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Prediction in Financial Markets: The Case for Small Disjuncts

VASANT DHAR, New York University

Predictive models in regression and classification problems typically have a single model that covers most, if
not all, cases in the data. At the opposite end of the spectrum is a collection of models, each of which covers a
very small subset of the decision space. These are referred to as “small disjuncts.” The trade-offs between the
two types of models have been well documented. Single models, especially linear ones, are easy to interpret
and explain. In contrast, small disjuncts do not provides as clean or as simple an interpretation of the
data, and have been shown by several researchers to be responsible for a disproportionately large number
of errors when applied to out-of-sample data. This research provides a counterpoint, demonstrating that a
portfolio of “simple” small disjuncts provides a credible model for financial market prediction, a problem
with a high degree of noise. A related novel contribution of this article is a simple method for measuring
the “yield” of a learning system, which is the percentage of in-sample performance that the learned model
can be expected to realize on out-of-sample data. Curiously, such a measure is missing from the literature
on regression learning algorithms. Pragmatically, the results suggest that for problems characterized by a
high degree of noise and lack of a stable knowledge base it makes sense to reconstruct the portfolio of small
rules periodically.
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1. INTRODUCTION

Machine learning has seen successful published applications in a number of application
areas that include the natural sciences, engineering, medicine, and business. The no-
table exception is financial markets, where published research on predictive modeling
is scant. Some argue that to the extent there is predictability, there is little incentive to
publish research that “works” since a good discovery can be very financially rewarding.
Skeptics would argue that there is little scope for predictability since markets tend to
be efficient. The reality is that there continues to be considerable interest and effort at
finding structure and predictability in financial markets.

Financial time-series forecasting is difficult because of the inherently noisy nature
of the domain. It is commonly known that most forecasting models do a very poor job in
predicting future returns. It is also commonly known that return predictions of typical
financial time-series forecasting models are usually very close to the mean because of
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Fig. 1.

the inherent difficulty of making accurate forecasts, particularly for the larger values
of returns. Figure 1 demonstrates this phenomenon showing actual returns from the
S&P500 and predicted returns from a predictive model. Notice the large variance of
actual returns relative to predicted returns, which means that a standard measure of
error that compares actual to predicted returns (such as Mean Squared Error (MSE)
or Mean Absolute Error (MAE) is dominated by the large actual values that contribute
towards most of the error. This situation is particularly discouraging since it is the
really the large future values that we really care about predicting well. Predictions
around zero are relatively uninteresting in that we would not take any action in such
instances.

Machine learning methods provide a potential solution to the problem of predictions
being close to the mean because of their ability to easily partition the data into multiple
sets and build a collection of models suited to each partitioning of the data. Some
partitions can make large positive or negative predictions, while the others make
predictions close to the mean, with the smaller partitions typically making the more
extreme predictions. For example, Figure 2 shows a regression tree that recursively
partitions a dataset into smaller subsets, with each subset representing the conjunction
of conditions/splits that lead to it.

The dataset in this example consists of 1000 cases with mean of zero and standard
deviation of 1. Notice that the rightmost partition covers only 3% of the dataset (30
cases out of 1000), but its mean is 1, indicating that on average the partition represents
a significant positive return in the data. The partition represents the following rule.

IF “ret5 > 1” and “ret2 > 1” → Fret mean=1

The independent variables are observed at the current time. These are derived from the
original time series of prices. In the preceding example, one of the derived independent
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Fig. 2.

variables is the previous five period return (Ret5), and another is the previous two pe-
riod return (Ret2). The prediction is the expected return in the next period, designated
as Fret mean in the previous rule. We can similarly follow the other paths in the tree
and identify the corresponding rules that correlate combinations of the independent
variables to the dependent variable. Some rules will have more extreme values of the
dependent variable, which means that their means are distant from the overall mean
of the data. The nodes on the left in Figure 1 are relatively uninteresting since the
expected returns associated with these conditions are close to the overall mean of zero.
These situations would result in no action on the part of a mechanical decision making
system since the expected return in such situations is negligible.

The obvious drawback of this recursive partitioning approach is its tendency to find
data partitions that make extreme predictions, but which “overfit” to the data in that
they happen by chance alone to result in large absolute values for the dependent
variable. This is known as “fitting a model to the noise” [Lee 1999]. The potential
benefit, on the other hand, is its ability to model genuine but infrequently occurring
situations as separate submodels.

A collection of low support situations such as the one in the bottom right node of
Figure 2 are referred to in the literature as “small disjuncts” [Weiss 2000] since the
learned patterns are alternative ways of making the same prediction. This article
makes the case that good predictive models can be based on collections of certain types
of small disjuncts.

A partitioning of the data as in Figure 2 is based on “axis parallel splits,” in that all
instances of groups produced by splitting the data have identical values for one of the
variables. The advantage of this method is simplicity and high level of explainability
of the partitions and an efficient computational method for generating them. The dis-
advantage is that for problems where the groupings can be expressed more naturally
in terms of combinations of variables, the axis parallel method can use too many splits
to approximate the true groupings. Other methods such as “oblique partitions” can
produce simpler and more accurate trees in such cases [Murthy et al. 1994]. Indeed,
as one can imagine, there are other more complex splits possible at each node, includ-
ing nonlinear multivariate ones, with methods such as genetic algorithms applied to
discovering linear combinations of variables [Cantu-Paz and Kamath 2000] or Boolean
conditions of independent variables [Dhar et al. 2000]. In this article we have limited
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ourselves to axis parallel splits and simple explainable decision trees for a number of
reasons. First, this is probably the most widely used and best understood data mining
method and tends to work well on a remarkable range of problems. Second, our ap-
proach to financial prediction is to assemble many “simple” disjuncts of low complexity
that are easily interpretable. Finally, our objective is to test whether this simple ap-
proach to predictive modeling has promise. If it does, future research can build on it
and improve predictive accuracy using potentially more complex splitting criteria.

The remainder of this article is organized as follows. We first review the literature
on small disjuncts. We discuss complexity, a key parameter in machine learning al-
gorithms, as it applies to small disjuncts. We them describe the data and measure
of performance. This is followed by a description our learning algorithm (a standard
tree induction algorithm called CART [Breiman et al. 1984]) that is applied to various
in- and out-of-sample datasets within and across time, and an interpretation of the
corresponding results. We also define a simple construct called yield that measures the
percentage of performance that a learned model realizes relative to an ideal model.
We conclude with a discussion of the merits of using ensembles of small disjuncts to
financial time-series forecasting. The basic argument is that for noisy problems that do
not have a central structure, a distributed approach to forecasting works well when we
keep the disjuncts simple. This approach is also suited to the problem because a system
takes action only when it sees interesting opportunities and is silent at all other times.
Apparently, this is also a characteristic of successful human traders.

2. SMALL DISJUNCTS: PRIOR RESEARCH

A small disjunct is a pattern that covers few training examples. In other words, the
“coverage” or “support” of the pattern is limited, such as the lower rightmost node
in Figure 2. A collection of small disjuncts, however, can cover a large part of the
data, which means that they can have a significant impact on the overall quality of a
learned model. A pattern can be represented using a rule, a neural network, a support
vector machine, a regression model, or other representation that relates independent
variables to a dependent variable. In Figure 2, the pattern is a rule.

We are agnostic about the representation of small disjuncts although we represent
them as decision rules. A rule consists of a left- and right-hand side. The left-hand side
is a conjunction of Boolean conditions, where each condition is expressed in terms of
variables, relational operators, and constants. An example of a condition is “the 5 day
return is greater than 1.” The term “5 day return” is a standard measurement of the
time series, like a “feature” in standard data mining applications. The right-hand side
consists of an expected return that results by “applying” the left-hand side to the time
series. This is the dependent variable we are trying to predict in the future.

Rules vary in several key ways. Support measures how much of the dataset the rule
covers. Specifically, if N is the total number of examples in a dataset, then for a rule of
the form A → B:

Support = (Number of cases satisfying A)/N
= p(A). (1)

The right-hand side, B, is based on the type of problem. For classification problems,
it specifies the majority class corresponding to the cases satisfying A. For regression
problems, it is a numerical value, typically the average of the cases satisfying A, and
is in Figure 2.

There has been a fair amount of research on small disjuncts in the machine learning
literature. Much of it suggests that they produce a disproportionately large percent-
age of errors but collectively cover enough cases that they can’t simply be ignored or
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discarded [Holte et al. 1989; Quinlan 1991; Pazzani 1992; Danyluk and Provost 1993;
Weiss 1995; Weiss and Hirsh 2000]. For example, Holte et al. showed that disjuncts
that cover only 12% of the cases in the training set account for 57% of the errors. They
noted that the “generality bias” used by learners like ID3 works well for large disjuncts
but not small ones. On the other hand, a “specificity bias” produces lower error rates for
the small disjuncts, but it increases the error rates for the large ones, making no differ-
ence to overall accuracy of the learner. Ting [1994] refined this approach by combining
two learners: if a case is covered by a large disjunct, it is classified by a generality
bias learner, otherwise by one with a specifity bias. The drawback of this method is the
difficulty of defining practically (and in advance) what is meant by a “small” or “large”
disjunct.

Quinlan [1991] proposed an interesting method for reducing the error rates for small
disjuncts. Noting that class distributions are often skewed, disjuncts predicting the
minority class are likely to have higher error rates. Quinlan [1991] incorporated these
prior probabilities of the target class in classifying examples. Quinlan’s method calcu-
lated the prior probabilities only on those training examples that are “close” to a small
disjunct, meaning that they don’t satisfy only one of the conditions of the pattern. His
method produced lower error rates than the naı̈ve model. In a similar vein, Pazzani
[1992] assigned lower “reliability” to small disjuncts, effectively lowering their impact
on the overall accuracy of a classifier.

A number of researchers have tried to provide explanations for when and why small
disjuncts tend to provide erroneous predictions. Danyluk and Provost [1993] pointed
to the difficulty of separating systematic noise from cases that are truly exceptional.
Along these lines, Weiss and Hirsh [1998] showed that as class noise increases so
does the number of small disjuncts, although with very high levels of noise the errors
become more concentrated in the larger disjuncts. In a later paper, Weiss and Hirsh
[2000] showed that as the size of the training set increases, errors tend to occur in the
small disjuncts.

It is interesting that all the research on small disjuncts has been entirely on classifica-
tion problems. What is notable about financial market prediction is that it represents a
regression problem, not a classification one in which the dependent variable is discrete,
often binary. When comparing models, the standard statistics used to evaluate classi-
fiers such as “true positives” (which may be thought of as the proportion of winners)
and “false positives” (proportion of losers) are meaningless. The quality of a system is
driven by its ability to predict large values , even at the expense of being wrong on the
small ones. A system can be profitable even if it wins a third of the time, and it can be
unprofitable even it wins 90% of the time. The magnitude of winners and losers can be
more important than their relative percentages. This makes regression problems in-
herently different from classification problems in terms of how performance of a model
is calculated. We return to this issue after presenting the results.

An additional point of interest in understanding and interpreting prior literature
on small disjuncts is that the problems studied, those from the UCI database and
synthetic problems, have had a fair degree of known or controllable structure where
for the most part the large disjuncts captured most of this structure. It is not surprising
therefore that the small disjuncts would account for a larger proportion of the errors.

Last but far from least, the complexity of small disjuncts was not explicitly controlled
for in prior studies. The small disjuncts typically generated had a large and variable
number of conditions. Without a control on model complexity, it has been impossible to
know definitively whether small disjuncts perform better if their complexity is limited
and held constant. As we discuss shortly, we keep complexity as low as possible and
fixed across disjuncts, making sure that the learner generates disjuncts that do not
exceed a specific threshold of complexity.
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3. COMPLEXITY

It is well known that if we let a learner partition the data without regard to the
number or types of conditions it imposes on the independent variables, it will generate
models that predict every example in the training set perfectly, but these models will
fail miserably on data they have not encountered. In the example of Figure 2, if the
left-hand side were something like

IF “1.01 > ret5 > 1” and “0 > ret2 > 0.01” and “2 > ret3 > 2.1”

we could probably regard it as too “complex” because of the large number of conditions,
in this case six, and the fact that each condition “pinches” a very narrow range of
values of the independent variables. Such disjuncts will memorize the data instead of
generalizing from them and not perform well on future data. For this reason, it makes
sense to limit the complexity to the extent possible while still allowing the disjuncts to
represent interaction effects.

It is important to be able to represent interaction effects in financial time-series
forecasting because these allow combinations of variables to be conditional. In Figure
2, for example, the rightmost leaf node says that high future returns can be expected
when Fret5 exceeds 1, conditional on Fret2 also exceeding 1. This adds complexity
to the model relative to simple additive models, but it gives it the power to model
nonlinearities.

Complexity has been studied extensively in the machine learning literature from a
number of angles. Linear models are considered “simple” in terms of structure com-
pared to nonlinear models. The former are considered “high bias” since they impose
a simple structure to which a learned model must conform in making predictions. In
contrast, nonlinear models such as trees are considered more complex or “low bias”
since they do not impose a structure on the model a priori (see Perlich et al. [2003] for
a comparison of the two types of models).

Because nonlinear models allow a learner considerable degrees of freedom in fitting
a model to data, a considerable amount of attention goes into specifying and control-
ling for it in learned models depending on the representation. This includes the VC
dimension in support vector machines [Vapnik 1995], hidden nodes in neural networks
[Poggio and Girosi 1989], and the number of conditions imposed on inputs to compute
the output in decision/regression trees [Arora and Barak 2009].

Disjunct complexity has not been controlled for explicitly in prior studies, making
it somewhat difficult to compare the results and to assess the impact of disjunct com-
plexity on predictive accuracy. As we explain more fully next, we control explicitly for
complexity.

In this study, we define disjunct complexity along two dimensions. The first of these is
the number of conditions, which is a standard measure for trees and rules. The second is
the number of variables allowed in the disjunct. Both dimensions deal with interaction
effects, but the latter allows us to control for the dimensionality of the search space that
the learner can consider. The famous expression “curse of dimensionality” coined by
Bellman [1957] illustrates the exponential increase in examples required in a sample
for every dimension (in this case, variable) that is added to the search space.

Our objective specifically is to keep the small disjuncts as simple as possible by
limiting the interaction effects allowed between variables, thereby minimizing the
“curse of dimensionality.” To keep things simple, we therefore limit the small disjuncts
to dyads, that is, involving two variables with axis parallel splits as shown in the
example in Figure 2, with “Ret5 > 1” and “Ret2 > 1.” These constraints keep the
variable interaction effects as simple as possible while still giving the learner some
room to model nonlinearities.
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The dyad in the example in Figure 1 has one major limitation, namely, its inability
to represent ranges of the form “0 > Ret2 >1.” Considering the fact that correlations
between variables can be nonlinear and hold within specific ranges, this is a severe
hindrance. For this reason, we allow one other condition to be imposed in the dyad on
one of the variables in terms of the standard relational operators. This representation
enables us to learn rules of the form

“Ret5 > 1” and “0 > Ret2 > 1” → Fret mean=0.3.

In summary, we keep disjunct complexity as low as possible, but enabling a learner to
capture conditional interaction effects. Limiting ourselves to dyads with a limit of three
conditions for all disjuncts also keeps model complexity below a specific fixed threshold.
By controlling for model complexity we can evaluate the impact of disjunct support size
on performance. Do smaller disjuncts perform better as long as complexity is low? We
can answer this question by varying a parameter, namely support, and testing for
predictive performance. Before we do this, let us describe the data and the measure of
performance.

4. DATA AND MEASUREMENT

An observation (datum) consists of a pair (Zfret, X), where X is a vector denoting the
current state and Zfret is a continuous value we are trying to predict.

How should we measure the performance of a predictive model? A commonly used
measure of performance in Finance is “risk adjusted return,” which is typically a return
divided by the risk involved in achieving it. Risk is generally measured in terms of
volatility of returns, often calculated as a standard deviation of a return series.

A suitable time interval needs to be used to compute the volatility of each instrument
for normalizing returns. For each instrument, performance is measured as follows:
given a period of returns of the instrument {ri−N, ri−N+1, . . . ri−2, ri−1, ri,ri+1}, where
iis the current day, the risk adjusted future period return is defined as

Zfret = ri+1/Stdev(ri−N, ri−N+1, . . . ri), (2)

where N is a parameter used to standardize the returns. We use N=250, which uses
roughly one year of historical data to calculate the volatility of returns for the in-
strument. In practice, N must be chosen to provide a representative distribution of
returns.

Expressing performance in terms of risk adjusted returns makes it possible to com-
pare all instruments using an identical measure. It lets us pool data across instruments.
A volatile instrument, for example, would generate returns of high magnitude relative
to one where volatility is low. In order to achieve the same dollar return per trade, one
would therefore invest a larger dollar amount in the latter. We express performance of
all instruments in terms of risk adjusted performance for learning and evaluation. The
instruments chosen in this study were the most liquid global equity indices and include
the S&P500, Dow Jones 30, Russell 2000, S&P Midcap 400, Nasdaq 100, Nikkei 225,
Hang Seng, EuroStoxx 50, FTSE 100, CAC 40, IBEX 35, and the DAX 30. Daily open,
high, low, and close prices were used from the date of inception of the futures contract
for the instrument up to May 22, 2008. The total dataset consists of 44,473 records and
can be found at the following URL.

http://w4.stern.nyu.edu/emplibrary/allData.equ2.intime v69 posted.xls
http://w4.stern.nyu.edu/emplibrary/allData.equ2.outoftime v69 posted.xls

The vector X consists of a standard set of indicators that represent the “state” of the
market every day for each instrument [Kauffman 2004]. In this study, 68 indicators
were included that are described in the Appendix. The properties of the indicators and
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Fig. 3.

criteria for selection are beyond the scope of this study and peripheral to the focus of
this article. For a detailed analysis of these and other typical indicators used to describe
financial time series, the reader is referred to Kauffman [2004] and Achelis [2000].

For the first set of experiments, the data were partitioned randomly into two equal
parts 50 times, covering the same length of time as illustrated in Figure 3. In this
dataset, end date is June 30, 2003. The start date varies by instrument, depending on
when it began trading. The random partitioning of the data provided 50 in-sample and
50 out-of-sample datasets consisting of an identical number of records (14,834 each).
The learning algorithm was applied to each of the 50 training sets, and performance
was measured for each learned model on the corresponding out-of-sample dataset.

5. LEARNING ALGORITHM

The learning algorithm applied to the in-sample data is CART [Breiman et al. 1984]
which takes as input pairs (Zfret, X) of the form described in the previous section
and generates trees of the type in Figure 2. Each path through the tree to a leaf
node is a rule of the form A → B, where A is a conjunction expressed in terms of at
most two independent variables (dyads), relational operators, and constants and B is
the expected value of the dependent variable corresponding to the cases covered by
A. Since input was restricted to consider only dyadic combinations from among the
independent variables for reasons expressed earlier, for N variables, the learner was
therefore invoked NC2times, thereby generating N.(N-1)/2 trees.

The first constraint applied to the learner is on the depth of trees. We limit the
number of splits allowed to three in order to limit disjunct complexity. Since each
terminal node represents a rule, the upper bound on the number of rules per tree is 2S,
where S is the number of splits or conditions allowed. This results in an upper bound
of 2S−1.N.(N-1) rules.1 For 68 variables and the limit of three splits used in this study,
this upper bound is 18,224 rules for each threshold of support.

The second parameter was used to control the unevenness of the split permitted.
Depending on the data, it is not unusual for the induction algorithm to create highly

1The actual number of rules generated are a little lower than this upper bound since not all trees need to be
balanced.
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imbalanced splits, with only a single or few cases going into one partition. This is
known as an “end-cut split” [Buja and Lee 2001]. These overly uneven trees generally
result in nonactionable or highly fitted rules, although it has been observed that in less
pathological cases, uneven splits can result in interpretable rules that represent useful
outliers in the data [Torgo 2001; Buja and Lee 2001]. While we want small disjuncts to
be created, we need to ensure that the learner generates rules that satisfy a specified
minimum level of support. This requires the “minimum split” parameter (which we
call M) to exceed the minimum percentage level of support (which we refer to as L)
required as defined in Eq. (1). This condition guarantees that the first split will result
in partitions that exceed the minimum required level of support for a disjunct.

It should be noted that trees generated using the different support thresholds (and
fixed number of splits S) can vary considerably, depending on M and L. Consider that
S splits with a threshold of M will result in a minimum support of MS for a leaf node.

The support threshold L in our experiments was varied between 0.25% and 10%.
Going any lower would not be meaningful considering that a 0.25% coverage would
cover too few buying and selling cases to generate meaningful statistics. At the other
end of the spectrum, a 10% support as the upper bound also seems reasonable since
performance at higher levels of coverage would begin to resemble the overall average,
namely, the market.

Our ensemble approach to the prediction problem through collections of trees is
similar to that of random forests [Breiman 2001] and other similar methods that try
to avoid the overfitting or bias that can result from single decision trees. Random
forests do this by using bootstrap samples and considering a very small subset of the
independent variables for consideration for every split. In our algorithm, we restrict
this consideration to two variables and consider the combination of two variables at
a time exhaustively. We selected our method because we wanted to give all variables
equal opportunity in the rule generation process. These variables have been noted
historically to be relevant based on past correlations with future returns, so some
domain knowledge has gone into the variables which we would like to see reflected in
the trees generated by the learning algorithm.

Rules are extracted from the trees as shown in Figure 2, with a path from root to leaf
being a rule, represented as Boolean conditions over dyads in X. Each rule has a score,
namely, its expected values of Zfret which is computed from the cases that satisfy the
conditions specified by the rule. The rules are ordered by in-sample performance. This
focus on nodes (rules) as the unit of analysis instead of the entire tree is important. It
enables us to solve two important problems simultaneously.

The first advantage of rules as the unit of analysis is that it provides a good way to
deal with the problem of model selection, which is a thorny one in machine learning.
The problem is one of selecting one or more models from a large set of competing
models. There are several measures for doing this, such as AIC [Akaike 1974], which
typically rely on a basic measure such as MSE or MAD for assessing model error. The
reality, however, is that most trees produce very similar error rates when applied to
the entire dataset for reasons pointed out earlier, namely, that the majority of the error
comes from the larger values of the dependent variable when the model predicts close
to zero (from the nodes with high support and average prediction close to the mean of
zero). Because competing models (in our case, trees) produce very similar error rates,
ranking them reliably is difficult. In contrast, as illustrated in Figure 2, the means
of individual nodes (especially those corresponding to small disjuncts or low support)
are typically quite different from the overall mean of the entire dataset and from each
other. In effect, we get a wide range of scores at the node or rule level. By comparing
and ranking these, we get a well discriminated ranking of rules based on in-sample
performance. We can then pick a subset of these rules as our model.
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Focusing on the best rules (nodes) as the decision rules from across the large set
of trees produced by the learning algorithm also solves a problem that is especially
relevant to financial prediction, namely, that of making a decision to buy (“go long”) or
sell (“go short”) only when there is a strong signal, and being agnostic otherwise. Unlike
problems where a system must decide on every case it sees, in financial forecasting it
often makes sense not to act because the expected return is close to zero. This is because
of the inherent noise in the problem. By selecting only the “interesting” rules we have
a decision making system that is opportunistic, acting only when the conditions are
appropriate and being agnostic otherwise.

The ordered list of rules contains the largest positive scores (Zfret) at the top and the
largest negative scores at the bottom. The top T rules are considered to be “long” rules.
Whenever the left-hand side for a rule is satisfied for an instrument, a trading program
would buy the instrument and sell it at the end of the next period. The bottom T rules
are considered to be “short” rules. Whenever the left-hand side for a rule is satisfied
for an instrument, a trading program would sell the instrument and buy it at the end
of the next period.

The top T and bottom T rules make up the decision rules employed by a trading
program. This type of top/bottom quantile structure is a common method in industry
for how trading programs are assembled to make predictions in both directions. In our
experiments T was set to 100.

We recognize that the simple selection procedure of the top T and bottom T rules
is suboptimal from a portfolio optimization perspective, since it ignores correlations
among the rules. If one takes correlation into account, we are faced with a massive
combinatorial optimization problem. While there are several heuristics that could be
used, we ignore this problem here since it introduces additional complexity into the
experimentation. While this would be essential in formulating a real trading strategy,
it isn’t necessary for the comparative analysis of interest in this article.

6. RESULTS

Before running the main experiments, a baseline was established where the learner
was allowed to generate rules without any limit on the complexity of rules, namely, the
number of conditions used.

As expected, the result from this baseline experiment was zero correlation between
rules’ in-sample and out-of-sample performance. This result is consistent with prior
literature on small disjuncts: if we don’t control for their complexity, they overfit the
data and generate large errors on out-of-sample data. In this case, their predictions
are no better than random.

Next, the learning and testing was performed 50 times based on different random
partitionings of the data (no duplicates in an in-sample or out-of-sample pair). For each
run, the overall performance is calculated as follows. Each rule is applied to each case
that satisfies its left-hand side and the return for that case is noted. The performance
of a rule is the average value of the dependent variable across all cases that satisfy the
rule. The performance of the set of the T long rules is the average across all the long
rules. The performance of the set of the T short rules is computed similarly. Finally,
the overall performance of the system of T long and T short rules is the difference of
their respective averages.

Figure 4 shows the results on the in-sample and out-of-sample datasets for varying
levels of support up to 10% for the 50 runs. The error bars show one standard deviation
in performance for the 50 runs for each level of support.

Several things are noteworthy about the results in Figure 2. First, as expected, the in-
sample performance increases with reduced support. However, it plateaus out at half
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Fig. 4.

a percent, suggesting that the learner derives little additional benefit from making
patterns more restrictive.

Secondly, and perhaps most significantly, the out-of-sample performance mirrors the
in-sample performance for all levels of support. Surprisingly, it gets better monotoni-
cally as support gets smaller. We do not see the “inverted U” that one sees when model
complexity is varied [Breiman et al. 1984]. Keeping the complexity low does appear
to avoid gross overfitting that occurs when complexity is not controlled. This is a sig-
nificant and novel result. It argues in favor of using Occam’s razor for constructing
ensembles of small disjuncts. We shall return to the significance of this result in the
discussion section of the article.

Thirdly, the results show larger absolute performance drop for smaller disjuncts,
indicating that the process of statistical induction does indeed result in more overfit-
ting for smaller disjuncts than the larger ones. However, even though small disjuncts
degrade more than large ones on out-of-sample data, they still perform significantly
better. This is what we care about from a predictive standpoint.

Finally, there is a significant difference in performance between the in-sample and
out-of-sample data at all levels of support. This is not surprising. It is common knowl-
edge that the process of statistical induction leads to some invariable “memorization”
of the data where some of the discovered patterns are really noise in the data. What is
notable here is the extent of degradation, which is an indication of the inherent noise
in the prediction problem.

It is important to recognize that in the absence of special knowledge about the prob-
lem, it is impossible for the machine to distinguish between the real and coincidental
patterns, that is, the ones that represent memorization (or “noise”) versus those that
represent generalization (or “signal”). And even for the patterns representing “signal”
there will be considerable variance in performance at the individual pattern level. The
expectation, however, is that there is some degree of generalization captured in the
aggregate collection of patterns.

Since some degree of memorization is inevitable in induction, we should expect the
out-of-sample performance of a collection of patterns to be lower than the in-sample
performance. For classification problems, the performance of a learner is defined using
a confusion matrix which counts true and false positives and true and false negatives.
For regression problems, however, evaluation depends on the magnitudes of the correct
and erroneous predictions. As we mentioned earlier, systems that win a majority of the
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Fig. 5.

time can be unprofitable while those that win a minority of the time can be profitable.
Performance is driven by the sizes of the winners and losers.

The ensemble of disjuncts provides a natural way to measure the expected degra-
dation on future data in percentage terms. To understand how, consider first what
an “ideal” learned model would look like, one where the degradation due to inductive
generalization is zero. Such a learner would produce a zero intercept scatter plot as in
Figure 5. The out-of-sample performance of this learned model matches its in-sample
performance exactly by producing an identical value for the continuously valued de-
pendent variable for both in-sample and out-of-sample data. Such a situation would
occur if the model were specified correctly including all relevant variables and with the
correct functional form, in which case it should perform similarly in and out-of-sample.

In practice, however, we typically do not know the perfect functional form, nor do we
include all relevant variables. Accordingly, it is more common to observe scatter plots
as in Figure 6. This particular plot shows the in- and out-of-sample performance of the
top 100 long rules at the 1% support level. As we see, the in-sample data have a tight
distribution, whereas the variance out-of-sample is much higher. Some patterns can
actually do better out-of-sample, but the majority of them do worse.

Note that the regression line in Figure 6 shows the fit between in- and out-of-sample
data, and its intercept is nonzero (–0.3146). This says that an in-sample performance
of zero should result in a negative out-of-sample performance, of –0.3146. This can be
viewed as the “bias” of the learned model. This interpretation of the regression model is
clearly unnatural for certain types of extreme cases, such as in the limit when support
approaches zero and no trading occurs. In such a case, when in-sample performance is
zero, so should the out-of-sample performance. Consider a line going through the origin,
which would represent this limit situation, with zero performance both in and out-of-
sample . Forcing the line to go through the origin solves two problems simultaneously.
First, we get a natural measure of degradation in percentage terms which we call yield.
Specifically, if the 45 degree line passing through the origin represents a 100% yield
as with the ideal learner, lower slopes represent correspondingly less than perfect
fit between in- and out-of-sample performance. In effect, the slope of the line is the
meaningful measure of the goodness of the learned model (in theory, it is possible for the
line to be steeper than 45% where the learner has somehow managed to perform even
better out-of-sample in the aggregate This should be extremely rare and correspond to
a statistical fluke).
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Fig. 6.

A nonzero intercept term also leads to a more serious problem with interpreting the
regression that is best illustrated through an example. Specifically, imagine a scatter
plot that is circular but tightly distributed around high values for both in- and out-
of-sample performance. The R-square for such a line might be zero, in which case the
regression line would be horizontal. But the learned model would actually be good
one, measured by the high average out-of-sample performance of the disjuncts as a
whole. Allowing an intercept would yield a flat line with a low R-square despite the
high out-of-sample performance. In contrast, the slope of the line passing through the
origin would represent the performance of the disjuncts corresponding to the scatter
plot relative to the ideal, the 45 degree line.

In summary, the slope or tangent of the zero intercept provides a natural measure of
yield, with flatter lines corresponding to lower yields. Figure 7 shows the line passing
through the origin, corresponding to the data in Figure 6. For this ensemble, the yield
is just over 32% relative to the ideal learner.2 The R-square for this case is meaningless
and does not represent fit and can therefore be ignored.

Unlike measures of model error such as MSE and MAD which are dominated by
the large values and not easy to interpret, the yield measure has a clean and useful
interpretation, namely, percentage degradation in relation to an ideal learner that a
model can be expected to realize.

The preceding calculation of yield measures the degradation from inductive gener-
alization based on the inputs provided to the learner, since the in-sample and out-
of-sample data came from the same distribution. However, the same concept can be
used to calculate the degradation of a model on future data which might come from
a different distribution. Indeed, in time-series forecasting, one typically implements

2The limitation of this point estimate of yield, of course, is that it does not consider explicitly the dispersion
of the data.
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Fig. 7.

Fig. 8.

learned models for use on future data. In this situation, we should expect additional
degradation in performance.

7. LEARNING AND TIME-SERIES FORECASTING

The purpose of the second set of experiments was to isolate and quantify the degrada-
tion arising from the fact that the future is always different from the past. This set of
experiments assesses whether small disjuncts have any predictive ability.

In order to quantify this second type of loss, the learned patterns were tested not
on data covering the same period as the data on which they were discovered, but on
future periods. Figure 8 illustrates how the data were selected. This dataset (labeled
“out-of-sample out of time” in the figure) corresponds to the time period between July
2003 and May 2008 and consists of 14,805 records. In this experiment, we generated
the out-of-time performance by applying the rules learned on the in-sample data to the
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Fig. 9.

“out of time” data. The results from evaluating the learned patterns out of time are
shown in Figure 9. Each level of support shows the average performance of the patterns
with the corresponding error bars similar to Figure 4. In order to avoid clutter, we do
not show the in sample performance again (for which the reader is referred to Figure
4), and only compare the two out-of-sample performances: in time versus out of time.
(The lower line from Figure 4 is the upper line in Figure 9.)

Interestingly, the out-of-sample performance out of time also mirrors the out-of-
sample performance in time. As expected, the performance out of time is consistently
worse. The yield achieved out-of-sample can be measured as before, by plotting the in
sample performance versus the out-of-time performance and calculating the slope of
the zero intercept regression line. We do not show this plot since it adds little to the
discussion, but what is of interest is the fact that the degradation on future data both in
absolute and percentage terms is not worse than that due to inductive generalization.
Indeed, it is lower in percentage terms, especially for the lower levels of support. This
is encouraging since it suggests that the collection of small disjuncts do indeed have
some predictive power that can persist over time.

In concluding this discussion on out-of-time degradation, it is natural to expect that
the degradation can be severe enough to result in a negative performance in the future.
Indeed, the plot in Figure 10 (the performance of the “short ensemble” at the 1% support
level) shows such a situation. In contrast to Figure 7 where the “long ensemble” at the
1% support level had a roughly 32% yield, this time the overall yield is negative,
showing that the learned patterns that make negative predictions for Zfret perform
poorly in the future.

The previous result illustrates two interesting concepts that are worth mentioning
briefly. First, constructing a learning system on noisy financial time-series data can
result in models that perform poorly in the future. A learning algorithm will lose
performance not just in the process of induction, but also if the future turns out to
be sufficiently different from the past, on which the model is based. Second, the figure
illustrates a peculiarity of financial equity markets, namely the difficulty of finding good
“short” models, because markets trend up most of the time, so a short seller is on average
swimming against the current. This is a well known phenomenon in equities markets.

Would anyone implement a model with a potential negative yield? Normally, one
would not. However, many portfolio managers are not comfortable with implementing
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Fig. 10.

Table I.

support% 0.5 1 2 3 4.5 6 8 10
Dow 30 0.61 0.53 0.10 0.08 0.00 0.05 0.03 0.00
CAC40 0.19 0.29 0.12 0.19 0.13 0.04 0.14 0.08
DAX30 −0.10 −0.15 −0.18 −0.20 −0.19 −0.18 −0.02 −0.04
FTSE100 0.36 0.31 0.11 0.17 0.15 0.05 0.10 0.02
Hang Seng 0.19 0.28 0.22 0.26 0.22 0.16 0.13 0.05
Midcap 400 0.29 0.20 0.05 −0.05 0.00 −0.04 0.04 −0.03
IBEX35 0.30 0.23 0.05 0.13 0.06 −0.02 −0.02 −0.08
Nasdaq100 0.31 0.26 0.19 0.11 0.04 0.09 0.07 0.07
Russel 2000 0.31 0.24 0.24 0.18 0.16 0.11 0.14 0.06
SP500 0.60 0.65 0.27 0.29 0.23 0.22 0.15 0.17
Nikkei 225 0.26 0.35 0.12 0.02 −0.02 0.00 0.05 −0.04
EuroStoxx 50 0.20 0.19 0.14 0.12 0.10 0.09 0.07 0.08
Average 0.29 0.28 0.12 0.11 0.07 0.05 0.07 0.02
Max 0.61 0.65 0.27 0.29 0.23 0.22 0.15 0.17
Min −0.10 −0.15 −0.18 −0.20 −0.19 −0.18 −0.02 −0.08

The table shows means only to avoid clutter. The average standard deviation was approximately
0.1 at the higher levels of support and approximately 0.2 at the lowest levels of support.

“long only” models, assuming that the market will go up at all times. For this reason it
is typical to “hedge” long exposure to the market through a short strategy which may
lose money on average, but nevertheless provides protection during those times when
the market drops unexpectedly.

As a final check on the generality of the preceding results, we tested the learned
models on each of the individual equity indices out of time. The results are presented
in Table I which shows average performance for each equity index, long minus short,
as before. Not surprisingly, there is considerable variance in results, with significant
difference in performance across the individual instruments. However, other than the
DAX30 for which the learned models do not work at any level of support, there is a
pattern of better performance for the smaller disjuncts, similar to what we observed
at the overall asset class level. It is also notable that there is a considerable drop in
performance above the 1% level of support.
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The previous results suggest that the results at the asset class level are not driven by
outliers, but from across the asset class. They bolster the earlier findings, suggesting
that the patterns described by the small disjuncts exist at the individual instrument
level, and not based on outliers.

It is worth concluding this section with the question we raised at the outset, namely,
whether ensembles of small disjuncts are a useful predictive model for problems that
have a high level of noise. Interestingly, our results run counter to previous research,
which was primarily on classification problems, and where complexity was not con-
trolled for explicitly. We find that their absolute performance is better than that of
large disjuncts, and this difference is statistically significant.

8. DISCUSSION

In many problem domains, there is usually a “main” or “first order” model that explains
a bulk of the cases in the data, and the minority of cases that are hard to classify are
treated as noise or exceptions that may require a “second order” model to classify
them correctly. When rule induction algorithms are applied to such problems, it is not
surprising that the small disjuncts would produce a disproportionately large number
of errors. In trying to explain the residual cases, these models end up modeling much
of the noise as well. Previous research supports this view.

Our assertion is that no such first-order model exists when it comes to predicting
future returns of asset classes in financial markets. In the absence of such a model,
an approach that attempts to find a single model will perform poorly. It will model the
noise and its predictions will tend to be close to the mean for all cases as shown in
Figure 1. In contrast, a distributed approach to prediction using an ensemble of small
disjuncts can do a better job of avoiding the inherent noise in such problems and finding
the islands of structure in the data. While this will invariably model some of the noise
as well, the expectation is that in the aggregate, it will find structure.

As support for the alternative approach, we have provided new evidence on the
performance of “simple” small disjuncts as predictive models in financial markets.
This type of model represents a new way to think about market prediction where the
prediction task is distributed across a large number of simple independent models
instead of a single one.

We have shown that the distributed approach works well when the complexity of
the learner is low. Indeed, keeping disjuncts simple tends to partition the search space
into large segments that are “uninteresting,” where a model makes no prediction, and
the small “interesting” ones where it makes predictions. This model fits naturally with
financial markets compared to problems where a model must always make a decision
(such as accepting or rejecting an application for credit, and so on). This property of the
problem lets us focus on the interesting submodels (tree nodes) while ignoring those
whose average forecast is close to the mean.

Prior research with small disjuncts has been almost entirely on classification prob-
lems, where it has been demonstrated that they account for a large proportion of errors
and degrade the overall performance of a learned model. In contrast, our research
shows that ensembles of simple small disjuncts perform well on data they have not
seen before. Indeed the ensemble of small disjuncts is the predictive model. The re-
sults appear consistent with the conjecture that markets for the most part constitute
noise, with infrequent opportunities presenting favorable risk-reward trade-offs. It is
important to point out, however, that higher performance of small disjuncts on regres-
sion problems doesn’t mean “higher accuracy” as in classification problems. Rather,
the performance of the small disjuncts comes from their ability, on average, to predict
accurately the higher values of the dependent variable. This is a subtle but important
distinction.
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A natural by-product of the ensemble approach, where the ensemble is a mix of signal
and noise which is indistinguishable, is the quantification of “yield” of a learned model.
Virtually all models induced by machine learning methods are known to degrade on
future data, but other than standard measures of error, which are of limited value, and
expected error bounds of learned models on data corresponding to the distribution of the
training data [Vapnik 1995], no one has heretofore proposed a metric for quantifying
the yield from an induced regression model relative to an ideal benchmark.

We also show that the degradation in performance of a learned model is decomposable
into two distinct components: that resulting from the inevitable overfitting that occurs
in the process of statistical induction, and that resulting from the fact that the future
is inherently different from the past. This seems like a useful way to break down
the expected degradation of a learned model. It can be applied to any problem where
decision making is distributed across an ensemble of decision rules, each of which
recognizes a small set of conditions under which to act. The relative magnitudes of
the two degradations provide useful information to the model builder for performing
cost/benefit and other types of analyses.

Financial markets are at the same time recurrent and evolutionary. Old patterns re-
peat, albeit unpredictably, and new patterns emerge constantly. This makes it difficult
to find a single stable predictive model. A practical benefit of our approach is that it
makes it possible to find patterns on a large scale efficiently, deploy them, and move
on, without investing large amounts of effort in theory building only to find the the-
ory obsolete. This approach is consistent with the observation that “patterns emerge
before the reasons for them become apparent.” An implication of the result is that
small disjuncts provide a promising approach towards finding emerging patterns and
assembling a predictive model automatically.

The evidence presented, that small disjuncts have predictive power, raises the ob-
vious question as to why they are not discovered by market players and therefore
disappear. The high degree of competition among players in financial markets can be
expected to dissipate any obvious advantages that may occasionally arise.

The issue of efficient markets is hotly debated in the literature. The debate and its
evolution is much too extensive to review in this article, however, it is worth addressing
briefly the concept of “market anomalies,” since it is possible that small disjuncts might
represent a type of anomaly. It is well known that certain strategies lead to abnormal
returns by exploiting market anomalies. An example of an anomaly is that stocks with
low market capitalization (small stocks) have abnormally high average returns [Banz
1981]. Similarly, stocks with high ratios of book value to the market value of equity also
have unusually high average returns [Rosenberg et al. 1985; Chan et al. 1991; Fama
and French 1993]. Another example is that more profitable firms have higher average
stock returns [Haugen and Baker 1996; Cohen et al. 2002]. Companies that deliver an
earnings surprise see subsequent price movement in the direction of the surprise [Ball
1995]. Similarly, “momentum investing,” a strategy of buying high and selling even
higher which can be implemented as described in the preceding paragraph, also seems
to persist and generate abnormal returns [Jegadeesh and Titman 1993; Schwager 1992;
Soros 1987]. Similarly, a strategy of buying a higher interest rate yielding currency and
selling a lower rate yielding one, known as the “carry trade,” is another well known
one. There are several other known market anomalies.

As summarized by Ball [1995], a proponent of the efficient market hypothesis,

“the theory of efficient markets is, like all theories, an imperfect and limited way of viewing stock markets.
The issue will be impossible to solve conclusively while there are so many binding limitations to the asset
pricing models that underlie empirical tests of market efficiency” [Ball 1995].
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In other words, financial markets are a complex phenomenon, not subject to a clean
and simple interpretation.

A plausible explanation for the persistence of anomalies is that the excess returns
realized by applying them entail taking on some sort of risk, so there is no “free
lunch” after all [Till 2001]. For example, the carry trade strategy takes on the risk
that the higher yielding currency will be devalued or that a sudden shift in risk taking
preference will cause participants to reverse their default positions, in which case it
performs badly. Similarly, a strategy that only buys “value” stocks (those with high book
value to price ratios) takes on a business cycle risk that others don’t want to assume.
A strategy that sells deep out of the money options (a “short-option” strategy) makes a
steady return on the small premium it makes selling catastrophic protection to others
and works well until a catastrophe actually occurs (such events occurred in September
and October of 2008). In summary, each of these types of strategies associated with
anomalies can be viewed as taking on some sort of risk that others are unwilling to
take, for which they can make superior returns than the market for significant periods
of time.

Small disjuncts may have a similar interpretation. Markets are a complex social
phenomenon where there is tremendous competition among participants to place a
value today on future outcomes which are uncertain. This entails risk taking. But risk
is not easy to calculate, nor is it static [Damodaran 2007]. During “normal” times, the
human emotions of risk and greed are balanced in the aggregate, with large numbers
of participants buying and selling, and prices move smoothly. However, fear and greed
often go out of balance, causing people to become more or less risk averse. Such markets
can experience rapid price changes and illiquidity, driven by human emotion. Market
activity in October 2008 was an example of the rapid changes in investors’ appetite for
taking risk, with extreme fear quickly pervading markets, represented by a relative
absence of buyers.

Small disjuncts by definition represent “unusual” situations in financial markets.
It is plausible that in these outlier-like situations represented by the small disjuncts,
market participants’ propensity for risk is imbalanced. Accordingly, when fear domi-
nates, the situations appear more risky than they have been historically or they would
be during “normal” situations. There could be a number of fundamental reasons for
why the outlier situations might be abnormal from a risk bearing standpoint. One is
that these situations occur after major market dislocations when fear dominates. When
this is the case, participants are frozen into inaction. Or they may have held positions
previously that they were forced to liquidate. Or they may have had stricter risk lim-
its imposed on their trading activity through institutional risk managers who tend to
become highly risk averse in outlier situations. Schleifer [2001] provides an extensive
discussion of the reasons why markets cease to be “efficient” during time of market
stress. Whatever the reasons may be for the inefficiency, small disjuncts may represent
such “anomalies” similar to the ones discussed earlier. These can be accounted for by
the fact that each of these anomalies represents a specific risk that is being rewarded
by the market, or some “residual” nonrisk bearing reason. In either case, taking risk
when others are not should be correspondingly rewarded.

Regardless of the interpretation one might favor for the existence and persistence
of small disjuncts, this research suggests that small disjuncts represent an interesting
phenomenon in financial markets. Indeed, unlike previous domains in which they rep-
resent much of the “noise” in the problem, our research suggests that they collectively
represent “the signal” in a domain that otherwise consists largely of noise.

More generally, the approach of considering a portfolio of small disjuncts as a pre-
dictive model is likely to be useful for problems that are noisy and “nonstationary,”
that is, where the rules for prediction shift over time. For such problems, it appears
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promising to construct ensembles of rules that serve as prediction models that are valid
for limited periods of time, and thereby reconstructed periodically.

Appendix: Description of independent variables

There are 68 independent variables in the dataset that belong to 8 variable types that
are based on 8 historical intervals. The first variable type is historical returns that
indicate the “trend” of a time series over the different intervals. (Figure 2 shows “Ret2”
and “Ret5” which measure returns over the last 2 and 5 intervals respectively. There
are 6 other returns measured over different historical intervals.) If “current” is the end
of the current time period, the N day historical return, Ret(N) is defined as

Ret(N) = (Price (current) − Price (current-N))/Price (current –N).

Similarly, an additional variable type, volatility, measures the historical dispersion in
returns and ranges for a series. The “standard” measure of T day volatility is

Vol(T) = Stdev (Ret(T),Ret(T-1), . . . Ret(1), where Stdev returns the standard
deviation of the given series.

Two additional types of volatility are computed identically. The first is based on in-
traperiod range (i.e., high minus low for a period), and the second is known as the
Garman-Klass volatility, described in Garman and Glass [1980]. All variables are “nor-
malized” using a 1 year time window. For example, a distribution of Vol(T) is generated
using a year of history, and the current Vol(T) is expressed as a Z-score using the
distribution.

Four additional variables are computed that indicate “position” within a range (com-
monly referred to as “stochastics” in the trade literature). For example, if the current
“close price” of a series is the highest closing price over the last N periods, the position
for it is +1 indicating the highest position, whereas if it is the lowest, its position is -1,
and so on. In addition to the close, we measure this value for the open, high, and the
low. Suppose we wish to compute the position of a variable (say the close) relative to
the last T intervals. Let us call this variable V. This formula for computing the position
of V is

Position(V,T) = (Current (V)–Low(V,T))/(High(V,T)–Low(V,T),

where

Current(V) is the last period’s value of the variable V, Low(V,T)) is the low of the
variable V over the last T periods, High(V,T)) is the high of the variable V over the last
T periods.

In addition to the 64 variables defined before (8 types over 8 intervals), the database
consists of four additional variables that calculate volatility-adjusted returns over four
periods. Adjusting returns by volatility, also known as the Sharpe ratio, provides an
indication of the smoothness of a trend.
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