS and original DCC parameters. The number of MIDAS
lags is 36 for the GARCH processes and 144 for the DCC process. The sample covers
1971-07-15 until 2006-06-30.
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TABLE 6
MANUFACTURING, SHOPS, AND 10 YEAR BOND

µ α β θ ω m
Bond 0.022 0.059 0.914 0.204 3.090 0.284

(0.001) (0.000) (0.000) (0.002) (0.000) (0.000)
Manufacturing 0.072 0.103 0.801 0.175 10.925 0.564

(0.000) (0.000) (0.078) (0.019) (0.005) (0.082)
Shops 0.069 0.101 0.816 0.171 11.529 0.632

(0.001) (0.002) (0.000) (0.003) (0.001) (0.013)

a b ω
DCC-MIDAS 0.029 0.954 11.680

(0.000) (0.000) (1.215)
DCC 0.217 0.975 −

(0.000) (0.000) −

Notes - The top panel reports the estimates of the GARCH-MIDAS coefficients for the
10 year Bond, Manufacturing portfolio, and the Shops portfolio. The bottom panel
reports the estimates of the DCC-MIDAS and of the original DCC parameters. The
number of MIDAS lags is 36 for the GARCH processes and 144 for the DCC process.
The sample covers 1971-07-15 until 2006-06-30.
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FIG. 1 - Log-likelihoods of variances and correlations for increasing number of MIDAS
lags. The left panel reports the log-likelihoods obtained by changing the number of
GARCH-MIDAS lags for the energy portfolio and the 10 year bond variance and the
correlation estimator, respectively. The right panel shows the log-likelihood of the
correlation estimator for increasing DCC-MIDAS lags.
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FIG. 2 - Long and short run volatilities and correlations for the energy portfolio and
the 10 year bond. The pictures on the main diagonal refer to conditional variances of
the energy portfolio and of the 10 year bond and the one on the off diagonal reports
conditional correlations. In each panel the dark line refers to the long run and the
light line represents the short run.
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FIG. 3 - Differences in short run dynamics. The solid line represents the difference of
short run correlations computed according to the DCC-MIDAS and the original DCC.
The dashed line represent the excess long run correlation obtained as the difference
between the DCC-MIDAS and the unconditional correlation.

35



Jul−86 Jun−94 Jun−02

20

40

60

80

Jul−86 Jun−94 Jun−02

20

40

60

80

Jul−86 Jun−94 Jun−02

1

2

3

4

Jul−86 Jun−94 Jun−02
−0.2

0

0.2

0.4

0.6

0.8

Jul−86 Jun−94 Jun−02

−0.4

−0.2

0

0.2

0.4

Jul−86 Jun−94 Jun−02

−0.5

0

0.5

FIG. 4 - Long and short run volatilities and correlations for the energy and hi-tech
portfolios and the 10 year bond. The pictures on the main diagonal refer to conditional
variances of energy and hi-tech portfolios and of 10 year bond and those on the off
diagonal report conditional correlations among the same group of asset returns. In
each panel the dark line refers to the long run and the light line represents the short
run.
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FIG. 5 - Differences in short run dynamics. In each subplot, the solid line represents
the difference of short run correlations computed according to the DCC-MIDAS and
the original DCC. The dashed line represent the excess long run correlation obtained
as the difference between the DCC-MIDAS and the unconditional correlation. Start-
ing from the top-left corner, the three subplots refer to the correlation of energy and
hi-tech portfolios, energy portfolio and 10 year bond and hi-tech portfolio and 10 year
bond.
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FIG. 6 - Long and short run volatilities and correlations for the 10 year bond and
Manufacturing and Shops portfolios. The pictures on the main diagonal refer to con-
ditional variances of bond, manufacturing and shops and those on the off diagonal
report conditional correlations among the same group of asset returns. In each panel
the dark line refers to the long run and the light line represents the short run.
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FIG. 7 - Differences in short run dynamics. In each subplot, the solid line repre-
sents the difference of short run correlations computed according to the DCC-MIDAS
and the original DCC. The dashed line represent the excess long run correlation ob-
tained as the difference between the DCC-MIDAS and the unconditional correlation.
Starting from the top-left corner, the three subplots refer to the correlation of bond
and manufacturing portfolio, bond and shops portfolio and manufacturing and shops
portfolios.
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FIG. 8 - Long and short run volatilities and correlations for the 10 year bond and
Manufacturing and Shops portfolios with 2 MIDAS filters. The second MIDAS filter
is applied to the correlation between the manufacturing and the shops portfolios. The
pictures on the main diagonal refer to conditional variances of bond, manufacturing
and shops and those on the off diagonal report conditional correlations among the
same group of asset returns. In each panel the dark line refers to the long run and
the light line represents the short run.
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FIG. 9 - Long and short run volatilities and correlations for the 10 year bond and
Manufacturing and Shops portfolios using the Generalized DCC-MIDAS with 2 DCC
set of parameters and 2 MIDAS filters. The second set of parameters is applied to
the correlation between the manufacturing and the shops portfolios. The pictures on
the main diagonal refer to conditional variances of bond, manufacturing and shops
and those on the off diagonal report conditional correlations among the same group
of asset returns. In each panel the dark line refers to the long run and the light line
represents the short run.
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