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and a hierarchical linear regression model. First, we present a framework for incorporating aggre-
gate rating information and apply this framework to the aforementioned individual rating models.
Then we formally show that this additional aggregate rating information provides more accurate
recommendations of individual items to individual users. Further, we experimentally confirm this
theoretical finding by demonstrating on several datasets that the aggregate rating information
indeed leads to better predictions of unknown ratings. We also propose scalable methods for
incorporating this aggregate information and test our approaches on large datasets. Finally, we
demonstrate that the aggregate rating information can also be used as a solution to the cold start
problem of recommender systems.
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1. INTRODUCTION

Consider a Netflix recommender system [Bennett and Lanning 2007] and assume
that it is augmented with the aggregate ratings from the IMDB database [IMDB
2006], such as the one specifying that females in the age category of 18 to 29 gave
an average rating of 6.9 (out of 10) to the movie “Madagascar.” Can such addi-
tional aggregate rating information, provided from the external sources, improve
the quality of individual ratings? More generally, a traditional recommender system
determining individual ratings for individual users can be supplemented with an
externally provided OLAP-based [Adomavicius et al. 2005] set of aggregate ratings,
such as the aggregate ratings for “Madagascar” provided by females vs. provided
by females in the age category of 18 to 29 years, that are specified for various cells
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of the OLAP-based hierarchy.
The main research question addressed in this paper is how these external aggre-

gate ratings can be used for providing better recommendations of individual items
to individual users. Since the answer to this question depends critically on the type
of a recommender system used, we first need to select a particular recommender
system and then augment it with aggregate ratings. In this paper, we consider three
different types of recommender system models, two of them based on collaborative
filtering and the third belonging to a class of hierarchical linear regression mod-
els (HLM) widely used in statistics and marketing [Raudenbush and Bryk 2001].
For each of these recommendation models we propose a method of incorporating
the external aggregate rating information into the overall recommendation process
and show, both theoretically and experimentally, that this additional information
indeed helps to improve estimations of unknown individual ratings.

The proposed approach is important for the following reasons. First, it shows
that the externally provided aggregate rating data does matter and indeed leads to
improved recommendations. Since such data is often available or can be obtained in
practical business settings, such as in the IMDB and Netflix example, the proposed
method is useful in many “real-life” applications. Second, being aggregated, such
data is often publicly available, as in the case of IMDB, and does not carry privacy
implications. Therefore, it can be freely and widely used in many recommender
systems. Finally, we also show in the paper that this aggregate rating informa-
tion is especially useful in those cases when items have only few ratings, i.e., they
belong to the Long Tail of recommender systems [Park and Tuzhilin 2008]. More
specifically, we demonstrate that the aggregate ratings information better improves
rating estimations of the items having only few than those having many ratings.
Therefore, our proposed method can be considered as one of the possible solutions
to the cold start problem [Schein et al. 2002]. Intuitively, this makes sense since
our results show that the aggregate rating information should be relied upon more
heavily when estimating unknown ratings of the items having only few individual
ratings.

In all this work, we make one fundamental assumption that the external aggregate
ratings are generated from the unknown individual ratings that have the same
distribution as the individual internal ratings. For example, in the IMDB/Netflix
example, we assume that the females from the IMDB database in the age category
of 18 to 29 who saw the movie “Madagascar” have the same statistical properties as
the same generation of females who saw “Madagascar” in the Netflix database (and
therefore, the Netflix population would also give an average rating of 6.9 (out of 10),
as in the IMDB case). Although not always the case, nevertheless this assumption
holds well for the three “real-life” datasets used in our studies and, therefore, the
experiments confirm our theoretical result that the aggregate external information
improves rating estimations.

Although the proposed methods theoretically improve predictions of unknown
ratings, in practice some of them work quite slowly on large datasets. Therefore,
one of the contributions of the paper lies in developing more advanced algorithms
that scale well to larger datasets. We present such advanced methods in the paper
and show how well they work on such datasets.
ACM Transactions on the Web, Vol. V, No. N, May 2009.
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In summary, we made the following contributions in this paper:

(1) presented a framework for incorporating aggregate information into various
recommender system models

(2) showed for these models how to apply the aggregate rating information to
estimating individual ratings for individual users

(3) theoretically and experimentally demonstrated that the aggregate ratings in-
formation indeed helps to provide better recommendations for these models

(4) showed how to scale the proposed methods to larger datasets

(5) proposed our methods as a solution to the cold-start problem and demonstrated
that our results indeed support our claim.

The rest of the paper is organized as follows. In Section 2, we present the re-
lated work. In Section 3, we state the general problem of incorporating aggregate
rating information into individual-rating-based recommender systems and present
the Aggregate Rating Recommendation Model (ARRM). In Section 4.1, we de-
scribe a model-based approach to collaborative filtering, present a way to introduce
aggregate information into the model and describe how to make the estimation
procedure scalable. In Section 4.2 we use the theoretical insights obtained from
the model-based collaborative filtering approach presented in Section 4.1 in order
to introduce the aggregate information into the classical heuristic item-based col-
laborative filtering. In Section 5, we describe how to add aggregate ratings into
a recommendation system based on the hierarchical linear regression model from
[Ansari et al. 2000] and present a scalable solution to estimating the parameters
of the model. In Section 6, we prove theoretically that the aggregate information
indeed improves the average MSE performance of the aforementioned models. In
Section 7 and 8, we show empirically on several datasets that the significant im-
provement is achieved for all the presented models when the aggregate information
is introduced. In Section 9, we describe how the external aggregate rating informa-
tion can be used for solving the cold-start problem. In Section 10, we summarize
our results and describe some directions for future research.

2. RELATED WORK

The usage of aggregate ratings has been previously studied in the recommender
systems literature. An idea of using an OLAP-based multidimensional approach to
recommender systems was proposed by [Adomavicius and Tuzhilin 2001]. This ap-
proach was subsequently extended and explored further in [Adomavicius et al. 2005].
Also, [O‘Connor et al. 2001] presents a method for providing recommendations to a
group of users. [Jameson and Smyth 2006] discusses the new issues that arise when
one considers web-based personalization involving groups for a certain subclass of
group recommender systems. [McCarthy et al. 2006] report a recommender system
that uses an iterative process to achieve good group recommendations from indi-
vidual recommendations by collecting individual user’s critiques. These methods
concentrate on the bottom-up approach to recommendations that use aggregate
ratings as a basis for recommendations to groups of users. In contrast to this,
[Bollen 2000] presents a top-down method for using aggregate information about
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traversal of hypertext pages by a group of users in order to provide better rec-
ommendations of hypertext pages to individual members of the group. [Bell et al.
2007] presents a two-level rating estimation method where at the lower level ratings
are estimated using collaborative filtering deploying local scale neighborhood infor-
mation. At the upper level, [Bell et al. 2007] uses SVD-style factorization based on
global scale information to improve predictions. However, this work does not use
any information on prespecified taxonomy of users or items, nor does it use exter-
nally specified aggregate ratings. [Agarwal et al. 2007] uses pre-existing taxonomy
of webpages and advertisements in order to better estimate the click-through rate
and combat the sparsity of the data. However, this work is only tangentially re-
lated to recommender systems, also does not use any externally specified aggregate
information and does not deal with aggregate ratings. This paper differs from all
this prior work in that it presents a general framework for incorporating the ag-
gregate rating information to improve estimations of individual unknown ratings
in a top-down fashion, considers three specific recommendation models and shows,
both theoretically and experimentally, that the proposed aggregate rating methods
indeed improve individual recommendations for these models.

Some preliminary work described in this article is reported in two conference
papers [Umyarov and Tuzhilin 2007] and [Umyarov and Tuzhilin 2008] previously
written by the authors. In particular, [Umyarov and Tuzhilin 2007] presents the ba-
sic idea of incorporating aggregate rating information into the statistical model of a
recommender system described in [Ansari et al. 2000]. Furthermore, [Umyarov and
Tuzhilin 2007] theoretically demonstrates that these incorporated aggregate ratings
indeed provide for better estimation of unknown ratings. However, [Umyarov and
Tuzhilin 2007] focused only on the recommender system from [Ansari et al. 2000]
(no collaborative filtering models were studied), the proposed method was highly
unscalable, and no empirical validation of the aforementioned theoretical result was
reported in that paper.

In contrast, [Umyarov and Tuzhilin 2008] studied how to incorporate aggregate
rating information into the collaborative filtering models, reported experimental re-
sults on small datasets and suggested the ways to make the method more scalable.
However, [Umyarov and Tuzhilin 2008] studied scalability only on a theoretical level
and did not experimentally test the considered solutions on large datasets. Also,
[Umyarov and Tuzhilin 2008] did not study how to use the aggregate rating infor-
mation as a solution to the cold-start problem, and did not compare the influence
of aggregate information on items with different density of observed ratings.

3. AGGREGATE RATING RECOMMENDATION MODEL (ARRM)

The idea of using aggregate ratings to improve estimations of individual ratings can
be operationalized by formulating a class of models containing the following two
components:

—Individual-Rating Model: a basic recommendation model estimating individual
ratings, such as unknown ratings of individual movies provided by individual
users and

—Aggregate-Rating Model: provides a way to introduce externally observed aggre-
gate ratings into the Individual-Rating Model, where rating aggregation is done
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over sets of users and items. For example, knowledge of an average rating of
7.7 (out of 10) from the IMDB database [IMDB 2006] given by males in the
age category of 30 to 44 for the movie “Last King of Scotland” can be used to
improve predictions of individual movie ratings in the Netflix database using the
Individual-Rating Model described in the previous point. Although we refer to
this approach as an Aggregate-Rating Model, we should note that the Aggregate
Rating Model is tightly coupled to the Individual-Rating Model, as explained be-
low. More specifically, we demonstrate below that each aggregate rating can be
interpreted as a certain type of a constraint that we call an aggregate constraint.

Note that we may assume a whole range of different types of Individual-Rating
Models. For example, an Individual-Rating Model can be a classical collaborative
filtering [Sarwar et al. 2001], or a hierarchical linear regression model [Raudenbush
and Bryk 2001], or any other method estimating an unknown individual rating
rij given by user i for item j. When we assumed a particular Individual-Rating
Model, the Aggregate-Rating Model is required to be consistent with the underlying
Individual-Rating model. For example, if individual ratings are assumed to be from
a multivariate normal distribution, then this implies that the true average aggregate
rating also has a normal distribution.

In practice however, we do not observe the true average rating from external
sources for various reasons ranging from aggregation over small sample to difference
in populations that the aggregate ratings and individual ratings come from. In order
to accommodate this issue, we need to also specify an Aggregate-Rating Model
that incorporates them in one way or another. For instance, following the previous
example, we may assume that we observe not the true average rating, but the true
average rating with some additive noise.

When both the Individual- and the Aggregate-Rating models are specified, the
combined model is called the Aggregate Recommendation Ratings Model (ARRM).
In the next three sections, we present three different types of such ARRM models
to illustrate how aggregate ratings can be used to improve individual recommenda-
tions. We then show, both theoretically and empirically, that the aggregate rating
information indeed improves individual recommendations for these models.

4. COLLABORATIVE FILTERING

First, we study how the aggregate ratings information can be used in the collabora-
tive filtering (CF) systems that constitute the “bread-and-butter” of recommender
systems. In particular, we use the standard item-based collaborative filtering [Sar-
war et al. 2001] and show how aggregate information can help in predicting un-
known ratings. However, since the item-based method constitutes a heuristic-based
approach and we would like to explore the problem not only empirically but also
theoretically, we first study how aggregate ratings information improves model-
based CF methods. To this extent, we first present a model-based CF method from
[Schwaighofer et al. 2004] in Section 4.1, that is grounded in the fundamentals of
statistical theory, and analyze it theoretically. Then in Section 4.2, we describe a
related approach for the item-based case and also show how the insights from the
theoretical model-based method are applied to handle the item-based approach.
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4.1 Model-based Collaborative Filtering

Following the ideas from Section 3, we first describe the Individual-Rating model
in Section 4.1.1 and then the Aggregate-Rating model in Section 4.1.2.

4.1.1 Individual-Rating Model. In this section, we follow [Schwaighofer et al.
2004] when describing a model-based approach. Assume we have a set of N users
and M items. Denote rij an observed or unobserved rating by user i for item j.
Moreover, for a specific item j, denote the vector1 rj = (r1j , r2j , . . . , rNj)

′ a vector
of ratings of all N users for item j. We assume that all vectors rj are i.i.d draws
from a multivariate normal distribution with some unknown mean vector µ and
unknown covariance matrix Σ:

rj ∼ N(µ, Σ) (1)

We also assume that for each j, we do not observe the vector rj completely, but
only observe some subset of ratings explicitly provided by some subset of users
K(j).

The goal of this recommender system is to estimate an unobserved rating rij from
the set of observed ratings {rkl} and parameters of the model µ, Σ. According to
[Bishop and Nasrabadi 2007], the least mean squared error unbiased estimator for
(1) is:

r̂ij = E[rij | observed {rkl}, µ, Σ]

For item j, consider the vector of observed ratings rKj , where K = K(j) is a
set of users whose ratings we have observed for item j, and the vector of unob-
served ratings rUj , where U = U(j) is a set of users whose ratings we have not
observed. From the assumption that rj is drawn from multivariate normal distri-
bution, we conclude that (rUj , rKj) is also drawn from the following multivariate
normal distribution:

(
rUj

rKj

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
(2)

As it is shown in [Flury 1997], the conditional expected value has the following
form:

r̂Uj = E[rUj |rKj = y] = µ1 + Σ12Σ−1
22 (y − µ2) (3)

We call the estimator r̂Uj unconstrained rating estimator (URE) for the rea-
sons that will become clear below when we introduce aggregate information as a
constraint.

4.1.2 Aggregate-Ratings Model. In this section we describe a method of adding
aggregate information to the unconstrained (URE) collaborative filtering model
presented in Section 4.1.1. We assume that we have some external source of in-
formation from which we also observe an aggregate rating ra = 1

N

∑N
i=1 rij for a

1We typed vectors in bold font as opposed to matrices and scalars that are typed in regular font.
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particular item j.2 In particular, assume that:

ra =
1
N

N∑

i=1

rij = aj = αj + εj , ε ∼ N(0, σ2
j ) (4)

where aj is the observed noisy average rating for item j, αj is the unobserved true
value of the average rating, εj is a noise component, σj is a known item-specific
parameter of the noise.

For example, assume we are using the Netflix Prize movie rating dataset [Bennett
and Lanning 2007] to predict the rating of “Madagascar” for a particular user and
we also know from IMDB [IMDB 2006] that the average rating ra for “Madagascar”
is aj = 6.5 with unobserved noise εj having the aggregate noise uncertainty σj =
0.15 for this movie.

Note that, as mentioned in Section 3, the external aggregate ratings may come
from a sample that is different from the sample of the given individual ratings.
However, the noise term ε allows us to handle such occasions by choosing σ ac-
cordingly. More specifically, if the sample for the aggregate information is quite
different in their characteristics from the sample of individual information, then
specifying high σ will allow to accommodate for the inappropriateness of the ag-
gregate rating for the particular sample and force the estimation procedure not to
treat this information as precise.

In this model, the joint distribution of the observed, the unobserved and the
aggregate ratings is a multivariate normal:




rUj

rKj

ra


 ∼ N







µ1

µ2

µa


 ,




Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33





 (5)

where Σ11, Σ12, Σ21 and Σ22 are as in (2). Since

cov(rij , r
a) = cov

(
rij ,

1
N

N∑

k=1

rkj + ε

)
=

1
N

N∑

k=1

cov (rij , rkj) (6)

the matrix Σ31 is just an average of all rows of Σ11 and Σ21. Similar analysis applies
to Σ32 which is an average of all rows of Σ12 and Σ22. To compute Σ33, we use the
following

cov(ra, ra) = cov

(
1
N

N∑

i=1

rij + ε,
1
N

N∑

k=1

rkj + ε

)
=

=
1

N2

N∑

i=1

N∑

k=1

cov (rij , rkj) + σ2 (7)

That is, Σ33 is the average of all the elements of Σ11, Σ12, Σ21 and Σ22 and the
variance of the aggregate noise σ2.

2The assumption that the average rating is computed only over item j is for algebraic convenience
only. The theoretical results can be easily generalized to the case of the average rating across any
arbitrary segment of users and items.
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Therefore, following the ideas from [Flury 1997], as in the case of equation (3), the
least mean squared error unbiased estimator that takes into account the observed
aggregate information (4) is

r̂∗Uj = E[rUj |rKj = y, ra = a] = µ1+

+
(

Σ12 Σ13

)(
Σ22 Σ23

Σ32 Σ33

)−1 (
y − µ2

a− µa

)
(8)

We call the estimator (8) the constrained rating estimator (CRE), since the esti-
mator is conditional not only on the observed ratings rKj , but also on the additional
constraint of the type (4). Therefore, we call equation (4) an aggregate constraint.

Define an aggregate correction term Tij using expression

r̂∗ij = r̂ij + Tij (9)

where r̂ij is the unconstrained estimator from (3) and r̂∗ij is the constrained esti-
mator from (8). Subtracting (3) from (8), we get the following expression for the
vector of correction terms T Uj :

T Uj =
(

Σ12 Σ13

)×
[(

Σ22 Σ23

Σ32 Σ33

)−1

−
(

Σ−1
22 0
0 0

)] (
y − µ2

a− µa

)
(10)

where T Uj is a vector of individual correction terms for all unobserved ratings
U = U(j) for item j.

From this definition of Tij , we may consider the process of introducing exter-
nal aggregate information as an addition of aggregate correction term Tij to the
standard model (3). As Theorem 6.1 shows below, adding the correction term to
the URE estimator (3) should improve the performance of the individual model.
Moreover, as we show in Section 8, this result holds not only in theory, but it is
also confirmed on the real-life rating data.

Also note that the case of observing multiple aggregate ratings ra1,. . .,ral for a
particular item j is a simple generalization from the described case of observing
just a single rating ra for item j.

4.1.3 Basic Solution. Equation (3) provides us a direct method for computing
the estimator of unobserved ratings rUj . However, we must take into account
that the parameters µ and Σ of model (1) are unobserved as well. Following
[Schwaighofer et al. 2004] and [Gelman 2004], they can be estimated using our
prior beliefs about the parameters and the observed ratings as follows.

We follow the standard assumption in Bayesian statistics [Gelman 2004] that our
prior beliefs are conjugate priors on µ and Σ:

Σ ∼ Inv-Wishartν0(Λ
−1
0 )

µ|Σ ∼ N

(
µ0,

1
k0

Σ
)

where ν0, Λ0, µ0, k0 are hyper-parameters of the model, that is, parameters spec-
ifying our prior belief about parameters Σ and µ before observing the data. The
ACM Transactions on the Web, Vol. V, No. N, May 2009.
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scalar hyperparameter ν0 describes the degrees of freedom and the matrix Λ0 de-
scribes the scale of inverse-Wishart distribution. The vector hyperparameter µ0 is
the prior mean and the scalar k0 is the scaling of prior variance.

In order to find the point estimates of unobserved parameters µ and Σ, we find the
values µ∗ and Σ∗ that maximize the posterior probability P (µ, Σ| observed {rkl}):

P (µ, Σ| observed{rkl})︸ ︷︷ ︸
posterior belief

∝ P (observed{rkl}|µ, Σ)︸ ︷︷ ︸
likelihood

P (µ, Σ)︸ ︷︷ ︸
prior belief

In [Schwaighofer et al. 2004], the parameters were estimated using expectation-
maximization algorithm. However, that approach did not work well on our data,
since their algorithm converged very slowly to a local optimum for us.

Therefore, in this paper we developed the following alternative method for esti-
mating parameters µ and Σ for model (1) by following the ideas from [Gelman 2004]
and taking into account our likelihood function (1). After some algebra, we find
that the negative logarithm of posterior distribution corresponds to the following
expression (up to a constant term):

− log P (µ, Σ| observed{rkl}) =
(

ν0 + N

2
+ 1

)
log |Σ|+ (11)

+
1
2
tr

(
Λ0Σ−1

)
+

k0

2
(µ− µ0)

′Σ−1(µ− µ0)+

+
M∑

j=1

(rKi − µK)′Σ−1
K (rKj − µK)
2

+
1
2

M∑

j=1

log |ΣK |

where K = K(j) is the ordered set of users whose ratings we observed for item
j, µK is a subvector of µ corresponding to mean ratings of the users from the set
K(j), ΣK is a submatrix of Σ corresponding to rating covariance matrix of the
users from the set K(j).

Therefore, the point estimates for unobserved parameters µ and Σ that are re-
quired for our analysis can be found by minimizing the expression (11) with respect
to µ and Σ, thus maximizing their posterior probability.

The minimization can be done using the following gradient descent iterative pro-
cedure. First, we compute the gradient of the negative log posterior (11) as follows.
Let us denote elements of some index set K as (k1, . . . , k|K|). Then we introduce
the matrix LK of size N × |K| as follows:

{
Lki,i = 1 ∀i ∈ [1, . . . , |K|]
Li,j = 0 for all other elements

Intuitively, if we multiply any matrix A by the matrix LK , then we just swap and
arrange columns of A according to ordered set K and remove from A the columns
corresponding to numbers that are not in K. For example,

ΣK = L′KΣLK
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Then the gradient of (11) w.r.t. parameter µ is

∂(− log P )
∂µ

= k0Σ−1(µ− µ0) +
M∑

j=1

LKΣ−1
K (µK − rKj)

The gradient of (11) w.r.t. parameter Σ is

∂(− log P )
∂Σij

=
(

ν0 + N

2
+ 1

)
tr

[
Σ−1 ∂Σ

∂Σij

]
+

1
2
tr

[
−Λ0Σ−1 ∂Σ

∂Σij
Σ−1

]
−

−k0

2
(µ−µ0)

′Σ−1 ∂Σ
∂Σij

Σ−1(µ−µ0)−
M∑

j=1

1
2

[(rKi − µK)′ (L′KΣLK)−1L′K
∂Σ

∂Σij
LK×

×(L′KΣLK)−1(rKj − µK)
]
+

1
2

M∑

j=1

tr
[
(L′KΣLK)−1LK

∂Σ
∂Σij

LK

]

Second, after defining this gradient, we estimate parameters µ and Σ using the
line search gradient descent procedure [Fletcher 1980] that guaranteed to converge
to a local minimum.

The estimates µ̂ and Σ̂ that are obtained after convergence of this algorithm are
substituted into equation (3) for computing ratings predictions.

In summary, the basic solution to the ARRM rating estimation problem can be
described as the following procedure:

(1) Estimate the complete parameters µ̂ and Σ̂ by minimizing the objective func-
tion described in (11).

(2) Once the parameters are known, estimate unknown ratings using equation (8).

Although the computational performance of the basic solution reported in Sec-
tion 8 for a particular smaller dataset was reasonable, more scalable methods are
needed for larger datasets. The method described so far requires estimation of
the N × N covariance matrix Σ in (1) where N is the number of users. It works
well with certain optimizations only for small- to medium-size datasets, such as the
Movie Rating dataset from [Adomavicius et al. 2005] as described in Section 7. To
address the scalability question, we present an alternative scalable solution in the
next subsection.

4.1.4 Scalable Solution. In this section, we present enhancements to our basic
solution that make it more scalable and allow it to work on larger datasets. In par-
ticular, we propose the following estimation method of unknown ratings. Consider
the ratings estimator from (8). If we estimate all the required unknown ratings rUj

simultaneously using this equation, then the estimation of the full N × N covari-
ance matrix Σ is required. However, note that if we could estimate the unobserved
ratings one-by-one using the same equation (8) and if we have only |Kj | observed
ratings for item j, then we would require approximately a |Kj | × |Kj | submatrix
of matrix Σ in (8) to estimate these ratings. More specifically, as it is written in
equation (8), we would only need to estimate the corresponding covariance subma-
ACM Transactions on the Web, Vol. V, No. N, May 2009.
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trix

Var




ruj

rKj

ra


 =




Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33




instead of the whole matrix Σ, where ruj is the unknown scalar rating for item j
that we are attempting to estimate.

If the number of observed ratings |Kj | for item j is small, then this method is
clearly better than the original one. For example, if there are 10,000 users and
every item has only 5 ratings, then it is clearly much faster to estimate 9,995 times
the matrix of size 7× 7 than to do it once but on a matrix of size 10, 002× 10, 002.

Moreover, as we have already mentioned, not only are the items with small
number of given ratings the easiest to estimate from the computational point of
view, but also the external aggregate information is meant to be especially helpful
for them. The items with very sparse known ratings are the ones targeted by us for
prediction improvement, since for heavily rated items the external aggregate rating
information is almost revealed in the dataset itself. Indeed, the items with fewer
ratings achieve better predictive performance improvements when aggregate rating
information is applied to them, as is shown in Section 9 describing our solution to
the Long Tail problem.

Therefore, we propose the following scalable estimation procedure:

(1) For every item with a small number of given ratings (as will be shown
in Section 8, computational complexity is reasonable for the items with
a “small” number of ratings, as reported in Figure 6) we estimate the
vector of parameters

(
µ′2 µ3

)
and the matrices Σ22, Σ23, Σ32 and Σ33

by minimizing the objective function described in (11).
(2) For every rating for such items, we estimate vector

(
Σ11 Σ12 Σ13

)
by

minimizing the objective function described in (11).
(3) We use equations (8) to calculate the prediction for the rating based

on the estimated parameters.

We should note that, for this method, we estimate matrices Σ31, Σ32 and Σ33

directly from the data. More specifically, we treat the aggregate rating ra as a
rating provided by some pseudo-user and estimate the covariance matrix from the
observed vectors

(
ruj rKj ra

)′ using the same Bayesian approach as we described
above in Equation (11).

Computational complexity of the estimation procedure. Note that, although the
dimension of the parameter space for this optimization procedure in Step 1 grows
quadratically with the number of observed ratings |Kj | for item j, we need to do
it only once per item. For example, for the item with 10 observed ratings, the size

of the matrix
(

Σ22 Σ23

Σ32 Σ33

)
is 11 × 11. Once estimated, these parameters are used

unchanged for computing every unknown rating for that particular item, and this
makes our approach scalable for large datasets, as will be experimentally shown in
Section 8.
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Furthermore, note that, although Step 2 in the above procedure is performed for
every rating, the optimization procedure is performed over a number of parameters
that is linear in |Kj |. For example, if an item has 10 known ratings, then the
size of vector

(
Σ11 Σ12 Σ13

)
is 12. Therefore, these parameters can be estimated

efficiently.
Finally, after the required parameters of Σ are estimated in Steps 1 and 2, the

complexity of estimating a single rating in Step 3 using equation (8) is O(|Kj |3),
where |Kj | is the number of observed rating for item j. Further, note that the
unknown ratings can be estimated independently from each other. Therefore, the
computational time for estimating n unknown ratings is linear in the number of
unknown ratings n, i.e., is O(n|Kj |3).

Note that it is hard to determine the exact computational complexity of the
described estimation procedure because Steps 1 and 2 involve iterative optimization
method converging to a local optimum. Therefore, we tested experimentally the
performance of our procedure and report the results in Section 8.

In conclusion, all the three steps in the estimation procedure are scalable for
the items with a small number of ratings. Further, this procedure is also highly
parallelizable because Steps 1, 2 and 3 can be performed independently and in
parallel for each item.

In summary, in this section we presented the model-based approach to CF and
showed that the external aggregate information can be incorporated into the in-
dividual rating model by introducing the correction term Tij in equation (9). In
Section 4.2, we apply this correction term approach when we incorporate the ag-
gregate rating information into the classical item-based collaborative filtering.

4.2 Item-based Collaborative Filtering

We follow the standard approach of [Sarwar et al. 2001] to the item-based CF in
this section and show how it can be improved using the aggregate information and
some of the ideas from Section 4.1.2.

Item-based collaborative filtering is one of the most popular recommendations
techniques used widely in industry [Schafer et al. 2001] including such companies
as Amazon [Linden et al. 2003]. The item-based approach attempts to determine a
user’s rating for an item based on the ratings of similar items this user rated in the
past, where the similarity between two items is established based on the correlation
between the ratings for these two items. More specifically, for user i and item j,
item-based CF estimates the rating rij as:

r̂ij =

∑
k∈I(i) sjkrik∑

k∈I(i) sjk

where I(i) is the set of the items for which ratings by user i are observed and sjk

is a measure of “similarity” between item j and item k.
A common measure of similarity between two items j and k is a Pearson corre-
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lation coefficient:

ŝjk =

∑

i∈K(j)∩K(k)

(rij − r·j)(rik − r·k)

√ ∑

i∈K(j)

(rij − r·j)2
∑

i∈K(j)

(rik − r·k)2

where r.j is a sample average rating for j-th item.
The item-based approach described above falls into the heuristic-based category

according to [Adomavicius and Tuzhilin 2005], unlike the model-based URE and
CRE estimators described in Sections 4.1.1 and 4.1.2. Therefore, formal statisti-
cal analysis to improving rating estimations presented in Section 4.1.2 cannot be
directly applied to the item-based approach.

However, we decided to use the theoretical insights obtained from the model-
based approach from Section 4.1.2 and applied them to the item-based approach as
follows. Since the rating estimator r̂∗ij that uses aggregate information has the form
defined by equation (9) having the additive correction term Tij , we conjecture that
the same correction term may help to improve the item-based CF. In particular,
we defined a new item-based rating estimator for the item-based CF method as

r̂∗ij =

∑
k∈I(i) sjkrik∑

k∈I(i) sjk
+ Tij (12)

where Tij is calculated as in (10). In Section 8, we empirically show that this new
rating estimator indeed improves performance of the item-based CF.

In summary, we propose the following estimation method for predicting unknown
rating rij for the item-based CF:

(1) Estimate the individual rating r̂ij from item-based CF model.
(2) Estimate the correction term Tij .
(3) Apply the correction term to the individual rating.

The scalability of the proposed method consists of two parts: 1) scalability of
item-based CF itself, 2) scalability of computation of correction term Tij . As we
demonstrated for the model-based CF in Section 4.1.2 the correction term Tij can
be calculated in a scalable manner.

After presenting the CF-based Aggregate-Rating models in this section, we next
present alternative Hierarchical Linear models.

5. HIERARCHICAL LINEAR MODEL

We have selected an instance of a Hierarchical Linear Regression Model (HLM) for
the Individual-Rating Model for the following reasons. First, HLM is a popular
type of a statistical model used by statisticians in modeling many “real-life” phe-
nomena [Hox 2002]. Second, it is also grounded in a sound statistical theory and
has several nice statistical properties [Raudenbush and Bryk 2001]. Therefore, an
HLM model can not only be studied experimentally, as the item-based CF model,
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but can also be analyzed theoretically, as is done in this paper. Third, HLMs have
already been independently proposed for modeling recommender systems both by
statisticians [Condliff et al. 1999] and marketers [Ansari et al. 2000]. Moreover, it
was demonstrated in [Ansari et al. 2000] that this type of the recommender system
outperformed the classical collaborative filtering model [Ansari et al. 2000].

In the next subsection, we present the basic Individual-Rating and in Section 5.2
the Aggregate-Rating Model.

5.1 The Individual-Rating Model

Another approach to Individual-Ratings Model that we consider in this paper is a
frequentist probabilistic version of the Bayesian recommendation models described
in [Ansari et al. 2000] and [Condliff et al. 1999]. Although less known in the
field of recommender systems and more computationally complex, these models
constitute hybrid recommender systems that use both item and user attributes to
make recommendations, and as [Ansari et al. 2000] demonstrated, these models
tend to outperform classical CF. We decided to use the frequentist rather than the
Bayesian approach in this paper because of the scalability and performance issues.

Assume there are NU users, where each user i is defined by zi of attributes of
user i, such as age, gender, income etc. Also assume that there are NI items, where
each item j is defined by vector wj of attributes3 of the item, such as price, weight,
size etc.

Let rij be a rating assigned to item j by user i, where rij is a real-valued number.
Moreover, ratings rij are only known for some subset of all possible (user, item)
pairs. Assume we also observe a vector of user attributes zi for each user i, a
vector of item attributes wj for each item j, a vector xij = zi ⊗ wj , where ⊗ is
the Kronecker product. Algebraically, xij is a long vector containing all possible
cross-products between individual elements of zi and wj .

Then the rating generation model is defined by [Ansari et al. 2000] as

rij = x′ijµ + z′iγj + w′
jλi + εij , (13)




E [εij ] = 0, Var [εij ] = σ2, ∀i, j
E

[
γj

]
= 0, Var

[
γj

]
= Γ, ∀j

E [λi] = 0, Var [λi] = Λ, ∀i
(14)

where vector µ, set of vectors {γj}, set of vectors {λi}, matrices Λ and Γ, and a
scalar σ constitute unobserved parameters of the model. The detailed derivation
of the functional form for this model from the simple underlying assumptions is
presented in Appendix B.

Intuitively, equation (13) presents a regression model specifying unknown ratings
rij in terms of the characteristics zi of user i, the characteristics wj of item j
and the interaction effects xij between them. Interaction effects arise from the
hierarchical structure of the model and are intended to capture effects such as how
the age of a user changes his or her preferences for certain genres of movies.

Vector µ in (13) represents unobserved (unknown), slope of the regression line.
Intuitively, each element of µ here represents a general “effect” of some user char-

3We also include constant term both in zi as a user attribute and in wj as an item attribute.
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acteristic on his or her “appreciation” of some item characteristic. For example, if
l-th item characteristic is its release year, k-th user characteristic is user age and
size of vector zi is |z|. Then the element µ(l−1)|z|+k can be interpreted as the
general effect of user age on his or her attitude towards item release year. This in-
terpretation is very similar to the interpretation of linear regressions with included
interaction terms that are widely used in social research.

Vector γj represents weight coefficients specific to item j that determine idiosyn-
cracy of item j, i.e., the unobserved heterogeneity of item j. Similarly, vector λi

represents weight coefficients specific to user i that determine idiosyncracy of that
user, i.e., the unobserved heterogeneity of user i. In (14) we make assumptions
about the moments of distributions for these heterogeneities. More specifically, we
assume they are independent from each other and have the same covariance matrix,
i.e.,

{
Var [λi] = Λ ∀i ∈ [1, NU ]
Var

[
γj

]
= Γ ∀j ∈ [1, NI ]

where Γ and Λ are unobserved covariance matrices.
We would like to stress that the parameters γj and λi of the regression model

(13) are unique for each individual item and each individual user respectively, thus
making rating estimations rij in (13) targeted to particular items and users. This
implies, among other things, that even if two items have exactly same attributes,
the model will produce different ratings for them even for the same user, because
each item has its own item-specific individual heterogeneity vector γj , which is
estimated based on each item’s own historical ratings.

We also assume that each observation rij has independent disturbances εij with
the same variance, that is,

Var [εij ] = σ2, ∀i, j
where σ is also an unobserved parameter.

5.2 Aggregate-Ratings Model

In addition to the individual ratings rij modelled by (13), we assume that we also
know several aggregate ratings provided externally for the model. We model these
aggregate ratings as expected values4 of an average rating across some segment S of
user-item pairs. That is, if there are k total possible user-item pairs in the segment
S, then we also observe the value a such as

Eε

[∑
i,j rij

k

]
= a, (15)

where the sum is taken over all the user-item pairs (i, j) ∈ S, and rij are all the
possible observed and unobserved ratings in segment S. For example, assume that
external statistical studies have shown that the expected average rating of some 100
action movies provided by 20 graduate CS students is a = 7.8 based on k = 2000
possible ratings of these movies by these users.

4Here we take expected value only over ε, not γj and λi
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Moreover, we may not be exactly sure about this aggregate information. Thus,
we assume that the aggregate ratings are “noisy,” which can be formally represented
as: {

Eε

[P
i,j rij

k

]
= α,

a = α + ξ, Eξ = 0, Var(ξ) = σ2
ξ ,

(16)

where ξ is an unknown noise component, α is an unknown true value for the ag-
gregate rating, a is the observed noisy value for the aggregate rating and σ2

ξ is a
known parameter. For instance, we may assume in the previous example that the
observed expected average rating of 100 action movies provided by 20 graduate CS
students is a random variable with mean a = 7.8 and the standard deviation of
σξ = 0.1.

Note that in practice, as mentioned in Section 3, the external aggregate ratings
may not be known exactly or may come from a sample that is different from the
sample of the given individual ratings. However, the noise term ξ allows us to
handle such occasions by choosing σ accordingly. More specifically, if the sample for
the aggregate information is quite different in their characteristics from the sample
of individual information, then specifying high σ will allow to accommodate for the
inappropriateness of the aggregate rating for the particular sample and force the
estimation procedure not to treat this information as precise.

In summary, the overall Aggregate Rating Recommendation Model model speci-
fies individual ratings rij using (13) and (14) and the aggregate ratings modeled as
(16). Note that as in the case of model-based CF, each observed aggregate rating
can be interpreted as an additional constraint on the parameters of the model that
we call an aggregate constraint. Then our task is to estimate parameters of this
model, given the data.

Given the model (13) with additional aggregate information of type (16), our
problem is to find the feasible way to estimate unknown parameters of the model:
vectors µ, {γj}, {λi}, matrices Λ, Γ and the scalar σ.

In Section 5.3 we present the “natural” statistical approach, previously reported
in our preliminary short paper [Umyarov and Tuzhilin 2007]5. Unfortunately, this
“natural” method itself does not scale well to the medium- and large-size problems,
as is demonstrated in Section 5.3. To address this problem, we present a new and
a more scalable method in Section 5.4.

5.3 Basic Solution

The “natural” solution of the model (13) and (16) presented in Section 5.2 is
based on the straightforward use of the Generalized Least Squares (GLS) esti-
mator [Greene 2002]. To describe it, we first introduce the notion of a compound
disturbance ηij by grouping together all the random effects in (13) as follows

rij = x′ijµ + z′iγj + w′
jλi + εij︸ ︷︷ ︸

ηij

, (17)

where we define ηij = z′iγj + w′
jλi + εij .

5We presented only the theoretical part of this approach in [Umyarov and Tuzhilin 2007] and did
not do any experimental analysis that is reported in this paper.
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By considering the compound disturbance term, we make the model a Generalized
Least Squares linear regression model (GLS) [Greene 2002].

The covariance structure of residuals ηij can be determined from equations (13)
and (17) using simple algebraic computations that result in the following expres-
sions: 




Eηij = 0,

Eηijηkl = 0, if i 6= k and j 6= l,

Eηijηik = w′
jΛwk, if j 6= k,

Eηijηkj = z′iΓzk, if i 6= k,

Eη2
ij = σ2 + z′iΓzi + w′

jΛwj ,

(18)

where expected value E(·) is taken over εij , λi and γj , and parameters Γ, Λ and σ
are defined in (14).

Let η be a vector consisting of all the residuals ηij corresponding to observed
ratings rij , and let Ω = Var(η) be its covariance matrix.

From (18), we conclude that Ω depends just on a few unknown parameters σ, Γ
and Λ. If we consistently estimate these parameters, then parameter µ of model
(13) can be estimated asymptotically efficiently using the Feasible GLS (FGLS)
estimator approach as shown in [Greene 2002]:

µ̂ =
(
X ′Ω̂−1X

)−1

X ′Ω̂−1r, (19)

where r is a column-vector of observed scalars rij stacked on top of each other, so
the first element of the vector is scalar ri1j1 , the second element is ri2j2 and so on.
X is a matrix of row-vectors x′ij stacked on top of each other one-by-one; thus the
first row of matrix X is the row-vector x′i1j1

corresponding to observation ri1j1 , the
second row of matrix X is the row-vector x′i2j2

and so on. Ω̂ is an estimate of Ω.
Next, we show how to utilize aggregate ratings to improve estimation of unknown

ratings rij . First, observe that the external aggregate rating (15) can be expressed
as:

E

[∑
rij

k

]
= E

[∑ (
x′ijµ + z′iγj + wjλi + εij

)

k

]
= (20)

=

∑
x′ij
k

µ +
∑

z′iγj

k
+

∑
wjλi

k
= a. (21)

We can see that the new information from equation (21) about the expected
average rating can be interpreted as an additional observation. To see this, denote
x̃ =

P
xij

k and η̃ =
P

z′iγj

k +
P

wjλi

k . Then equation (21) is equivalent to having
the following additional observation in the model:

a = x̃′µ + η̃, (22)

where the residual η̃ has a known covariation structure with other residuals ηij

defined in (17):

E[η̃ηij ] =
∑

t:
(i,t)∈S

w′
jΛwt

k
+

∑
t:

(t,j)∈S

z′iΓzt

k
, (23)
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E[η̃2] =
∑
i,j,t:

(i,j)∈S,
(i,t)∈S

w′
jΛwt

k2
+

∑
i,j,t:

(i,j)∈S,
(t,j)∈S

z′iΓzt

k2
. (24)

where S is the set of user-item pairs as defined in (15).
Therefore, the constrained model still fits the GLS paradigm. Note that for the

GLS estimator, equations (23) and (24) amount to introducing an additional row
and a column to matrix Ω corresponding to covariances (23) and (24). That is,

Ω̃ =
(

Ω ∗
∗ ∗

)
,

where ∗ denotes these additional column and row. Thus, by including this addi-
tional observation we create the extended covariance matrix Ω̃ from the matrix
Ω.

As we explained before, parameter µ in model (13) can be estimated asymptot-
ically efficiently using the Feasible GLS (FGLS) estimator approach (19).

Although the basic solution works well with certain optimizations for small
datasets, such as the Movie Rating dataset from [Adomavicius et al. 2005] as de-
scribed in Section 7, more scalable methods are needed for larger datasets. As
expression (19) demonstrates, straightforward estimation of µ requires inverting
matrix Ω̂ that is of size N × N , where N is the total number of ratings, which is
usually very large, even for the medium-size problems6. Thus, the GLS estimator
solution described in this subsection requires the inversion of a large matrix Ω̂,
which is very hard to do because it does not have a “nice” structure (e.g., it is not
block-diagonal, as matrix Θ described in Section 5.4 is).

Therefore, the “natural” basic solution presented in this subsection is not compu-
tationally feasible, even for the medium-sized problems. To address this scalability
issue, we propose an alternative more advanced method in the next section that
scales well to significantly larger problems.

5.4 Scalable solution

In order to overcome the difficulty of inverting matrix Ω̂ while preserving the given
covariance structure (18), our model (13) can be rewritten as follows:

rij = x′ijµ +
(
0 · · · w′

j 0 · · · z′i · · · 0
)

︸ ︷︷ ︸
yij




λ1

...
λi

...
γ1
...

γj
...




︸ ︷︷ ︸
u

+εij (25)

6For example, the Netflix Prize dataset has on the order of 100,000,000 ratings [Bennett and
Lanning 2007].
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where u =
(

λ′1 · · · λ′i · · · γ′1 · · · γ′j · · ·
)′

and yij =
(
0 · · · w′

j 0 · · · z′i · · · 0
)

Therefore expression (25) becomes:

rij = x′ijµ + y′iju + εij (26)

[Neumaier and Groeneveld 1995] show that the models of type (26) are equivalent
to the following augmented model:

(
r
0

)
=

(
X Y
0 I

)

︸ ︷︷ ︸
A

(
µ
u

)
+

(
ε
−u

)

︸ ︷︷ ︸
ν

(27)

where r, X and Y are observations rij , x′ij and y′ij stacked on top of each other
respectively, as explained in (19), and µ, u are unobserved parameters. Denote





ν =

(
ε

−u

)
, A =

(
X Y

0 I

)

Var[ν] = Θ

(28)

As in the case of the FGLS solution (19), the FGLS estimator for the augmented
model (27) is

(
µ̂
û

)
=

(
A′Θ−1A

)−1
A′Θ−1

(
r
0

)
(29)

The trick of analyzing model (27) instead of (17) is that the disturbance term in
this model is ν, not η. Unlike the case of Var[η] = Ω (as discussed in Section 5.3),
the covariance matrix Var[ν] = Θ has the following block-diagonal structure7:




σ2 0 · · · 0

0
. . .

σ2

Λ
...

. . .
... Λ

Γ
. . . 0

0 · · · 0 Γ




(30)

For this reason, it is easy and scalable to invert Θ, unlike the case of the more
complex matrix Ω described in Section 5.3. Note also, that Θ is a block-diagonal
matrix filled with σ, Λs and Γs on the main diagonal as shown in (30). That is,
the entire large covariance matrix Θ is completely determined from parameters σ,
Λ and Γ.

7This follows immediately from the definition of ν.
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In order to estimate the unknown variance components σ, Λ and Γ, we em-
ploy traditional procedure of Restricted Maximum Likelihood (REML) estimator
[Geert Verbeke 2000]. According to the theory presented in [Geert Verbeke 2000],
the values σ̂, Λ̂, Γ̂ that minimize the following expression are consistent estimators
of σ,Λ,Γ:

{σ̂, Λ̂, Γ̂} = arg min
[
ν̂′Θ−1ν̂ + log det Θ + log det(A′Θ−1A)

]
(31)

where ν̂ is a vector of ordinary least squares (OLS) residuals of regression model
(27) and A is defined in (27) and (28).

Parameters σ̂, Λ̂ and Γ̂ can be computed based on (31) using the BFGS Quasi-
Newton method with a mixed quadratic and cubic line search gradient descent
procedure [Fletcher 1980] that guaranteed to converge to a local minimum.

In summary, our proposed scalable solution can be described as follows:

(1) Estimate variance components σ, Λ and Γ using REML estimator (31)
(2) Estimate regression components µ, u (and therefore, {λi}, {γj}) using

equation (29).

To show scalability of the proposed methods, we need to show that the REML es-
timator of variance components and the estimator of µ, {λi}, {γj}, as described at
the end of Section 5.4, can be computed efficiently even for the large-scale problems.

The REML estimator, as defined by (31), requires an iterative optimization pro-
cedure, for which it is difficult to derive good theoretical estimates of computing
time. However, what we should note is that REML estimator estimates only a few
unknown parameters σ, Λ and Γ. The number of these parameters is fixed and does
not depend on the sample size nor on the number of users and items. Therefore, we
do not need to use the whole sample of observations, users and items to estimate
these parameters, and need only a smaller random subsample to generate good
estimates of σ,Λ and Γ. Thus, in practice, the computational complexity of this
estimator is O(1) in terms of the sample size and the number of users and items.

For the scalable estimator of µ and u, the computational complexity stems from
the complexity of solving the system of linear equations8 (29) and matrix multi-
plication in (29). The number of unknowns in (29) is O(NU + NI), where NU

is the number of users and NI is the number of items. Thus, the complexity of
solving the system of linear equations in (29) is O

(
(NU + NI)3

)
. The complex-

ity of matrix multiplication in (29) is O(N(NU + NI)), because of the very sparse
and block diagonal structure of Θ as shown in (30), where N is the total num-
ber of known ratings. Thus, the overall complexity of the advanced estimator is
O

(
(NU + NI)3 + N(NU + NI)

)
.

We should note however, that in practice due to specific structure of matrices A
and Θ, multiple matrix multiplications A′Θ−1A with different Θs can be done very
efficiently. More specifically, the “dense” part of A, that is (XY ) in equation (28),

8When estimating µ and u in (29) in practice, we do not need to actually invert the matrix
A′Θ−1A. Instead, we need to solve the system of linear equations, e.g. using the Gaussian
elimination technique.
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is multiplied only by a diagonal matrix of Θ consisting of σ−2, and only the sparse
part of A is multiplied by Λ−1 and Γ−1.

Note that this is a “reasonable” complexity, because the number of users NU

and items NI in practical applications is not as big and does not grow as fast as
the number of actual ratings N . For instance, the Netflix prize dataset, which
constitutes a very large-scale problem, has less than 18 thousand items, less than
500 thousand users, but over 100 million ratings. Fortunately, the complexity of
the presented method in terms of N alone is linear.

In our experiments, reported in Section 8, we used the advanced solution de-
scribed in Section 5.4 that we applied to medium-size datasets. As we describe in
Section 8, computational performance was “manageable” on these datasets, which
confirms the conclusions of this subsection that the computational performance of
the REML estimator and the regression components are “reasonable.”

6. THEORETICAL RESULTS

We have presented two theory-based models incorporating aggregate ratings, i.e.,
model-based CF in Section 4.1 and HLM in Section 5. In this section, we theoreti-
cally demonstrate that these two models provide for better rating estimations than
the standard individual rating models without aggregate rating information. We
start with the model-based CF by formulating and proving the following theorem.

Theorem 6.1. The expected prediction mean squared error of the constrained
model-based CF rating estimator (CRE) is smaller than the expected mean squared
error of the unconstrained model-based CF rating estimator (URE).

The proof of this theorem is in Appendix A, and it is based on the following idea.
If we compare the variance Var[rUj |rKj = y] of the unconstrained estimator (3)
and the variance Var[rUj |rKj = y, ra = k] of the constrained estimator (8), then
algebraically the following relationship holds:

Var[rUj |rKj = y, ra = k]︸ ︷︷ ︸
constrained

= Var[rUj |rKj = y]︸ ︷︷ ︸
unconstrained

−V

where V is some non-negative definite matrix. Since both estimators are unbiased,
then the lower standard error of the estimator implies the lower mean squared error
of predictions [Bishop and Nasrabadi 2007]. Therefore, the expected mean squared
error of the predicted ratings can only decrease from the additional aggregate rating
information.

The next theorem pertains to the HLM model from Section 5.

Theorem 6.2. The expected prediction mean squared error of the HLM estima-
tor with aggregate information is smaller than the expected mean squared error of
the HLM estimator without aggregate information.

The proof of this theorem is in Appendix A, and it is based on a similar idea that
is behind the proof of Theorem 6.1: if we compare algebraically the variance Var[r̂ij ]
of the HLM estimator without aggregate information and the variance Var[r̂∗ij ] of
the HLM estimator with aggregate information, then it is possible to algebraically
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derive the following relationship:

Var[r̂∗ij ]︸ ︷︷ ︸
with aggr.

= Var[r̂ij ]︸ ︷︷ ︸
w/o aggr.

−v

where v is some non-negative number. These two estimators are also unbiased.
Therefore, lower variance leads to lower expected mean squared error when using
aggregate ratings.

Although the proofs of these two theorems are technically quite different, both
of them are based on the same fundamental idea that the extra aggregate ratings
information can be interpreted as some sort of an additional observation (“pseudo-
observation”) in the sample. Moreover, the sample size usually matters in the
sense that an estimator trained on a bigger sample will, on average, outperform
the estimator trained on a smaller sample. Then we mathematically show (using
different techniques) that these additional “pseudo-observations” obtained from the
aggregate ratings data indeed help to decrease the variance of the rating estimators
in both cases.

Furthermore, we believe that this fundamental idea is not limited just to the
model-based CF and the HLM models and that Theorems 6.1 and 6.2 can be gener-
alized to a broader class of recommendation models. Determination of this broader
class of models constitutes a topic of our future research, as will be explained further
in Section 10.

In this section, we theoretically demonstrated that using aggregate ratings in the
model-based CF and the HLM models indeed improves estimations of unknown
individual ratings. In the next section we present the results of our empirical study
in which we experimentally confirm these theoretical findings.

7. EMPIRICAL SETTINGS

In this section, we describe the data used in our experiments, partitioning of the
data into the training and the testing sets, and the performance measures used in
our experiments.

7.1 Individual rating datasets

We used the following “real-life” datasets for learning individual ratings and em-
pirically validating our methods.

7.1.1 MovieLens Dataset. We used the full MovieLens dataset [MovieLens 2006]
consisting of more than 1 million ratings of 3900 movies provided by 6040 users.
The user attributes included age and gender. Movie attributes included movie
release year and genres represented by 7 dummy variables taken from the IMDB
record corresponding for each movie.

7.1.2 Movie Rating Dataset. We used the data from the study [Adomavicius
et al. 2005] on 61 users that provided 1110 ratings for 62 movies. More specifically,
the dataset from [Adomavicius et al. 2005] contains demographic information about
users such as user’s age, gender, home ZIP code and preferences about the context
behind the movie watching experience, such as the preferred time and venues for
watching movies. For the movies, the dataset from [Adomavicius et al. 2005] pro-
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vides the movie title and the movie release year. For users’ ratings, this dataset
provides complete description of the context of the movie watching experience, such
as when, where and with whom the movie was seen.

7.1.3 Subsample #1 of the Netflix Prize Dataset. We also used a random sub-
sample of the Netflix Prize dataset [Bennett and Lanning 2007] consisting of 10,000
users and 10,000 movies with 200,000 ratings. The subsample was produced using
the following procedure:

(1) Select 10,000 random users from the set of all the Netflix users ranked between
#10,000 and #300,000 based on the total number of ratings they gave.

(2) Select 10,000 random movies out of the movies that these 10,000 users watched.
(3) Select 200,000 random ratings out of the ratings that these 10,000 users pro-

vided for these 10,000 movies.

This dataset contains the release year and the genre (represented by 7 dummy
variables) for the movies and no attributes for the users since the Netflix Prize
dataset [Bennett and Lanning 2007] contains no data at all about their customers
beyond the customer ID number. For movies, the Netflix Prize dataset [Bennett
and Lanning 2007] provides the movie title and the release year. For users’ ratings,
the dataset contains the timestamp when the rating appeared on the website.

Finally, each of these 3 datasets was split into ten subsets for the 10-fold cross
validation. All rating data were normalized to the [0,1] interval.

7.1.4 Subsample #2 of the Netflix Prize Dataset. Another random subsample
of the Netflix Prize dataset [Bennett and Lanning 2007] consisting of 1,000 users
and 1,000 movies with 5,000 ratings. The subsample was produced using the same
procedure as described in Section 7.1.3.

7.2 Aggregate rating dataset

In order to introduce aggregate rating information from the external sources into the
Individual Rating datasets described above, we extracted from the IMDB database
[IMDB 2006] the average ratings of the movies used in those datasets, i.e. for each
movie in the Individual Rating datasets, we attempted to find a corresponding
average movie rating from IMDB. The results of this matching process are presented
in the following table:

Name of dataset Total Number of Movies Movies Matched
MovieLens 3,952 2,162

Movie Rating Dataset 62 62
Netflix #1 10,000 9,949
Netflix #2 1,000 998

We also extracted the information from IMDB on the number of votes used to
compute the aggregate rating.

7.3 Training and testing strategies

In order to empirically validate our approach, we split each dataset into 10 subsets
for the 10-fold cross validation. The Netflix and the Movie dataset from [Adomavi-
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cius et al. 2005] were splitted randomly into 10 subsets with 90% of the data going
into training set and 10% of the data going into the test set.

For the MovieLens dataset, we used a different procedure. MovieLens dataset is
an example of a fairly dense dataset, and it does not contain enough seldomly rated
items that are used in our studies described in Section 9. Moreover, a significant
number of these movies are not represented in the IMDB database. Therefore, we
used the following special sampling procedure to increase the number of seldomly
rated movies with the available aggregate rating information that we needed in our
experiments:

(1) Find all items having from 2 to 5 observed ratings in the dataset and put 1
random rating of these into the training set and the rest into the test set

(2) Find all items having from 6 to 7 observed ratings in the dataset and put 2
random ratings of these into the training set and the rest into the test set

(3) Find all items having 8 observed ratings in the dataset and put 3 random
ratings of these into the training set and the rest into the test set

(4) Find all items having 9 observed ratings in the dataset and put 4 random
ratings of these into the training set and the rest into the test set

(5) Find all items having 10 observed ratings in the dataset and put 5 random
ratings of these into the training set and the rest into the test set

This procedure is repeated 10 times for MovieLens dataset in order to obtain 10
different random training and test sets.

7.4 Performance measures

We compute the performance measure as follows. First, we select k aggregate
observations in some predefined random order for k = 0, 1, 2, 3, . . ., and incorporate
them into the individual Rating Datasets, as described in the ARRM models above.
Then, for each k, we calculate the average mean squared error (MSE) of predictions
of the models that use exactly k aggregate ratings across all the aforementioned test
sets. Finally, we plot the graph of these MSEs for each value of k = 0, 1, 2, 3, . . .,
as is shown, for example, in Figure 3 for the case of the MovieLens dataset. Note
that k = 0 means that no aggregate rating information is used at all, and we are
dealing with the basic individual rating prediction model in this case.

Based on the theoretical results from Section 6 (Theorems 6.1 and 6.2), we conjec-
ture that the MSEs in these graphs should decrease with the number k of available
aggregate ratings, and we report the results of these experiments in Section 8.

8. EMPIRICAL RESULTS

For the Netflix #1 dataset, we run the models only on items having no more than 4
observed ratings for the following reasons. First, as argued in Section 9, these items
are expected to benefit the most from the aggregate information. Second, more
than 4,000 items out of 10,000 qualify for this criteria as reported in Figure 1, and
therefore we have a large sample of items for our experiment. Third, as explained
in Section 4.1.4, our method is scalable for this setting. For the MovieLens dataset,
we also run the model only on items having no more than 4 observed ratings for
the same reasons as for the Netflix #1 dataset. Furthermore, for the Netflix #2
ACM Transactions on the Web, Vol. V, No. N, May 2009.
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Fig. 1. Histogram of the distribution of the number of known ratings in Netflix #1 dataset

0 200 400 600
0.067

0.068

0.069

0.07

0.071

0.072
Model−based CF on Netflix

M
S

E
 P

er
fo

rm
an

ce

Number of aggregate constraints introduced
0 200 400 600

0.0695

0.07

0.0705

0.071

0.0715

0.072

0.0725
Item−based CF on Netflix

M
S

E
 P

er
fo

rm
an

ce

Number of aggregate constraints introduced

Fig. 2. MSE drifts down on a subset #1 of Netflix as more aggregate information is introduced

and the Movie Rating dataset from [Adomavicius et al. 2005], we run the models
on the full sample of data.

The graphs in Figures 2, 3, 4 represent the MSE performance of each correspond-
ing model as a function of the number of additional aggregate ratings introduced.
Each figure plots on the x-axis the cumulative number of additional aggregate
ratings introduced into the model. The 0-th tick corresponds to the plain basic rec-
ommendation model without any aggregate ratings. The 1st tick corresponds to the
basic recommendation model with only a single aggregate rating being introduced
into the model. The 2nd tick adds one more aggregate rating to the aggregate rat-
ing of the 1st tick, and so on. On the y-axis we plot the average MSE performance
of the model based on the 10-fold cross-validation. As Figures 2, 3, 4 show, the
MSE measure drifts down in all the cases and we explain this phenomenon further
below.

We next show for each model and each dataset by how much the MSE per-
formance is improved for the case of no aggregate information vs. when all the
available aggregate information is used. For example, in Figure 3, we compare the
MSE of ≈ 0.05 when k = 0 which corresponds to no aggregate information vs. the
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Fig. 3. MSE drifts down on a MovieLens dataset as more aggregate information is introduced
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Fig. 4. MSE drifts down on a Movie dataset as more aggregate information is introduced

MSE of ≈ 0.047 when k = 149 for the case of all the available aggregate informa-
tion being used. The results of such MSE improvements across all the 6 graphs in
Figures 2, 3, 4 are presented in the following table:

Dataset # of aggr.ratings Model-based CF Item-based CF
MovieLens 149 5.7% 6.1%

Movie Dataset 62 0.77% 3.4%
Netflix #1 696 4.1% 3.2%

We would like to emphasize that these results constitute solid performance im-
provements, given the number of additional aggregate ratings they are based on.
For comparison, the $1,000,000 Grand Prize of the Netflix Prize Competition re-
quired the total performance improvement of 10% for the RMSE. Moreover, if the
leading competitor of the Netflix Competition could achieve an RMSE performance
improvement of 0.85% today (as of September 14, 2008), that competitor would
have won the $1,000,000 Netflix Grand Prize.

Similarly, the graphs in Figure 5 represent the MSE performance of the HLM
ACM Transactions on the Web, Vol. V, No. N, May 2009.
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Fig. 5. MSE drifts down for HLM model as more aggregate information is introduced

model presented in Section 5 as a function of the number of additional aggregate
ratings introduced.

For the HLM model, we also show in the following table by how much the MSE
performance is improved for the case of no aggregate information vs. when all the
available aggregate information is used:

Dataset # of aggr.ratings HLM model
Movie Dataset 62 1.0%

Netflix #2 998 1.4%

These results also constitute significant improvements over the basic non-aggregated
model, as was argued before.

Figures 2, 3, 4 and 5 clearly show that MSE drifts down as the number of aggre-
gate ratings increases, but not in a purely monotonic fashion. More generally, the
graphs of MSE on Figures 2, 3, 4 and 5 represent an underlying stochastic process
[Karatzas and Shreve 1991]. Theorems 6.1 and 6.2 state that the expected MSE of
the respective models can only decrease as more and more aggregate ratings are
introduced. In other words, these theorems state that MSE process is a stochastic
process with the drift down. Therefore, occasional non-monotonic jumps can hap-
pen because adding one particular realization of an aggregate rating to the training
sample does not always improve MSE on the test set. For example, the aggregate
rating of 6.5 given to movie “Madagascar” may not reflect biases of the particular
segment of users that happen to give the ratings in MovieLens dataset, and this
aggregate rating may not fit well with the particular individual ratings given to
movie “Madagascar” by the users in our dataset. However, as Theorems 6.1 and
6.2 state, the stochastic process should have a drift down and this is exactly what
we observe for all the datasets and for all the models in Figures 2, 3, 4 and 5 .

Furthermore, all these performance improvements do not happen by chance alone.
To see this, assume that the reported performance improvements simply constitute
random white noise. This assumption would imply that the MSE graphs in Fig-
ures 2, 3, 4 and 5 are the results of a stochastic process with zero drift with MSE
improvements jumping arbitrarily up and down as additional aggregate ratings are
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Fig. 6. Parameter estimation time for 1 item in 10, 000× 10, 000 dataset

introduced (and plotted along the x-axis). However, it is clear from the graphs that
the process has a drift down for all the datasets that we used. There is no single
case of the MSE of the constrained estimator with 50-100 aggregate ratings or more
being bigger or equal to the MSE of the unconstrained estimator. Therefore, we
conclude from these observations that this downward drift would have been very
unlikely under the assumption that the performance improvement is just a random
white noise, which is in line with the result of Theorems 6.1 and 6.2.

Computational Performance and Scalability. We tested the basic solution method
for CF described in Section 4 on the Movie Rating dataset from [Adomavicius et al.
2005] that was implemented in MATLAB and run on Intel Xeon CPU 3.73GHz. In
particular, Step 1 of the estimation procedure from Section 4.1.2, i.e. the estimation
of the unknown parameters µ and of the complete matrix Σ using the iterative
gradient descent algorithm, took on the order of 6 hours. It follows from this that
the basic solution is applicable only to small datasets such as the Movie Rating
dataset.

To test the computational performance of the scalable CF solution presented in
Section 4, we ran the algorithm on a much larger datasets, such as Netflix #1 and
MovieLens. As described in this Section, we estimated the ratings for the items
with no more than 4 known ratings and the estimation procedure implemented
in MATLAB on Intel Xeon CPU 3.73GHz took 19.5 hours for MovieLens and
22.1 hours for the Netflix #1 dataset. More generally, computational performance
of the scalable CF solution depends on the number of already observed ratings
for an item, as presented in Figure 6 and therefore is reasonable for the items
with few ratings. More specifically, Figure 6 depicts the average CPU time spent
on Intel Xeon CPU 3.73GHz by the optimization procedure minimizing the value
function (11) for a single item as a function of the number of already observed
ratings for this item.

The computational time for the scalable estimator of HLM model was reasonable
on all the datasets. In particular, the solution of the REML optimization prob-
lem (31) implemented in MATLAB on Intel Xeon CPU 3.73GHz took 6.5 hours for
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Netflix #2 dataset. As pointed out in Section 5.4, this computational time does not
grow in the number of ratings, users and items, and therefore is to be considered
as a constant. After the parameters were estimated, the solution of (29) took less
than 1 second for the whole dataset used.

9. USING AGGREGATE RATINGS FOR SOLVING THE COLD START PROBLEM

In this section, we explore the relationship between the proposed aggregate rating
methods described in the paper and the cold start problem of recommender systems
[Schein et al. 2002]. In particular, we show how our proposed methods can be used
as a solution to the cold start problem.

9.1 The Cold Start Problem and the Long Tail of Recommender Systems

One of the key problems of recommender systems is the cold start problem: how
to recommend items that have no ratings at all or only few ratings. This is a
serious problem because a significant majority of the items fall into this category
by belonging to the Long Tail of recommender systems [Park and Tuzhilin 2008].
This observation is also confirmed, for example, in Figure 1 for the Netflix #1
dataset, where the vast majority of the movies have only few available ratings.
Furthermore, as [Park and Tuzhilin 2008] demonstrates empirically, the prediction
error rates of individual rating recommender systems increase significantly for the
items belonging to the Long Tail due to the lack of the available ratings data. This
problem has been studied before, and various solutions, such as the ones described
in [Schein et al. 2002], have been proposed to solve the cold start problem.

In this section we demonstrate that our methods for incorporating aggregate
ratings information into recommender systems can be used as one of the possible
solutions to the cold start problem. The intuition behind our idea is quite simple:
when only few ratings are specified for an item, we do not have enough observations
to make good estimations of unknown ratings for the individual-level models and,
therefore, should rely more heavily on the aggregate ratings corresponding to this
item. In contrast, if many ratings are available for an item, these ratings carry
enough observations to better estimate unknown ratings for the item, and the ag-
gregate rating information is better “revealed” in the dataset itself and therefore
the external aggregate rating does not provide as much improvement.

The empirical evidence for this intuition is provided in the next subsection.

9.2 Empirical Results

In Sections 7 and 8, we theoretically and experimentally demonstrated that the
aggregate ratings information improves overall estimations of unknown ratings. In
this section we demonstrate that these improvements are even more significant
for the items having only few ratings (and thus belonging to the Long Tail of
recommender systems) and decrease as the number of ratings grows.

To demonstrate this effect, for the Netflix #1 and the MovieLens datasets, we
applied our aggregate rating estimation methods separately to the items having a
certain number of known ratings, starting with items having only 1 rating, only 2
ratings, etc. and built rating estimation models separately for each of these cases.
Then we recorded the MSE performance improvements across these models for both
datasets. The results of these experiments are recorded in Figures 7 and 8.
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(b) Item-based CF on Netflix

Fig. 7. MSE performance improvement is better for the items having only 1 observed rating than
average performance for the items having between 1 and 4 observed ratings on the Netflix #1
dataset.

Figures 7 and 8 plot the MSE improvement results for the model-based CF and
the item-based CF for the Netflix #1 and MovieLens datasets respectively, as a
function of the number of additional aggregate constraints introduced. On the
x-axis each figure plots the cumulative number of additional aggregate ratings in-
troduced into the model, and on the y-axis each figure plots the change in MSE
from the case of no aggregate information to the case of having the specified amount
of aggregate ratings introduced.

As Figures 7 and 8 demonstrate, the drop in the MSE error rates when additional
aggregate information is added to the individual rating models is more significant
when we run the model only on the items having very small number of ratings than
when we add items with more observed ratings.

These results confirm our hypothesis, based on the aforementioned intuition, that
when only few ratings are specified for an item, more significant predictive perfor-
mance improvements can be achieved by using the aggregate rating information.

10. CONCLUSIONS

In this paper we present an approach to incorporating externally specified aggregate
ratings information into certain types of recommender systems, including model-
and item-based collaborating filtering and a hierarchical linear regression (HLM)
models.

For the model-based CF and the HLM methods, we formally showed that this
additional aggregated information provides more accurate recommendations of indi-
vidual items to individual users. Furthermore, theoretical insights gained from the
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Fig. 8. MSE performance improvement is better for the items having only 1 observed rating than
average performance for the items having between 1 and 4 observed ratings on the MovieLens
dataset.

analysis of the model-based CF method suggested a way to incorporate aggregate
information into the heuristic item-based CF method. We empirically tested all the
three approaches on several datasets, and our experiments uniformly confirmed that
the aggregate rating information significantly improved the basic non-aggregated
recommendation models. Furthermore, we developed advanced scalable versions of
the three basic aggregate recommendation models and showed that they scale well
to larger recommendation problems.

Finally, we demonstrated that when only few ratings are specified for an item,
more significant predictive performance improvements can be achieved by using
the aggregate rating information corresponding to this item than in the case when
more ratings are provided. This means, among other things, that our methods for
incorporating aggregate ratings information into recommender systems can be used
as a solution to the cold start problem.

The results reported in this paper are important because they demonstrate that
the externally specified aggregated data is useful for providing better recommen-
dations. Moreover, being aggregated, such data is often publicly available and
does not carry privacy implications. Therefore, it can be freely and widely used in
many recommender systems. Finally, our results are also important because they
contribute to the solution of the difficult cold-start problem.

As a future research, we plan to combine the top-down aggregate rating method
presented in this paper with the bottom-up method of computing aggregate rat-
ings for the groups of users. The solution to this problem will help us to fill-in
the entire OLAP-based hierarchy of aggregate ratings and provide for even better
predictions of individual ratings as well as group ratings. We also plan to develop a
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wider theoretical framework by identifying a class of recommendation methods for
which we can formally show that the aggregate ratings can help to provide better
recommendations. Finally, another direction for future research is the development
of even more scalable and more advanced methods for faster estimation of various
parameters of the aggregate rating models.
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A. APPENDIX: PROOFS OF THEOREMS 6.1 AND 6.2

A.1 Proof of Theorem 6.1

Proof. From (5), (8) and the properties of multivariate normal distribution, we
conclude that the conditional distribution of (rUj , r

a)′, given that rKj = a, is also
a multivariate normal distribution with the covariance matrix:

Var
[(

rUj

ra

)∣∣∣∣ rKj = y

]
=

(
S11 S12

S21 S22

)
(32)

Therefore, the variance of the estimator without aggregate ratings is

Var[rUj |rKj = y] = S11

However, as it follows from (32) and the properties of multivariate normal dis-
tribution [Flury 1997], the variance of the estimator with aggregate information
is

Var[rUj |rKj = y, ra = k] = S11 − S12S
−1
22 S21

Since S22 is a non-negative definite matrix, S12S
−1
22 S21 is also a non-negative

definite matrix. Therefore,

Var[rUj |rKj = y, ra = k] ¹ Var[rUj |rKj = y]

That is, in terms of comparison of non-negative definite matrices, the covariance
matrix of CRE is “smaller” than the covariance matrix of URE. This implies that
the standard errors of CRE are also smaller.

Since both estimators r̂∗ij and r̂ij are unbiased, then lower standard error of the
estimator implies lower mean squared error of predictions [Bishop and Nasrabadi
2007].
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A.2 Proof of Theorem 6.2

Proof. Intuitively, the proof is based on the idea that specifying an aggregate
rating is equivalent to adding a new observation and on the idea that the sample
size matters, i.e., the expected MSE on the test set of the estimator trained on the
bigger sample size will be smaller than the expected MSE on the test set of the
estimator trained on the subset of the sample.

More formally, consider the model as we have it in (17)

y = Xµ + η, Eηη′ = Ω (33)

Denote m — the GLS estimator of µ. This model doesn’t take into account
additional information, so we call m unrestricted estimator.

Consider also the following model

y∗ = X∗µ + η∗, Eη∗η
′
∗ = Ω∗

where we just added one observation to equation (33). So X∗ is just X with one
additional row corresponding to the observation and Ω∗ is just Ω with additional
row and column corresponding to covariances of the additional observation with all
other observations. That is,

y∗ =
(

y
∗

)
X∗ =

(
X
∗

)

and

Ω∗ =
(

Ω ∗
∗ ∗

)

Denote m∗ — the estimator for this model. The model takes into account the
additional observation, so we call it restricted estimator.

Denote V = Var[m] and V∗ = Var[m∗].
As we know from [Greene 2002]

Var[m] =
(
X ′Ω−1X

)−1

and Cholesky decomposition of Ω:

Ω = C ′C

Thus

Ω−1 = C−1
(
C−1

)′

Now do the same thing for Ω∗:

Ω∗ = C ′∗C∗

Actually, C∗ is equal to C with an additional column (and an additional row of
zeros). That is,

C∗ =
(

C ∗
0 ∗

)

It is a trivial fact since Ω∗ differs from Ω just by existence of additional column and
additional row. It is also a trivial fact that C−1

∗ is equal to C−1 with an additional
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column. That is,

C−1
∗ =

(
C−1 ∗

0 ∗
)

Consider

(Var[m])−1 = X ′Ω−1X = X ′C−1
(
C−1

)′
X

Consider also

(Var[m∗])
−1 = X ′

∗Ω
−1
∗ X∗ = X ′

∗C
−1
∗

(
C−1
∗

)′
X∗

As we noted, C−1
∗ is equal to C−1 with an additional column, thus

(
C−1
∗

)′ is
equal to

(
C−1

)′ with an additional row. It is also easy to notice that
(
C−1
∗

)′
X∗

differs from
(
C−1

)′
X only by the addition of the last row. Denote this last row as

row-vector x̃′. Then,

(
C−1
∗

)′
X∗ =

( (
C−1

)′
X

x̃′

)

It means that

(Var[m∗])−1

︷ ︸︸ ︷((
C−1
∗

)′
X∗

)′ (
C−1
∗

)′
X∗ = (34)

=
((

C−1
)′

X
)′ (

C−1
)′

X
︸ ︷︷ ︸

(Var[m])−1

+ x̃x̃′︸︷︷︸
positive semidefinite

(35)

For positive-semidefinite matrices A and B, we write that A º B if ∃ positive-
semidefinite matrix C such as

A = B + C

In terms of these positive-semidefinite inequalities, we can rewrite equation (34)
as follows

(Var[m∗])
−1 º (Var[m])−1

As we know from theory of positive-semidefinite inequalities [Bhatia 2007], it
means that

Var[m∗]︸ ︷︷ ︸
V ∗

¹ Var[m]︸ ︷︷ ︸
V

So there is a precise sense in which we can say that the covariance matrix of
the restricted estimator V ∗ is actually smaller than the covariance matrix V of the
unrestricted one.

Now consider predictions that we make from these two models for some vector
of regressors x:

{
ŷ = x′m, E[x′m] = x′µ, Var[x′m] = x′V x

ŷ∗ = x′m∗, E[x′m] = x′µ, Var[x′m] = x′V ∗x
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We know that V ∗ ¹ V . We also assume that x̃ 6≡ 0 in equation (34), that is the
constraint is informative. Algebraically, it means that

{
∀x : x′V ∗x ≤ x′V x

∃x such that x′V ∗x < x′V x
(36)

Denote y a true value at test data point. That is, the test data point itself is
going to be a noisy measurement of this true value:

yt = y + η

Denote x, z, w corresponding observables. According to the famous equation
for expected MSE [Hardle. 2004], the MSE between the true value and predicted
value for the unrestricted estimator is

E[MSEU |x] = E[ŷ − y]2 = bias2 + Var[ŷ] = x′V x

since given our assumption about independence of residuals and regressors, the GLS
estimator is unbiased, so bias = 0.

Similarly, expected MSE of the restricted estimator is

E[MSER|x] = x′V ∗x

Taking into account equation (36), we get that
{
∀x : E[MSER|x] ≤ E[MSEU |x]
∃x such that E[MSER|x] < E[MSEU |x]

So assuming not pathological data generation mechanism for x, that is it can
possibly generate x such as inequality holds in eq.(36), then it is clear that

Ex [E[MSER|x]]︸ ︷︷ ︸
E[MSER]

< Ex [E[MSEU |x]]︸ ︷︷ ︸
E[MSEU ]

Thus,

E[MSER] < E[MSEU ]

So we proved that a single additional observation reduces E[MSE]. We apply this
idea inductively and conclude that adding an additional observation can only reduce
E[MSE]. Thus, the incorporation of multiple information on aggregate ratings can
only reduce E[MSE].

B. APPENDIX: DERIVATION OF THE HLM MODEL

Consider the following steps in deriving this model:

(1) Assume first we run linear regression of movie ratings rij solely on movie at-
tributes wj :

rij = w′
jβi + εij , εij ∼ N(0, σ2) (37)

That is, we run separate regressions for each user i and therefore we get the
user-specific vector of coefficients βi. Intuitively, j-th element of each vector
βi is a (user-specific) “appreciation” to the j-th characteristic of movies. For

ACM Transactions on the Web, Vol. V, No. N, May 2009.



... · 37

example, if j-th characteristic of a movie is movie release year, then j-th element
of βi will represent average “attitude” of user i towards newer or older movies.

(2) Now we say that since the vector of coefficients βi is user-specific, we can try
to explain each element of it from known user attributes zi.

βi = Ziµ + λi, λi ∼ N(0, Λ) (38)

where matrix Zi is constructed from the vector-column of the user attributes
zi as follows:

Zi =




z′i 0 · · · 0
0 z′i · · · 0

0 0
. . . 0

0 · · · 0 z′i




Intuitively, each element of µ here represents a general “effect” of some user
characteristic on his “appreciation” of some movie characteristic. For example,
if j-th movie characteristic is movie release year, k-th user characteristic is user
age and size of vector zi is |z|. Then the element µ(j−1)|z|+k can be interpreted
as the general effect of user age on his attitude towards movie release year. This
interpretation is very similar to the interpretation of regressions with included
interaction terms that are widely used in social research.

(3) Now we substitute eq.(38) into eq.(37) and get

rij = w′
jβi + εij = w′

j(Ziµ + λi) + εij =

= w′
jZi︸ ︷︷ ︸

x′ij

µ + wjλi + εij

This is how we define the vector xij and if we examine the vector in detail this
vector contains all “interactions” (cross-products) between elements of vectors
zi and wj .
Therefore, we achieved the following functional form for the model

rij = x′ijµ + w′
jλi + εij (39)

Now if we repeat the same procedure but at the step 1) we will regress rij on
user attributes zi, instead of movie attributes wj , we will get the model

rij = x′ijµ + z′iγj + εij (40)

(since this task is purely symmetrical of movie attributes and user attributes)

(4) Next we sum the two models from equation (39) and equation (40) to incorpo-
rate properties of both and the model has the functional form that is suggested
by [Ansari et al. 2000]:

rij = x′ijµ + z′iγj + w′
jλi + εij
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C. THEOREM ON COMBINATION OF ESTIMATORS

Theorem C.1. Assume x̂1 and x̂2 are two biased estimators of unknown quan-
tity x with the following properties:





Ex̂1 = a1x + b1, Var(x̂1) = v1

Ex̂2 = a2x + b2, Var(x̂2) = v2

cov(x̂1, x̂2) = c12

where a1, a2, b1, b2, v1, v2, c12 are known values.
Assume that we create a new estimator x̂ as a linear combination of x̂1 and x̂2,

that is

x̂ = α + βx̂1 + γx̂2

Then, the estimator x̂ is unbiased and achieves the lowest variance if




β = a1v2 − c12a2

a2
1v2 − 2c12a1a2 + a2

2v1

γ = c12a1 − a2v1

a2
1v2 − 2c12a1a2 + a2

2v1

α = −βb1 − γb2

Proof. First of all, we show what the expected value and variance of this new
estimator are in terms of observed values.

E [x̂] = α + βE [x̂1] + γE [x̂2] = α + β(a1x + b1) + γ(a2x + b2) =

= α + βb1 + γb2 + x(βa1 + γa2)

Var [x̂] = β2Var [x̂1] + γ2Var [x̂2] + 2βγcov (x̂1, x̂2) =

= β2v1 + γ2v2 + 2βγc12

Note that we restrict our attention only to unbiased estimators, therefore

E [x̂] = α + βb1 + γb2 + x(βa1 + γa2) = x (41)

Among those α, β and γ that satisfy the equation (41), we would like to choose
α, β and γ such that this is the estimator has the minimal variance, therefore we
have to solve the constrained optimization problem to find the optimal α, β and γ

min
α,β,γ

β2v1 + γ2v2 + 2βγc12

subject to
{

βa1 + γa2 = 1
α + βb1 + γb2 = 0

First of all, note that the objective function does not depend on α and the
structure of the restrictions is such that α can be unambiguosly deduced once we
know β and γ. That is, the optimization task is equivalent to the following

min
β,γ

β2v1 + γ2v2 + 2βγc12
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subject to βa1 + γa2 = 1
Then α can be deduced as α = −βb1 − γb2.
This is a standard quadratic programming program with linear equality con-

straint. Denote

V =
(

v1 c12

c12 v2

)
; A =

(
a1 a2

)
; ρ =

(
β
γ

)
; b = (1)

then the original optimization problem can be rewritten as

min
ρ

1
2
ρ′V ρ

subject to Aρ = b.
In order to solve this optimization problem, we apply the method of Lagrange

multipliers by specifying a Lagrangian function and looking for its saddle points

L =
1
2
ρ′V ρ− λ′(Aρ− b)

Then the saddle point is characterized by the following first-order conditions

L′ρ = V ρ−A′λ = 0

A′λ = V ρ, so λ = (AA′)−1AV ρ

Substituting it back into the Lagrangian we get

L =
1
2
ρ′V ρ− ρ′V A′(AA′)−1(Aρ− b)

Then,

L′ρ = V ρ− (V A′(AA′)−1A + A′(AA′)−1AV )ρ + V (AA′)−1b = 0

That is,

ρ = (V A′(AA′)−1A + A′(AA′)−1AV − V )−1V A′(AA′)−1b

ρ =
(
A′(AA′)−1A + V −1A′(AA′)−1AV − I

)−1
A′(AA′)−1b

By substituting our original expressions for V , A and b back and by simplifying
the expression we get the expressions for β and γ.
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